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The anomalous effective action describing the coupling of gravity to a non-Abelian gauge theory can be

determined by a variational solution of the anomaly equation, as shown by Riegert long ago. It is given by

a nonlocal expression, with the nonlocal interaction determined by the Green’s function of a conformally

covariant operator of fourth order. In recent works it has been shown that this interaction is mediated by a

simple pole in an expansion around a Minkowski background, coupled in the infrared in the massless

fermion limit. This result relies on the local formulation of the original action in terms of two auxiliary

fields, one physical scalar and one ghost, which take the role of massless composite degrees of freedom. In

the gravity case, the two scalars have provided ground in favor of some recent proposals of an infrared

approach to the solution of the dark energy problem, entirely based on the behavior of the vacuum energy

at the QCD phase transition. As a test of this general result, we perform a complete one-loop computation

of the effective action describing the coupling of a non-Abelian gauge theory to gravity. We confirm the

appearance of an anomaly pole which contributes to the trace part of the TJJ correlator and of extra poles

in its trace-free part, in the quark and gluon sectors, describing the coupling of the energy-momentum

tensor (T) to two non-Abelian gauge currents (J).
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I. INTRODUCTION

The study of the effective action describing the coupling
of a gauge theory to gravity via the trace anomaly [1] is an
important aspect of quantum field theory, which is also not
deprived of direct phenomenological implications. This
coupling is mediated by the correlator involving the
energy-momentum tensor together with two vector cur-
rents (or TJJ vertex), which describes the interaction of
a graviton with two photons or two gluons in QED and
QCD, respectively. At the same time, the vertex has been at
the center of an interesting case study of the renormaliza-
tion properties of composite operators in Yang Mills theo-
ries [2], in the context of an explicit check of the violation
of the Joglekar-Lee theorem [3] on the vanishing of S-
matrix elements of Becchi-Rouet-Stora-Tyutin (BRST)
exact operators. In this second case it was computed on
shell, but only at zero momentum transfer. In this work we
are going to extend this computation and investigate the
presence of massless singularities in its expression. These
contribute to the trace anomaly and play a leading role in
fixing the structure of the effective action that couples
QCD to gravity. The analysis of [2], which predates our
study, unfortunately does not resolve the issue about the
presence or the absence of the anomaly pole in the anoma-
lous effective action of QCD because of the restricted
kinematics involved in that analysis of the TJJ vertex,
and for this reason we have to proceed with a complete
recomputation.

Anomaly poles characterize quite universally (gravita-
tional and chiral) anomalous effective actions, in the sense
that they account for their anomalies. They have been
identified and discussed in the Abelian case, both by a
dispersive analysis [4] and by a direct explicit computation
of the related anomalous Feynman amplitudes, quite re-
cently [5,6]. Extensive analysis in the case of chiral gauge
theory for anomalous Uð1Þ models has shown the close
parallel between solutions of the Ward identities, the cou-
pling of the poles in the ultraviolet and in the infrared
region and the gravity case [7,8].
It is therefore important to check whether similar con-

tributions appear also in non-Abelian gauge theories
coupled to gravity. We recall that the same pole structure
is found in the variational solution of the expression of the
trace anomaly, where one tries to identify an action whose
energy-momentum tensor reproduces the trace anomaly.
This action, found by Riegert long ago [9], is nonlocal and
involves the Green function of a quartic (conformally
covariant) operator. The action describes the structure of
the singularities of anomalous correlators with any number
of insertions of the energy-momentum tensor and two
photons (TnJJ), which are expected to correspond both
to single and to higher order poles, for a sufficiently high n.
For obvious reasons, explicit checks of this effective action
using perturbation theory—as the number of external
graviton lines grows—become increasingly difficult to
handle. The TJJ correlator is the first (leading) contribu-
tion to this infinite sum of correlators in which the anoma-
lous gravitational effective action is expanded.
Given the presence of a quartic operator in Riegert’s

nonlocal action, the proof that this action contains a single
pole to lowest order (in the TJJ vertex), once expanded
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around flat space, has been given in [4] by Giannotti and
Mottola, and provides the basis for the discussion of the
anomalous effective action in terms of massless auxiliary
fields contained in their work. The auxiliary fields are
introduced in order to rewrite the action in a local form.
We show by an explicit computation of the lowest order
vertex that Riegert’s action is indeed consistent in the non-
Abelian case as well, since its pole structure is recovered in
perturbation theory, similarly to the Abelian case.
Therefore, one can reasonably conjecture the presence of
anomaly poles in each gauge invariant subset of the dia-
grammatic expansion, as the computation for the non-
Abelian TJJ shows (here for the case of the single pole).
In particular, this is in agreement with the result of [4],
where it is shown that, after expanding around flat space-
time, the quartic operator in Riegert’s action becomes a
simple 1=h nonlocal interaction (for the TJJ contribu-
tion), i.e. a pole term. We remark that the identification
of a pole term in this and in other similar correlators, as we
are going to emphasize in the following sections (at least in
the case of QED and for the sector of QCD mediated by
quark loops), requires an extrapolation to the massless
fermion limit, and for this reason its interpretation as a
long-range dynamical effect in the gravitational effective
action requires some caution. In QCD, however, there is an
extra sector that contributes to the same correlator, entirely
due to virtual loops of gluons in the anomaly graphs, which
remains unaffected by the massless fermion limit. The
appearance of such a singularity in the effective action,
however, does not necessarily imply that its contribution
survives in the physical S-matrix. Wewill also establish the
appearance of other singularities in the trace-free form
factors which, obviously, are not part of Riegert’s action.

We will comment in our conclusions on the possible
implications of these results and on some recent proposals
to link this type of behavior [10,11] to cosmology and to
the dark energy problem. We also remark that, in general,
the coefficient in front of the trace anomaly, for a given
theory, can be computed in terms of its massless field
content, and as such, it is well known. However, the
structure of the effective action, the characterization of
its fundamental form factors at nonzero momentum trans-
fer, and its complete analytical structure are novel results.
In this respect, the classification of all the relevant tensor
structures which appear in the computation of this corre-
lator is rather involved and has been performed in the
completely off-shell case. We remark that the complexity
of the final expression, in the off-shell case, prevents us
from presenting its form. For this reason we will give only
the on-shell version of the complete vertex, which is ex-
pressed, as we have mentioned, only in terms of three
fundamental form factors.

Concerning the phenomenological relevance of this ver-
tex, we just mention that it plays an essential role in the
study of next-to-leading order NLO corrections to pro-

cesses involving a graviton exchange. In fact, in theories
with extra dimensions, where a low-gravity scale and the
presence of Kaluza-Klein excitations may enhance the
rates for processes mediated by gluons and gravitons, the
vertex appears in the hard scattering of the corresponding
factorization formula [12] and has been computed in di-
mensional regularization. However, to our knowledge, in
all cases, there has been no separate discussion of the
general structure of the vertex (i.e. as an amplitude) nor
of its Ward identities, which, in principle, would require a
more careful investigation because of the trace anomaly.
Anomalous amplitudes, in fact, are defined by the funda-
mental Ward identities imposed on them, which we are
going to derive from general principles. We cover this gap
and show that both dimensional regularization and dimen-
sional reduction reproduce the correct Ward identity sat-
isfied by this vertex, showing at the same time that the use
of these regularizations is indeed appropriate. Results for
this vertex will be given only in the on-shell case, since in
this case the result can be expressed in terms of just three
form factors. We have computed also the off-shell effective
action, but its expression is rather lengthy and will not be
discussed here, since it is gauge dependent and of less
significance compared to the on-shell result. Most of our
work is concerned with a technical derivation of the lead-
ing contribution to the anomalous effective action of QCD
coupled to gravity. We have summarized in our conclu-
sions a brief discussion of the relevance of this study in the
ongoing attempt to link the trace anomaly and QCD to a
possible alternative solution of the problem of dark energy,
using this effective action as an intermediate step [10,11].

