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We first construct generalized normal coordinates by using autoparallels, instead of geodesics, in an

arbitrary Riemann-Cartan spacetime. With the aid of generalized normal coordinates and their associated

orthonormal frames, we obtain a momentum-space representation of the Feynman propagator for scalar

fields, which is a direct generalization of Bunch and Parker’s works to curved spacetime with torsion. We

further derive the proper-time representation in n-dimensional Riemann-Cartan spacetime from the

momentum-space representation. It leads us to obtain the renormalization of the one-loop effective

Lagrangians of free scalar fields by using dimensional regularization. When the torsion tensor vanishes,

our resulting momentum-space representation returns to the standard Riemannian results.
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I. INTRODUCTION

General relativity (GR) was developed almost a century
ago and has been considered as one of the most successful
classical theories of gravity. Nevertheless, GR is estab-
lished (by hypothesis) in the pseudo-Riemannian (i.e. tor-
sion free) framework, so the conservation law of angular-
momentum does not involve intrinsic spin of elementary
particles, i.e., there is no spin-orbit coupling. In most of the
torsion theories of gravity, e.g., Einstein-Cartan theory and
Poincaré gauge theory of gravity (PGT) [1], the intrinsic
spin does play a significant role and becomes the source of
torsion field. Hence, Riemann-Cartan spacetime, which is
characterized by a metric g and a metric-compatible con-
nection r, provides a natural geometrical structure to
cooperate with the intrinsic spin. Moreover, recent astro-
physical observations, e.g., supernova Type Ia observa-
tions, indicate that the expansion of the present Universe
is in an accelerating phase [2]. This is contrary to the
prediction of standard cosmological model, which is based
on GR plus the known matter fields. Hence, a new cosmo-
logical model beyond the standard model is necessary. A
recent development on torsion cosmology yields a power-
law inflation in the early Universe [3], and also presently
accelerating phase without introducing the dark energy
[4,5]. These results show that torsion has notable effects
on cosmology.

Since torsion and intrinsic spin have direct interactions,
spin-polarized bodies are used to detect torsion directly in
the laboratory (see the review article [6]). Up to the

present, there is no experimental evidence showing the
existence of torsion field due to the smallness of torsion-
spin coupling [6,7] in the laboratory. However, the cosmo-
logical observations, e.g., cosmic microwave background
radiation (CMB), provide other possibilities to search for
torsion-spin coupling in the early Universe. Instead of
looking for a torsion-spin coupling, Dereli and Tucker
considered a spinless particle following an autoparallel
curve in the Brans-Dicke theory with torsion, and then
estimated the precession rate of Mercury’s orbit [8,9].
Later, the precession rate of a gyroscope following an
autoparallel in the Kerr-Brans-Dicke field with torsion
had also been calculated [10].
The discovery of the CMB and its anisotropic structure

provides us with a window to understand the evolution of
our early Universe. It can be expected that the quantum
effects will become significant in the very early Universe
(near the Planck scale). Since there is no completely sat-
isfactory quantum theory of gravity, a semiclassical ap-
proximation, i.e. quantized matter fields in a background
classical gravitational field, becomes important to study a
region where quantum effects of gravitational field can be
neglected.
Quantum field theory in the pseudo-Riemannian struc-

ture of spacetime has been extensively investigated
[11–13]. The covariant approach to study the renormaliza-
tion of stress-energy tensor was discussed by using
DeWitt-Schwinger proper-time method [12,14] with
some regularization methods. It requires to introduce a
bi-scalar world-function �ðx; x0Þ, i.e., one-half the square
of the geodesic distance between x and x0, and then solve a
heat kernel equation in the normal neighborhood of a point
x0, which is defined by the exponential map [15]. This
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covariant approach had been generalized to Riemann-
Cartan spacetime [16,17]. However, it immediately en-
counters a question: which curve, autoparallel or geodesic,
should be used to construct the exponential map? In [16],
the DeWitt-Schwinger ansatz was applied to solve a heat
kernel equation in Riemann-Cartan spacetime by using
autoparallels. However, we found that these curves are
not autoparallels since the one-half the square of the auto-
parallel distance �ðx; x0Þ satisfies the equation �ðx; x0Þ ¼
1
2 g

��r��r�� (see Eq. (3.8) in [16]), which is actually the

geodesic equation [12]. It is still nontrivial how to apply
autoparallel interval to the DeWitt-Schwinger proper-time
representation.

Besides the DeWitt-Schwinger proper-time representa-
tion, Bunch and Parker [18] developed a momentum-space
representation which is useful for discussing the renorma-
lizability of interacting fields, e.g., ��4 theory, in a general
pseudo-Riemannian structure of spacetime. By construct-
ing the Riemann-normal coordinates in the normal neigh-
borhood of an original point x0, they solved the Feynman
Green’s function Gðx; x0Þ of free scalar and Dirac fields in
the large wave number k approximation and also showed
the equivalence of momentum-space and proper-time
representations.

The method of momentum-space representation can be
naturally extended to Riemann-Cartan spacetime. The ma-
jor difference is that the background field variables are
changed from the metric tensor g ¼ g��dx

� � dx� to

orthonormal coframes fea ¼ ea�dx
�g and connection

1-forms f!a
b ¼ !a

b�dx
�g, so we should construct a local

coordinate system fx�g, where the coefficients of ea� and

!a
b� in the Taylor series expansions can be systematically

expressed in terms of full curvature, torsion and the cova-
riant derivative r� at the original point x0. Tucker estab-
lished Fermi coordinates with associated orthonormal-
frames in Riemann-Cartan spacetime [19]. Instead of using
geodesics, he used autoparallels �vð�Þ to define an expo-
nential map and then the Fermi coordinates can be con-
structed in the normal neighborhood of a timelike curve.
We follow a similar process to construct generalized nor-
mal coordinates at a point x0. A detail construction will be
presented in Sec. II. A recent investigation on normal
frames in a general connection (non metric-compatible)
can be found in [20]. By using generalized normal coor-
dinates, we then extend Bunch and Parker’s work to
Riemann-Cartan spacetime.

