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We analyze the entanglement degradation provoked by the Hawking effect in a bipartite system Alice-
Rob when Rob is in the proximities of a Schwarzschild black hole while Alice is free falling into it. We
will obtain the limit in which the tools imported from the Unruh entanglement degradation phenomenon
can be used properly, keeping control on the approximation. As a result, we will be able to determine the
degree of entanglement as a function of the distance of Rob to the event horizon, the mass of the black
hole, and the frequency of Rob’s entangled modes. By means of this analysis we will show that all the
interesting phenomena occur in the vicinity of the event horizon and that the presence of event horizons do
not effectively degrade the entanglement when Rob is far off the black hole. The universality of the
phenomenon is presented: There are not fundamental differences for different masses when working in the
natural unit system adapted to each black hole. We also discuss some aspects of the localization of Alice

and Rob states. All this study is done without using the single mode approximation.
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I. INTRODUCTION

Relativistic quantum information is born from the com-
bination of very different and fruitful branches of physics.
Namely, general relativity, quantum field theory, and quan-
tum information theory. Its aim is to study the behavior of
quantum correlations in relativistic settings. In its scope,
among other topics, is the study of the behavior of quantum
correlations in noninertial settings, which has produced
abundant literature [1-19]. This discipline provides novel
tools for the analysis of the Unruh effect and the Hawking
effect, allowing us to study the behavior of the correlations
shared between noninertial observers.

In previous works the entanglement degradation
phenomenon produced when one of the partners of an
entangled bipartite system undergoes a constant accelera-
tion was analyzed; this phenomenon, sometimes called
Unruh decoherence, is strongly related to the Unruh effect.
Its study revealed that there are very strong differences
between fermionic and bosonic field entanglement
[4,5,15,17,19]. The reason for these differences was traced
back to fermionic/bosonic statistics and not to the differ-
ence between bosonic and fermionic mode population as
previously thought [20-22]. In these earlier studies some
conclusions were drawn about the infinite acceleration
limit, in which the situation is similar to being arbitrarily
close to an event horizon of a Schwarzschild black hole.

However, there are many subtleties and differences be-
tween Rindler and Schwarzschild space-times. For ex-
ample Schwarzschild space-time presents a real curvature
singularity while Rindler metric is nothing but the usual
Minkowski metric represented in different coordinates and,
therefore, has no singularities. The Rindler horizon is also
of very different nature from the Schwarzschild’s event
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horizon. Namely, the Rindler horizon is an acceleration
horizon experienced only by accelerated observers (at
rest in Rindler coordinates). On the other hand, a
Schwarzschild horizon is an event horizon, which affects
the global causal structure of the whole space-time, inde-
pendently of the observer. Also, for the Rindler space-time
there are two well defined timelike Killing vectors with
respect to which modes can be classified according to the
criterion of being of positive or negative frequency.
Contrarily, Schwarzschild space-time has only one time-
like Killing vector (outside the horizon).

Therefore, to analyze the entanglement degradation pro-
duced due to the Hawking effect near a Schwarzschild
black hole we must be careful, above all if we want to do
a deeper study than simply taking the limit in which the
Rindler acceleration parameter becomes infinite. In this
paper we will show how we can use the tools coming
from the study of the Unruh degradation in uniformly
accelerated scenarios without restricting only to the exact
infinite acceleration limit and controlling to what extent
such tools are valid.

Consequently, we will be able to compute the entangle-
ment degradation introduced by the Hawking effect as a
precise function of three physical parameters, the distance
of Rob to the event horizon, the mass of the black hole, and
the frequency of the mode that Rob has entangled with
Alice’s field state. As a result of this study we will obtain
not only the explicit form of the quantum correlations as a
function of the physical parameters mentioned above but
also a quantitative control on what distances from the
horizon can be still analyzed using the mathematical tool-
box coming from the Rindler results.

Contrarily to all the previous works in which the single
mode approximation described in [5,12] was carried out
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and of common use in the published literature, we will
argue that we do not need to use such approximation to
study the fundamental effects on the entanglement derived
from the Hawking effect.

Our setting consists in two observers (Alice and Rob),
one of them free falling into a Schwarzschild black hole
close to the horizon (Alice) and the other one standing at a
small distance from the event horizon (Rob). Alice and
Rob are the observers of a bipartite quantum state which is
maximally entangled for the observer in free fall. The
Hawking effect will introduce degradation in the state as
seen by Rob, impeding all the quantum information tasks
between both observers.

In this context we will analyze not only the classical and
quantum correlations between Alice and Rob but also what
is the behavior of the correlations that both observers
would acquire with the mode fields on the part of the
space-time that is classically unaccessible due to the pres-
ence of the event horizon.

By means of this study we will show that all the inter-
esting entanglement behavior occurs in the vicinity of the
event horizon. What is more, we will argue that as the
entangled partners go away from the horizon the effects on
entanglement become unnoticeably small and, as a conse-
quence, quantum information tasks in universes that con-
tain event horizons are not jeopardized.

We will also show that the phenomenon of the Hawking
degradation is universal for every Schwarzschild black
hole, which is to say, it is ruled by the presence of the
event horizon and is not fundamentally influenced by the
specific value of the black hole parameters when the analy-
sis is performed using natural units to the black hole.
Furthermore, we will discuss the validity of the results
obtained when instead of the usual plane wave basis we
work in a base of wave packets, for which the states of
Alice and Rob can be spatially localized.

This paper is structured as follows. In Sec. II we show
how we work without using the single mode approxima-
tion, presenting previous results about the Unruh entangle-
ment degradation for scalar and Dirac fields. In Sec. III we
study the entanglement in a Schwarzschild space-time
using the tools built for the Rindler case, detailing to
what extent this approximation holds. In Sec. IV we will
present the result for the correlations between the different
bipartitions in the Schwarzschild space-time scenario. In
Sec. V we show that the results obtained in the preceding
sections are also valid when we consider complete sets of
localized modes instead of plane waves bases. Finally, we
present our conclusions in Sec. VI.

I1. RINDLER SPACE-TIME

Along this work we are going to consider bipartite scalar
and Dirac field states. We will name Alice the observer of
the first part of the system and Rob the observer of the
second part. In this fashion, the quantum state for the whole
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system is defined by the tensor product

|da dr) = [Da) ® |DR). (D
S~

Alice's Rob's

Now, while Alice is in an inertial frame, we will consider
that Rob is observing the system from an accelerated
frame.

A uniformly accelerated observer viewpoint is described
by means of the well-known Rindler coordinates [23,24].
In order to map field states in Minkowski space-time to
Rindler coordinates, two different sets of coordinates are
necessary. These sets of coordinates define two causally
disconnected regions in Rindler space-time. If we consider
that the uniform acceleration a lies on the z axis, the new
Rindler coordinates (1, x, y, z) as a function of Minkowski
coordinates (7, £, §, 2) are

af = e“ sinh(at), az = e“ cosh(at),

) ) (2)
X=x y=y
for region I, and
at = —e“ sinh(at), aZ = —e“ cosh(at), 3)
X=X, y=Yy

for region IV. As we can see from Fig. 1, there are two
more regions labeled II and III. To map them we would
need to switch cosh« sinh in Egs. (2) and (3). In these

FIG. 1.

