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We present the results of three-dimensional general relativistic hydrodynamic simulations of adiabatic

and spherically symmetric accretion in Kerr space-time. We consider compact objects with spin parameter

ja�j � 1 (black holes) and with ja�j> 1 (superspinars). Our full three-dimensional simulations confirm

the formation of equatorial outflows for high values of ja�j, as found in our previous work in 2.5

dimensions. We show that the critical value of ja�j determining the onset of powerful outflows depends

mainly on the radius of the compact object. The phenomenon of equatorial outflows can hardly occur

around a black hole and may thus be used to test the bound ja�j � 1 for astrophysical black hole

candidates.
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I. INTRODUCTION

It is widely believed that the final product of gravita-
tional collapse is a Kerr black hole: an object with an event
horizon that is completely characterized by two parame-
ters, the mass M and the spin J. The condition for the
existence of the event horizon is ja�j � 1, where a� ¼
J=M2 is the dimensionless spin parameter. The black
hole paradigm relies on three ingredients. The first is
that, in general relativity, under apparently reasonable
assumptions, the collapsing matter forms space-time sin-
gularities [1]. The second one is the cosmic censorship
conjecture [2], according to which all the space-time sin-
gularities must be hidden behind an event horizon. The last
ingredient is the fact that in 4-dimensional general relativ-
ity the Kerr space-time is the only asymptotically-flat and
stationary solution with a regular event horizon [3,4].

The cosmic censorship conjecture is a simple require-
ment to get rid of pathological space-times with unphysical
properties. However, it seems to be motivated by our poor
knowledge of the theory at high energy rather than by true
physical reasons. Space-times with naked singularities
may indeed arise from the break down of our theories at
high energy. Instead of naked singularity, we might thus
talk about effective naked singularity [5,6]: a space-time
region outside an event horizon in which classical general
relativity cannot be used and the future predictability is lost
without the theory of quantum gravity. It is also remarkable
that we know several counterexamples violating the cos-
mic censorship conjecture (see e.g. Refs. [7–12]).

In absence of an event horizon, there is no uniqueness
theorem and, in general, the final product of the collapse is
not as simple as a Kerr black hole. Nevertheless, as a first
approximation, the space-time around the compact object
can still be described byM and J if higher order multipole

moments are subdominant. The simplest test to rule out the
Kerr black hole as the final product of the gravitational
collapse is thus to find a massive and compact object with
ja�j> 1 (superspinar). The idea that the end state of the
collapse could violate the bound ja�j � 1 was suggested in
[13]. For the possibility of over-spinning an existent black
hole, see e.g. Ref. [14]. The properties of the electromag-
netic radiation emitted around Kerr superspinars were
studied in [15–17] and compared with the case of Kerr
black hole, in order to examine how to test the bound
ja�j � 1 with future experiments.
The accretion process onto Kerr superspinars in 2.5

dimensions (2 spatial dimensions, vectors with 3 spatial
components) has been studied in [18–20]. Close to the
object, the gravitational force can be repulsive. In
Ref. [20], we discussed the Bondi accretion and found
the formation of equatorial outflows. These outflows are
very different from the one expected in the accretion
process onto black holes: they are produced by the repul-
sive gravitational force at short distances, rather than by
magnetic fields, and the gas is ejected on and around the
equatorial plane, while in the black hole case the outflows
are expected parallel to the spin. Current observations
cannot directly probe if outflows and jets observed in black
hole candidates are perpendicular or parallel to the spin of
the massive objects, most of jets from radio galaxies appear
to be of dipolar shape, being very different from planar
outflows.
In this paper, we extend the work of Ref. [20]. We study

the accretion process in 3 spatial dimensions. The main
aim is to understand the structure of these outflows on the
equatorial plane, which cannot be investigated in 2.5 di-
mensions. Indeed, one may naively expect roughly the
following three basic configurations: (i) a perfect axial
symmetry, in which the gas is ejected isotropically in all
the directions, (ii) the formation of a certain number of
collimated and stable outflows on the equatorial plane, or
(iii) a strongly chaotic phenomenon, in which the accreting
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material is ejected randomly along several directions and
there is no formation of stable outflows. Our simulations
suggest the third case.