In [18], the divergent terms of the one-loop effective
action for a free scalar field require one to calculate an
approximate solution of Feynman Green’s function,
Giðx; x0Þ to fourth-order, though the discussion of renor-
malizability of ��4 theory only needs Giðx; x0Þ to second-
order. Since solving G3ðx; x0Þ and G4ðx; x0Þ involves
extremely complicated and tedious calculations in a
general Riemann-Cartan spacetime, we will restrict our
background torsion to be totally antisymmetric in the

calculation of the G3 and G4. Furthermore, we will first
concentrate on the renormalization of the effective action
of a free scalar field in this paper.
The discussion of quantum field theory in Riemann-

Cartan spacetime has another approach by considering
torsion as an extra background field (see the review article
[21]). In this approach, the fundamental variables are the
components of metric g�� and torsion T�

�� with respect

to a coordinate basis f@�g. The full connection r will be

separated into Levi-Civita connection ~r and a contortion
part. Following this approach, the divergent terms of
the one-loop effective action of matter fields turn out
to be the geometrical invariants associated with the

Riemannian curvature, torsion and ~r [21–23]. It is still
unclear to us whether our results obtained in this paper are
equivalent to theirs. This will require a further algebraic
computation.
Sec. II presents a detail construction of generalized

normal coordinates with associated orthonormal frames
in the general Riemann-Cartan spacetime, and then calcu-
lates the expansions of ea� and!a

b� to fifth-order. Hence,

these expansion coefficients are expressed in terms of full
curvature, torsion and r� at the original point x0. In

Sec. III, we solve the equation of Feynman Green’s func-
tion in the generalized normal coordinates with the large k
approximation, and then obtain the solutions �GiðkÞ up
to second-order in general background torsion. In
Section III A, the solutions �GiðkÞ to fourth-order are de-
rived in the totally antisymmetric background torsion.
Sec. IV shows the equivalence of the proper-time repre-
sentation and the momentum-space representation in n
dimensional Riemann-Cartan spacetime. Since the solu-
tions �GiðkÞ are valid in n dimensional spacetime, we use
dimensional regularization to study the renormalization of
one-loop effective action. In Appendix , we present the
detailed and tedious calculations for writing down the
equation of Feynman Green’s function in the generalized
normal coordinates.
In this paper, we use the units @ ¼ c ¼ 1, and for n

dimensional spacetime, the metric signature is
ð�;þ; � � � ;þÞ. The Greek indices �;�; � � � � are referred
to coordinate indices and the Latin indices a; b; � � �
referred to frame indices. Both types of indices run
from 0 to n� 1. The covariant derivative r� on any

tensor components Za���b
c���d is defined by ðrZÞ�

ðea; � � � ; eb; Xc; � � � ; Xd; @�Þ. Any geometrical object de-

fined by the Levi-Civita connection ~r will have a~on it.

II. GENERALIZED NORMAL COORDINATES

In a general Riemann-Cartan spacetime, the definitions
of autoparallels and geodesics are completely different.
However, they become equivalent in the pseudo-
Riemannian geometry. Autoparallels �: � � �ð�Þ, which
satisfy
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r�0�0 ¼ 0; (1)

where �0 denotes the tangent vector of �, are defined in
terms of connection r, but geodesics C: t � CðtÞ, which
satisfy

	
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð _C; _CÞ
q

dt ¼ 0; (2)

are defined in terms of g. It is worth pointing out that
autoparallels and geodesics coincide if the background
torsion tensor is totally antisymmetric. Since Eq. (1) and
(2) both provide unique solutions with given initial values,
it is not difficult to see that either autoparallels or geodesics
can be used to construct a local coordinate system.

If one uses geodesics to construct local coordinates y�,
i.e., the Riemann-normal coordinates, with origin at point
x0 in the Riemann-Cartan spacetime, the expansion of the
metric components g�� (i.e. gð@�; @�Þ) in these coordi-

nates is given by [24]

g�� ¼ 	�� � 1

3
~R����y

�y� � 1

6
~r�

~R����y
�y�y� þ . . . ;

(3)

which has the same result as in the pseudo-Riemannian
geometry. Here ~Rabcd denotes the components of Riemann
curvature. Furthermore, it can be shown that in the expan-
sions of all geometric quantities, e.g. torsion tensor com-
ponents Ta

bc, the coefficients will only involve ~Rabcd and
~r, instead of the full curvature Rabcd and connection r.
Since our background gravitational variables are feag and
f!a

bg, we should construct a local coordinates, where bothfeag and f!a
bg can be systematically expanded. It is ob-

vious that the Riemann-normal coordinates are not a
proper choice. It leads us to establish the generalized
normal coordinates, where the expansion coefficients of
feag and f!a

bg will be expressed in terms of the full

curvature Ra
bcd, covariant derivative ra, and torsion

Ta
bc. Generalized Fermi coordinates have been con-

structed by using autoparallels and the associated ortho-
normal coframes in the Riemann-Cartan spacetime [19].
Here, we apply a similar procedure to establish generalized
normal coordinates.

Consider an autoparallel �v: � � �vð�Þ 2 M with its
initial values

�vð0Þ ¼ x0; (4)

�0
vð0Þ ¼ v; (5)

where M denotes an n-dimensional Riemann-Cartan
spacetime. Provided �vð1Þ exists, the exponential map
expx0 : Tx0M � M is then defined in an open neighborhood
U of x0 by

exp x0 ðvÞ � �vð1Þ 2 M; (6)

where Tx0M denotes the tangent space to M at x0. Using
expx0 with an orthonormal frame fX̂ag at x0, we obtain the
generalized normal coordinates x�

��ðexpx0vÞ ¼ x�; (7)

where �� is a coordinate chart, and

v ¼ Xn�1

�¼0

	a
�x

�X̂a; (8)

where 	a
� ¼ diagð1; � � � ; 1Þ. In the following, ^ on any

tensor field Z denotes Zjx�¼0 (i.e. Z at x0). A
natural induced coordinate basis f@�g, by construction,

has f@̂� ¼ 	a
�X̂ag.