Flat space-time conformal diagram showing Alice,
Rob, and AntiRob trajectories. i denotes the spatial infinities,
i, it are, respectively, the timelike past and future infinities;
J~ and J* are the null past and future infinities, respectively;

and JH * are the Rindler horizons.
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regions ¢ is a spacelike coordinate and z is a timelike
coordinate. However, the solutions of the Klein-Gordon/
Dirac equation in such regions are not required to discuss
entanglement between the inertial observer Alice and the
accelerated observer Rob. This is so because Rob would be
constrained to either region I or IV, having no possible
access to the opposite regions as they are causally discon-
nected [4,5,23-25].

The Rindler coordinates z, t go from —oo to oo indepen-
dently in regions I and IV. Therefore, each region admits a
separate quantization procedure with their corresponding
positive and negative energy solutions of the Klein-Gordon
(or Dirac) equations.

The states |1,)y = al |0y are free massless scalar
field modes, in other words, solutions of positive frequency
@ (with respect to the Minkowski timelike Killing vector
;) of the free Klein-Gordon equation:

e—ta)l’

1,15, =115)®115,),

“

where only the time dependence has been made explicit.
The label M just means that these states are expressed in
the Minkowskian Fock space basis.

An accelerated observer can also define his vacuum and
excited states of the field. Actually, there are two natural
vacuum states associated with the positive frequency
modes in regions I and IV of Rindler space-time. These
are |0); and |0)y, and subsequently we can define the field
excitations using Rindler coordinates (x, t) as

|ld) EM%OC
>M \/2—(;)

e*lw[’

|lw>I =

1
a:[,yllO)I =yl = N7

Voo =

(&)

elwl
w

1,y = w]vl())IV Uy

These modes are related by a space-time reflection and
only have support in regions I and IV of the Rindler space-
time, respectively.

However, these Rindler modes are not independent of
the Minkowskian modes. Indeed, we can expand the field
in terms of Minkowski modes and, independently, in terms
of Rindler modes. Therefore, the Minkowskian and the
Rindler set of modes are related by a change of basis
[15,25]. The relationship between the Minkowski Fock
basis and the two Rindler Fock bases comes through the
Bogoliubov coefficients, obtained by equating the field
expansion in Minkowskian modes with the field expansion
in Rindler modes. In general, we have that

Z(“u“{vl + BIV* IV* + aIV IV + Byl

ijUw)-  (0)
The Bogoliubov coefficient matrices a%, ,85- (where R =

I, IV) are given by the Klein-Gordon scalar product be-
tween both sets of modes
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R _ R M R — __ R Mk
Q@i = (uwi, u@i), Bii - <uwi’ Uo, )

The relationship between modes also establishes a rela-
tionship between the Minkowski annihilation operator and
the particle operators in Rindler regions I and TV:

— I vt IV 1t
ag,m = Z(aijawi,l T Bijay, v t i g, vt Bijaw,,l)'
i

®)

On the other hand there exist an infinite number of
orthonormal bases that define the same vacuum state,
namely, the Minkowski vacuum |0),;, which can be used
to expand the solutions of the Klein Gordon equation.
More explicitly, since the modes uA have positive fre-
quency, any complete set made out of independent linear
combinations of these modes only (without including the
negative frequency ones u! ") will define the same vacuum
[0)u-

Specifically, as described in e.g. Refs. [24-26] and ex-
plicitly constructed below, there exists an orthonormal
basis {¢/5), ¥} determined by certain linear combina-

tions of monochromatic positive frequency modes, u¥
v

¢’M = ZCZJ @ (!//M = ZCU @’

such that the Bogoliubov coefficients that relate this basis
{¢%, ¥} and the Rindler basis {u},, uiy} have the fol-
lowing form:

(N

()]

&}j = M}y[, lzfl\afl/) = Coshrs,,ﬁ,»j,

aif = (g, wil) =0, 10)
pl —

,Bij - _(ML)-, l/fw) =0,

Y
ij

gi7) = —sinhr ;8

and analogously for &g-'w and ,B””V interchanging the

labels I and IV in the formulas above. In this expression
(11

and the label s in r,; has been introduced to indicate that
we are dealing with a scalar field. In this expression, and in
what follows, we will use Planck units (A =c = G = 1).

In this fashion, a mode 7§ (or a mode ) expands
only in terms of mode of frequency w; in Rindler regions I
and IV, and for this reason we have labeled 7 and 7
with the frequency w; of the corresponding Rindler modes.
In other words, we can express a given monochromatic
Rindler mode of frequency w; as a linear superposition of
the single Minkowski modes 1 and 7! or as a poly-
chromatic
Minkowski modes u

= _(u ij

tanhr,; = exp(—7w,/a),

combination of the positive frequency
M

&, and their conjugates.
; and a:[,j the annihilation and creation
operators associated with modes i,[l%lj (analogously we

Let us denote a,,
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denote a/, and a,| the ones associated with modes WM)
The M1nk0wsk1 vacuum |0y, which is annihilated by all
the Minkowskian operators a,,, v, is also annihilated by all
the operators Ay, and a;,j, as we already mentioned. This
comes out because any combination of Minkowski anni-
hilation operators annihilates the Minkowskian vacuum.
Because of the Bogoliubov relationships (10) being
diagonal, each annihilation operator a,, can be expressed
as a combination of Rindler particle operators of only one

Rindler frequency w;:
a,, = coshry;a, 1 — sinhrs,iaL v (12)

and analogously for a}, interchanging the labels I and IV.
An analogous procedure can be carried out for fermionic
fields (e.g. Dirac fields). We can use linear combinations of
monochromatic solutions of the Dirac equation a,bl(},"l_yg and
16\1,’[,_ .o (and their primed versions) built in the same fashion
as for scalar fields:

M M M
o ZDUu(bi’a, ZEUU >0
i

v " (13)
— /
o= ZDU‘”(D o ZEIJ o0
i
M M . .
where ug , and vy , are, respectively, monochromatic

solutions of positive (particle) and negative (antiparticle)
frequency * @, of the massless Dirac equation with respect
to the Minkowski Killing time. The label o accounts for
the possible spin degree of freedom of the fermionic field."

The coefficients of these combinations are such that for
the modes ¢, , and l_ﬂwi,(, the annihilation operators are
related with the Rindler ones by means of the following
Bogoliubov transformations [5,27,28]:

. t
Co o Sm”d,idlv,w,-,—a

ir

= Cosrd,icl,a),-,O' -
t T s
d(u,-,(r = Cosrd,[dlvywi,(,— + SIrg iCr e, —o>
and analogously for ¢/, and dif
and IV, where

. interchanging the labels I

tanr,; = exp(—7ww;/a). (15)

Here ¢, 4, d,, , represent the annihilation operators of
modes l/lw o and J/{},’[iﬂ for particles and antiparticles,
respectively. The label d in r;; has been introduced to
indicate Dirac field. The specific form for w];,"i,,, and
/M as alinear combination of monochromatic solutions
of the Dirac equation can be seen, for instance, in [27,28]
among many other references. Notice again that, although
we are denotating a,, , €, s> dy, , the operators associated

"Throughout this work we will consider that the spin of each
mode is in the acceleration direction and, hence, spin will not
undergo Thomas precession due to instant Wigner rotations
[5,27].
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with Minkowskian modes, those modes are not monochro-
matic but a linear combination of monochromatic modes
given by (9) and (13).

