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Gravitational lensing of stars orbiting Sgr A* as a probe of the black hole
metric in the Galactic center
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We show that a possible astrophysical experiment, detection of lensed images of stars orbiting close to
Sgr A*, can provide insight into the form of the metric around a black hole. We model Sgr A* as a black
hole and add in a oc riz term to the Schwarzschild metric near the black hole. We then attempt to determine
the effect of this extra term on the properties of the secondary images of the S stars in the Galactic center.
When the % term is positive, this represents a Reissner-Nordstrom metric. We show that there is little
observational difference between a Schwarzschild black hole and a Reissner-Nordstrom black hole,
leading to the conclusion that secondary images may not be a useful probe of electrical charge in black
holes. A negative value for the riz term can enter through modified gravity scenarios. Although physically
unlikely to apply in the case of a large black hole, the Randall-Sundrum II braneworld scenario admits a
metric of this form, known as the tidal Reissner-Nordstrom metric. We use values of tidal charge (Q in %)
ranging from —6.4M? to 1.6M?. A negative value of Q enhances the brightness of images at all times and
creates an increase in brightness of up to 0.4 magnitudes for the secondary image of the star S2 at periapse.
We show that for other stars with brighter secondary images and positions more aligned with the optic
axis, using the tidal Reissner-Nordstrom metric with negative Q enhances the images as well. However,
the effect is less pronounced. This effect is related to the increase in the size of the photon sphere in this
spacetime and, therefore, should be noticeable in other metrics with a similar effect on the photon sphere.
With the next generation of instruments and increased knowledge of radiation from Sgr A*, we may be
able to use properties of secondary images to place constraints on the size of the rl? term. This knowledge
will be useful in constraining any modified gravity theory that adds a similar term into the strong field near

a black hole.
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L. INTRODUCTION

Gravitational lensing provided the first experimental
verification of general relativity through observations of
starlight bending around the Sun during an eclipse in 1919
[1,2] and continues to be a major source of insight into
gravitation [1,3,4]. Excitingly, increasingly precise obser-
vations of the compact radio source Sgr A* at the Galactic
center and its surrounding stars have given us very high
confidence that only a very gross deviation from general
relativity could allow for the absence of a black hole there
[5-9]. According to [8], the black hole is estimated to have
a mass of about 4.31 X 10°M, and a distance of about
8.33 kpc from Earth. Black holes are unique laboratories
for gravitational lensing because their compactness allows
light to closely approach the photon sphere and its path will
bend significantly there due to gravity. Most studies of
gravitational lensing [10,11] are in the weak deflection
limit, when the point of closest approach of any lensed
photons is far from the lensing mass. This allows for the
simple expression of the bending angle as o = “r—l(‘f, where
ro is the point of closest approach of the null geodesic
(this paper uses geometric units G = ¢ = 1). This expres-
sion is valid in the limit rM(, < 1. When a photon closely

*binnun @sas.upenn.edu

1550-7998/2010/82(6)/064009(8)

064009-1

PACS numbers: 04.50.Gh, 04.80.Cc, 98.62.Sb

approaches a black hole’s photon sphere, the weak deflec-
tion limit does not hold and using this approximation for
the bending angle leads to inaccurate results. For a spheri-
cally symmetric, static metric with line element

ds?> = —A(r)de* + B(r)dr* + C(r)r*dQ? €]

the bending angle is an elliptic integral depending on the
functions of the metric [12] and is
-1/2
]
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If the point of closest approach is very close to the
photon sphere, the strong deflection limit approximation
of this integral [13,14] can be used. In all cases, a full
numerical treatment of the bending angle can be used
[15], and it should be used for studies, such as this one,
where neither the strong nor weak deflection limits are
satisfied. This is further explained in Sec. II. Large bending
angles yield interesting results: When photons approach
close enough to the photon sphere, they can loop around
the lens before reaching the observer and produce an
infinite sequence of images on both sides of the optic
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axis [13,15-18]. The properties of these images are
sensitive to the form of the black hole metric [19-23]
with [24] studying the effect of the Reissner-Nordstrom
(RN) metric. There has been further study of an astrophys-
ical scenario which utilizes lensing with a large bending
angle. S2 was the first star that was examined for a “‘retro-
lensing” [25] effect (lensing with a bending angle of
a = 7). By using orbital parameters of the S stars in the
Galactic center provided by [8], [26-28] study the proper-
ties of secondary images of those S stars. This study
showed 9 stars with secondary images with peak brightness
brighter than myg = 30, where my is the magnitude in the
K band. This cutoff is chosen because it represents the
maximum sensitivity of projected future instruments.