The paper is organized as follows. In Sec. II, we discuss
the model for superspinars. In Sec. III, we present the
results of our 3-dimensional general relativistic hydrody-
namic (3D GRHD) simulations. In particular, we show the
cases of Schwarzschild black hole (a� ¼ 0), extreme Kerr
black hole (a� ¼ 1), and Kerr superspinar with a� ¼ 2 and
3. In Sec. IV, we discuss the results. In Sec. V, there are
summary and conclusions. Throughout the paper we use
Boyer-Lindquist coordinates to describe the Kerr back-
ground and natural units GN ¼ c ¼ kB ¼ 1.

II. SUPER-SPINAR MODEL

The Kerr space-time with ja�j> 1 has a naked singu-
larity at r ¼ 0. For r > 0, the space-time is everywhere
regular. The singularity at r ¼ 0 is pointlike, but has the
topology of a ring: it can connect our Universe, where r >
0, with another Universe, at r < 0. The problem is that an
observer at r > 0 can go to the other Universe and, in
absence of an event horizon, come back to our Universe
at an earlier time; that is, the naked singularity can be used
as a time machine [21]. However, one may expect that
general relativity breaks down before reaching the singu-
larity and that eventually causality cannot be violated. In
absence of the complete theory of quantum gravity, we
have to take a phenomenological approach to study the
astrophysical properties of superspinars. Here we consider
Kerr superspinars and we assume they can be modeled as a
massive object with a radius r � 2:5M, whose surface
absorbs all the accreting matter hitting it (the possibility
of a surface with different properties is briefly discussed in
Sec. IV). Our model is motivated by the following simple
considerations.

(1) Roughly speaking, pathological regions with closed
timelike curves can be removed by exciting the
space-time. This occurs, for example, if the space-
time goes to a new phase and a domain wall is
formed [22–25]. Across the domain wall, the metric
is nondifferentiable and the expected region with
closed timelike curves arises from the naive con-
tinuation of the metric ignoring the domain wall.
The latter can be made of very exotic stuff, e.g.
supertubes [22,24,25] or fundamental strings [23].

(2) A crucial point is the radius of the new object. Here
we take r � 2:5M in order to prevent the instability
of the superspinar [26] and have all the thermody-
namical variables under control. For smaller/larger
radii, one can properly rescale (decrease/increase)
the spin parameter to obtain a very similar accretion
process. For astrophysical bodies, M is a length
much larger than the Planck scale LPl � 10�33 cm,
where quantum gravity effects are often expected.
However, the gravitational radius rg �M, rather

than LPl, may be the critical quantity. This occurs,
for example, in the fuzzball picture [27]: here black
holes have no horizon and the central singularity is
replaced by a long string spreading over the volume
classically occupied by the black hole. Even if so far
only a few very special black holes have been
studied, if correct, the fuzzball picture should be
applied (somehow) even to the final product of the
collapse of a star. The latter may thus resemble more
a star made of very exotic matter than a black hole.
However, unlike recent proposals such as boson
stars, general relativity may not hold inside the
object.

(3) In this work, we use the Kerr metric, which is
described only by two parameters, M and J. In
absence of an event horizon, one should instead
expect a more complex object. Even if that is true,
M and J are more likely the dominant terms in the
multipole moment expansion and determine the
main features of the accretion process.

III. 3D SIMULATIONS

In this section, we present the results of our 3D simula-
tions in Kerr space-time with arbitrary value of the spin
parameter a�; for previous works on the accretion process
in full general relativity, see e.g. Refs. [28–31]. The code is
a revised version of the one used in [18–20]. Now the
(default) computational domain is 2:5M< r < 40M, 0<
�< �, and 0<�< 2�. Unlike in [18–20], the thermo-
dynamical variables are everywhere under control and we
do not need to impose a maximum temperature. The ac-
cretion process is adiabatic. We assume an ideal nonrela-
tivistic gas with � ¼ 5=3, which is injected into the
computational domain from the outer boundary at a con-
stant rate and isotropically. We also examine several cases
with � ¼ 4=3 for relativistic particles. The gravitational
field of the accreting matter is neglected (test fluid approxi-
mation). The initial conditions are the same of Refs. [18–
20]. In the next subsections, we present the results of the
simulations for a few different values of the spin parameter.
The simulations run from t ¼ 0 to t ¼ 500M (for a� ¼ 0,
1, and 2) or t ¼ 300M (for a� ¼ 3). We did not find always
a quasi-steady-state configuration within this period.
However, it seems to be enough to catch the main features
of the accretion process.