As we are going to discuss fundamental issues and not a
specific experiment, there is no reason to adhere to a
specific basis. Specifically, if we work in the bases (9) and
(13) for Minkowskian modes we do not need to carry out
the single mode approximation [5,12] in which one single
mode of Minkowski frequency @; was expressed as a
monochromatic combination of Rindler modes of the
same frequency. This approximation has allowed pioneer-
ing studies of correlations with noninertial observers, but it
is based on misleading assumptions on the characteristics
of Rob’s detector, being partially flawed. In any case,
discussing the validity of the single mode approximation
is not the aim of this work. A complete discussion of the
problems associated with the single mode approximation
and how to overcome them is in course of completion and
will be reported elsewhere [29]. As far as this work is
concerned it is enough to say that we are not using any
similar approximation.

A. Vacuum and first excitation for a scalar field

The Minkowski vacuum state of the field |0), is annihi-
lated by the annihilation operators a,, v as well as by the
operators a,, and a/, . For the excited states of the field, we
will work with the orthonormal basis {¢/), M} defined in
(9) such that

|1wi>M = ClI;i|0>My 1, >M = ay |0>M (16)
are solutions of the free Klein-Gordon equation which are
not monochromatic but linear superpositions of plane
waves of positive frequency @ ;.

As shown in [24,25], we can express the Minkowski
vacuum state in terms of the Rindler Fock space basis
[0)m = @10, )\, Where

> (tanhr, )"lng hlng . (17)

5,0 p=0

|Ow,»>M =

coshr

It is straightforward to check that this vacuum is, indeed,
annihilated by the operators a,, and aj,

The Minkowskian one particle state |1w,->M [in the basis

(9)] results from applying the creation operator aI,,. to the

vacuum state. We can also translate it to the Rindler basis

|1wi>M

(co . )2 Z(tanhrs,)"\/n + 1ln + 1, xln, -

(18)

The mode |1, )y is analogous but swapping the labels I
and IV.
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B. Vacuum and first excitation for a Dirac field

For simplicity in the notation we are going to present
only the construction of the modes ¢ and ¢} in (9)
since, as we will show later when we build the entangled
state, they are the only ones of importance in this analysis.
In any case, the construction of the primed modes for the
Dirac field is analogous, but we would need to expand the
notation below to include the possibility of antiparticles in
Rindler region I and particles in Rindler region IV, being
careful with all the anticommutation subtleties typical for
fermionic fields.

As for the scalar case, the vacuum state of the field |[0)y,
is annihilated by the annihilation operators ¢, , v and
dy, o for all @;, o as well as by the operators c,,, , and
d,,q forall w;, 0.

For the excited states of the field, we will work with the
orthonormal basis (13) such that
(19)

|a—w >M Ccu U'|0>M

are positive frequency solutions of the free Dirac equation
which are not monochromatic but linear superpositions of
plane waves of positive frequency @;.

Let us introduce some notation for the Rindler field
excitations that will follow the same convention as in
[15,20,21].

|0-(u,->l = ci':wi,g—lo>lr
— gt
0- - d O »
100 )y = dfa, 1Oy o0
|pw = Cl,,, Tcl(u 1|0>l C;Lwl.,lczwiiloh,
|pa) >IV IVm levm l|0>IV - _dFV,wi,ldirV,wi,Tloh\”

where p,, represents the spin pair state in the mode with
frequency w;. Notice that due to the operator anticommu-
tation relations,

|0-w,->1|0-£u,->IV = Cirw O'dirV,wi,O'/l(»IlO)IV
- _dITV(u o—’cl,wi,o'|0>1|0>IV’

Ww - Ao, >I|O>IV = _|<Tw,.>1|0w,.>lv-

21

As it can be seen in [15], the projection onto the un-
primed sector of the basis (13) of the Minkowski vacuum
state written in the Rindler basis is as follows:

10, )M = (cosry )2 |0)|0)ry + sinr; cosrg (I 1, il Lo v
+ 1 ol Tov) + sinrg )2l po il po v (22)

It is straightforward to check that the vacuum is annihilated
by ¢, » and d,, , simply using (14) and applying both
operators to (22).

The one particle state [projected onto the sector 1,[/14\(,{ of
(13)] in the Rindler basis can be readily obtained by
applying the particle creation operator c:[,i,g to (22):
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[ Tom = cosry| 1, 1|00y + sinrg | po il T v,

(23)
| lw,)M

= cosry;| Lo N0y — sinrg;[py il Lo v

C. Entanglement degradation due to Unruh effect

We will now summarize the results that have been
obtained concerning the effects of an uniform acceleration
on quantum correlations.

Let us first consider the following maximally entangled
state for a scalar field:

1

ﬁ(|O>A|O>R + [ Dally )
where the label A denotes Alice’s subsystem and R denotes
Rob’s subsystem. In this expression, |0), g represents the
Minkowski vacuum for Alice and Rob, |1), is an arbitrary
one particle state excited from the Minkowski vacuum for
Alice, and the one particle state for Rob is expressed in the
basis (9) and characterized by the frequency wg observed
by Rob.

The election of the modes |1,, ) instead of |1/, ) to build
the maximally entangled state is not relevant since choos-
ing the primed modes would just be equivalent to saying
that Rob is in region IV instead of in region I, and there is
complete symmetry in all the analysis for both cases.

Since the second partner (Rob)—who observes the bi-
partite state (24)—is accelerated, it is convenient to map
the second partition of this state into the Rindler Fock
space basis, which can be computed using Eqs. (17) and
(18), and rewrite it in the standard language of relativistic
quantum information (i.e., naming Alice to the
Minkowskian observer, Rob to a hypothetic observer in
Rindler’s region I and AntiRob to a hypothetic observer in
Rindler region IV):

W), = (24)

(tanhr)"

Z \/zco hr
+\/n

coshry

), — (|o>A|an>R|an>R

L lyaln + 1wR>Rlan>R) 25)

where

tanhr; = exp(—7wwg/a). (26)

The same can be done in the case of a Dirac field. Let us
now consider the following maximally entangled state for a
Dirac field in the Minkowskian basis:

1
W)y = —=(0)al00x + | Dal Lo r)- 27)
)a ﬁ( )alOr dal Lo v (
As for the bosonic case, if Rob, who observes this bipartite
state, is accelerated, it is convenient to map the second
partition of this state into the Rindler Fock space basis,

which can be computed using Eqns. (22) and (23). The
explicit form of such state can be seen in [15].
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Notice that we have chosen a specific maximally en-
tangled state (27) of all the possible choices. This election
has no relevance since in [20] the universality of the
degradation of fermionic entanglement was shown. All
fermionic maximally entangled states are equally degraded
by the Unruh effect, no matter what kind of maximally
entangled state it is (either occupation number or spin Bell
state), or even if we work with a Grassmann scalar field
instead of a Dirac field.

Let us denote
= [P XV,

= W, X¥,l, (28)

PARR PiARR
the tripartite density matrices for the bosonic and fermionic
cases, in which we use the Minkowski basis for Alice and
the Rindler basis for Rob-AntiRob. One could ask what is
the physical meaning of each of these three “observers”.
Alice represents an observer in an inertial frame. For Alice
the states (24) and (27) are maximally entangled. Rob
represents an accelerated observer moving in a x = a !
trajectory in region I of Rindler space-time (as seen in
Fig. 1) who shares a bipartite entangled state (24) or (27)
with Alice. AntiRob represents an observer moving in a
x = a~ ! trajectory in region IV with access to the infor-
mation which Rob is not able to access (at least classically)
due to the presence of the Rindler horizon.