In this paper, we use a black hole metric with an

additional term that is oc & . The metric is

r

-1
ds* = —(1 —2—M+g)dt2+(l —2—M+g) dr?

r 1'2

+ 12d0> (3)

with Q a free parameter often expressed by g = 4—AQ42 . When
q is positive, this represents the Reissner-Nordstrom solu-
tion for a charged black hole. Static black holes with a
large amount of electric charge are not expected to exist in
nature, and the possibility of rotating, charged black holes
is controversial [29]. In addition, the amount of charge is
limited to Q < M? or g < 0.25 because saturation of this
bound would lead to a naked singularity and the violation
of cosmic censorship [30]. However, since the calculation
of the properties of secondary images of S stars has only
been done with a Schwarzschild metric, it is useful to
examine such a fundamental case. We have also found it
useful to explore negative values of ¢. Studies of neutron
star binary systems yield only weak constraints on a lower
bound for ¢ [31]. Using a % term is interesting because it is
motivated by alternative gravity frameworks, particularly
braneworld theories that construct gravity as a higher-
dimensional theory. These theories often predict a correc-
tion that strengthens gravity. This would correspond to a
negative value for ¢. For any nontrivial value of ¢, obser-
vational constraints from Solar System observations [32]
disallow the % term from applying anywhere but near the

black hole. Strengthening gravity using a negative value
for g yields a brighter secondary image; therefore, obser-
vations of these secondary images can place constraints on
the size of the rLZ term near the black hole.

An extra r—lz term in the metric comes directly from a
proposed black hole metric in the Randall-Sundrum II
theory. The Randall-Sundrum I model [33] is a braneworld
scenario inspired by heterotic M theory [34-36], a 5-
dimensional effective framework that arises from the di-
mensional reduction of 11-dimensional Harova-Witten
theory on a Calabi-Yau manifold with the imposition of

S'/Z, symmetry [37]. Six dimensions are compactified,
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making gravity effectively 5-dimensional. The Randall-
Sundrum II scenario is this model with the second brane
taken to infinity [38,39]. It is not clear whether a static
black hole solution exists for a Randall-Sundrum II brane-
world. Although [40] has shown the existence of a static
black hole in a 2 + 1 brane setup, it is unclear what the
solution is and whether there even is a static black hole
solution in the 3 + 1 brane scenario [41-45]. Attempts to
study the problem have yielded several possible black hole
metrics [20,32,46-48]. The effect of these metrics on
lensing has been examined in several studies [11,19-22].
For a supermassive black hole such as Sgr A*, the Garriga-
Tanaka [48] and ““black string” [46] metrics will not show
any results [21] and are not useful for the purposes of this
paper. One particular metric that has been studied in con-
nection with lensing by the black hole at Sgr A* is the
“tidal” Reissner-Nordstrom (TRN) metric [19,21,23,32]
which is of the form of Eq. (3). We therefore use it as an
example of a metric with a r% term. There are several
possible objections to using the TRN metric for a super-
massive black hole: Studies suggest that supermassive
black holes in the braneworld should have induced metrics
that are no more than negligibly different than the
Schwarzschild metric [44]. In addition, the TRN metric
has no known completion in the bulk [23] and there are
likely naked singularities in the bulk [49]. However, we
will study lensing properties of the TRN metric to gain
understanding of the effects of adding a oc r—lz term in the
metric, whether it comes from the braneworld scenario or
any other framework.