II. ANOMALOUS EFFECTIVE ACTIONS AND
THEIR VARIATIONAL SOLUTIONS

In this section we briefly review the topic of the varia-
tional solutions of anomalous effective actions, and of the
local formulations of these using auxiliary fields.
One well-known result of quantum gravity is that the

effective action of the trace anomaly is given by a nonlocal
form when expressed in terms of the space-time metric
g��. This was obtained [9] from a variational solution of

the equation for the trace anomaly [1],

T�
� ¼ bFþ b0ðE� 2

3hRÞ þ b00hRþ cFa��Fa
�� (1)

(see also [13,14] for an analysis of the gravitational sector)
which takes, in D ¼ 4 space-time dimensions, the form

Sanom½g; A� ¼ 1

8

Z
d4x

ffiffiffiffiffiffiffi�gp Z
d4x0

ffiffiffiffiffiffiffiffiffi
�g0

q �
E� 2

3
hR

�
x

���14 ðx; x0Þ
�
2bFþ b0

�
E� 2

3
hR

�

þ 2cF��F
��

�
x0
: (2)

Here, the parameters b and b0 are the coefficients of the
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Weyl tensor squared,

F ¼ C����C
���� ¼ R����R

���� � 2R��R
�� þ R2

3
(3)

and the Euler density

E ¼ �R����
�R���� ¼ R����R

���� � 4R��R
�� þ R2;

(4)

respectively, of the trace anomaly in a general background
curved space-time. Notice that the last term in (2) is the
contribution generated in the presence of a background
gauge field, with coefficient c. For a Dirac fermion in a
classical gravitational (g��) and Abelian (A�) background,

the values of the coefficients are b ¼ 1=ð320�2Þ, b0 ¼
�11=ð5760�2Þ, and c ¼ �e2=ð24�2Þ, with e being the
electric charge of the fermion. One crucial feature of this
solution is its origin, which is purely variational. Obtained
by Riegert long ago, the action was derived by solving the
variational equation satisfied by the trace of the energy-
momentum tensor. ��14 ðx; x0Þ denotes the Green’s function
inverse of the conformally covariant differential operator
of fourth order, defined by

�4 � r�ðr�r� þ 2R�� � 2
3Rg

��Þr�

¼ h2 þ 2R��r�r� þ 1
3ðr�RÞr� � 2

3Rh: (5)

Given a solution of a variational equation, it is mandatory
to check whether the solution is indeed justified by a
perturbative computation. One specific feature of these
solutions is the presence of anomaly poles. In previous
works we have elaborated on the significance of these
interactions, extracted from a direct perturbative computa-
tion, by a painstaking analysis of anomaly graphs under
general kinematical conditions, and not just by a dispersive
approach. The dispersive approach allows us to connect
this behavior of the spectral density to a very specific
infrared configuration.

A. The kinematics of an anomaly pole

In our conventions we will denote with p and q the
outgoing momenta of the two photons/gluons and with k
the incoming momentum of the graviton. s � ðpþ qÞ2
denotes the invariant mass of the external graviton line.
A computation of the spectral density �ðsÞ of the TJJ
amplitude in QED shows that this takes the form �ðsÞ �
�ðsÞ. The configuration responsible for the appearance of a
pole is illustrated in Fig. 1(a). It describes the decay of a
graviton line into two on-shell photons. The decay is
mediated by a collinear and on-shell fermion-antifermion
pair and can be interpreted as a space-time process. The
corresponding interaction vertex, described as the ex-
change of a pole, is instead shown in Fig. 1(b). The actual
process depicted in Fig. 1(a) is obtained at diagrammatic

level by setting on shell the fermion-antifermion pair at-
tached to the graviton line. This configuration, present in
the spectral density of the diagram only for on-shell pho-
tons, generates a pole contribution which can be shown to
be coupled in the infrared. This means that if we compute
the residue of the amplitude for s! 0, we find that it is
nonvanishing. In the general expression of the vertex, a
similar configuration is extracted in the high energy limit,
not by a dispersive analysis, but by an explicit (off-shell)
computation of the diagrams. Clearly, the pole, in this
second case, has a vanishing residue as s! 0, but is
nevertheless a signature of the anomaly at high energy.
Either for virtual or for real photons, a direct computation
of the vertex allows us to extract the pole term, without
having to rely on a dispersive analysis. This point has been
illustrated in our previous computations of the chiral anom-
aly vertex [8] and in the computation of the TJJ vertex for
QED [5]. The identification of this singularity in the case of
QCD is in perfect agreement with those previous results.

B. The single pole from �4

In the case of the gravitational effective action, the
appearance of the inverse of the �4 operator seems to be
hard to reconcile with the simpler 1=h interaction which is
predicted by the perturbative analysis of the TJJ correlator,
which manifests a single anomaly pole. In [4], Giannotti
and Mottola show step by step how a single pole emerges
from this quartic operator, by using the auxiliary field
formulation of the same effective action. Clearly, more
computations are needed in order to show that the nonlocal
effective action consistently does justice of all the poles (of
second order and higher) which should be present in the
perturbative expansion. Obviously, the perturbative com-
putations—being either based on dispersion theory or on
complete evaluations of the vertices, as in our case—
become rather hard as we increase the number of external
lines of the corresponding perturbative correlator. For in-
stance, this check becomes almost impossible for correla-
tors of the form TTTT or higher, due to the appearance of a
very large number of tensor structures in the reduction of
the Feynman integrals from the tensor form to the scalar

(b)(a)

FIG. 1. The diagrams describing the anomaly pole in the
dispersive approach. Figure (a) depicts the singularity of the
spectral density �ðsÞ as a space-time process. Figure (b) de-
scribes the anomalous pole part of the interaction via the
exchange of a pole.
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one. In the case of TJJ the computation is still manageable,
since it does not require Feynman integrals beyond rank 4.