In the standard Unruh entanglement degradation sce-
nario [4,15], as Rob is not able to access AntiRob part of
the system we must trace over AntiRob degrees of freedom
when accounting for the quantum state shared by Alice and
Rob. This provokes, for instance, the observation of a
thermal bath by Rob while Alice observes the Minkowski
vacuum as it can be seen elsewhere [5,15,25]. As a
consequence the state becomes mixed, which causes
some degree of correlation loss in the system Alice-Rob
as we increase the value of the acceleration a. In
Refs. [4,5,15,17,19-22] it is studied how this phenomenon
affects the entanglement for different fields.

It has been also studied [5,21,22] the correlation trade-
off among the all possible bipartitions of the system,
namely, Alice-Rob (AR), Alice-AntiRob (AR), and Rob-
AntiRob (RR).

Bipartition AR is the most commonly considered in the
literature. It represents the system formed by an inertial
observer and the modes of the field which an accelerated
observer is able to access. The second bipartition (AR)
represents the subsystem formed by the inertial observer
Alice and the modes of the field which Rob is not able to
access due to the presence of a horizon as he accelerates.
Classical communication between the two partners is only
allowed for the bipartitions AR and AR. We will call these
bipartitions “Classical communication allowed” (CCA)
from now on. These bipartitions are the only ones in which
quantum information tasks are possible to be performed.

On the other hand, no quantum information tasks can be
performed using RR correlations since classical commu-
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nication between Rob and AntiRob is not allowed.
Anyway, studying this bipartition is still necessary to
give a complete description of the behavior of the correla-
tion created between the space-time regions separated by
the horizon.

As it is commonplace in quantum information, the par-
tial quantum states for each bipartition are obtained by
tracing over the third subsystem

PR = Trg PARR, pAR = Trp pARR
pRR = T, pARR, 29

In the cases AR and AR, there are physical arguments to
justify the need for this “tracing over’” beyond mere quan-
tum information considerations, namely, Rob will never be
able to access region IV of the space-time due to the
presence of the Rindler horizon so that R (region IV)
must be traced out. Likewise, AntiRob is not able to access
region I because of the horizon and hence R (region I) must
be traced out. For the subsystem RR this tracing over
subsystem A corresponds to the standard procedure for
analyzing correlations between two parts of a multipartite
system. The properties of the correlations among these
subsystems has been analyzed in the literature, showing a
completely different behavior of quantum correlations for
the CCA bipartitions depending on whether the system is
fermionic or bosonic.

For fermionic fields, quantum correlations are conserved
as Rob accelerates [5,20]. Specifically, as entanglement in
the bipartition AR is reduced, entanglement in the system
AR is increased. In the limit of @ — oo some entanglement
survives in all the bipartitions of the system.

For the scalar field the situation is radically different,
namely, no entanglement is created in the CCA biparti-
tions. Moreover, the entanglement in the AR bipartition is
very quickly lost as Rob accelerates, even if we artificially
limit the dimension of the Hilbert space [22].

This different behavior, thought at the beginning to be a
consequence of the finite dimensionality of the fermionic
Hilbert space, was demonstrated to be ruled only by sta-
tistics [20-22], which play a crucial role in the phenome-
non of Unruh entanglement degradation. The role of
statistics is so important that, for fermions, the behavior
of quantum correlations has been proven to be universal
[20]. Also, the survival of entanglement for the fermionic
case, is arguably related to statistical correlations [20,21].
All these aspects will be discussed in depth later on, when
we present the results for the Schwarzschild black hole.

III. THE “BLACK HOLE LIMIT”: TRANSLATION
RINDLER-KRUSKAL

In this section, we will study a completely new setting
using the tools learned from [4,5,20,21]. We will prove in a
constructive way that the entanglement degradation in the
vicinity of an eternal black hole can be studied in detail
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with these well-known tools. By means of the construction
shown below we will be able to deal with new problems
such as computing entanglement loss between a free fall-
ing observer and another one placed at fixed distance to the
event horizon as a function of the distance, studying the
behavior of quantum correlations in the presence of black
holes. We will also show that the entanglement loss pro-
duced by an eternal black hole shows universality.

To begin this section, let us work a little bit with the
Schwarzschild metric

2 2\~
—(1 - —m)dz2 + (1 - —m> dr + 12d?,
r r

(30)

ds? =

where m is the black hole mass and d€)? is the line element
in the unit sphere. Because of the symmetry of the problem
we are going to restrict the analysis to the radial coordinate.
To shorten notation let us write the radial part of metric as

2= —fdi* + f7ldr, 31)

where f =1 —2m/r.
We can choose to write the metric in terms of the proper
time 7, of an observer placed in r = r, as follows:

ds* = _]%d[% + fldr?,

(32)
where fo = 1 — 2m/ry. The relationship between 7, and ¢
is given by the norm of the timelike Killing vector & = 9,
in r = rg, namely ¢, = /fot.

We can now change the spatial coordinate such that the
new coordinate vanishes at the Schwarzschild radiusr =
Rg = 2m. Let us define z in the following way:

z _ (k2)?

r—2m=—=f= T (x

™ (33)

1+ (k2)>
with k = 1/(4m) being the surface gravity of the black
hole. Then the metric (32) results

1 (k2)?
fo 1+ (k2)?

Near the event horizon (z = 0), we can expand this metric
to lowest order in z and approximate it by

ds* = dto +[1 + (kz)?]d>. (34)

ds? = ) i + dz, (35)

(7

which is a Rindler metric with acceleration parameter
NI

On the other hand, Eq. (35) represents the metric near
the event horizon in terms of the proper time of an observer
placed at r = ry. The next step is giving a physical mean-
ing to this Rindler-like acceleration parameter. For this,
we need to compute the proper acceleration of a
Schwarzschild observer placed at r = r,, which is, indeed,
different from « (as x would be the acceleration of an
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observer arbitrarily close to the horizon as seen from a free
falling frame).

To compute a for this observer as seen by himself
(proper acceleration), we must start from the
Schwarzschild metric. The value of the proper acceleration
for an accelerated observer at arbitrary fixed position r is

a,a”, where a* = v”V ,v* is the observer 4 accel-
eration at such position, whereas v* is his 4 velocity.

The 4 velocity for a Schwarzschild observer in an arbi-
trary position r is

a =

vk = 1/l
where & = 9, is the Schwarzschild timelike Killing vector.
As &* = (1,0,0,0) in Schwarzschild coordinates, then
€] = Vgl = /F, and therefore v* = &*/\/f. Thus,

we can compute the acceleration 4 vector
v &
a* = v’V v* = I3aY% .
' If 1= V1€l

Taking into account that £# is a Killing vector and, there-
fore, it satisfies V wéy t V., & « = 0, we easily obtain

1 a,lER auf
T 2f(0 9:.0.0)

Hence, since g’ = f, the proper acceleration for this ob-
server is

(36)

(37)

(38)

9 2
For an observer placed at r = ry,
K
ao = —=(1 = fo)’. (40)
N 0

We know from (33) that 1 — f, = [1 + (kzy)*]" . So, if
the observer in r = r is close to the event horizon (ry, =
Ry), then, to lowest order, 1 + (kzy)> = 1 and

a = k/\[fo.

Therefore, under this approximation, we can rewrite (35)
as

(41)

ds* = —(apz)*dt} + dz*. (42)

This shows that the Schwarzschild metric can be approxi-
mated, in the proximities of the event horizon, by a Rindler
metric whose acceleration parameter is the proper accel-
eration of an observer resisting in a position r, close
enough to the event horizon.