In Sec. II, we discuss S stars near the Galactic center.
Now that their orbital parameters are well known from
decades of observation [8], we show how to reconstruct
the orbits of these stars and characterize the variables in the
Ohanian lens equation [50,51] in terms of the star’s orbital
parameters. Although current uncertainties in lensing
parameters can interfere with the test we are proposing,
future instruments and observations will further constrain
these orbital parameters. In Sec. III, we use the orbital
parameters to construct a light curve for the secondary
images of S2, S6, and S14. For these stars, we show the
light curve of the secondary image when assuming a
Schwarzschild spacetime, a TRN spacetime with g =
—1.6, and, for the case of S2, an extremal RN spacetime
with ¢ = 0.25. We show that for high enough values of the
tidal charge parameter ¢, an appreciable difference appears
for these light curves in the TRN spacetime. We also
show the relevant properties, such as image magnitude
and image position at peak brightness for several values
of g. In Sec. 1V, we discuss the observational prospects
for these images as well as the observation of the differ-
ence in brightness for these images. We conclude that
observation of these images is possible, as is observing
the difference in image properties due to a modified gravity
theory.
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II. LENSING OF S STARS

There is a large stellar population in the central parsec of
the Milky Way. Most stars are old red main sequence stars,
but there are many young Wolf-Rayet stars which present
challenges to theories of star formation [52,53]. Some of
these young stars orbiting close to the black hole at Sgr A*,
labeled S stars, have been carefully observed. Their orbits
can be reconstructed from orbital parameters published in
[8]. For the purposes of this paper, at each point in time, we
treat the star as a source being lensed by the black hole. To
study the effect of the metric near the black hole, we are
interested in light that passes across the optic axis (line
connecting the lens and the observer), forming a secondary
image [1,10]. Using orbital parameters and the intrinsic
brightness of the stars in the K band, [26—28] calculated the
position and magnitude of the secondary images, assuming
a Schwarzschild metric. Observationally, the most prom-
ising images come from the stars S6 and S27, which have
the brightest predicted secondary images with myx = 20.8
and 22.4, respectively. The peak brightness occurs when
each star is at periapse. Although it will not get as bright as
the others, the periapse of S2 will occur relatively soon in
2018. Its secondary image is predicted to have peak bright-
ness at my = 26.8. Although the secondary image S27 is
brighter, we will instead study the secondary image of S14
because its peak brightness comes at an earlier date. In
addition, the secondary image of S14 is a better candidate
for differentiating between a Schwarzschild spacetime and
an alternative one, as will be explained in Sec. III.

In calculating the positions of the secondary image,
we use the improved Ohanian lens equation [50,51], apply
the small-angle approximation, and throw out negligible
terms, leaving

Dy

y = a(f) - 0.9 “4)

LS

where 7y is the angle between the optic axis and the line
connecting the source to the lens, € is the image position
(to the observer), D; is the constant distance from the
observer to the lens (in this case, the distance between us
and Sgr A*), and D;g is the distance, which varies over
time, between the lens and the source star. The anomaly
angle from the periapse (¢) is determined by the initial
conditions and differential equation:

[a(1 — €%)¥]

o
GM,_,.(1 + ecos¢)? ¢ =1 ®)

where GM,,,. is the mass enclosed within the orbit and e is
the eccentricity of the orbit. GM,,. can be calculated in
relation to the orbital period P and semimajor axis a using
Kepler’s third law:

613
GMne = 47 5. (6)
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The relationship between y and D; g and ¢ is given by

a(l — ¢€?)
Dj¢g=—-—7-—, 7
LS 1+ ecost @
v = arccos[sin(¢ + ) sini]. (8)

In Eq. (4), a(0) is the bending angle as a function of 6.
As noted in [28], the Ohanian lens equation is accurate to
better than 10~°. Applying the small-angle approximations
and throwing out the 6 term to obtain Eq. (4) affects
outcomes by less than that. For a given source position,
we numerically solve Eq. (4) which yields the position of
the secondary image. The image magnification is [28]

_ D} sind

T2 dy
DLSWSIH’)/

®

Analytical formulas for image position and magnification
are given by [26]. However, the analytical formulas are not
accurate because the bending angle in this astrophysical
scenario often lies in neither the strong or weak deflection
limit. Therefore, numerical evaluation of the image posi-
tions and magnifications are necessary. To calculate this,
we must numerically evaluate Eq. (2). Writing down the
equations of motion for photons in this spacetime

gupitx’ =0 (10)

the coordinates ¢ and ¢ are cyclic, leading to the conserved
quantities

E = B(r)i, (11)

J=C(r)rte, (12)

which characterize the motion of null geodesics throughout
this spacetime [14,54]. Importantly, we can create a rela-
tionship between the coordinate of closest approach (r)
and the angular position of images [15]:

J = Dy sinf = rod%; (13)
0

we can then take the derivative of « with respect to 6:

da(ro) _ da(rO) @

14
a0 dr, do’ (14

which is necessary to evaluate Eq. (9). This method is
described in greater detail in [15,21].