Expanding around flat space, the local formulation of
Riegert’s action, as shown in [4,15], can be rewritten in the
form

Sanom½g; A� ! � c

6

Z
d4x

ffiffiffiffiffiffiffi�gp Z
d4x0

�
ffiffiffiffiffiffiffiffiffi
�g0

q
Rxh

�1
x;x0 ½F��F

���x0 ; (6)

which is valid to first order in the fluctuation of the metric
around a flat background, denoted as h��,

g�� ¼ 	�� þ 
h��; 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�GN

p
(7)

with GN being the four-dimensional Newton’s constant.
The formulation in terms of auxiliary fields of this axion
gives

Sanom½g; A;’; c 0� ¼
Z

d4x
ffiffiffiffiffiffiffi�gp �

�c 0h’� R

3
c 0

þ c

2
F��F

��’

�
; (8)

where � and c are the auxiliary scalar fields. They satisfy
the equations

c 0 � bhc ; (9)

hc 0 ¼ c

2
F��F

��; (10)

h’ ¼ �R

3
: (11)

In order to make contact with the TJJ amplitude, one
needs the expression of the energy momentum extracted
from (8) to leading order in h��, or, equivalently, from (6)

that can be shown to take the form

T
��
anomðzÞ ¼ c

3
ðg��h� @�@�Þz

Z
d4x0h�1z;x0 ½F��F

���x0 :
(12)

Notice that T
��
anom is the expression of the energy-

momentum tensor of the theory in the background of the
gravitational and gauge fields. We recall, in fact, that in the
QED case, for instance, the energy-momentum tensor of
the theory is split into the free fermionic part Tf, the

interacting fermion-photon part Tfp, and the photon con-

tribution Tph, which are given by

T
��
f ¼ �i �c�ð�@

$
�Þc þ g��ði �c��@

$
�Þc �m �c c Þ; (13)

T��
fp ¼ �eJð�A�Þ þ eg��J�A�; (14)

and

T��
ph ¼ F��F�

� � 1
4g

��F��F��; (15)

where the current is defined as

J�ðxÞ ¼ �c ðxÞ��c ðxÞ: (16)

The connected components of TJJ can be obtained
directly from the quantum average of Tp, defined as the

sum of the fermion contribution and its interaction part
with the photon field,

T��
p � T��

f þ T��
fp : (17)

In the formalism of the background fields, the TJJ
correlator then can be extracted from the defining func-
tional integral

hT��
p ðzÞiA �

Z
DcD �cT��

p ðzÞei
R

d4xLþ
R

J�AðxÞd4x

¼ hT��
p ei

R
d4xJ�AðxÞi (18)

via two functional derivatives with respect to the back-
ground field A�, and it generates the effective action

�����ðz; x; yÞ � �2hT��
p ðzÞiA

�A�ðxÞ�A�ðyÞ
��������A¼0

¼ �����
anom þ ~�����:

(19)

We have separated in (19) the pole contribution �anom from

the rest of the amplitude (~�), which does not contribute to
the trace part. Notice that �anom, derived from either the
classical generating functional (12) given by Riegert’s
action or from the direct perturbative expansion of (19),
should nevertheless coincide, for the pole term not to be a
spurious artifact of the variational solution. In particular, a
computation performed in QED shows that the pole term
extracted from Tanom via functional differentiation,

�
����
anom ðp; qÞ ¼

Z
d4x

Z
d4yeip�xþiq�y

�2T��
anomð0Þ

�A�ðxÞA�ðyÞ

¼ e2

18�2

1

k2
ðg��k2 � k�k�Þu��ðp; qÞ (20)

with

u��ðp; qÞ � ðp � qÞg�� � q�p�; (21)

indeed coincides with the result of the perturbative expan-
sion, as defined from the first term on the right-hand side of
(19). Thus, the entire contribution to the anomaly is ex-
tracted from Tanom as

g��T
��
anom ¼ cF��F

�� ¼ � e2

24�2
F��F

��: (22)

As we have already mentioned, the full action (2), varied
several times with respect to the background metric g��

and/or the background gauge fields A�, gives those parts of
the correlators of higher order, such as hTTT . . . JJi and
hTTT . . .i, which contribute to the trace anomaly. In par-
ticular, the anomalous contributions of the TnJJ vertices
are obtained by varying the local action, both with respect
to the metric and to the gauge fields.
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III. THE ENERGY-MOMENTUM TENSOR AND THE WARD IDENTITIES

Moving to the QCD case, we introduce the definition of the QCD energy-momentum tensor, which is given by

T�� ¼ �g��LQCD � Fa
��F

a�
� � 1



g��@

�ðAa
�@

�Aa
�Þ þ 1



ðAa

�@�ð@�Aa
�Þ þ Aa

�@�ð@�Aa
�ÞÞ

þ i

4
½ �c��ð ~@� � igTaAa

�Þc � �c ð@ � þ igTaAa
�Þ��c þ �c��ð ~@� � igTaAa

�Þc � �c ð@ � þ igTaAa
�Þ��c �

þ @� �!að@�!a � gfabcAc
�!

bÞ þ @� �!
að@�!a � gfabcAc

�!
bÞ; (23)

where Fa
�� is the non-Abelian field strength of the gauge

field A,

Fa
�� ¼ @�A

a
� � @�A

a
� þ gfabcAb

�A
c
�; (24)

and we have denoted with !a the Faddeev-Popov ghosts
and with �!a the antighosts, while 
 is the gauge-fixing
parameter. The Ta’s are the gauge group generators in the
fermion representation and fabc are the antisymmetric
structure constants. For later use, it is convenient to isolate
the gauge-fixing and ghost dependent contributions from
the entire tensor,

T
g:f:
�� ¼ 1



½Aa

�@�ð@ � AaÞ þ Aa
�@�ð@ � AaÞ�

� 1



g��

�
� 1

2
ð@ � AÞ2 þ @�ðAa

�@ � AaÞ
�
; (25)

T
gh
�� ¼ @� �!aDab

� !b þ @� �!aDab
� !b � g��@

� �!aDab
� !b:

(26)

The coupling of QCD to gravity in the weak gravita-
tional field limit is given by the interaction Lagrangian

L int ¼ �1
2
h

��T��: (27)

Notice that T�� as defined in Eq. (23) is symmetric, while

traceless for a massless theory. The symmetric expression
can be easily found, as suggested in [16], by coupling the
theory to gravity and then defining it via a functional
derivative with respect to the metric, recovering (23) in
the flat space-time case.

The conservation equation of the energy-momentum
tensor takes the following form off shell [17,18]:

@�T�� ¼ � �S

�c
@�c � @� �c

�S

� �c

þ 1

2
@�

�
�S

�c
���c � �c���

�S

� �c

�

� @�A
a
�

�S

�Aa
�

þ @�

�
Aa
�

�S

�Aa
�

�
� �S

�!a @�!
a

� @� �!
a �S

� �!a ; (28)

where ��� ¼ 1
4 ½��; ���. It is indeed conserved by using

the equations of motion of the ghost, antighost, and

fermion-antifermion fields. The off-shell relation is par-
ticularly useful, since it can be inserted into the functional
integral in order to derive some of the Ward identities
satisfied by the correlator. In fact, the implications of the
conservation of the energy-momentum tensor on the
Green’s functions can be exploited through the generating
functional, obviously defined as

Z½J; 	; �	;�; ��; h� ¼
Z

DADcD �cD!D �!