It will be useful to introduce generalized normal hyper-
spherical coordinates f�; p�g defined by

x� ¼ �p�; (9)

where � is the radial coordinate with affine parametrization
and pa are the direction cosines of tangent vectors of
autoparallels �@� at x0 satisfying

Xn�1

�¼0

p�p� ¼ 1: (10)

From the inverse relations

�2 ¼ Xn�1

�¼0

x�x�; (11)

one has

@� ¼ p�@�; (12)

@�p
� ¼ 0; (13)

and v ¼ �@̂�. It should be mentioned that Ẑ ¼ Zj�¼0

denotes the initial value of any tensor field Z in hyper-
spherical coordinates f�; p�g. Using f�; p�g, we can par-

allel transport fX̂ag along autoparallels �@� to set up a field

of orthonormal frames fXag and its dual coframe field feag
on U.
From the above construction, one has

r@�e
a ¼ 0; (14)

i.e.,

i@�!
a
b ¼ !a

bð@�Þ ¼ 0; (15)

with its initial value êa ¼ 	a
�
ddx� ¼ 	a

�p
�cd�. Since @�

are tangent vectors of autoparallels, we further obtain

@�ðeað@�ÞÞ ¼ 0: (16)

It turns out that eað@�Þ is independent of � and equal to its
initial value pa. So feag in f�; pag gives

ea ¼ 	a
�p

�d�þAa
�dp

� (17)

with the initial values

Â a � Âa
�dp

� ¼ 0: (18)

Equation (15) indicates that !a
b does not contain the d�

term, so
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!a
b ¼ Cab�dp

� (19)

with the initial values

Ĉ a
b ¼ Ĉab�dp� ¼ d!a

bð@�Þdp� ¼ 0: (20)

It is known that the Riemann-normal coordinates in the
pseudo-Riemannian geometry have a local Minkowski
structure (i.e. g��ðx0Þ ¼ 
��; ~!

�
�ðx0Þ ¼ 0), which is

associated with the equivalence principle. Similarly,
Eqs. (18) and (20) also represent a local Minkowski struc-
ture of spacetime at x0 in the Riemann-Cartan spacetime, so
the revised version of the equivalence principle has been
discussed [25].

Since we have completely constructed the generalized
normal coordinates with the associated orthonormal co-
frames feag on U, the next step is to expand the funda-
mental variables feag and f!a

bg with respect to radial

variable � and then to express their coefficients in terms

of the full curvature R̂a
bcd, torsion T̂

a
bc and their covariant

derivative r�.
We start from the Cartan structure equations defined by

the torsion and full curvature [26]:

dea ¼ �!a
b ^ eb þ Ta; (21)

d!a
b ¼ �!a

c ^!c
b þ Ra

b (22)

where

T a ¼ 1

2
Ta

bce
b ^ ec and Ra

b ¼
1

2
Ra

bcde
c ^ ed (23)

are torsion 2-forms and curvature 2-forms in the coframe
field feag. Substituting Eqs. (17) and (19) into Eqs. (21) and
(22) and equating the forms containing d� ^ dp� on each
side gives ordinary differential equations for Aa and Cab:

A 0a ¼ 	a
�dp

� þ Cab	
b
�p

� þ Ta
bc	

b
�p

�Ac; (24)

C 0a
b ¼ Ra

bcd	
c
�p

�Ad; (25)

where 0 denotes the radial derivative @�. A0a and C0ab
denote ð@�Aa

bÞdpb and C0ab ¼ ð@�CabcÞdpc, respec-

tively. In the remaining part of Sec. II, we will use the
notations dpa � 	a

�dp
� and pa � 	a

�p
�.

We know that the Taylor series representations of Aa

and Cab with respect to the radial coordinate � are

A a ¼ Âa þ Â0a�þ 1

2!
Â00a�2 þ � � � ; (26)

C a
b ¼ Ĉab þ Ĉ0ab�þ 1

2!
Ĉ00ab�2 þ � � � : (27)

It should be mentioned that, for any function f, f̂0���0
denotes ð@� � � � @�fÞj�¼0. By successively differentiating
Eqs. (24) and (25) with respect to � and then evaluating the

results at � ¼ 0, one can obtain Â0���0a
and Ĉ0���0ab in terms

of R̂a
bcd, T̂

a
bc, and their radial derivative @�. Since the

discussion of renormalization of W in terms of the
momentum-space representation requires us to calculate

Â0���0a
and Ĉ0���0ab to fifth-order, we will present our results

to fifth-order of the radial derivative. To first order in �, one
finds

Â 0a ¼ dpa; (28)

Ĉ 0a
b ¼ 0: (29)

The curvature and torsion start to appear at the second
order:

Â 00a ¼ T̂a
bcp

bdpc; (30)

Ĉ 00a
b ¼ R̂a

bcdp
cdpd: (31)

At the third order:

Â 000a ¼ R̂a
bcdp

bpcdpd þ 2T̂0a
bcp

bdpc

þ T̂a
bcT̂

c
dep

bpddpe; (32)

Ĉ 000a
b ¼ 2R̂0a

bcdp
cdpd þ R̂a

bcdT̂
d
efp

cpedpf; (33)

which have one radial derivative of the curvature and
torsion. The two radial derivatives of the curvature and
torsion start to appear at the fourth order:

Â0000a ¼ 2R̂0a
bcdp

bpcdpd þ R̂0a
bcdT̂

d
efp

bpcpedpf

þ 3T̂00a
bcp

bdpc þ T̂a
bcR̂

c
defp

bpdpedpf

þ 3T̂0a
bcT̂

c
dep

bpddpe þ 2T̂a
bcT̂

0c
dep

bpddpe

þ T̂a
bcT̂

c
deT̂

e
fgp

bpdpfdpg; (34)

Ĉ0000ab ¼ 3R̂00a
bcdp

cdpd þ R̂a
bcdR̂

d
efgp

cpepfdpg

þ 3R̂0a
bcdT̂

d
efp

cpedpf þ 2R̂a
bcdT̂

0d
efp

cpedpf

þ R̂a
bcdT̂

d
efT̂

f
ghp

cpepgdph: (35)

At the fifth order, it becomes much more complicated
and involves three radial derivatives of the curvature and
torsion:
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Â 00000a ¼ 3R̂00a
bcdp

bpcdpd þ 3R̂0a
bcdT̂

d
efp

bpcpedpf þ R̂a
bcdR̂

d
efgp

bpcpepfdpg þ 2R̂a
bcdT̂

0d
efp

bpcpedpf

þ R̂a
bcdT̂

d
efT̂

f
ghp

bpcpepgdph þ 4T̂000a
bcp

bdpc þ 6T̂00a
bcT̂

c
edp

bpedpd þ 4T̂0a
bcR̂

c
defp

bpdpedpf

þ 8T̂0a
bcT̂

0c
dep

bpddpe þ 4T̂0a
bcT̂

c
deT̂

e
fgp

bpdpfdpg þ 2T̂a
bcR̂

0c
defp

bpdpedpf

þ T̂a
bcR̂

c
defT̂

f
ghp

bpdpepgdph þ 3T̂a
bcT̂

00c
dep

bpddpe þ 3T̂a
bcT̂

0c
deT̂

e
fgp

bpdpfdpg

þ T̂a
bcT̂

c
deR̂

e
fghp

bpdpfpgdph þ 2T̂a
bcT̂

c
deT̂

0e
fgp

bpdpfdpg þ T̂a
bcT̂

c
deT̂

e
fgT̂

g
hip

bpfpdphdpi (36)