This approximation holds if

20 2
<m> <1 (43)

or, in other words, if
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& <1, (44)
Ry
where Ay = ry — Ry is the distance from r, to the event
horizon. In the limit r, — Rg, we obtain that f, — 0 and,
from (41), ag — oo. This shows rigorously that being very
close to the event horizon of a Schwarzschild black hole
can be very well approximated by the infinite acceleration
Rindler case, as it was suggested in [4,5,20,21]. This also
enables us to study what would happen with the entangle-
ment between observers placed at different distances of the
event horizon as far as the Rindler approximation holds.

Now let us identify again who is who in this new
scenario. For this, we introduce the null Kruskal-
Szeckeres coordinates

v =« lexplk(t + )]
(45)

u=—«lexp[—«(t — )]

where r* = r + 2mIn|1 — r/2m|. In terms of these coor-
dinates the radial part of the Schwarzschild metric is

ds? = —1e*2"’dudv, (46)
2Kkr

where r is implicitly defined by (45). The Penrose diagram

for this maximal analytic extension is shown in Fig. 2. In

this coordinate, near the horizon the metric can be written

to lowest order as

ds?* = —e 'dudv 47)

and uv = —(kz)%.

Hence, there are three regions in which we can clearly
define physical timelike vectors in respect to which we can
classify positive and negative frequencies:

(i) 9; « (8, + 9,). The parameter 7 for this timelike
vector corresponds to the proper time of a free falling

observer close to the horizon, and it is analogous to
the Minkowskian timelike Killing vector. Positive
frequency modes associated to this timelike vector
define a vacuum state known as the Hartle-Hawking
vacuum |0)y, which is analogous to [0)y in the
Rindler case.

(i) 9, o« (ud, — va,). It is the Schwarzschild timelike
Killing vector, which (when properly normalized)
corresponds to an observer whose acceleration at
the horizon equals the surface gravity « of the black
hole with respect to a Minkowskian observer, or, in
other words, with proper acceleration ay, = k/+/f,
close to the horizon. The vacuum state correspond-
ing to positive frequencies associated to this time-
like Killing vector is called the Boulware vacuum
|0)g. This state is analogous to the Rindler vacuum
|0);.

(iii) There is another timelike Killing vector —d, (as in
Rindler) for region IV that will allow us to define
another Boulware vacuum in region I'V. We will call

PHYSICAL REVIEW D 82, 064006 (2010)

it AntiBoulware vacuum |0)5, analogous to |0);y in
the Rindler case.

Now, in this scenario, |1,)y = a})’HIO>H are free scalar
field modes, in other words, solutions of positive frequency
@ with respect to d; of the free Klein-Gordon equation
close to the horizon

1
Moy = ull o0 —=e707, (48)

The label H just means that those states are expressed in the
Hartle-Hawking Fock space basis.

An observer located at a fixed distance from the black
hole can also define his own vacuum and excited states of
frequency w in respect to the Killing vector d,. Actually,
there are two natural vacuum states associated with the
positive frequency modes in both sides of the horizon these
are |0)g and |0), vacua for the positive frequency modes in
regions I and IV, respectively, (Fig. 2). Subsequently, for a
scalar field, we can define the field excitations as

1 .
11,0 = al gl0)s = ub o« =",
¢ @ “ e
- (49)
1,0 = a' |00 = uB o« ——¢fe!
| >B w,Bl >B \/%

Then, the analogy between the Rindler-Minkowski and
the Boulware-Hartle-Hawking states and their relation
with the standard Alice-Rob-AntiRob notation is as fol-
lows:

|0)g < |0); < [0)s, [0)z < [0}y < [0)z,

(50)
10)a < 100\ < [0}

The change of basis between Hartle-Hawking modes and
Boulware modes is completely analogous to the change of
basis between Minkowskian modes and Rindler modes
with an acceleration parameter ay = «/+/fo.

2‘+ 2‘+

FIG. 2. Kruskal space-time conformal diagram showing tra-
jectories for Alice, Rob, and AntiRob. i® denotes the spatial
infinities, i~, i™ are, respectively, the timelike past and future
infinities; J~ and J " are the null past and future infinities,
respectively; and JH * are the event horizons.
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In the same fashion as for Rindler we define an ortho-
normal basis of Hartle-Hawking scalar field modes

{ll

S t,l/L,HI} whose elements are superpositions of positive

frequency solutions ugi of the Klein-Gordon equation with

respect to the Kruskal time 7 such that each element
corresponds to Boulware modes of one single frequency
in the Kruskal regions I and IV (18 and ub ) The same can

be done for the Dirac field.

We can express the Hartle-Hawking vacuum state in
terms of the Boulware Fock space basis. To do so we use
what we learned from the Rindler case. Taking into ac-
count that [0)y = ®i|0wi>H, we have that

Z (tanhq‘ z)nln >B|n >B’

S0 p=

0 51
| w,->H COSh ( )

where

fowi/K)-

The unprimed Hartle-Hawking one particle state in the
basis {(//gj, 1//’wH]} results from applying the corresponding
creation operator to the vacuum state. We can also translate
this state to the Boulware basis:

tanhg,; = exp(— (52)

|1a)i>H Z(tanhCISl)nVn+ |n+1 >B|n >B

(cosh (coshg,,)? &
(33)
The Hartle-Hawking vacuum (projected onto the un-

primed sector) for the Dirac case is expressed in the
Boulware basis as follows

10, )6 = (c0sq4,:)*10,,)810.,)8
+ Sinqd,i Cosqd,i(l Ta),->B| 1wi>]§ + | 1wi>B| Ta),>l_3)
+ (singg )1 pw, 8l Pw,)8s (54)

whereas the projected Hartle-Hawking one particle state is
expressed in the Boulware basis as

| Twi>H = Cosqd,il Twi>B|Owi>]§ + Singd,ilpw,»>B| Twi>]§’

| la),»)H = COSgd,il lw,»)Blow,»)E - Singd,ilpw,->B| lw,»>]_3’

(55)

where this time

fowi/K)-

Thus, in this new scenario, we can consider a bipartite
state analogous to the states (24) and (27) for the Rindler
scenario which looks like as follows, for fermions and
bosons, in the basis of a free falling observer (Alice):

tang,; = exp(—r (56)

L 100A10)k + 1Dal1 )

|\P>s = E

(57)
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1
W), = \/_§(|O>A|O>R 1 Dal Lo w)-
This bipartite system consists in two subsystems, the first
one is going to be observed by Alice, who is free falling
into the black hole and close to the event horizon, and the
second one will be observed by Rob, who is near the event
horizon at r = ry = Rg. Therefore, the second partner,
who observes the bipartite states (57) and (58), describes
them using the Boulware basis, so that it is convenient to
map the second partition of these states into the Boulware
Fock space basis.
Following the notation (50), to analyze the correlations
among the bipartite subsystems we need to trace out the
third subsystem analogously to what we did in (29):

(58)

AR_ AR_

Trg pAR Trp

59
RR =Tr p ( )
It can be seen in Fig. 2 that all the information beyond
the event horizon cannot be accessed by Rob. Actually,
what happens beyond the horizon is determined by the
information that Rob can access along with the information
that AntiRob can access. In this context it makes sense to
say that studying the system pRR gives an idea of the
correlations across the horizon.

IV. CORRELATIONS BEHAVIOR

In this section, we will use the machinery we already
have from the Rindler set-ups to compute the entanglement
degradation as a function of the position of Rob.