� exp

�
i
Z

d4xðLþ J�A
� þ �	c

þ �c	þ ��!þ �!�þ h��T
��Þ

�
;

(29)

whereL is the standard QCD action and we have added the
coupling of the energy-momentum tensor of the theory to
the background gravitational field h��, which is the typical

expression needed in the study of QCD coupled to gravity
with a linear deviation from the flat metric. We have
denoted with J, 	, �	, �, �� the sources of the gauge field
A (J), the source of the fermion and antifermion fields
ð �	;	Þ and of the ghost and antighost fields ð ��; �Þ, respec-
tively. The generating functional W of the connected
Green’s functions is, as usual, denoted by

expiW½J; 	; �	;�; ��; h� ¼ Z½J; 	; �	;�; ��; h�
Z½0; 0; 0; 0; 0; 0� (30)

(normalized to the vacuum functional) and the effective
action, defined as the generating functional � of the one-
particle irreducible and truncated amplitudes. This is ob-
viously obtained from W by a Legendre transformation
with respect to all the sources, except, in our case, h��,

which is taken as a background external field,

�½Ac; �c c; c c; �!c;!c; h� ¼ W½J; 	; �	;�; ��; h�
�

Z
d4xðJ�A�

c þ �	c c

þ �c c	þ ��!c þ �!c�Þ:
(31)

The source fields are eliminated from the right-hand side of
Eq. (31), inverting the relations
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A
�
c ¼ �W

�J�
; c c ¼ �W

� �	
; �c c ¼ �W

�	
;

!c ¼ �W

� ��
; �!c ¼ �W

��

(32)

so that the functional derivatives of the effective action �
with respect to its independent variables are

��

�A�
c
¼ �J�; ��

�c c

¼ � �	;
��

� �c c

¼ �	;
��

�!c

¼ � ��;
��

� �!c

¼ ��;
(33)

and for the source h�� we have instead

��

�h��
¼ �W

�h��

: (34)

The conservation of the energy-momentum tensor summa-
rized in Eq. (28) in terms of classical fields can be reex-
pressed in a functional form by a differentiation ofW with
respect to h�� and the use of Eq. (28) under the functional

integral. We obtain

@�
�W

�h��

¼ �	@�
�W

� �	
þ @�

�W

�	
	

� 1

2
@�

�
�	���

�W

� �	
� �W

�	
���	

�
þ @�

�W

�J�
J�

� @�

�
�W

�J�
J�

�
þ ��@�

�W

� ��
þ @�

�W

��
�; (35)

and finally, for the one-particle irreducible generating
functional, this gives

@�
��

�h��

¼ � ��

�c c

@�c c � @� �c c

��

� �c c

þ 1

2
@�

�
��

�c c

���c c � �c c�
�� ��

� �c c

�

� @�A�
c

��

�A
�
c
þ @�

�
A�
c

��

�A
�
c

�
� ��

�!c

@�!c

� @� �!c

��

� �!c

; (36)

obtained from Eq. (35) with the help of Eqs. (32)–(34). We
summarize below the relevant Ward identities that can be
used in order to fix the expression of the correlator.

(i) Single derivative general Ward identity.—The Ward
identities describing the conservation of the energy-
momentum tensor for the one-particle irreducible
Green’s functions with an insertion of T�� can be

obtained from the functional equation (36) by taking
functional derivatives with respect to the classical
fields. For example, the Ward identity for the
graviton–gluon-gluon vertex is obtained by differ-
entiating Eq. (36) with respect to Aa

c�ðx1Þ and

Ab
c�ðx2Þ and then setting all the external fields to

zero,

@�hT��ðxÞAa
�ðx1ÞAb

�ðx2Þitrunc
¼ �@��4ðx1 � xÞD�1��ðx2; xÞ
� @��

4ðx2 � xÞD�1��ðx1; xÞ
þ @�ðg���4ðx1 � xÞD�1��ðx2; xÞ
þ g���

4ðx2 � xÞD�1��ðx1; xÞÞ; (37)

where D�1��ðx1; x2Þ is the inverse gluon propagator

defined as

D�1��ðx1; x2Þ ¼ hA�ðx1ÞA�ðx2Þitrunc

¼ �2�

�A�
c ðx1Þ�A�

c ðx2Þ
(38)

and where we have omitted, for simplicity, both the
color indices and the symbol of the T product. The
first Ward identity (37) becomes

k�hT��ðkÞA�ðpÞA�ðqÞitrunc
¼ q�D

�1
��ðpÞg�� þ p�D

�1
��ðqÞg�� � q�D

�1
��ðpÞ

� p�D
�1
��ðqÞ: (39)

(ii) Trace Ward identity at zero momentum transfer.—It
is possible to extract a Ward identity for the trace of
the energy-momentum tensor for the same correla-
tion function using just Eq. (39). In fact, differenti-
ating it with respect to p� (or q�) and then

evaluating the resulting expression at zero momen-
tum transfer (p ¼ �q), we obtain the Ward identity
in d space-time dimensions,

hT�
�ð0ÞA�ðpÞA�ð�pÞitrunc
¼

�
2� dþ p � @

@p

�
D�1��ðpÞ; (40)

where the number 2 counts the number of external
gluon lines. For d ¼ 4 and using the transversality
of the one-particle irreducible self-energy, namely,

D�1��ðpÞ ¼ ðp2g�� � p�q�Þ�ðp2Þ; (41)

the Ward identity in Eq. (40) simplifies to

hT�
� ð0ÞA�ðpÞA�ð�pÞitrunc
¼ 2p2ðp2g�� � p�q�Þ d�

dp2
ðp2Þ: (42)

The trace Ward identity in Eq. (40) at zero momen-
tum transfer can also be explicitly related to the �
function and the anomalous dimensions of the re-
normalized theory. These enter through the renor-
malization group equation for the two-point
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function of the gluon. Defining the beta function and
the anomalous dimensions as

�ðgÞ ¼ �
@g

@�
; �ðgÞ ¼ �

@

@�
log

ffiffiffiffiffiffi
ZA

p
;

m�mðgÞ ¼ �
@m

@�

(43)

and denoting with ZA the wave function renormal-
ization constant of the gluon field, with g the renor-
malized coupling, and with m the renormalized
mass, the trace Ward identity can be related to these
functions by the relation

hT�
�ð0ÞA�ðpÞA�ð�pÞitrunc
¼

�
�ðgÞ @

@g
� 2�ðgÞ þmð�mðgÞ � 1Þ @

@m

�
�D�1��ðpÞ: (44)

(iii) Two-derivative Ward identity via BRST symme-
try.—We can exploit the BRST symmetry of the
gauge-fixed Lagrangian in order to derive some
generalized Ward (Slavnov-Taylor) identities. We
start by computing the BRST variation of the
energy-momentum tensor, which is given by

�Aa
� ¼ �Dab

� !b; (45)

�!a ¼ �1
2g�f

abc!b!c; (46)

� �!a ¼ � 1



ð@�Aa

�Þ�; (47)

�c ¼ ig�!atac ; (48)

� �c ¼ �ig �c ta�!a; (49)

where � is an infinitesimal Grassmann parameter.
A careful analysis of the energy-momentum tensor
presented in Eq. (23) shows that the fermionic and
the gauge part are gauge invariant and therefore
invariant also under BRST. Instead, the gauge-
fixing and the ghost contributions must be studied
in more detail. Using the transformation equa-
tions (45) and (47) in (26) one can prove the two
identities

�T
g:f:
�� ¼ �Aa

�@�� �!a � Aa
�@�� �!a

þ g��½12@ � Aa� �!a þ Aa
�@

�� �!a�; (50)

�Tgh
�� ¼ �@� �!a�Aa

� � @� �!
a�Aa

�

þ g��@
� �!a�Aa

�; (51)

which show that the ghost and the gauge-fixing
parts of the energy-momentum tensor (times the
anticommuting factor �) can be written as an ap-

propriate BRST variation of ghost-antighost and
gauge contributions. Their sum, instead, can be
expressed as the BRST variation of a certain op-
erator plus an extra term which vanishes when
using the ghost equations of motion,

�ðTg:f:
�� þ Tgh

��Þ ¼ �½�@� �!aAa
� � @� �!

aAa
�

þ g��ðAa
�@� �!a þ 1

2@ � Aa!aÞ�
þ g��

1
2� �!a@�Dab

� !b; (52)

which shows explicitly the structure of the gauge
variant terms in the energy-momentum tensor.
Using the nilpotency of the BRST operator (�2 ¼
0), the BRST variation of T�� is given by