Ĉ 00000a
b ¼ 4R̂000a

bcdp
cdpd þ 6R̂00a

bcdT̂
d
efp

cpedpf þ 4R̂0a
bcdR̂

d
efgp

cpepfdpg þ 8R̂0a
bcdT̂

0d
efp

cpedpf

þ 4R̂0a
bcdT̂

d
efT̂

f
ghp

cpepgdph þ 2R̂a
bcdR̂

0d
efgp

cpepfdpg þ R̂a
bcdR̂

d
efgT̂

g
hip

cpepfphdpi

þ 3R̂a
bcdT̂

00d
efp

cpedpf þ 3R̂a
bcdT̂

0d
efT̂

f
ghp

cpepgdph þ R̂a
bcdT̂

d
efR̂

f
ghip

cpepgphdpi

þ 2R̂a
bcdT̂

d
efT̂

0f
ghp

cpepgdpi þ R̂a
bcdT̂

d
efT̂

f
ghT̂

h
ijp

cpepgpidpj (37)

Although these expressions involve the radial derivative
@�, it can be changed to the covariant derivative r@� by
using Eq. (14), e.g.,

r@�R
a
bcd � ðr@�RÞðea; Xb; Xc; XdÞ

¼ r@�ðRðea; Xb; Xc; XdÞÞ � @�R
a
bcd: (38)

Moreover, it is understood that any tensor-field compo-
nents Za���b

c...d satisfy Ẑa���b
c...d ¼ 	a

� � � �	b
�	

�
c � � �

		
dẐ

�����
�...	, so there is no difference of using the

Greek or Latin indices for any tensor-field components at
the original point x0. In the following, we will adapt the
Greek indices on any tensor-field components at x0.

III. MOMENTUM-SPACE REPRESENTATION
OF THE FEYNMAN PROPAGATOR

OFA SCALAR FIELD

The classical action functional of a scalar field in the
pseudo-Riemannian (i.e. torsion free) structure of space-
time is [11]

~S½g;�� ¼ � 1

2

Z
M
d� ^ ?d�þ ðm2 þ � ~RÞ�2 ? 1;

(39)

where ? is the Hodge map associated with g,m is the scalar
field’s mass, � is an arbitrary real number, and ~R is the
Ricci scalar curvature. Since the background gravitational
field is now described by g and r in the Riemann-Cartan
spacetime, the basic gravitational variables will be a class
of arbitrary local orthonormal 1-form coframes feag on
spacetime related by SOð3; 1Þ transformation and connec-
tion 1-forms f!a

bg, which is a representation of r with

respect to feag. A direct generalization of Eq. (39) to
Riemann-Cartan spacetime is

S½ea;!a
b;�� ¼ � 1

2

Z
M
d� ^ ?d�þ ðm2 þ �RÞ�2 ? 1;

(40)

where R is the full scalar curvature. Varying S with respect
to �, the equations of motion of � can be obtained

0 ¼ 	S

	�
¼ �d ? d�þ ðm2 þ �RÞ� ? 1: (41)

The classical stress 3-forms �a and spin 3-forms Sa
b are

defined as

�a � 	S

	ea
¼ 1

2
ðiad� ^ ?d�þ d� ^ ia ? d�

�m2�2 ? ea � ��2Rbc ^ ?ea
bcÞ; (42)

Sa
b � 	S

	!a
b

¼ � 1

2
��2

�
2d�

�
^ ?ea

b þ Tc ^ ?eca
b

�
;

(43)

where ia � iXa
is the interior derivative, fXag is the dual

basis of feag, and ea...bc...d � ea ^ . . . ^ eb ^ ec ^ . . . ed.
Using the path-integral quantization [11], we obtain the

one-loop effective action

W½ea; !a
b� ¼ � i

2

Z
M
hxj lnGjxi ? 1; (44)

where hxjGjx0i � Gðx; x0Þ is the Feynman Green’s func-
tion, and also the vacuum expectation value of �a and Sa

b

defined by

	W

	ea
¼ h�ai; 	W

	!a
b

¼ hSabi: (45)

From Eq. (40), one can show that the Feynman Green’s
function of a scalar field satisfies [11,12]ffiffiffiffiffiffiffiffiffiffiffiffi

jgðxÞj
q

½� ?�1 d ? dþm2 þ �R�Gðx; x0Þ ¼ 	ðx� x0Þ;
(46)

where jgðxÞj � j detgabðxÞj. It is useful to define
�Gðx; x0Þ by

�Gðx; x0Þ ¼ jgðxÞj1=4Gðx; x0Þjgðx0Þj1=4; (47)
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and Eq. (46) becomes

½ð�jgðxÞj1=4 ?�1 d ? djgðxÞj�1=4Þ þm2

þ �R� �Gðx; x0Þ ¼ 	ðx� x0Þ: (48)

It is known that, in the coincident limit x ! x0, the diver-
gences of Gðx; x0Þ and also the effective action W come
from the high frequency field behavior [11,27]. In the

following, we will use ½Z� to denote the coincident
limit of any two-point function Zðx; x0Þ, i.e., ½Z� ¼
limx!x0Zðx; x0Þ. These ultraviolet divergences can be ob-
tained by solving Eq. (48) in the generalized normal coor-
dinates with asymptotic expansion in large wave number k.
Equation (48) in the generalized normal coordinates x�

with associated orthonormal coframe feag gives

ð
�� þF
ð1Þ ��

�x
� þF

ð2Þ ��

��x
�x� þF

ð3Þ ��

���x
�x�x� þF

ð4Þ ��

����x
�x�x�x�Þ@�@� �G�m2 �Gþ ðS

ð1Þ� þ S
ð2Þ�

�x
�

þ S
ð3Þ�

��x
�x� þ S

ð4Þ�
���x

�x�x�Þ@� �Gþ ½ðP
ð2Þ
� �R̂Þ þ ðP

ð3Þ

� � � dr�RÞx� þ ðP
ð4Þ

�� � �

2
dr�r�RÞx�x�� �G ¼ �	ðxÞ; (49)

where the coefficients F
ðiÞ ��

���, S
ðiÞ�

���, and P
ðiÞ

��� involve the i
derivatives of orthonormal coframe. The explicit expres-
sions of these coefficients in terms of T̂a

bc, R̂
a
bcd, and their

covariant derivatives are given in Appendix . We have only
retained the coefficients for i < 4 in Eq. (49) since the
divergences of W involve the coefficients up to four de-
rivatives of feag. However, due to the complicated compu-
tation of the coefficients i ¼ 4, the discussion of
renormalization of W will be restricted in totally antisym-
metric torsion, i.e., Tabc ¼ T½abc�, where square brackets
indicate index antisymmetrization. On the other hand, the
divergences of [G], which are used to study the renorma-
lizability of interacting scalar fields, involve the coeffi-
cients for i < 2, and these coefficients can be obtained in
the general background torsion. More specifically, we will
find an approximate solution of �G up to second-order in
general background torsion in the remaining part of
Sec. III, and the approximate solution of �G to fourth-order
in the background totally antisymmetric torsion will be
presented in Sec. III A.