A. Schwarzschild black hole (a� ¼ 0)

This is the simplest case. The accretion process is almost
perfectly spherically symmetric, see Fig. 1. At the inner
boundary rin ¼ 2:5M and at t ¼ 500M, our code predicts

a temperature T � 125 MeV and a velocity v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijv

ivj
q

� 0:8, where �ij is the 3-metric.

For a Schwarzschild black hole, the general relativistic
Bondi solutions are well known [32] (see also Appendix G
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of Ref. [33]). The master equations are

4�r2�u ¼ const; (1)

�
1� 2M

r
þ u2

�
h2 ¼ const; (2)

together with an equation of state. Here � is the rest-mass
energy density, h ¼ 1þ �þ p=� the specific enthalpy, �
the specific internal energy density, p the pressure, and
u ¼ �ur with ur the radial component of the 4-velocity of
the gas. We can thus compare the results of our numerical
simulations with the Bondi solutions. Note, however, that

the two results do not have to match perfectly everywhere,
because they are set up in a different way: in our simula-
tions, we assume an initial gas distribution, we evolve the
system, and we find a quasi–steady-state flow (for a� ¼ 0,
this is achieved at t � 300M); in the Bondi case, one
assumes from the beginning that the flow is in a quasi–-
steady-state configuration. The comparison is shown in
Fig. 2. The initial configuration assumed in this work is a
static cloud of gas around the massive object. We then
inject gas from the outer boundary at a constant rate.
Interestingly, the quasi-steady-state solution we found is
close to the supersonic Bondi solution near the black hole,
and approaches the subsonic Bondi solution near the outer
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FIG. 1 (color online). We plot the density � (in arbitrary units), the temperature T (in GeV), and the velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijv

ivj
q

of the
accreting gas around a Schwarzschild black hole (a� ¼ 0) at t ¼ 500M. The bottom panel shows the direction of the gas velocity. The
xy-plane is the equatorial plane, while the rz-plane is a plane containing the axis of symmetry z. The unit of length along the axes isM.
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boundary (Fig. 2, top panels). A numerical solution quite
similar to the Bondi ones can instead be reached by assum-
ing that the computational domain is initially empty, and
by injecting gas from the outer boundary at a proper
density, pressure, and velocity (Fig. 2, bottom panels).
The close agreement between the simulation results and
the analytic solution is rather encouraging.

B. Extreme Kerr black hole (a� ¼ 1)

As we can see from Fig. 3, the accretion process onto an
extreme Kerr black hole is still very similar to the
Schwarzschild case. Now the density, the temperature,
and the velocity of the gas are a little higher near the
equatorial plane than near the axis of symmetry; however,
the difference can be hardly appreciated. At rin, the tem-
perature is in the range 130–140 MeV and the velocity is
v � 0:7. The latter is lower than the previous case, but we

have also to consider that now the horizon is at rH ¼ M,
while, for a� ¼ 0, we had rH ¼ 2M. Let us notice that the
computational domain does not include the ergoregion and
that the velocity of the gas is essentially radial even near
the inner boundary. The volume between rin and the hori-
zon rH is, however, very small, and thus would not intro-
duce any new interesting observational feature; indeed,
most of the works in the literature use a pseudo–
Newtonian potential, which neglects the spin of the mas-
sive object, and excludes the ergoregion from the computa-
tional domain. It is important to notice that in the case of
black hole, the thermodynamical variables at any radial
coordinate r are independent of the choice of rin. To be
more precise, that is generically true when the flow around
the massive object is supersonic; that is, rin < rs, where rs
is the radius of the sonic point. Here, at t ¼ 500M, we find
rs � 6M.
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FIG. 2 (color online). Comparison of the density profile and of the radial velocity profile (as seen by a local observer) for a� ¼ 0,
between our numerical simulations at t ¼ 500M and the semianalytical solutions of the relativistic Bondi equations. Assuming the
initial gas distribution adopted in the simulations of this work, we find that the numerical solution is close to the supersonic solution at
small radii and to the subsonic solution at larger radii (top panels). If we take the computational domain initially empty and we inject
gas from the outer boundary, we can find a numerical solution close to the supersonic solution everywhere (bottom panels).
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C. Kerr superspinar with a� ¼ 2