II1. RESULTS

Using a variation of this algorithm and the values in
Table I, Bozza calculated the light curve of the secondary
image of S2. He found a peak brightness of mg = 26.8.
In Fig. 1 we have produced a graph that compares the
light curve for the secondary image of S2 using the
Schwarzschild metric with light curves calculated using a
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TABLE I. Orbital parameters of the S stars examined in this paper: a is the semimajor axis, e is the eccentricity, i is the inclination of
the normal of the orbit with respect to the line of sight, £} is the position angle of the ascending node, w is the periapse anomaly with
respect to the ascending node, 7p is the epoch of either the last or next periapse, 7T is the orbital period, and K is the apparent magnitude

in the K band (data taken from [8]).

Star al’] e i[°] Q[°] w [°] tp [yr] T [yr] K
S2 0.123 = 0.001 0.88 £ 0.003 135.25 £ 0.47 225.39 =0.84 63.56 £ 0.84 2002.32 = 0.01 15.8 £ 0.11 14
S14  0.256 = 0.01 0.963 = 0.006 99.4 + 1 227.74 = 0.7 339 + 1.6 2000.07 = 0.06 473 £29 15.7
S6 0.436 = 0.153 0.886 =+ 0.0026 86.44 = (0.59 83.46 = 0.69 129.5 + 3.1 2063 = 21 105 £ 34 154

metric with a % term. In Fig. 1, we calculate the light curve
for Q = M? in Eq. (3), which is equivalent to g = 0.25.
This represents an extremal RN black hole—this or any
higher value of ¢ would result in a naked singularity
and is expected to be nonphysical. We also calculate the
light curve for S2 when we set ¢ = —1.6 and plot it on the
same graph.

At peak brightness, there is a difference of about 0.4
magnitudes between the secondary image in a
Schwarzschild spacetime and the image with ¢ = —1.6.
The image is 44% brighter with ¢ = — 1.6 at the periapse
of S2, which will next take place in 2018. The observational
prospects of this difference will be discussed in Sec. IV.

2018.2
Year

FIG. 1 (color online). The light curve for the secondary image
of S2 is dependent on the choice of metric in the strong field. The
top figure contains light curves for an entire period of the orbit of
S2. The bottom image contains light curves in the year around
periapse and peak brightness.

However, for the extremal black hole with ¢ = 0.25, the
image is 0.03 magnitudes fainter than for the Schwarzschild
spacetime, a distinction that is beyond projected observa-
tional capacity. If the metric around the black hole has
5-dimensional behavior encoded in a rl, term, then for a
large enough value of —g, there is a significant variation in
the brightness of the secondary image. A similar analysis
around peak brightness is performed for the stars S14
and S6 as well. As can be seen in Fig. 2, the effect of the
% term is not as pronounced for these stars. Consequently,
we have suppressed the curve for the extremal RN space-
time, as it shows little difference from the Schwarzschild
value near peak.

T

30 £

L L9430
2062.9

2062.4

N L
2062.5

2062.6

Year

A L
2062.7

2062.8

2062.3

FIG. 2 (color online). The light curve for the secondary image
of S14 near its periapse and peak brightness (top) shows a small
effect due to a rl—z term at peak. The effect for S6 around its peak
brightness (bottom) is even smaller. In both cases, ¢ = —1.6 for
the TRN curve.
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264111 26,4

The explanation is the alignment of each star with Sgr
A* at periapse. S2, because of the inclination of its orbit
with respect to the plane containing Earth and Sgr A*, is
not well aligned with the optic axis at the time of peak
brightness (y, = 45.4°). Despite this, the secondary image
is still bright because of the close approach of S2 to Sgr A*.
However, because the source is at a large angle, the sec-
ondary image appears very close to the black hole (43 was
in the Schwarzschild, ¢ = 0 limit). Because light passes so

close to Sgr A*, as close as 3.5 Schwarzschild radii, the %
69 b 060 . . . -
-15 -1.0 -0.5 0.0 term is more dominant and its effects are more pronounced.