By making the n-dimensional Fourier transformation,
�Gðx; x0Þ in the momentum space yields

�Gðx; x0Þ ¼
Z dnk

ð2Þn e
ik�x

� �GðkÞ; (50)

where �GðkÞ ¼ �Gðk; x0Þ is assumed to have compact support
in the normal neighborhood of x0. We consider the follow-
ing expansion of �GðkÞ

�GðkÞ ¼ �G0ðkÞ þ �G1ðkÞ þ �G2ðkÞ þ � � � ; (51)

and

�G iðx; x0Þ ¼
Z dnk

ð2Þn e
ik�x

� �GiðkÞ; (52)

where �GiðkÞ involves the coefficients F
ðiÞ ��

���, S
ðiÞ�

���, and

P
ðiÞ

���. For i ¼ 0, we have F
ð0Þ ��

��� ¼ S
ð0Þ
���� ¼ P

ð0Þ

��� ¼ 0. On

dimensional ground, GiðkÞ is of order k�ð2þiÞ so Eq. (51)
corresponds to an asymptotic expansion of �GðkÞ in large
k [18].

In [18], the discussion of the renormalizability of ��4

theory needed the solution �Gi to second-order, i.e. i < 2,
so our calculations on Gi will be considered in general
background torsion field, which will be useful for our
future investigation on interacting scalar fields.
By substituting Eq. (52) into Eq. (49), the lowest-order

equation yields


��@�@� �G0 �m2 ¼ �	ðxÞ; (53)

which has the Minkowski-space solution

�G 0ðkÞ ¼ 1

k2 þm2
: (54)

From Eq. (53), we also know that �G0ðx; x0Þ is a function of

��x

�x� � x�x
�, i.e. Lorentz invariant. The equation for

�G1ðx; x0Þ gives


��@�@� �G1 �m2 �G1 þF
ð1Þ ��

�x
�@�@� �G0 þ S

ð1Þ�
@� �G0 ¼ 0:

(55)

Substituting the solution �G0ðx; x0Þ into Eq. (55) and using
Eqs. (A8) and (A9), we obtain

�G 1ðkÞ ¼ � i

4
T̂�@

�

�
1

k2 þm2

�
; (56)

where T̂� ¼ T̂�
�� is the trace torsion, and @� � @=@k�. It

turns out that �G1ðkÞ ¼ 0 in the pseudo-Riemannian geome-
try, which has been shown in [18]. Using integration by
parts, one can show that ½ �G1� ¼ 0 (see Sec. IV).
The equation for �G2ðx; x0Þ gives


��@�@� �G2 �m2 �G2 þF
ð1Þ ��

�x
�@�@� �G1

þ S
ð1Þ�

@� �G1 þF
ð2Þ ��

��x
�x�@�@� �G0

þ S
ð2Þ�

�x
�@� �G0 þ ðP

ð2Þ
� �R̂Þ �G0 ¼ 0: (57)

By substituting the solutions �G0ðx; x0Þ, �G1ðx; x0Þ, Eqs. (A8)
–(A12) into Eq. (57) and integrating by-parts, a straightfor-
ward but tedious calculation yields
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�G2ðkÞ¼
��

1

6
��

�
R̂�1

4
T̂�T̂

�þ1

3
dr�T

��1

8
T̂���T̂

���

�1

6
T̂���T̂

���

�
1

ðk2þm2Þ2�
1

8

�
1

4
T̂�T̂�

�1

2
T̂���T̂

�þ4ðF
ð2Þ

�

�

ð��Þ þF
ð2Þ �

�ð��Þ

þ2F
ð2Þ

��

�

�Þ �2S
ð2Þ
��

�
@�@�

�
1

k2þm2

�
; (58)

where the indices are raised and lowered by 
�� and 
��

and round brackets indicate index symmetrization. In
Sec. IV, it will be shown that the terms involving

@�@�
�

1
k2þm2

�
in Eq. (58) does not contribute to ½ �G2�. In

pseudo-Riemannian geometry, Eq. (58) reduces to

�G 2ðkÞ ¼
ð16 � �Þ ~̂R
ðk2 þm2Þ2 ; (59)

which is the same as in [18].

A. A special case: Total antisymmetric torsion

In this subsection, we will consider the background
torsion to be totally antisymmetric and find the divergences
of the effective action W in this restricted background
gravitational field. The reason is that the totally antisym-
metric torsion plays a significant role for generating
inflation in the early Universe [3]. Moreover, since it is
necessary to obtain �G4ðkÞ for finding the divergences ofW,
this consideration will largely simplify our calculations.

When T��� ¼ T½����, the autoparallels and geodesics

will coincide, and it gives F
ð1Þ ��

� ¼ S
ð1Þ� ¼ 0. So Eq. (55)

gives a trivial solution �G1ðkÞ ¼ 0. Since �G0ðx; x0Þ is a
function of x�x

�, and using Eqs. (A14) and (A15), we

obtain

F
ð2Þ ��

��x
�x�@�@� �G0 þ S

ð2Þ�
�x

�@� �G0 � 0: (60)

Therefore, Eq. (57) becomes


��@�@� �G2 �m2 �G2 þ ðP
ð2Þ
� �R̂Þ �G0 ¼ 0; (61)

which has a solution

�G 2ðkÞ ¼
��

1

6
� �

�
R̂þ 1

24
T̂���T̂

���

�
1

ðk2 þm2Þ2 :
(62)

Equation (61) indicates that �G2ðx; x0Þ is Lorentz invariant
and hence it is also a function of x�x�. It follows that
�G2ðx; x0Þ also satisfies Eq. (60). Moreover, by using Eqs.
(A17), (A18), (A20), and (A21), a straightforward but
tedious calculation gives two more identities

F
ð3Þ ��

���x
�x�x�@�@� �G0 þ S

ð3Þ�
��x

�x�@� �G0 � 0; (63)