�T�� ¼ �ðTg:f:
�� þ Tgh

��Þ
¼ �



½Aa

�@�@
�Dab

� !b þ Aa
�@�@

�Dab
� !b

� g��@
�ðAa

�@
�Dab

� !bÞ�; (53)

where it is straightforward to recognize the equa-
tion of motion of the ghost field on its right-hand
side. Using this last relation, we are able to derive
some constraints on the Green’s functions involv-
ing insertions of the energy-momentum tensor. In
particular, we are interested in some identities sat-
isfied by the correlator hT��A

a
�A

b
�i in order to

define it unambiguously. For this purpose, it is
convenient to choose an appropriate Green’s func-
tion, in our case given by hT��@

�Aa
� �!bi, and then

exploit its BRST invariance to obtain

�hT��@
�Aa

� �!bi ¼ h�T��@
�Aa

� �!bi
þ�hT��@

�Dac
� !c �!bi

��



hT��@

�Aa
�@

�Ab
�i ¼ 0; (54)

where the first two correlators, built with operators
proportional to the equations of motion, contribute
only with disconnected amplitudes that are not part
of the one-particle irreducible vertex function.
From Eq. (54) we obtain the identity

@�x1@
�
x2hT��ðxÞAa

�ðx1ÞAb
�ðx2Þitrunc ¼ 0; (55)

which in momentum space becomes

p�q�hT��ðkÞAa
�ðpÞAb

�ðqÞitrunc ¼ 0: (56)

A subtlety in these types of derivations concerns
the role played by the commutators, which are
generated because of the T product and can be
ignored only if they vanish. In general, in fact,
the derivatives are naively taken out of the corre-
lator, in order to arrive at Eq. (56), and this can
generate an error. In this case, due to the presence
of an energy-momentum tensor, the evaluation of
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these terms is rather involved. For this reason one
needs to perform an explicit check of (56) to ensure
the consistency of the formal result in a suitable
regularization scheme. As we are going to show in
the next sections, these three Ward identities turn
out to be satisfied in dimensional regularization.

IV. THE PERTURBATIVE EXPANSION

The perturbative expansion is obtained by taking into
account all the diagrams depicted in Figs. 2–4, where an
incoming graviton appears in the initial state and two
gluons with momenta p and q characterize the final state.
The different contributions to the total amplitude are iden-
tified by the nature of the internal lines and are computed
with the aid of the Feynman rules defined in Appendix A.
Each amplitude is denoted by �, with a superscript in
square brackets indicating the figure of the corresponding
diagram.

The contributions with a massive fermion running in the
loop are depicted in Fig. 2; for the triangle in Fig. 2(a) we
obtain

�i 

2
�½2a�ab���� ðp; qÞ ¼ �




2
g2 TrðTbTaÞ

Z d4l

ð2�Þ4

� tr

�
V 0��ðl� q; lþ pÞ 1

l� 6q�m
��

� 1

l�m
��

1

lþ 6p�m

�
; (57)

where the color factor is given by TrðTbTaÞ ¼ 1
2�

ab; the

diagram in Fig. 2(c) contributes as

�i

2
�½2c�ab����ðp;qÞ ¼�




2
g2 TrðTaTbÞ

Z d4l

ð2�Þ4

� tr

�
W 0���

1

l� 6q�m
��

1

l�m

�
; (58)

with the vertices V 0��ðl� q; lþ pÞ and W 0��� defined in

Appendix A, Eqs. (A1) and (A4), respectively. The remain-
ing diagrams in Fig. 2 are obtained by exchanging �$ �
and p$ q,

� i



2
�½2b�ab���� ðp; qÞ ¼ �i




2
�½2a�ab���� ðp; qÞj�$�

p$q
; (59)

� i



2
�½2d�ab���� ðp; qÞ ¼ �i




2
�½2c�ab����ðp; qÞj�$�

p$q
: (60)

Moving to the gauge sector we find the four contribu-
tions in Fig. 3: the first one with a triangular topology is
given by

p + l

l − q

l

q

p

k

h

Aa

Ab

+
k

l l − q

q

k

h Aa

Ab

p

h

k

q

p

Aa

Ab

l − ql

p

q

Aa

Ab

(c)(b)(a) (d)

FIG. 3. The gauge contributions with a graviton h�� in the initial state and two gluons Aa
�, A

b
� in the final state.

p + l

l − q

l

q

p

k

h

A a

A b

(a)

+ exch.+ +exch.

(b)

l l − q

q

k

h A a

A b

p

(c) (d)

FIG. 2. The fermionic contributions with a graviton h�� in the initial state and two gluons Aa
�, A

b
� in the final state.
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�i 

2
�½3a�ab���� ðp; qÞ ¼ �




2
g2fadefbde

Z d4l

ð2�Þ4
1

l2ðlþ pÞ2ðl� qÞ2 ½V
Ggg
����ðl� q;�l� pÞV3

���ð�l; lþ p;�pÞ

� V3
���ð�lþ q; l;�qÞ�; (61)

where the color factor is fadefbde ¼ CA�
ab. Those in Figs. 3(b) and 3(c), containing gluon loops attached to the graviton

vertex, are called ‘‘t-bubbles’’ and can be obtained one from the other by the exchange of �$ � and p$ q. The first
t-bubble is given by

� i



2
�½3b�ab���� ðp; qÞ ¼ �

1

2




2
g2fadefbde

Z d4l

ð2�Þ4
VGggg
�����ð�l; l� p;�qÞV3

���ðk;�p;�lþ pÞ
l2ðl� pÞ2 (62)

which is multiplied by an additional symmetry factor 1
2 . There is another similar contribution obtained from the previous

one after exchanging �$ � and p$ q,

� i



2
�½3c�ab����ðp; qÞ ¼ �i




2
�½3b�ab���� ðp; qÞj�$�

p$q
: (63)

The last diagram with gluons running in the loop is the one in Fig. 3(d), which is given by

� i



2
�½3d�ab���� ðp; qÞ ¼

1

2




2
g2

Z d4l

ð2�Þ4
VGgg
����ð�l; l� p� qÞ�dfV4abcd

����

l2ðl� p� qÞ2 ; (64)

where V4 is the four gluon vertex defined as

� ig2V4abcd
���� ¼ �ig2½fabefcdeðg��g�� � g��g��Þ þ facefbdeðg��g�� � g��g��Þ þ fadefbceðg��g�� � g��g��Þ�

(65)

and therefore

�dfV4abcd
���� ¼ �CA�

ab ~V4
����

¼ �CA�
abðg��g�� þ g��g�� � 2g��g��Þ;

(66)

so that the amplitude in Eq. (64) becomes

� i



2
�½3d�ab���� ðp; qÞ ¼ �

1

2




2
g2CA�

ab
Z d4l

ð2�Þ4

� VGgg
����ð�l; l� p� qÞ ~V4

����

l2ðl� p� qÞ2 :

(67)

In the expression above we have explicitly isolated the
color factor CA�

ab and the symmetry factor 1
2 .

Finally, the ghost contributions shown in Fig. 4 are given
by the sum of

� i



2
�½4a�ab���� ðp; qÞ ¼ �




2
g2fadefbde

Z d4l

ð2�Þ4

� C����ðl� qÞ�ðlþ pÞ�l�ðl� qÞ�
l2ðlþ pÞ2ðl� qÞ2

(68)

for the triangle diagram in Fig. 4(a) and

� i



2
�½4b�ab���� ðp; qÞ ¼




2
g2fadefbde

Z d4l

ð2�Þ4

� C����l
�ðl� qÞ�

l2ðl� qÞ2 (69)

for the t-bubble diagram shown in Fig. 4(c). The two
exchanged diagrams are obtained from those in Eqs. (68)
and (69) with the usual replacements �$ � and p$ q.