On the other hand, S14 is more closely aligned with the
optic axis at periapse and peak brightness (y, = 9.5°).
551 155 Hence, the secondary image, while brighter relative to
the source than S2’s image, is further away from the optic
sol |so  axis (136 was) and the point of closest approach is further
(12.8 Schwarzschild radii). Hence, the effects of the riz term
are less noticeable than in the case of S2. S6 is highly
aligned with the optic axis (v, = 3.6°) and, correspond-
ingly, the null geodesic forming the secondary image
passes even further from the black hole, giving an image

1 1 1 1 position of 316 was [28] and a point of closest approach of
s 0 o5 o0 30.5 Schwarzschild radii. In Fig. 3, we examine the rela-

q tionship between the ¢ parameter and observables such as
image magnitude and position for the secondary image of
S2 at periapse. The relationship between g and observables
is very similar for the secondary images of S6 and S14, so

26.8 1268

6 (u arc sec)

FIG. 3 (color online). This figure displays the relationship
between ¢ and image observables for S2. The relationship

between ¢ and the apparent magnitude in the K band (top) . . . .
shows that brightness is inversely related to g. This is related we have not shown graphs illustrating these relationships.

to the fact that the angular position of the secondary image, 6, Insteaq, we haV(? compiled Tables 1T E.lnd IIL, which explgre

also has an inverse relationship with ¢ (bottom). the variation of image observables with ¢ for both positive
and negative values of g. We have explored values of
g as high as 0.4 which represents a superextremal RN
black hole.

TABLE II. This table gives the peak brightness of the secondary image for each star at several values of g. As |g| gets bigger, the
effect gets larger in all cases. However, the increase in brightness as |g| gets smaller is more pronounced for stars that are less aligned
with the optic axis. For S2, a decrease in ¢ creates a significant increase in the brightness of the secondary image. Since only a small
value is allowed for a positive ¢ (to avoid a naked singularity) and ¢ has few bounds in the negative direction, negative ¢ is a more
promising avenue for exploration.

T T e B R R T R

S2 26.88 26.83 26.78 26.73 26.68 26.63 26.58 26.53 26.49 26.45 26.41
S14 23.54 23.52 235 23.48 23.47 23.45 2343 23.42 23.40 23.39 23.37
S6 20.76 20.75 20.74 20.74 20.73 20.72 20.72 20.71 20.71 20.70 20.69

TABLE III. This table gives the angular position in uas of the secondary image relative to the optic axis at the star’s periapse. As |¢|
gets bigger, the effect gets larger in all cases. However, for positive g, 6 gets smaller as g gets bigger. 6 gets larger with negative g.
Although the change in angular position with change in g seems to be very similar in the case of all the stars, the shift represents a
bigger relative shift for the ones with smaller angular position.

T R R B R e T R B
S2 359 39.6 42.6 45.2 475 49.7 51.6 535 553 57.0 58.6
S14 130.5 133.1 135.6 138.0 140.3 142.5 144.7 146.8 148.8 150.8 152.8
S6 311.5 313.8 316.1 3183 320.6 3227 324.9 327.0 329.1 331.2 3332
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The primary contribution to differences in image mag-
nifications when using different metrics is the tangential
magnification

py =0, (1)
siny
Since 6 grows larger as —¢ does, w, is larger in a TRN
spacetime with negative g. When r is small, the contribu-
tion of the % term is more important.

The effect of black hole spin on the secondary images
was studied by [26] and commented on by [27]. In this
paper, we have not studied the effects of the Kerr metric for
several reasons. First, evaluation of lensing in a Kerr space-
time is far more challenging than the study of a TRN
spacetime, so we have started with a less ambitious project.
Also, while for higher-order images, spin can greatly
change the magnification, this is not true for secondary
images [26,27], and the effect of the black hole’s spin is
less significant. Still, the magnification of secondary im-
ages depends on the magnitude and direction of the black
hole’s spin and secondary images in the Kerr spacetime are
worthy of further study. Some work on rotating black holes
and their gravitational lensing effects has already been
done [55,56], including some work on rotating braneworld
black holes [57].

IV. DISCUSSION

Of the three stars studied in this paper, S14 and S6 have
brighter secondary images at periapse compared to S2’s
image because of the more edge-on nature of their orbits
relative to our line of sight with Sgr A*. While the orbit of
S2 is not aligned close to edge-on, its periapse is the closest
among known stars, causing its secondary image to be
comparatively bright. In addition, S2 will next be at peri-
apse in 2018, allowing for a more immediate study of its
image’s properties.