F
ð4Þ ��

����x
�x�x�x�@�@� �G0 þ S

ð4Þ�
���x

�x�x�@� �G0 � 0:

(64)

so �G3ðx; x0Þ and �G4ðx; x0Þ satisfy


��@�@� �G3 �m2 �G3 þ ðP
ð3Þ

� � � dr�RÞx� �G0 ¼ 0; (65)


��@�@� �G4 �m2 �G4 þ ðP
ð2Þ
� �R̂Þ �G2

þ ðP
ð4Þ

�� � �

2
dr�r�RÞx�x� �G0 ¼ 0: (66)

By substituting Eq. (A19) into Eq. (65) and integrating by
parts, we obtain

�G 3ðkÞ ¼ i

2

��
1

12
� �

� dr�Rþ 1

12

�
2 dr�Rð��Þ

þ 2R̂�
ð��Þ�T̂

��
� þ T̂���rð�T̂�Þ��

þ 1

2
T̂���r�T̂

���

��
@�

1

ðk2 þm2Þ2 ; (67)

where r� � g��r�. When torsion vanishes, Eq. (67)

reduces to

�G 3ðkÞ ¼ i

2

�
1

6
� �

�
~r�

b~R@� 1

ðk2 þm2Þ2 ; (68)

where the Bianchi identities have been used. This agrees
with the result in [18]. Similarly, substituting Eqs. (A16)
and (A22) into Eq. (66) and integrating by-parts yields

�G4ðkÞ ¼
��

1

6
� �

�
R̂þ 1

24
T̂���T̂

���

�
2 1

ðk2 þm2Þ3

þ 2

3

�
P
ð4Þ�

� � 1

2
�dhR

�
1

ðk2 þm2Þ3

� 1

3

�
P
ð4Þ

�� � �

2
dr�r�R

�
@�@�

1

ðk2 þm2Þ2 ; (69)

where h � r�r� and
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P
ð4Þ�

� ¼ 1

20
dhRþ 1

10
drð�r�ÞR�� � 1

72
R̂��R̂

�� � 1

360
R̂��R̂

�� � 1

90
R̂�

�
dr�T

��
� � 1

30
R̂�

�T̂
��

�T̂
�
��

� 3

10
drð�r�ÞT��

�T̂
��

� � 1

45
dr�T

��
�

dr�T
��

� þ 1

45
dr�T

��� dr�T��� � 1

45
dr�T��

�
dr�T

�
��

þ 11

180
R̂����T̂

���T̂��
� �

11

180
R̂����T̂���T̂��

� � 1

180
R̂�

�
�
�

drð�T��
�Þ þ

1

90
R̂����R̂����

þ 1

90
R̂����R̂���� � 1

2880
T̂���T̂���T̂��

�T̂��
� þ 1

1440
T̂��

�T̂
���T̂���T̂

�
��: (70)

Sec. IV will show that ½ �G3� ¼ 0 and the second line of Eq. (69) does not contribute to ½ �G4�. When torsion vanishes, Eq. (69)
becomes

�G 4ðkÞ ¼
��

1

6
� �

�
2
~̂R
2 þ 1

3

�
1

5
� �

�
~h b~R� 1

90
~̂R��

~̂R
�� þ 1

90
~̂R
���� ~̂R����

�
1

ðk2 þm2Þ3 þ
�
1

6

�
�� 3

20

�
~r�

~r�
b~R

� 1

120
~h d~R�� þ 1

90
~̂R��

~̂R
�
� þ 1

270
~̂R��

~̂R�
��

� � 1

180
~̂R
���� ~̂R����

�
@�@�

1

ðk2 þm2Þ2 ; (71)

which agrees with the result in [18]. The Feynman propa-
gator can be obtained by giving m2 an infinitesimal nega-
tive imaginary part i�, i.e., m2 þ i�, and take i� to be zero
at the end of calculation. Since our calculations are valid in
n dimensions, it is natural to use dimensional regulariza-
tion to handle the divergences of the Feynman propagator
and effective action in the coincident limit.

IV. RENORMALIZATION OF A SCALAR FIELD IN
RIEMANN-CARTAN SPACETIME

It is known that the proper-time representation can be
derived from the momentum-space representation in the n
dimensional pseudo-Riemannian structure of spacetime
[18]. We will show that the derivation can be extended to
n dimensional Riemann-Cartan spacetime. In the follow-
ing, we only consider the approximate solution of Gðx; x0Þ
up to G4ðx; x0Þ. Substituting Eqs. (54), (56), (58), (67), and
(69) into (57) and integrating by parts yields

�Gðx; x0Þ ¼
Z dnk

ð2Þn e
ik�x

�

�
1� 1

4
T̂�x

� þ a��x
�x�

þ ðaþ b�x
� þ c��x

�x�Þ
�
� @

@m2

�

þ c

�
@

@m2

�
2
�

1

k2 þm2
; (72)

where

a�� ¼ 1

8

�
1

4
T̂�T̂� � 1

2
T̂���T̂

� þ 4ðF
ð2Þ

�

�

ð��Þ

þF
ð2Þ �

�ð��ÞÞ þ 2F
ð2Þ

��

�

� � 2S
ð2Þ
��

�
; (73)

a ¼
�
1

6
� �

�
R̂� 1

4
T̂�T̂

� þ 1

3
dr�T

�

� 1

8
T̂���T̂

��� � 1

6
T̂���T̂

���; (74)

b� ¼ i

2

��
1

12
� �

� dr�Rþ 1

12

�
2 dr�Rð��Þ

þ 2R̂�ð��Þ�T̂½���� þ T̂½����rð�T̂½�Þ���

þ 1

2
T̂½����r�T̂

½����
��

; (75)

c�� ¼ 1

3

�
P
ð4Þ

�� � �

2
dr�r�R

�
; (76)

c ¼ 1

2

��
1

6
� �

�
R̂þ 1

24
T̂½����T̂½����

�
2

þ 1

3

�
P
ð4Þ�

� � 1

2
�dhR

�
: (77)

It should be stressed that the coefficients a and a�� are

considered in a general background torsion field but the
other coefficients b�, c�� and c are considered in a back-

ground totally antisymmetric torsion field.
Defining

Fðx; x0; isÞ ¼ 1� 1

4
T̂�x

� þ a��x
�x� þ ðaþ b�x

�

þ c��x
�x�Þisþ cðisÞ2; (78)

and using the integral representation

ðk2þm2þ i�Þ�1¼
Z 1

0
idsexp½�isðk2þm2þ i�Þ�; (79)

one then performs dnk integration in Eq. (72) to obtain
(dropping i�)