(a)

p + l

l − q

l

q

p

k

h

A a

A b

+ +exch. + exch.l l − q

q

k

h A a

A b

p

(b) (c) (d)

FIG. 4. The ghost contributions with a graviton h�� in the initial state and two gluons Aa
�, A

b
� in the final state.
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� i



2
�½4b�ab���� ðp; qÞ ¼ �i




2
�½4a�ab���� ðp; qÞj�$�

p$q
; (70)

� i



2
�½4d�ab���� ðp; qÞ ¼ �i




2
�½4c�ab����ðp; qÞj�$�

p$q
: (71)

Having identified the different sectors, we obtain the
total amplitude for quarks, denoted by a ‘‘q’’ subscript,

�ab
q;����ðp; qÞ ¼ �½2a�ab���� ðp; qÞ þ �½2b�ab���� ðp; qÞ

þ �½2c�ab����ðp; qÞ þ �½2d�ab���� ðp; qÞ; (72)

and the one for gluons and ghosts as

�ab
g;����ðp; qÞ ¼

X
j¼3;4
½�½ja�ab����ðp; qÞ þ �½jb�ab���� ðp; qÞ

þ �½jc�ab����ðp; qÞ þ �½jd�ab���� ðp; qÞ�: (73)

V. THE ON-SHELL hTAAi CORRELATOR, POLE
TERMS, AND FORM FACTORS

We proceed with a classification of all the diagrams
contributing to the on-shell vertex, starting from the gauge
invariant subset of diagrams that involve fermion loops and
then moving to the second set, the one relative to gluons
and ghosts. The analysis follows rather closely the method
presented in the case of QED in previous works [4,5], with
a classification of all the relevant tensor structures which
can be generated using the 43 monomials built as combi-
nations of 2 of the 3 external momenta of the triangle
diagram together with the metric tensor g��. In general,

one can proceed with the identification of a subset of these
tensor structures, which allows us to formulate the final
expression in a manageable form. The fermionic triangle
diagrams, which define one of the two gauge invariant
subsets of the entire correlator, can be given in a simplified
form also for off mass-shell external momenta, in terms of
13 form factors as in [4,5], while the structure of the gluon
contributions are more involved. Some drastic simplifica-
tions take place in the on-shell case, where only three form
factors—both in the quark and fermion sectors—are nec-
essary to describe the final result.

We write the whole amplitude �����ðp; qÞ as

�����ðp; qÞ ¼ �����
q ðp; qÞ þ �����

g ðp; qÞ; (74)

referring, respectively, to the contributions with quarks
ð�qÞ and with gluons/ghosts ð�gÞ in Eqs. (72) and (73).

We have omitted the color indices for simplicity. The
amplitude � is expressed in terms of three tensor structures

and three form factors renormalized in the MS scheme,

�����
q=g ðp; qÞ ¼

X3
i¼1

�iq=gðs; 0; 0; m2Þ�ab�����
i ðp; qÞ:

(75)

One comment concerning the choice of this basis is in
order. The three form factors are more easily identified in
the fermion sector after performing the on-shell limit of the
off-shell amplitude, where the 13 form factors introduced
in [4,5] for QED simplify into the three tensor structures
that will be given below. It is then observed that the tensor
structure of the gluon sector, originally expressed in terms
of the 43 monomials of [4,5], can be arranged consistently
in terms of these three reduced structures.
The tensor basis on which we expand the on-shell vertex

is given by

�����
1 ðp; qÞ ¼ ðsg�� � k�k�Þu��ðp; qÞ; (76)

�����
2 ðp; qÞ ¼ �2u��ðp; qÞ½sg�� þ 2ðp�p� þ q�q�Þ

� 4ðp�q� þ q�p�Þ�; (77)

�����
3 ðp; qÞ ¼ ðp�q� þ p�q�Þg��

þ s

2
ðg��g�� þ g��g��Þ

� g��

�
s

2
g�� � q�p�

�
� ðg��p� þ g��p�Þq�
� ðg��q� þ g��q�Þp�; (78)

where u��ðp; qÞ has been defined in Eq. (21). The form
factors �iðs; s1; s2; m2Þ have as entry variables, besides
s ¼ ðpþ qÞ2, the virtualities of the two gluons s1 ¼ p2

and s2 ¼ q2. In the on-shell case only three invariant
amplitudes contribute, which for the quark loop amplitude
are given by

�1qðs; 0; 0; m2Þ ¼ � g2

36�2s
þ g2m2

6�2s2

� g2m2

6�2s
C0ðs; 0; 0; m2Þ

�
1

2
� 2m2

s

�
;

(79)

�2qðs; 0; 0; m2Þ ¼ � g2

288�2s
� g2m2

24�2s2

� g2m2

8�2s2
Dðs; 0; 0; m2Þ

� g2m2

12�2s
C0ðs; 0; 0; m2Þ

�
1

2
þm2

s

�
;

(80)
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�3qðs; 0; 0; m2Þ ¼ 11g2

288�2
þ g2m2

8�2s

þ g2C0ðs; 0; 0; m2Þ
�
m4

4�2s
þ m2

8�2

�

þ 5g2m2

24�2s
Dðs; 0; 0; m2Þ

þ g2

24�2
BMS

0 ðs; m2Þ; (81)

where the on-shell scalar integrals Dðs; 0; 0; m2Þ,
C0ðs; 0; 0; m2Þ, and BMS

0 ðs;m2Þ are computed in

Appendix B. In the massless limit the amplitude

�����
q ðp; qÞ takes a simpler expression and the previous

form factors become

�1qðs; 0; 0; 0Þ ¼ � g2

36�2s
; (82)

�2qðs; 0; 0; 0Þ ¼ � g2

288�2s
; (83)

�3qðs; 0; 0; 0Þ ¼ � g2

288�2
½12Ls � 35�; (84)

where

Ls � log

�
� s

�2

�
; s < 0: (85)

In the gluon sector the computation of �����
g ðp; qÞ is

performed analogously by using dimensional regulariza-

tion with modified minimal subtraction (MS), and we
obtain for on-shell gluons

�����
g ðp; qÞ ¼X3

i¼1
�igðs; 0; 0Þ�ab�����

i ðp; qÞ; (86)

where the form factors obtained from the explicit compu-
tation are

�1gðs; 0; 0Þ ¼ 11g2

72�2s
CA; (87)

�2gðs; 0; 0Þ ¼ g2

288�2s
CA; (88)

�3gðs; 0; 0Þ ¼ �g2CA

�
65

288�2
þ 11

48�2
BMS

0 ðs; 0Þ

� 1

8�2
BMS

0 ð0; 0Þ þ
s

8�2
C0ðs; 0; 0; 0Þ

�
:

(89)

