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The thermodynamics of Schwarzschild black holes within spherical isothermal cavities in anti–de Sitter

(AdS) space is studied for arbitrary dimensions in the semiclassical approximation of the Euclidean path

integral of quantum gravity. For such boundary conditions, known classical solutions are a hot AdS and

two or no Schwarzschild-AdS depending on whether or not the wall-temperature of the cavity is above or

below a minimum value. Earlier work in four dimensions with such boundary conditions showed that the

larger and smaller holes have positive and negative specific heats and hence are locally thermodynami-

cally stable and unstable, respectively. The standard area-law of entropy was known to hold too. We derive

the area-law for arbitrary dimensions and show that qualitative behavior of local stability remains the

same. Then using a careful analysis of the associated Dirichlet boundary-value problem we address global

issues. We find that for wall-temperatures above a critical value a phase transition takes hot AdS to the

larger Schwarzschild-AdS. The larger hole thus can be globally thermodynamically stable. We find that

the smaller the cavity the higher the critical temperature for phase transition is and it always remains

above the minimum temperature needed for the classical existence of the holes in that cavity. In the

infinite limit of cavity this picture reduces to that considered by Hawking and Page. All these hold for

arbitrary dimensions, however the case of five dimensions turns out to be special in that the Dirichlet

problem can be solved exactly giving exact analytic expressions for the black-hole masses as functions of

boundary variables (cavity-radius and temperature). This makes it possible to compute the on-shell

Euclidean action as a function of boundary variables too from which other quantities of interest can be

evaluated. In particular, we obtain the minimum temperature (for the holes to exist classically) and the

critical temperature (for phase transition) as functions of the cavity-radius in five dimensions.
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I. INTRODUCTION

Following the proposal of the AdS/CFT correspondence
[1] which connects string theories on asymptotically anti–
de Sitter (AdS) spaces to certain conformal field theories
on their boundaries, black holes in AdS spaces have re-
ceived renewed attention. In particular, the Hawking-Page
phase transition from hot AdS space to Schwarzschild-AdS
space [2] has been shown byWitten [3,4] to correspond to a
phase transition from the confining phase to the deconfin-
ing phase in the large N limit ofN ¼ 4 Yang-Mills on the
boundary of the AdS space. He argued that the strength of
the conjecture is demonstrated by the existence of a holo-
graphic duality even at nonzero temperature where super-
symmetry and conformal invariance are broken.

In the Euclidean picture the boundary at which the
conformal field theory is defined is an S1 � Sn�1 which
is a codimension-one hypersurface of the Euclideanized
AdS and Schwarzschild-AdS at radial infinity. It is the
‘‘conformal infinity’’ of the two spaces in which the radii
of S1 and Sn�1 are infinite but their ratio is a finite number.

However, one can consider a more general, and nontrivial,
boundary by taking the S1 � Sn�1 at a finite radial distance
so that the Sn�1 is of finite volume (and assuming, initially,
that the S1-fiber has finite radius as well). Infinite volume
for either or both of S1 and Sn�1 can occur as limits. Such a
boundary in the Euclidean path-integral approach to quan-
tum gravity represents the canonical thermodynamic en-
semble with the interpretation that an Sn�1 cavity of radius
� is immersed in an isothermal heat bath of temperature
T ¼ 1

2�� , where (�, �) are the two radii. To understand the

quantum gravitational effects consistent with such a
boundary condition, in the Euclidean approach to quantum
gravity, one computes the partition function by summing
over all the (nþ 1)-dimensional regular Riemannian ge-
ometries which admit the given S1 � Sn�1 geometry as
their only boundary, with each geometry contributing to
the integral by the exponential of the negative value of its
Euclidean action. Such geometries are variedly called bulk
or infilling geometries of the (codimension-one) boundary
geometry. Since regular classical geometries (whose met-
rics solve the field equations) extremize the action, one first
makes the semiclassical approximation to the path-integral
by estimating (tree-level) contributions coming from regu-
lar Riemannian solutions of the field equations. In general,
depending on the geometry of the given n-boundary there
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may be no, one, or many classical solutions falling within
the same or different topological classes. One can then
perturb these classical solutions to understand if they are
locally stable or not. When multiple solutions exist, espe-
cially when they belong to different topological classes,
one asks how different solutions dominate the path-integral
as one changes the boundary conditions within the permis-
sible range.