First, we will consider that Rob’s frequency wg is mea-
sured in natural units adapted to each black hole. This will
show how modes of different frequencies suffer different
correlation degradation. It will also show how less massive
black holes produce a higher degradation than the heavier
ones. Furthermore, this analysis will show the universality
of the phenomenon of the Hawking entanglement degra-
dation for Schwarzschild black holes.

After that, we will analyze the different degree of en-
tanglement degradation experimented by an observer of
fixed Boulware frequency wy standing at fixed distances
from the event horizon for different black hole masses.

In the following subsections, we will see that all the
interesting behavior happens in regions in which the
Rindler approximation (42) is valid. Specifically, in the
plots below, the values of the distance to the horizon from
which the interesting entanglement behavior appears are
A = 0.05Ry in all the cases considered in this section for
which, consequently, the approximation (42) holds.

A. Adapted frequency

In terms of the mode frequency measured by Rob (writ-
ten in units natural to the black hole, i.e. in terms of
the surface gravity ) and his position measured in
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Schwarzschild radii,

Q) = 27wy /k = 8Tmwy, (60)

Ry = ry/Rg = ro/(2m), (61)
Egs. (52) and (56) can be written as

tanhg, = exp(— %1’1 - Rl> (62)
0
tang,; = exp(— %1’1 — Rio) (63)

showing that the phenomenon of Hawking entanglement
degradation presents universality, which is to say, if the
frequency is measured in natural units, every
Schwarzschild black hole behaves in the same way, as
expected.

1. Quantum correlations

We will use the negativity /N to account for the quan-
tum correlations between the different bipartitions of the
system. It is an entanglement monotone sensitive to dis-
tillable entanglement. The negativity is defined as the sum
of the negative eigenvalues of the partial transpose density
matrix for the system, which is defined as the transpose of
only one of the subsystem ¢ dits in the bipartite density
matrix. For a general density matrix of a bipartite system
AB,

pas = D pijuldal ekl allls, (64)
ijkl

the partial transpose is defined as

Phs = Zpijkl|i>A|l>B<k|A<j|B- (65)
ikl

If A; are the eigenvalues of p;/gs’ then

1
Nap =520 =) ==3 % (66

1<0

Hence, to compute it, we will need the partial transpose
of the bipartite density matrices (59). The details associ-
ated to the diagonalization of the partial transposed density
matrices for each subsystem are technically very similar to
the Rindler case and are not of much interest for the
purposes of this article. All the technical aspects of such
calculations can be found in [21] for Dirac and scalar
fields. The results of those calculations are shown in
Figs. 3-6. In Figs. 3 and 4, we can see the behavior of
the negativity on the CCA bipartitions for different values
of Rob’s frequency ().

For the scalar field, we can see that as Rob is closer to the
event horizon the entanglement shared between Alice and
Rob decreases. In the limit in which Rob is very close to
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0.45

0.4
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0.25

Negativity
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0.0 \

10.05 1.04 1.03 1.02 1.01 1
Position of Rob (rg/Rs)

FIG. 3 (color online). Scalar field: Entanglement of the system
Alice-Rob as a function of the position of Rob for different
values of (). Entanglement vanishes as Rob approaches the
Schwarzschild radius while no entanglement is created between
Alice and AntiRob. The smaller the value of () the more
degradation is produced by the black hole.

the horizon, entanglement is completely lost. With the
study performed in this work we can see the functional
dependence of the entanglement with the distance to the
horizon. As seen in the figures, the degradation phenome-
non occurs in a narrow region very close to the event
horizon. If Rob is far enough from the black hole he will
not appreciate any entanglement degradation effects unless
either the mass of the black hole or the frequency of the

0.5

0.45

0.4

0.35

0.3

Negativity

0.05

10.05 1.04 1.03 1.02 1.01 1
Position of Rob (rg/R.)

FIG. 4 (color online). Dirac field: Entanglement Alice-Rob
(blue solid line) and Alice-AntiRob (red dashed line).
Universal conservation law for fermions is shown for different
values of (). The entanglement degradation in AR is quicker
when () is smaller. The maximum degradation is not maximal
and its value is independent of ().
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301

Negativity

0
1.05 1.04 1.03 1.02 1.01 1
Position of Rob (ro/Rs)

FIG. 5 (color online). Scalar field: Entanglement of the system
Rob-AntiRob (entanglement across the horizon) as a function of
the position of Rob for different values of (). Entanglement
diverges as Rob approaches the Schwarzschild radius.

mode considered are extremely small. There must be, in-
deed, a minimum residual effect associated to the Hawking
thermal bath experienced in the asymptotically flat region
of the space-time, far from the region in which this ap-
proximation is valid, but it is unnoticeably small. Certainly,
as it will be seen in Fig. 9 and the discussion below, even
very close to the horizon no effective entanglement degra-
dation occurs for physically meaningful values of mass and
frequency.

If we keep the frequency measured by Rob wy constant,
Q) will grow proportional to the black hole mass. With this
in mind, Fig. 3 shows that the degradation is stronger for

0.5

0.4

0.3

Negativity

0.2

0.1

1.63 1.02 1.01 1
Position of Rob (ro/Rs)

10.05 1.04

FIG. 6 (color online). Dirac field: Entanglement of the system
Rob-AntiRob (entanglement across the horizon) as a function of
the position of Rob for different values of (). Entanglement tends
to a finite value as Rob approaches the Schwarzschild radius.
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less massive black holes. This result is consistent with the
fact that the Hawking temperature increases as the mass of
the black hole goes to zero. In the next section (specifically
in Fig. 9), we will show that this is not an effect of choosing
natural units; when an observer is at a fixed distance of a
black hole, the degradation will be higher for less massive
black holes.

In any case, for the scalar field, the entanglement in the
system AR is completely degraded when one of the ob-
servers is resisting very close to the event horizon of the
black hole. Hence, in this scenario, no quantum informa-
tion resources can be used (for instance to perform quan-
tum teleportation or quantum computing) between a free
falling observer and an observer arbitrarily close to an
event horizon. Moreover, no entanglement of any kind is
created among the CCA bipartitions of the system (the
ones who can classically communicate). Therefore, all
useful quantum correlations between a free falling ob-
server and an observer at the event horizon are lost due
to the Hawking effect degrading all the entanglement in the
system.

For the Dirac field (Fig. 4), something very different
happens. We see that correlations in the bipartition AR
decrease to a certain finite limit, which means that there is
entanglement survival even when Rob is asymptotically
close to the event horizon. This survival is a well-known
phenomenon in the Rindler case [5,15]. At the same time
that entanglement is destroyed in the AR bipartition, en-
tanglement is created in the complementary AR bipartition
so that negativity in the CCA bipartitions fulfills a conser-
vation law regardless of the distance to the event horizon
and the mass of the black hole

Noag + Nag = % 67)
The nature of this entanglement and the survival of corre-
lations, even in the limit of positions arbitrarily close to the
horizon, are discussed in [21,22] for the Rindler case.
When we deal with fermionic fields there are correlations
that come from the statistical fermionic nature of the field
which we cannot get rid of. The hypothesis is that this
entanglement, which is purely statistical, is the second
quantized version of the statistical entanglement disclosed
in [30]. Here we see that the same conclusions drawn in
that case can be perfectly applied to the Schwarzschild
black hole case.