The renormalized scalar integrals can be found in
Appendix B.
The full on-shell vertex, which is the sum of the quark

and pure gauge contributions, can be decomposed by using

the same three tensor structures �
����
i appearing in the

expansion of �
����
q ðp; qÞ and �

����
g ðp; qÞ,

�����ðp; qÞ ¼ �
����
g ðp; qÞ þ �

����
q ðp; qÞ

¼X3
i¼1

�iðs; 0; 0Þ�ab�����
i ðp; qÞ; (90)

with form factors defined as

�iðs; 0; 0Þ ¼ �i;gðs; 0; 0Þ þ
Xnf
j¼1

�i;qðs; 0; 0; m2
j Þ; (91)

where the sum runs over the nf quark flavors. In particular,

we have

�1ðs; 0; 0Þ ¼ � g2

72�2s
ð2nf � 11CAÞ þ g2

6�2

Xnf
i¼1

m2
i

�
1

s2
� 1

2s
C0ðs; 0; 0; m2

i Þ
�
1� 4m2

i

s

��
; (92)

�2ðs; 0; 0Þ ¼ � g2

288�2s
ðnf � CAÞ � g2

24�2

Xnf
i¼1

m2
i

�
1

s2
þ 3

s2
Dðs; 0; 0; m2

i Þ þ
1

s
C0ðs; 0; 0; m2

i Þ
�
1þ 2m2

i

s

��
; (93)

�3ðs; 0; 0Þ ¼ g2

288�2
ð11nf � 65CAÞ � g2CA

8�2

�
11

6
BMS

0 ðs; 0Þ �BMS
0 ð0; 0Þ þ sC0ðs; 0; 0; 0Þ

�

þ g2

8�2

Xnf
i¼1

�
1

3
BMS

0 ðs; m2
i Þ þm2

i

�
1

s
þ 5

3s
Dðs; 0; 0; m2

i Þ þ C0ðs; 0; 0; m2
i Þ
�
1þ 2m2

i

s

���
; (94)
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with CA ¼ NC and the scalar integrals defined in
Appendix B. Notice the appearance in the total amplitude
of the 1=s pole in �1, which is present both in the quark
and in the gluon sectors, and which saturates the contribu-
tion to the trace anomaly in the massless limit. In this case
the entire trace anomaly is just proportional to this com-
ponent, which becomes

�1ðs; 0; 0Þ ¼ � g2

72�2s
ð2nf � 11CAÞ: (95)

The correlator �����ðp; qÞ, computed using dimen-
sional regularization, satisfies all the Ward identities de-
fined in the previous sections. Notice that the two-
derivative Ward identity introduced in Eq. (56),

p�q��
����ðp; qÞ ¼ 0; (96)

derived from the BRST symmetry of the QCD Lagrangian,
is straightforwardly satisfied by the on-shell amplitude.
This is easily seen from the tensor decomposition intro-
duced in Eq. (75) because all the tensors fulfill the condi-
tion

p�q��
����
1 ðp; qÞ ¼ 0: (97)

Furthermore, we have checked at one-loop order the va-
lidity of the single derivative Ward identity given in
Eq. (39) and describing the conservation of the energy-
momentum tensor. Using the transversality of the two-
point gluon function, Eq. (39), this gives

k��
����ðp; qÞ ¼ ðq�p�p� � q�g��p2 þ g��q�p2

� g��p�p � qÞ�ðp2Þ
þ ðp�q�q� � p�g��q2

þ g��p�q2 � g��q�p � qÞ�ðq2Þ; (98)

where the renormalized gluon self-energies are defined as

�ðp2Þ ¼ g2CA�
ab

144�2
ð15BMS

0 ðp2; 0Þ � 2Þ

þ g2�ab

72�2p2

Xnf
i¼1
½6AMS

0 ðm2
i Þ þ p2 � 6m2

i

� 3BMS
0 ðp2; m2

i Þð2m2
i þ p2Þ�: (99)

The QCD � function can be related to the residue of the
pole and can be easily computed starting from the ampli-
tude �����ðp; qÞ for on-shell external lines and in the
conformal limit

g���
����ðp; qÞ ¼ 3s�1ðs; 0; 0; 0Þu��ðp; qÞ

¼ �2�ðgÞ
g

u��ðp; qÞ; (100)

with the QCD � function given by

�ðgÞ ¼ g3

16�2

�
� 11

3
CA þ 2

3
nf

�
: (101)

As we have already mentioned, after contracting the metric
tensor g�� with the whole amplitude �, only the tensor

structure �
����
1 ðp; qÞ contributes to the anomaly, with the

remaining ones being traceless, with a contribution entirely
given by �1jm¼0 in Eq. (92), i.e. Eq. (95). In the massive
fermion case, the anomalous contributions are corrected by
terms proportional to the fermion mass m and represent an
explicit breaking of scale invariance. From a direct com-
putation we can also extract quite straightforwardly the
effective action, which is given by

Spole ¼ � c

6

Z
d4xd4yRð1ÞðxÞh�1ðx; yÞFa

��F
a��

¼ 1

3

g3

16�2

�
� 11

3
CA þ 2

3
nf

�

�
Z

d4xd4yRð1ÞðxÞh�1ðx; yÞF��F
�� (102)

and is in agreement with Eq. (6), derived from the nonlocal

gravitational action. Here Rð1Þ denotes the linearized ex-
pression of the Ricci scalar

Rð1Þx � @x�@
x
�h

�� �hh; h ¼ 	��h
�� (103)

and the constant c is related to the non-Abelian � function
as

c ¼ �2�ðgÞ
g

: (104)

Notice that the contribution coming from TJJ generates
the Abelian part of the non-Abelian field strength, while
extra contributions (proportional to extra factors of g and
g2) are expected from the TJJJ and TJJJJ diagrams (see
Fig. 5). This situation is analogous to that of the gauge
anomaly, where one needs to render gauge covariant the
anomalous amplitude given by the triangle diagram. In that
case the gauge covariant expression is obtained by adding

FIG. 5. Higher order contributions to the anomaly pole in-
volved in the covariantization of the graviton/two-gluon ampli-
tude.
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to the AVV vertex also the AVVV and AVVVV diagrams,
with three and four external gauge lines, respectively.

VI. COMMENTS

The appearance of massless degrees of freedom in the
effective action describing the coupling of gravity to the
gauge fields is rather intriguing, and is an aspect that will
require further analysis.

The nonlocal structure of the action that contributes to
the trace anomaly, which is entirely reproduced, within the
local description, by two auxiliary scalar fields, seems to
indicate that the effective dynamics of the coupling be-
tween gravity and matter might be controlled, at least in
part, by these degrees of freedom. As we have just men-
tioned, however, this point requires a dedicated study, and
for this specific reason, our conclusions remain open
ended.

Our computation, however, being general, also allows
the identification of other massless contributions to the
effective action which are surely bound to play a role in
the physical S-matrix. They appear in form factors such as
�2 [Eq. (93)] and�3 [Eq. (94)] which do not contribute to
the trace, but are nevertheless part of the one-loop effective
action mediated by the triangle graph.

There are also some other comments, at this point, which
are in order. Notice that while the isolation of the pole in
the fermion sector indeed requires a massless fermion
limit, as obvious from the structure of �q, the other gauge

invariant sector, described by �g, is obviously not affected

by this limit, since the corresponding form factors are mass
independent. This obviously does not necessarily imply
that the gluon pole, which survives the extrapolation to
the massless limit, is coupled in the physical S-matrix.