A primary objective in such studies therefore is to under-
stand the relationship between the geometries of the pos-
sible regular classical bulk solutions and the geometry of
the given boundary. Such study falls under the purview of
the classical Dirichlet boundary-value problem in
Riemannian geometry (see below). Once the relationship
between various classical bulk geometries and the bound-
ary geometry are understood, either qualitatively or quan-
titatively, one can explore their role in quantum gravity
using the semiclassical approximation. In particular, if the
geometries of the bulk are known as functions of the
boundary variables, one can find the on-shell classical
action and other quantities of interest purely in terms of
boundary data. In the example above, in which the bound-
ary is at infinity (and wherein the only meaningful bound-
ary data is the ratio of the radii of S1 and Sn�1, as we will
see later) this can be done exactly for arbitrary dimensions.
However, in the case of finite boundaries, where the two
radii vary freely, obtaining classical bulk geometries in
terms of boundary variables is rather nontrivial for �< 0
and it requires careful analysis to extract semiclassical
information as functions of the boundary variables as we
will see in this paper. From the holographic point of view,
understanding such finite nonconformal boundaries and
their relationships with the bulk geometries falls within
the study of the stronger form of holography. Indeed a large
literature exists where this has been considered in the
context of the Randall-Saundrum type scenarios [5] and
various related topics (see [6] for a review and references
therein).

The canonical ensemble with spherical isothermal cav-
ities for � ¼ 0 was first studied by York [7] for four
spacetime dimensions. It was found that apart from hot
flat space, classically there are two or no black-hole solu-
tions depending on whether the temperature of the heat
bath is above or below a certain value.1 This is true for any
finite radius of the cavity. Of the two solutions, the larger
one has a positive specific heat and the smaller one a
negative specific heat. Hence, only the larger solution is
locally thermodynamically stable. It is possible to find the

masses of the two black holes as functions of the cavity-
radius and wall-temperature (i.e., in terms of� and� in the
Euclidean picture). For sufficiently high temperature the
larger mass solution has a more negative action than hot
flat space and hence a stable black hole can nucleate from
hot flat space in a thermodynamically consistent manner
within a cavity of arbitrary radius. In the infinite-volume
limit of the cavity only the smaller-mass solution with the
negative specific heat survives. Therefore, for � ¼ 0, only
in a finite cavity is it possible to have a thermodynamically
stable black-hole solution for such boundary conditions.
Recently these results have been generalized and discussed
for higher dimensions in [8].
However, in the case of a negative cosmological con-