As mentioned above, the brightness of secondary images
is dependent on ¢ because the images are pushed either
closer or further from the optic axis when there is a r% term
in the metric. This is directly related to the difference in the
size of the event horizon and photon sphere due to the value
of ¢. Another, and perhaps easier, way of determining the
metric around the black hole would be to measure the
shape and size of the black hole’s horizon or photon sphere.
A preliminary attempt at this has been made [5], but they
were unable to identify the observed structure with the
black hole itself. At present, there are no constraints
which would prevent the size of the event horizon from
being significantly larger or smaller than predicted in a
Schwarzschild spacetime (but not by an order of magnitude
[58]). In addition, since the photon sphere is so small, even
a relatively large percentage change in its size corresponds
to only a few uas. Resolving the difference between
two proposed photon sphere sizes may be beyond the
capabilities of projected future instruments. In this case,
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observing
information.

There has been some discussion about observing these
secondary images with the upcoming generation of tele-
scopes [28]. A very promising project is the Multi-Adaptive
Optics Imaging Camera for Deep Observations (MICADO)
telescope [59] at the planned European Extremely Large
Telescope. It is expected to be able resolve images as faint
as mg = 30.1 and will have a resolution of up to 6 mas in
imaging mode (10 mas in the K band) and an astrometric
accuracy of up to 10 uas. It also will have a photometric
accuracy of 0.03 magnitudes. From the data shown above,
trying to resolve the difference between an image’s position
in the Schwarzschild metric and an image’s position in the
TRN metric is next to impossible given the small separation
between these positions.

Therefore, it is important to explore not only image (and
photon sphere) positions, but to use image magnifications
as a complementary avenue for exploring the metric. If the
secondary images in this paper were isolated point sources,
MICADO would not have any problems detecting them
and even differentiating between two predicted values for
image brightness (assuming the difference is larger than
the photometric accuracy). However, these images will be
very close to and essentially unresolvable from Sgr A* and
its crowded environment. This is not a fatal flaw, because
Sgr A* is very faint in the near infared K band (A =
2.2 pm), and it may be feasible to subtract out the quies-
cent state of Sgr A* in the K band. Some studies [60—63]
claim that Sgr A* has a highly variable “quiescent” state
of mg = 17. In addition, there are occasional flares that
can be brighter than myx = 16 and last on a scale of hours.
While the flares are thought to originate very close to the
black hole, it is not clear whether the quiescent radiation in
the K band comes from Sgr A* itself or whether it comes
from the fact that the lower resolution (65 mas) in the
survey includes one or more sources in the area near Sgr
A*. The currently known star with the closest approach is
S2, which appears to be 11 mas from Sgr A* at the point of
closest approach—at all points, MICADO should be able
to resolve S2 and many other closely moving stars from
Sgr A*. There may be other, unidentified stars that are
currently conflated with radiation from Sgr A* but will be
separated with MICADO’s increased resolution. Better
resolution in future surveys combined with furthering our
understanding of radiation in the Galactic center can lead
to the realistic possibility of observing secondary images.
MICADO’s photometric accuracy should be able to dis-
tinguish many of the image brightness differences dis-
cussed in this paper. This assumes that when viewed with
a fine enough resolution, Sgr A* does not emit too brightly
in the K band and source crowding is not insurmountable.
Even if flares are observed, they persist for a time scale
much shorter than secondary images (which remain
bright for months) and should be easily distinguished

secondary images may provide more
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from the quiescent state. Additionally, it is expected that an
additional 10°-10% S stars will be found in the central
milliparsec of the galaxy [64], yielding additional and
perhaps even better candidates to observe secondary im-
ages with the right properties to give us insight into the
metric near the black hole. It may not be possible to
accurately treat stars that close to Sgr A* with the thin-
lens approximation, but in that case, a more exact numeri-
cal treatment can be utilized [26,65].

Observing secondary images of S stars will be challeng-
ing, but we may very well find that it is possible to observe
faint secondary images and use their properties to give us
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insight into the true nature of gravity. This exciting
prospect should be an additional motivation for the next
generation of observational instruments aimed at the
Galactic center.
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