About the dependence of the entanglement degradation
on the frequency of the Boulware mode, Fig. 3 shows that,
for a scalar field, the loss of entanglement between a free
falling observer and an observer outside but very close to
the event horizon (AR) is greater for modes of lower
frequency. This makes sense because, energetically speak-
ing, it is cheaper to excite those modes, and, therefore, they
are more sensitive to the Hawking thermal noise. For a
Dirac field (Fig. 4), we see a similar behavior, namely,
lower frequencies are less protected against entanglement
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degradation due to Hawking effect. However, the surviving
entanglement in the limit in which Rob is infinitely close to
the event horizon is not sensitive to the frequency of the
mode considered; remarkably, the entanglement decays up
to the same finite value for all modes. This is in line with
the idea that the entanglement that survives the event
horizon is merely due to statistical correlations, and the
only information that survives when Rob is exactly at the
horizon is the fact that the field is fermionic as it is
discussed in [20-22].

From Figs. 3 and 4, we can also conclude that all the
relevant entanglement degradation phenomena is produced
in the proximities of the event horizon so that the Rindler
approximation that we are carrying out is valid [Eq. (44)].
We can also see that the degradation is small even in
regions in which the approximation still holds. Therefore,
for longer distances from the horizon the presence of event
horizons is not expected to perturb entangled systems.

In Figs. 5 and 6, we can see the behavior of the nega-
tivity on the RR bipartition for scalar and Dirac fields,
respectively. Here we see that quantum correlations across
the horizon are created as Rob is standing closer to the
event horizon. In other words, as Rob is getting closer to
the event horizon the partial system RR gains quantum
correlations. This result shows that, when Rob is near the
horizon, the field states in both sides of the event horizon
are not completely independent. Instead, they get more and
more correlated. However, this RR entanglement is useless
for quantum information tasks because classical commu-
nication between both sides of an event horizon is forbid-
den, so no quantum teleportation can be performed across
the event horizon. It is well known for the Rindler case that
quantum correlations are created between Rob and
AntiRob [21] when the acceleration increases. Here we
see the direct translation to the Kruskal scenario. The
growth of those correlations encodes information about
the dimension of the Fock space for each field mode [22].

2. Mutual information

To account for all the correlations among the different
bipartitions of the system we will use the mutual informa-
tion, which accounts for correlations (both quantum and
classical) between two different parts of a system. For a
bipartite system AB, it is defined as

Ixg = SA + S — Sass (68)

where Sy, Sg and S,p are, respectively, the Von Neumann
entropies S = Tr(plog, p) for the individual subsystems A
and B and for the joint system AB. To compute the mutual
information for each bipartition we will need the eigenval-
ues of the corresponding density matrices. Again the tech-
nicalities of this analysis can be found elsewhere [15,21].
The results for the CCA bipartitions are shown in Figs. 7
and 8.
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Position of Rob (r9/Rs)

FIG. 7 (color online). Scalar field: Mutual information Alice-
Rob (blue solid line) and Alice-AntiRob (red dashed line). A
conservation law (derived from the behavior of purely classical
correlations) is shown. Mutual information AR decreases as Rob
is closer to the horizon and mutual information AR grows.

We see here that we obtain the black hole version of the
mutual information universal conservation law found in
previous works for the Rindler case [21]. Namely, for any
distance to the horizon or black hole mass it is fulfilled that

IAR + IAR =2. (69)

Although, as we can see comparing Figs. 7 and 8, the
behavior of the mutual information is very similar for
both fermions and bosons, the origin of this conservation
law near the event horizon is completely different.

2

1.8

1.6

1.4

1.2

1

Mutual information

0.8

0.6

0.4

0.2

-r )

0 . N . . L . .
1.05 1.045 1.04 1.035 1.03 1.025 1.02 1.015 1.01 1.005 1
Position of Rob (ry/R,)

FIG. 8 (color online). Dirac field: Mutual information Alice-
Rob (blue solid line) and Alice-AntiRob (red dashed line). A
conservation law (derived from the behavior of purely quantum
correlations) is shown. Mutual information AR decreases as Rob
is closer to the horizon and mutual information AR grows.

064006-12



UNVEILING QUANTUM ENTANGLEMENT DEGRADATION ...

For scalar fields this conservation near the horizon re-
sponds to a conservation of classical correlations only. This
can be deduced from Fig. 3 which shows that quantum
correlations drop very quickly as the distance of Rob to the
horizon decreases, and, consequently, the only correlations
left must be classical. However, the conservation of clas-
sical correlations in the CCA bipartitions has to do with the
infiniteness of the dimension of the Hilbert space, as it is
shown in [22]. If the dimension of a bosonic field is limited
to a finite value, classical correlations also drop as Rob is
closer to the horizon (as quantum correlations do).

On the other hand, a Dirac field has a built-in dimen-
sional limit for the Hilbert space of each mode imposed by
Pauli exclusion principle. Although previous works dem-
onstrated that this limit in the dimension has nothing to do
with the behavior of quantum correlations [20,21], it does
limit the creation of classical correlations. Analogously to
what is discussed in [22], the origin for the conservation
law (69) in the fermionic case is a direct consequence of
the quantum correlations conservation law (67).

The conclusion is that, although (69) is universal for
scalar and Dirac fields in the proximity of an eternal black
hole, its origin is completely different. For scalar fields it
responds to a conservation of classical correlations while
for Dirac fields it is reflecting the quantum correlations
conservation (67).

Mutual information for the RR bipartition does not add
any new result as it inherits the quantum correlations
behavior showed in Figs. 3 and 4.

B. Entanglement degradation dependence on the black
hole mass

In this section, we will analyze the entanglement degra-
dation for an observer with the same characteristics in the
presence of different black holes. To do so we are going to
use the full dimensional quantities wg and A.

We will consider that Rob’s mode frequency is wgr =
1.5 Mhz, and he is standing at a distance Aj = 1 cm and
Ay = 10 cm from the event horizon of black holes with
different masses, while he shares an entangled state (57) or
(58) with a free falling observer Alice.

The quantum correlations that Rob and Alice share are
shown in Figs. 9 and 10 for scalar and Dirac fields, re-
spectively. From these figures we see that for a really close
distance from the event horizon, only small black holes
would produce significant entanglement degradation.
Actually, the degradation decreases very quickly as the
black hole mass is increased.

Furthermore, we can see that the effects on the entan-
glement decrease very quickly as the distance to the event
horizon is increased. This shows that quantum information
tasks can be safely performed in universes that present
event horizons since only in the closest vicinity of the
less massive black holes the Hawking effect impedes the
application of quantum information protocols.
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FIG. 9 (color online). Scalar field: Entanglement Alice-Rob
when Rob stands at a distance of 1 cm and 10 cm from the event
horizon for a fixed frequency wr = 1.5 Mhz as a function of the
black hole mass. Notice that, for these values of A, the ap-
proximation holds perfectly for any mass m > 107> solar
masses.
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FIG. 10 (color online). Dirac field: Entanglement AR (blue
continuous line) and AR (red dashed line) when Rob stands at a
distance of 1 cm and 10 cm from the event horizon for a fixed
frequency wg = 1.5 Mhz as a function of the black hole mass.
Notice that, for these values of A, the approximation holds
perfectly for any mass m > 107> solar masses.

V. LOCALIZATION OF THE STATES

Along this work we have used a plane-wave-like basis to
express the quantum state of the field for the inertial and
accelerated observers. These plane wave modes are com-
pletely delocalized, and, therefore, they are not the most
natural election of modes if we want to think of the
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observers Alice and Rob spatially localized to some
degree.