The accretion process for a� ¼ 2 is shown in Fig. 4. For
rin ¼ 2:5M, we exclude from the computational domain
the region with repulsive gravitational force.1 Despite that,
the force is weaker than around a black hole and the
accretion process is inefficient. The result is that the ve-
locity of the accreting gas is lower, while the density and
the temperature are higher. At the inner boundary rin, we
find that the velocity v is about 0.3 and the temperature is
in the range 160–200 MeV. Now small variations of rin can

change the accretion process, because the flow is subsonic
and the thermodynamical variables at larger radii can
depend on the ones at smaller radii. As shown in the bottom
panel of Fig. 4, near the center the effect of the spin is
relevant and the gas is forced to corotate with the super-
spinar. In particular, we observe stable inflows forming a
spiral structure, see Fig. 5.

D. Kerr superspinar with a� ¼ 3

For a� ¼ 3, the accretion process is significantly differ-
ent from the cases discussed in the previous subsections.
The difference can be clearly seen in Fig. 6. The gas can
reach the surface of the superspinar from the poles, while
the region around the equatorial plane is characterized by
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FIG. 3 (color online). As in Fig. 1, but for an extreme Kerr black hole (a� ¼ 1).

1As discussed in [18,19], the region around the superspinar
with repulsive gravitational force is roughly given by the ex-
pression r <Mja�jj cos�j.
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FIG. 4 (color online). As in Fig. 1, in the case of a Kerr superspinar with a� ¼ 2.
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FIG. 5 (color online). For a� ¼ 2, we find stable inflows form-
ing a spiral structure. Such a feature is essentially absent when
we plot the density or the temperature of the gas.
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low-density, high-temperature outflows. This confirms the
results found in [20] and shows the behavior of the gas
along the third spatial coordinate. We do not find the
formation of collimated and stable outflows, but a quite
chaotic process of ejection of gas. The maximum tempera-
ture of the gas is in the range 400–700MeV, but most of the
gas is much cooler. The velocity of the gas in the outflows
is found to be close to 1.

IV. DISCUSSION

On the basis of our simulations, we can see that the
accretion process is more efficient onto objects with small
spin parameter. As ja�j increases, it gets more and more
difficult to make all the accreting gas be swallowed by the
compact object. Eventually the repulsive gravitational

force becomes strong enough to produce powerful equato-
rial outflows. In these 3D simulations we do not find a
perfect axial symmetry, but find that the formation of out-
flows is a quite chaotic phenomenon. These are the main
features of accretion in Kerr spacetime.
The transition between the three qualitatively different

states (black holelike state, intermediate state, super-
spinarlike state) is rapid, but not instantaneous. To see
this, in Fig. 7 we show the temperature and the velocity
profile on the equatorial plane and along the axis of sym-
metry for rin ¼ 2:5M and at t ¼ 500M. The cases a� ¼ 0,
1, and 1.5 are quite similar. When a� ¼ 2, the attractive
gravitational force around the massive object is not strong
and the accretion process is less efficient: the velocity of
the gas decreases significantly, while the temperature in-
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FIG. 6 (color online). As in Fig. 1, in the case of a Kerr superspinar with a� ¼ 3 and at t ¼ 300M.
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creases. The flow around the massive object becomes
subsonic. For a� � 2:5, the region with repulsive gravita-
tional force appears in the computational domain. We then
see weak outflows on the equatorial plane. The outflow is
so weak that it cannot go far from the massive object, but is
instead pushed back by the accreting gas. As the spin
parameter increases, the energy of the outflows increases
as well. For a� ¼ 2:9, the outflows can reach the outer
boundary of the computational domain at rout ¼ 40M. We
have checked that, for a smaller/larger rin, qualitatively the
same behavior is found with a lower/higher value of the
spin parameter. For example, setting rin ¼ 3:0M, weak
equatorial outflows start forming for a� � 3:5 and they
becomes powerful when a� ¼ 3:8. The two key elements
of the accretion process are thus the spin parameter and the
radius of the massive object. The latter is replaced by the
radius of the inner boundary in our simulations. A minor
role is played by the initial and boundary conditions, like