stant, it was known since the work of Hawking and Page
[2] that stable Schwarzschild-AdSnþ1 black holes are pos-
sible and one is not required to introduce an isothermal
finite cavity, at least for obtaining a stable solution. This
perhaps explains the comparative lack of attention in the
literature to the finite-cavity case with �< 0 except the
studies made in [9–11]. In [9] it is shown that for such a
boundary condition, there are two/no Schwarzschild-AdS4
solutions and always an AdS4 solution and—assuming that
the standard area-law of black-hole entropy holds for such
boundary conditions—the larger and the smaller black hole
have positive and negative specific heats, respectively, as in
the � ¼ 0 case. Concerning themselves mostly with the
local stability, the authors of [10] derived the standard
area-law of entropy of Reissner-Nordström-AdS black
holes in the grand canonical ensemble (of which
Schwarzschild-AdS4 in isothermal cavities is a special
case), thus completing the picture in four dimensions.
For arbitrary dimensions the only mention of a finite cavity
appears in [11] which however ultimately considers the
infinite-volume limit to search for the negative modes
predicted in [2] for the unstable solution.2 None of them
[9–11] studied the Dirichlet problem in detail to address
the global issues like phase transition for such boundary
conditions as was done by Hawking and Page in the
infinite-cavity limit and for � ¼ 0 in finite cavity by
York. The primary objective of this paper is to address
global issues in detail for such boundary conditions as well
as provide a derivation of the area-law of entropy in
arbitrary dimensions from which local stability results
follow. Comparing with the flat-space case in four and
higher dimensions [7,8], we will see the difficulty comes
from the nonvanishing cosmological constant and one
cannot reduce the problem to one with a single variable
except in the limit of infinite cavity or vanishing cosmo-
logical constant.
The goal of this paper is therefore twofold. On the

classical side of the picture we will discuss solutions of
bulk geometries in terms of boundary data, i.e., the two

1Lest the terminology be a source of confusion due to their
connotations, in (nþ 1) dimensions the ‘‘cavity’’ refers to the
Sn�1 base and is not the same as what we called the ‘‘boundary’’
in the Euclideanized picture which is an S1 � Sn�1. Also note
that the word ‘‘classical’’ refers to the Riemannian solutions
(which embody quantum gravitational effects of the correspond-
ing Lorentzian solutions). 2For � ¼ 0 finite-cavity negative modes were studied in [12].
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radii (�, �) of S1 � Sn�1. We will see how solutions
appear and disappear as � and � are varied. We will then
combine this to understand local and global stability and
show how a phase transition occurs within the cavity for
sufficiently high value of its wall-temperature irrespective
of its radius. We will also show that in the infinite-cavity
limit how this phase transition reproduces the Hawking-
Page phase transition, in which case the phase transition is
studied as functions of the Hawking temperature (or equiv-
alently the horizon-radius) of the black-holes instead of the
two boundary variables (which is the only way to do this
since the local temperature of any finite Schwarzschild-
AdS redshifts to zero at infinity, unlike in the flat-space
case, see later). We will be as rigorous as possible in our
treatment and obtain explicit formulas and relate them to
the well-known � ¼ 0 results. Interestingly, we find that a
precise quantitative treatment is possible only in five di-
mensions. This is the most interesting because of its con-
nection with the 4-D world within a holographic context.
The results obtained herein can thus be extended in various
directions and set the ground for many future
investigations.

This paper is arranged in the following way. In Sec. II we
discuss the Euclidean AdSnþ1 and Schwarzschild-AdSnþ1

metrics and set our conventions. In Sec. III we discuss the
Dirichlet boundary-value problem and thermodynamics of
the black-hole solutions after briefly discussing the � ¼ 0
case. Phase transitions are studied in Sec. IV. In Sec. V we
specialize to five dimensions and show how the above
questions can be addressed exactly.

II. EUCLIDEAN AdSnþ1 AND
SCHWARZSCHILD-AdSnþ1

The Euclidean AdSnþ1 and Schwarzschild-AdSnþ1 met-
rics have the following forms:

ds2 ¼ VðrÞdt2 þ VðrÞ�1dr2 þ r2d�2
n�1; (2.1)

with

VðrÞ ¼
�
1þ r2

l2

�
; (2.2)

and

VðrÞ ¼
�
1� �

rn�2
þ r2

l2

�
; (2.3)

respectively. Both metrics satisfy the Einstein equation

with a cosmological constant � ¼ � nðn�1Þ
2l2

. The quantity

� in Eq. (2.3) gives the mass m of the black hole [13]

� ¼ 16�Gm

ðn� 1ÞVolðSn�1Þ : (2.4)

For notational convenience we will set l ¼ 1 without any
loss of generality and denote r as � and � as M in this
scale. When there is no chance of confusion wewill refer to