�Gðx; x0Þ ¼ ið4Þ�n=2
Z 1

0
idsðisÞ�n=2

� exp½�im2s� ð�=2isÞ�Fðx; x0; isÞ; (80)

where �ðx; x0Þ ¼ 1
2 x

�x� is half the square of the autopar-

allel distance between x and x0. Since jgðx0Þj ¼ 1 in the
generalized normal coordinates, it gives
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Gðx; x0Þ ¼ jgðxÞj�1=4 �Gðx; x0Þ: (81)

By introducing a determinant defined by1

4 ðx; x0Þ ¼ �jgðxÞj�1=2 det½�@�@�0��jgðx0Þj�1=2 (82)

and noticing that Eq. (82) reduces to jgðxÞj�1=2 in the
generalized normal coordinates, we obtain

Gðx; x0Þ ¼ i4 ðx; x0Þ1=2
ð4Þn=2

Z 1

0
idsðisÞ�n=2

� exp½�im2s� ð�=2isÞ�Fðx; x0; isÞ; (83)

which may be considered as the proper-time representation
in n-dimensional Riemann-Cartan spacetime. When tor-
sion vanishes, Eq. (83) yields a usual expression of the
DeWitt-Schwinger proper-time representation in the
n-dimensional pseudo-Riemannian structure of spacetime.

It is known that the first n2 terms of Eq. (83) are divergent

in the x ! x0 limit [11]. If one considers that n can be
analytically continued throughout the complex plane,
Eq. (83) at x ! x0 limit becomes

Gðx; xÞ ¼ i

ð4Þn=2
�
m2�

�
�n

2
þ 1

�
þ aðxÞ�

�
�n

2
þ 2

�

þm�2cðxÞ�
�
� n

2
þ 3

��
: (84)

When n ! 4, Eq. (84) indicates that only the first two
terms are divergent.

From Eq. (44), it can be shown that [11]

W ¼ � i

2

Z
M

�
lim
x!x0

Z 1

0
idsðisÞ�1Gðx; x0Þ

�
? 1: (85)

By substituting Eq. (83) into Eq. (85), the divergent terms
in the four dimensional spacetime yield

Ldiv ¼ lim
n!4

1

ð322Þ
�
m4�

�
�n

2

�
þm2aðxÞ�

�
� n

2
þ 1

�

þ cðxÞ�
�
� n

2
þ 2

��
: (86)

It turns out that the divergent terms are entirely geometrical
and involve only aðxÞ and cðxÞ. By adding the counter-
terms, which contain bare coefficients, into the gravita-
tional Lagrangian, the infinite quantities of Ldiv can be
absorbed into bare coefficients to obtain renormalized
physical quantities. It should be pointed out that, for totally
antisymmetric torsion, aðxÞ and cðxÞ may be compared to
the coefficients b2 and b4 (i.e. Eq. (4.2.27) and (4.3.10)) in
[16]. It is easy to see that aðxÞ in totally antisymmetric
torsion case, which is referred to Eq. (62), is equivalent to
b2. However, we have not verified the equivalence of cðxÞ
and b4 yet, since it involves using the Bianchi identities.

V. CONCLUSION AND DISCUSSION

We obtain the momentum-space representation of the
Feynman propagator of a free massive scalar field in
Riemann-Cartan spacetime. Moreover, the proper-time
representation in n-dimensional Riemann-Cartan space-
time has been derived from our momentum-space repre-
sentation. It leads us to find the divergences of the one-loop
effective action by using dimensional regularization. It
turns out that the divergences of one-loop effective action
of the scalar field are purely geometrical and involve full
curvature, torsion and their covariant derivatives. It is
interesting to notice that though there is no direct coupling
between torsion and the scalar field in the classical action,
those divergences do contain torsion parts. When torsion
vanishes, our momentum-space representation agrees with
the results in [18].
It has been demonstrated that the momentum-space rep-

resentation is useful for studying the renormalizability of
interacting fields in the pseudo-Riemannian structure of
spacetime [18]. So our current work can be directly applied
to study the renormalizability of interacting scalar fields in
Riemann-Cartan spacetime. Moreover, finding momentum-
space representation of the Feynman propagator for spin
1=2 field in Riemann-Cartan spacetime is straightforward
by using the generalized normal coordinates. These con-
siderations will be taken up in our future work.
Our original motivation was to study quantum effects of

our inflation model [3] in Riemann-Cartan spacetime. It
turns out that our inflation model, which contains quadratic
curvature terms, is a subclass of the effective action.
Therefore, it might be interesting to find the renormalized
stress 3-forms and spin 3-forms, and study these quantum
effects in the early Universe. A further investigation on
reheating and primordial perturbations will also be studied
in the future.

ACKNOWLEDGMENTS

C.H.W would like to thank Prof Hing-Tong Cho,
Professor Chopin Soo, and Professor James M. Nester for
helpful discussions and comments. Y. H.W was supported
by Center for Mathematics and Theoretical Physics,
National Central University. C.H.W was supported by
the National Science Council of the Republic of China
under the Grants NSC 96-2112-M-032-006-MY3 and
98-2811-M-032-014.

APPENDIX A: FEYNMAN PROPAGATOR IN THE
GENERALIZED NORMAL COORDINATES

In Sec. II, we obtained the orthonormal coframes feag
and connection 1-forms f!a

bg in the generalized normal

coordinates. To obtain Eq. (48) in the generalized normal
coordinates, it is useful to find the metric components g��
with respect to fdx�g. Using

1Equation (82) returns to the well-known Van Vleck determi-
nant in pseudo-Riemannian geometry.
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g ¼ 
abe
a � eb ¼ g��dx