the temperature and the velocity of the gas, i.e. by non-
gravitational physics.
The mass of the accreting gas around the massive object,

Mgas, or correspondingly the mean density �gas, could be

used as order parameter of the system. In the black hole
state of accretion, these two quantities slightly increase as
a� increases. In the intermediate state, the mass and the
density around the massive object reach a maximum,
while, as soon as outflows can be produced, they drop to
lower values. In Fig. 8, we show, as a function of the spin
parameter a�, the mean density of the accreting gas in the
region 2:5M< r< 5:0M (left panel) and 2:5M< r <
10:0M (right panel) and at the time t ¼ 500M. This fact
can, however, unlikely be used in observations, because the
mass and the density of the gas around the compact object
are mainly determined by the accretion rate at larger
distances. Here we simply note that, for the same initial
and boundary conditions, the spin of the massive object
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FIG. 7 (color online). Temperature and radial velocity (as seen by a local observer) as a function of the radial coordinate on the
equatorial plane (xy-plane) and along the z-axis of the accreting gas in Kerr space-time at t ¼ 500M, for different values of a�.
rin ¼ 2:5M, temperature in GeV, radial coordinate in units M ¼ 1. For a� ¼ 0, 1, and 1.5, we find a black hole-like accretion; for
a� ¼ 2, an intermediate accretion; for a� ¼ 2:9, the accretion is of superspinar type. For a� ¼ 2:5 and 2.8, the accretion is essentially
of the second kind, but there is some very weak ejection of matter near the equatorial plane.
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determines the amount of gas around the center as shown in
Fig. 8.

In our superspinar model, the surface of the massive
object absorbs all the accreting matter. Namely, we have
assumed a transmission coefficient T ¼ 1 and, conse-
quently, a reflection coefficient R ¼ 1� T ¼ 0. In this
case, the surface of the superspinar would be similar to
an event horizon, in the sense that it can swallow all the
matter with no difficulties. The properties of the surface of
the superspinar should depend on how the ordinary matter
of the gas, made of protons and electrons, interacts with the
exotic structure of the superspinar. The opposite case of a
perfectly absorbing surface is a perfectly reflecting surface
with T ¼ 0 and R ¼ 1 (rigid wall). To see the behavior of
the accretion process with radically different properties of
the surface of the superspinar, we run the code imposing
reflective boundary conditions at rin. For black holes and

superspinars with low spin parameter, we found a quite
obvious result: a dense cloud is formed around the massive
object, which quickly explodes. For superspinars with
moderate and high spin parameter, the system is much
more stable, thanks to the nonspherical symmetry of the
gravitational field. Now there is not the formation of the
unstable cloud, since the gas around the massive object is
efficiently expelled in the outflows: the gas reaches the
surface of the superspinar from the poles, there is no
accretion at all, because of the perfectly reflecting surface,
and is ejected around the equatorial plane. We argue that
the final result is the formation of a convective zone, where
the gas continuously approaches and leaves the superspi-
nar. In a more general case, one could expect that either T
and R are nonzero, smaller than 1, and depend on the
energy of the incident particle, i.e. T ¼ Tð!Þ and R ¼
Rð!Þ. In any case, outflows on the equatorial plane for
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FIG. 8 (color online). Mean density of the accreting gas (in arbitrary units) around the massive object at t ¼ 500M as a function of
the spin parameter a�. Left panel: space region rin < r < 5M. Right panel: space region rin < r < 10M.
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FIG. 9 (color online). Temperature and radial velocity (as seen by a local observer) as a function of the radial coordinate on the
equatorial plane (xy-plane) of the accreting gas in Kerr space-time at t ¼ 500M, for different values of a�, in the case � ¼ 4=3.
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high spin parameters seem to be a quite robust prediction
of the accretion process onto superspinars, regardless of
the details of their surface. Indeed the assumption of a
perfectly absorbing surface is perhaps the most conserva-
tive possibility; that is, the case in which it is more difficult
to produce equatorial outflows.