However, a very similar analysis to the one carried out in
Sec. II and III can be performed using a complete set of
wave packet modes for both the Minkowski and Rindler
solutions of the wave equation. These modes can be spa-
tially localized and provide a clearer physical interpreta-
tion for Alice and Rob, which will eventually have to carry
out measurements on the field. The way to build these wave
packet modes can be found elsewhere [24,31,32].

The elements of this basis are defined as a function of the
plane wave modes (4) as

M _ L O+e
ol — T Ja
where @ and [ label each wave packet.

We can define creation an annihilation operators asso-
ciated to these wave packets ag ; v, a}), m Such that ag v
annihilates the Minkowski vacuum, and ag im0 =
|15.,)m represents a wave packet peaked for a frequency
@, and whose spatial localization can be associated to the
maximum of ull\f ; as a function of £ and 7.

A similar analysis can be done for the Rindler basis

u dve "yM (70)

1 w+e -
ML) I = —F dvef”’l ML,
’ \/E ®
AR (71)
wte o
MIV — dve ivl MLV’

w,l \/E »

o and [’ label each wave packet. We can define creation
and annihilation operators associated to these wave packets
Aol R> al, rr (Where R = L IV) such that a,, y annihilates
the region Rindler region R vacuum, and al,l’,Rl(»R =
|1,)r represents a wave packet peaked for a Rindler
frequency w and whose spatial localization can be associ-
ated to the maximum of ulj}’ ; as a function of x and 7.

We can compute then the Bogoliuvob transformation

between the Minkowski wave packets and the Rindler
wave packets [32]
— 1 v
Ao M = Uy 1901 T 'Bw,l’,tﬁ,laz),l’,w' (72)

Where the Bogoliuvob coefficients are computed in the
same fashion as for the plane wave case

v — (VM
ol ol (”w,z/’ U p)-
(73)

It is shown in [32] that, apart from an irrelevant phase
factor, the Bogoliuvob coefficients are related with (10) as
follows:

I _ 1 M
o log (uw,l/’ g, 1)

aiu,/’,(b,l = &L’Ga(d), Lwl, .
Biu,l’,d),l = BB/GB(G), L w1

It is shown in [32] that G,(®, ] w,I') = &, 6, and
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Gp(@, ], w,I) = 844,6u,, where [, =1,(I) and w, =
wy(w, 1),

The key feature of these transformations is that they
have again a diagonal form. As it can be read from (74),
a Minkowski wave packet |1,, ;) is connected with a pair
of Rindler wave packets in regions I and IV. Moreover, the
functional form of the dependence of these coefficients
with the acceleration is effectively the same. This analysis
made for the Rindler and Minkowskian modes can be
straightforwardly translated to the Boulware and Hartle-
Hawking modes. A completely analogous analysis can be
done for the fermionic case.

Consequently, all the conclusions extracted in this ar-
ticle for delocalized modes are also valid for the localized
modes defined above.

VI. CONCLUSIONS

We have analyzed the entanglement degradation pro-
duced in the vicinity of a Schwarzschild black hole.

With this aim, we have carried out a detailed study of the
Schwarzschild metric in the proximity of the horizon,
showing how we can adapt the tools developed in the study
of the entanglement degradation for uniformly accelerated
observers [4,5,15,21] to the black hole case. In particular,
we have shown that, regarding entanglement degradation
effects, the Rindler limit of infinite acceleration reproduces
a black hole scenario in which Rob is arbitrarily close to
the event horizon. More importantly, we have shown the
fine structure of this limit, making explicit the dependence
of the entanglement degradation phenomena on the dis-
tance to the horizon, the mass of the black hole, and the
Boulware frequency wgr of the entangled mode under
consideration, while keeping control of the approximation
to make sure that the toolbox developed for the Rindler
case can be still rigorously used here.

By means of this analysis we have seen that all the
interesting entanglement degradation phenomena due to
the Hawking effect are produced very close to the event
horizon of the Schwarzschild black hole. The entangle-
ment degradation introduced by the Hawking effect be-
comes quickly negligible as Rob is further away from the
event horizon. In other words, quantum information tasks
done far away from event horizons are not perturbed by the
existence of such horizons.

We have also shown that for a fixed Rob’s mode fre-
quency and at a fixed distance from the event horizon the
entanglement degradation is greater for less massive black
holes. This is consistent with the fact that the Hawking
temperature is higher for less massive black holes.
Furthermore, the Hawking entanglement degradation is a
universal phenomenon in the sense that the degradation
depends only on Rob’s frequency and his distance to the
horizon in units natural to the black hole (namely, the
surface gravity for frequencies and the Schwarzschild ra-
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dius for distances). In these units, there is no extra depen-
dence on the black hole mass, as expected.

We have been able to adapt all the conclusions drawn for
the Rindler case to the Schwarzschild scenario. In particu-
lar, we have seen that bosonic and fermionic entanglement
behave in a very different way in the proximity of a black
hole. As it was known for the Rindler case [21], entangle-
ment on the CCA bipartitions is completely lost for the
scalar field while there is a quantum correlation conserva-
tion law for the Dirac field.

In [20], it was shown that for two different kinds of
fermionic fields (Dirac fields or Grassmann scalars) and
also for different maximally entangled states (occupation
number or spin Bell states) the entanglement in the CCA
bipartitions behaves exactly the same way. This fact was
used to argue that it is statistics and not dimensionality that
determines the behavior of correlations in the CCA bipar-
titions in the case of uniformly accelerated observers. This
study proves that this argument is also valid for
Schwarzschild black holes, not only in the limit in which
Rob is on the event horizon but in the whole region in
which the interesting entanglement degradation phe-
nomena are produced. Therefore, the universal fermionic
entanglement behavior is also manifest in the presence of a
black hole.

For the Schwarzschild case, there also appears the uni-
versal mutual information conservation law found for both
scalar and Dirac fields in the Rindler case [21]. In the
fermionic case, it is due to a conservation of quantum
correlations, while for bosons, it only reflects the conser-
vation of classical correlations that happen in the case of
infinite dimensional Hilbert spaces for each mode.

Moreover, as Rob is getting closer to the event horizon,
quantum correlations between modes on both sides of the
event horizon are created, namely, the correlations between
field modes in region I and IV of the Kruskal space-time
grow up to a value determined by the dimension of the
Hilbert space of each mode, which is finite for the fermi-
onic case and infinite for the scalar field.
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As discussed previously for the Rindler scenario [20-
22], and unveiled here for the Schwarzschild black hole
case, under the hypothesis that the fermionic entanglement
which survives the event horizon is of statistic nature as in
[30], it would not contain any useful information.
Therefore, if an entangled pair is created close to the event
horizon (for instance particle/antiparticle creation) and one
of the subsystems falls into the black hole while the other
resists close to the horizon, no other entanglement except
for the mere statistical would survive the degradation
provoked by the Hawking effect.

The problem of the localization of the Rindler and
Minkowski modes has also been analyzed, showing that
the results obtained here can be extrapolated to the case in
which we consider a complete set of localized wave pack-
ets as a basis of the Fock space for the inertial and accel-
erated observers.

The scenario that we have discussed here is that of a
static eternal black hole in which no dynamics are present.
The analysis of entanglement degradation due to the dy-
namical creation of an event horizon in a gravitational
collapse scenario is under current development and will
be reported elsewhere.
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