� � dx� (A1)

and substituting Eqs. (28), (30), and (32) into (A1) gives

g�� ¼ 
�� � T̂ð��Þ�x� þ 1

3

�
R̂�ð��Þ	

� 2dr	Tð��Þ� þ 1

2
ðT̂���T̂

�
	� þ T̂���T̂

�
	�Þ

þ 3

4
T̂�

��T̂�	��x�x	 þ � � � ; (A2)

which can be used to find the solutions G0ðx; x0Þ, G1ðx; x0Þ
and G2ðx; x0Þ. However, the solutions G3ðx; x0Þ and
G4ðx; x0Þ are restricted to the background of totally anti-
symmetric torsion T��� ¼ T½����, so substituting Eqs. (28)
, (30), (32), (34), and (36), into (A1) and considering the
torsion field to be totally antisymmetric yields

g�� ¼ 
�� þ 1

3

�
R̂�ð��Þ	 þ 1

4
T̂���T̂

�
	�

�
x�x	 þ 1

12

�
�dr	R���� þ 1

2
R̂���

�T̂�	� þ 1

2
T̂���

dr	T
�
��

� 1

2
T̂���R̂

�
	�� þ � $ �

�
x�x	x� þ

�
1

120
ð�3 dr�r�R���	 þ 3dr�R��	�T̂

�
�� þ R̂��	�R̂

�
���

þ 2R̂��	�
dr�T

�
�� þ R̂��	�T̂

�
��T̂

�
�� þ 9 dr�r	T���T̂

�
��Þ �

1

45
dr	T���R̂

�
��� þ 1

90
dr	T���

dr�T
�
��

þ 1

360
dr	T���T̂

�
��T̂

�
�� � 1

40
T̂���

dr�R
�
	�� � 1

80
T̂���R̂

�
���T̂

�
	� � 1

80
T̂���T̂

�
��R̂

�
�	�

þ 1

720
T̂���T̂

�
��T̂

�
��T̂

�
	� þ 1

72
R̂��	�R̂

�
��� þ � $ ��x�x	x�x� þ � � � ; (A3)

where � $ � denotes interchange of the indices. It is not
difficult to verify that when the torsion field vanishes,
Eq. (A3) will return to the well-known result obtained in
the pseudo-Riemannian geometry [24].

Since Eq. (48) only involves exterior derivative d acting
on �G, it can be expressed in terms of g�� and the

Christoffel symbol ~��
��

g��@�@� �Gþ @�g
��@� �G

�
�
1

2
@�g

��~���
� þ 1

4
g��~���

�~�	�
	 þ 1

2
~���

�
;�g

��

�
� �G� ðmþ �RÞ �G ¼ �	ðx� x0Þ: (A4)

In the generalized normal coordinates, one has the follow-
ing expansions

g�� ¼ 
�� þF
ð1Þ ��

�x
� þF

ð2Þ ��

��x
�x� þF

ð3Þ ��

���x
�x�x�

þF
ð4Þ ��

����x
�x�x�x� þ � � � ; (A5)

@�g
�� ¼ S

ð1Þ� þ S
ð2Þ�

�x
� þ S

ð3Þ�
��x

�x�

þ S
ð4Þ�

���x
�x�x� þ � � � ; (A6)

and,

�
�
1

2
@�g

��~���
� þ 1

4
g��~���

�~�	�
	 þ 1

2
~���

�
;�g

��

�

¼ P
ð2Þ
þ P

ð3Þ

�x
� þ P

ð4Þ

��x
�x� þ � � � : (A7)

By substituting Eqs. (A5)–(A7) into Eq. (A4), we then
obtain Eq. (49).
Using Eq. (A2), we obtain

F
ð1Þ ��

� ¼ T̂ð��Þ
�; (A8)

S
ð1Þ � ¼ 1

2
T̂�; (A9)

F
ð2Þ ��

�� ¼ T̂�
�
�T̂

��
� � 1

3

�
R̂�

ð��Þ
� � 2 dr�T

ð��Þ
� þ 1

2

�ðT̂�
��T̂

�
�
� þ T̂�

��T̂
�
�
�Þ þ 3

4
T̂�

�
�T̂��

�

�
;

(A10)

S
ð2Þ�

� ¼ 2

3
T̂�T̂

��
� þ 3

4
T̂�

�
�T̂

��
�

� 1

6
ðR̂�

� þ R̂�
� � 4 dr�T

ð��Þ
�

� 2 dr�T
� þ T̂�

��T̂
�
�
� þ T̂�

��T̂
�
�
�Þ; (A11)

P
ð2Þ
¼ � 3

16
T̂�T̂� þ 1

6
R̂þ 1

3
dr�T

� � 1

24
T̂���T̂

���:

(A12)

In the case of totally antisymmetric torsion, one may use
Eq. (A3) to obtain
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F
ð1Þ ��

� ¼ S
ð1Þ� ¼ 0; (A13)

F
ð2Þ ��

�� ¼ � 1

3

�
R̂��

ð��Þ þ 1

4
T̂�

��T̂
�
�
�

�
; (A14)

S
ð2Þ �

� ¼ � 1

6

�
R̂�

� þ R̂�
� þ 1

2
T̂���T̂

���

�
; (A15)

P
ð2Þ
¼ 1

6

�
R̂þ 1

4
T̂���T̂

���

�
; (A16)

F
ð3Þ ��

��� ¼ � 1

12

�
� dr�R

�

�

�

� þ 1

2
R̂�

��
�T̂��

�

þ 1

2
T̂�

��
dr�T

�

�

� � 1

2
T̂�

��R̂
�
��

� þ� $ �

�
;

(A17)

S
ð3Þ �

�� ¼ F
ð3Þ ��

��� þF
ð3Þ ��

��� þF
ð3Þ ��

���; (A18)

P
ð3Þ

� ¼ 1

12

� dr�Rþ dr�R
�

�
þ dr�R�

� þ 2R̂�ð��Þ�T̂��� � T̂��
�
drð�T

�

�Þ� � 1

2
T̂��� dr�T�

�
�

�
; (A19)

F
ð4Þ ��

���	 ¼ �
�

1

120
ð�3 dr	r�R

�

�

�

� þ 3 dr�R
�

���T̂
�
	
� þ R̂�

���R̂
�
�	

� þ 2R̂�
���

dr�T
�

	

� þ R̂�
���T̂

�
	�T̂

�
�
�
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��T̂
�
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�
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�
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� þ 1
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�
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�
�
� þ 1
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dr	R
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�
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�
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�
��R̂

�
	�

� þ 1

720
T̂�
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�
��T̂

�
	�T̂

�
�
�

þ 1
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R̂���
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�	

� þ� $ �

�
þ 1

9
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� þ 1

4
T̂���T̂

�
�
�

��
R̂�

ð��Þ
	 þ

1

4
T̂�

��T̂
�
	
�

�
; (A20)

S
ð4Þ �

��� ¼ F
ð4Þ ��

���� þF
ð4Þ ��

���� þF
ð4Þ ��

���� þF
ð4Þ ��

����; (A21)

P
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2
S
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�F
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�ð��Þ � 1

4
F
ð2Þ �

�

ð�
�ÞF
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þ 1

2
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��F
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��� þF
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�Þ: (A22)
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