Lastly, we have briefly investigated the behavior of the
accretion process for a gas with a different equation of
state. So far, in our study we have always assumed that the
gas consists nonrelativistic particles; that is, � ¼ 5=3. On
the other hand, around an ordinary black hole, one should
expect nonrelativistic ions and relativistic electrons. This
fact could be easily implemented in our code by taking
� ¼ 13=9. Since here we want only to understand how our
results are affected by the gas equation of state, we con-
sider the more radical case of a gas whose pressure is
dominated by relativistic particles, i.e., � ¼ 4=3. The ac-
cretion process turns out to be qualitatively the same.
Quantitatively, there are some differences, but that should
not be a surprise, because even the standard Bondi accre-
tion onto a Schwarzschild black hole depends on the matter
equation of state. The results of our simulations for � ¼
4=3 are summarized in Fig. 9, where we show the tem-
perature and radial velocity profile on the equatorial plane
for a few different values of the spin parameter a�. Figure 9
should be compared with Fig. 7. For rin ¼ 2:5M, the
accretion process is essentially the same for any value
ja�j � 2:7. For a� ¼ 2:8, there are equatorial outflows,
but the gas cannot go far from the massive objects. For
a� ¼ 2:9, the outflows are apparently less energetic than
the ones when � ¼ 5=3.

V. CONCLUSIONS

A Kerr black hole must satisfy the relation ja�j � 1,
where a� ¼ J2=M is the dimensionless spin parameter. So,
the possible discovery of a massive and compact object
with ja�j> 1 would imply that the final product of the
gravitational collapse is not a Kerr black hole, or at least
that the Kerr solution is not the unique option. To test the
bound ja�j � 1 in astrophysical black hole candidates with
electromagnetic radiation, we have to study the accretion
process onto compact object either with ja�j � 1 (black
holes) and with ja�j> 1 (superspinars).

In this paper, we have presented the results of our 3-
dimensional general relativistic hydrodynamic simulations
of adiabatic and spherically symmetric accretion in Kerr

space-time. Kerr superspinars have been modeled as a
compact object with radius r � 2:5M and a surface made
of exotic stuff capable of absorbing the matter hitting it:
from the one hand, this choice is motivated to prevent the
instability of the massive object and, from the other hand, it
is inspired by a couple of scenarios proposed in the
literature.
Our simulations in 3 dimensions suggest three main

regimes of accretion: black hole-like state, intermediate
state, and super–spinarlike state. The key elements deter-
mining the kind of accretion are the spin parameter a� and
the radius of the massive object—here the radius of the
inner boundary rin. However, for a smaller/larger radius,
we can rescale (decrease/increase) the spin parameter and
obtain a similar accretion process. For black holes and
superspinars with small ja�j, we find the usual picture of
accretion onto black holes, with the thermodynamical
variables quite independent of the actual value of a�
(black holelike state). For superspinars with moderate
value of ja�j, the flow around the massive object becomes
subsonic and the accretion process is more difficult, mak-
ing the density and the temperature of the gas increase
(intermediate state). For high values of ja�j, the accretion
process is quite different: the superspinar accrete from the
poles, while the equatorial plane is dominated by powerful
outflows (super–spinarlike state).
These results confirm the findings in our previous works

in 2.5 dimensions [20]. Now we can also see the details of
the structure of the outflows on the equatorial plane.
Although our simulations do not run for enough time to
reach a quasi-steady-state equilibrium configuration in the
case of high spin parameter, we argue that the accretion
process onto such superspinars is characterized by the
random ejections of gas in essentially all the directions,
without the formation of stable structures.
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