Building on considerations of this nature, in particular,
on the possible significance of massless effective degrees
of freedom, the role of the trace anomaly in establishing the
effective interaction of gravity with matter has been recon-
sidered [10,11]. The explicit goal of this approach has
been to try to bypass the existing hierarchy problem be-
tween the value of the expected vacuum energy density
[�� ð10�3 eVÞ4], well described by a cosmological con-
stant, and the Planck mass ð��M4

PÞ, which is a funda-
mental issue in contemporary cosmology that has not yet
found a convincing explanation. In fact, it has been known
for a long time that free massless particles contribute to the
anomaly by an insignificant amount (T�

� �H4
0), propor-

tional to the fourth power of the current Hubble rate, which
is far too small a value to solve the dark energy problem,
due to the fact that we are living in a flat universe.
However, it has been suggested that this small value for
the vacuum energy density, originally attributed to the
anomaly, could be raised to the expected one if the gravi-
tational effective action is characterized by some effective
nonlocality. In this case the contribution due to the trace
anomaly could be modified as [19]

T
�
� �H0�

3
QCD � ð10�3 eVÞ4; (105)

where �QCD is the QCD scale, which is tantalizingly close

to the estimated value. While this proposal and similar
others are clearly not the only possible solutions of the
dark energy problem (similar values of the vacuum energy
can be obtained, for instance, using axions misaligned at
the electroweak scale [20] and in several other ways), they
share the positive feature of being characterized by few
minimal assumptions. If so, one could envision a solution
of the problem of the origin of dark energy without the
need to enlarge the standard model spectrum with yet
unknown particles and symmetries. Crucial, in these types
of approaches, appears to be the role played by the effec-
tive scalar fields in the anomalous effective action, which
are present in the local formulation of Riegert’s action,
together with their possible boundary conditions.

VII. CONCLUSIONS

One of the standing issues of the anomalous effective
action describing the interaction of a non-Abelian theory to
gravity is a test of its consistency with the standard pertur-
bative approach. Thus, variational solutions of the effective
action controlled by the trace anomaly should be repro-
duced by the perturbative expansion. Building on previous
analyses in QED, here we have shown that, also in the non-
Abelian case, there is a perfect match between the two
approaches. This implies that the interaction of gravity
with a non-Abelian gauge theory, mediated by the trace
anomaly, indeed can be reformulated in terms of auxiliary
scalar degrees of freedom, in analogy to the Abelian case.
We have proven this result by an explicit computation. Our
findings indicate that this feature is typical of each gauge
invariant subsector of the non-Abelian TJJ amplitude, a
result which is likely to hold also for singularities of higher
order. These are expected to be present in correlators with a
larger number of energy-momentum insertions. We hope to
return with a more detailed discussion of the role of the
massless singularities—which have been found both in the
trace and in the traceless part off the TJJ vertex in the near
future.
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APPENDIX A: FEYNMAN RULES

The Feynman rules used throughout the paper are col-
lected here.
(i) Graviton-fermion-fermion vertex:
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(ii) Graviton-gluon-gluon vertex:

(iii) Graviton-ghost-ghost vertex:

(iv) Graviton-fermion-fermion-gauge boson vertex:

(v) Graviton-gluon-gluon-gluon vertex:
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(vi) Graviton-ghost-ghost-gauge boson vertex:

C���� ¼ g��g�� þ g��g�� � g��g��; (A7)

D����ðk1; k2Þ ¼ g��k1�k2� � ½g��k�1k
�
2 þ g��k1�k2�

� g��k1�k2� þ ð�$ �Þ�; (A8)

E����ðk1; k2Þ ¼ g��ðk1�k1� þ k2�k2� þ k1�k2�Þ
� ½g��k1�k1� þ g��k2�k2� þ ð�$ �Þ�;

(A9)

F�����ðk1; k2; k3Þ ¼ g��g��ðk2 � k3Þ�
þ g��g��ðk3 � k1Þ�
þ g��g��ðk1 � k2Þ� þ ð�$ �Þ:

(A10)

APPENDIX B: SCALAR INTEGRALS

We collect in this appendix all the scalar integrals in-
volved in this computation. To set all our conventions, we
start with the definition of the one-point function, or mas-
sive tadpole A0ðm2Þ, the massive bubble B0ðs; m2Þ, and
the massive three-point function C0ðs; s1; s2; m2Þ,

A 0ðm2Þ ¼ 1

i�2

Z
dnl

1

l2 �m2

¼ m2

�
1

��
þ 1� log

�
m2

�2

��
; (B1)

B 0ðk2; m2Þ ¼ 1

i�2

Z
dnl

1

ðl2 �m2Þððl� kÞ2 �m2Þ
¼ 1

��
þ 2� log

�
m2

�2

�
� a3 log

�
a3 þ 1

a3 � 1

�
;

(B2)

C 0ðs; s1; s2; m2Þ ¼ 1

i�2

Z
dnl

1

ðl2 �m2Þððl� qÞ2 �m2Þððlþ pÞ2 �m2Þ

¼ � 1ffiffiffiffi
�
p X3

i¼1

�
Li2

bi � 1

ai þ bi
� Li2

�bi � 1

ai � bi
þ Li2

�bi þ 1

ai � bi
� Li2

bi þ 1

ai þ bi

�
; (B3)

with

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

si

s
bi ¼

�si þ sj þ skffiffiffiffi
�
p ; (B4)

where s3 ¼ s and in the last equation i ¼ 1, 2, 3 and j, k �
i. The one-point and two-point functions written before in
n ¼ 4� 2� are divergent in dimensional regularization
with the singular parts given by

A 0ðm2Þsing ! 1

��
m2; B0ðs; m2Þsing ! 1

��
; (B5)

with

1

��
¼ 1

�
� �� ln�: (B6)

We use two finite combinations of scalar functions given

by

B 0ðs;m2Þm2 �A0ðm2Þ ¼ m2

�
1� a3 log

a3 þ 1

a3 � 1

�
;

(B7)

Di �Diðs; si; m2Þ ¼ B0ðs;m2Þ �B0ðsi; m2Þ
¼

�
ai log

ai þ 1

ai � 1
� a3 log

a3 þ 1

a3 � 1

�
; i ¼ 1; 2: (B8)

The scalar integrals C0ðs; 0; 0; m2Þ and Dðs; 0; 0; m2Þ are
the fs1 ! 0; s2 ! 0g limits of the generic functions
C0ðs; s1; s2; m2Þ and D1ðs; s1; m2Þ,

C 0ðs; 0; 0; m2Þ ¼ 1

2s
log2

a3 þ 1

a3 � 1
; (B9)
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D ðs; 0; 0; m2Þ ¼D1ðs; 0; m2Þ ¼D2ðs; 0; m2Þ

¼
�
2� a3 log

a3 þ 1

a3 � 1

�
: (B10)

The singularities in 1= �� and the dependence on the renor-
malization scale� cancel out when taking into account the
difference of two functions B0, so that the Di’s are well
defined; the three-point master integral is convergent.

The renormalized scalar integrals in the modified mini-

mal subtraction scheme named MS are defined as

BMS
0 ðs; 0Þ ¼ 2� Ls; (B11)

BMS
0 ð0; 0Þ ¼

1

!
; (B12)

C 0ðs; 0; 0; 0Þ ¼ 1

s

�
1

!2
þ 1

!
Ls þ 1

2
L2
s � �2

12

�
; (B13)

where

Ls � log

�
� s

�2

�
; s < 0: (B14)

We have set the space-time dimensions to n ¼ 4þ 2!
with !> 0. The 1=! and 1=!2 singularities in
Eqs. (B11) and (B13) are infrared divergencies due to the
zero mass of the gluons.
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