M as the ‘‘mass’’ of the black hole. The horizon of the
Schwarzschild-AdSnþ1 metric (2.1) is the positive root of
the equation

Vð�Þ �
�
1� M

�n�2
þ �2

�
¼ 0 (2.5)

and will be denoted by �b. The horizon-radius �b and the
mass M are in 1-1 correspondence:

M ¼ �n
b þ �n�2

b : (2.6)

The singularity at the horizon can be removed if we give t a
periodicity of

�t ¼ 2�

�
¼ 4��b

n�2
b þ n� 2

(2.7)

in which

� � 1

2
V 0ð�bÞ ¼ ðn� 2Þ

2

M

�n�1
b

þ �b ¼ 1

2

n�2
b þ n� 2

�b

(2.8)

is the surface gravity. The metric is then well-defined for
�b � � <1 which includes the horizon which is now the
(n� 1)-dimensional fixed point set of the Killing vector
@=@t and is a regular ‘‘bolt’’ of the metric (which explains
the use of subscript in �b) [14]. The periodicity �t gives
the inverse of Hawking temperature of the hole

TH ¼ 1

4�

n�2
b þ n� 2

�b

: (2.9)

Note that theAdSnþ1 metric is regular for 0 � r � 1. One
therefore is not required to ascribe a certain periodicity to t
in order to achieve regularity. In other words, one can
choose the periodicity of t arbitrarily as in the case of flat
space.

III. BLACK HOLES IN AN ISOTHERMAL CAVITY
AND THE DIRICHLET PROBLEM

As mentioned earlier, the first problem that we address
in this paper formally falls under the scope of the classical
Dirichlet problem in which one seeks one or more regular
(nþ 1)-dimensional Riemannian solutions (M, g��) of

the Einstein equations for a given n-boundary (�, hij) such

that @M ¼ � and g��j@M ¼ hij possibly with the condi-

tion of regularity. In most physically interesting cases, the
Dirichlet problem simplifies as only cohomogeneity one
metrics whose principal orbits share the topology and
symmetry of the boundary are considered. In the presence
of only a possible cosmological constant term, this reduces
the Einstein equation to a set of ordinary differential equa-
tions to be solved subject to the boundary condition and
regularity. However, in cases of high symmetry the general
solution of this set and the manifolds over which they can
be extended completely or partially may be known in
advance. The Dirichlet problem then simplifies to the
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problem of embedding � in known manifolds—the infill-
ing solutions then are the compact regular parts of the
manifolds enclosed by�. Such solutions provide semiclas-
sical approximations to the path-integral and are the start-
ing point of a quantum treatment. Depending on the
boundary data there can be zero, one, or multiple infilling
solutions of similar or different topologies even when one
assumes a high degree of symmetry for the codimension-
one slices.

Because the classical action consists of a bulk and
boundary term, if the geometries of the possible bulk
solutions are known as functions of the boundary variables
one can find the on-shell Euclidean actions purely in terms
of the boundary variables. Knowledge of the bulk geome-
tries in relation to the boundary geometry is all that one
needs to obtain for semiclassical considerations. However,
it may not be possible to obtain the infilling geometries as
analytic functions of the boundary data which then requires
one to adopt an indirect approach.

For either AdSnþ1 or Schwarzschild-AdSnþ1, with the
periodic identification of the t-coordinate, a hypersurface
at a constant value of the radial coordinate �, say � ¼ �0,
has the trivial product topology S1 � Sn�1 and is endowed
with the n-metric hij given by

ds2� ¼ �2dt2 þ �2d�2
n�1: (3.1)

If one excises the part of the manifold for which � > �0

one is left with a nonsingular compact manifold with a
boundary which, by construction, provides an infilling
solution for (�, hij). Therefore for a given S1 � Sn�1

boundary there are two topologically distinct possibilities
for the infillings.

Comparing Eqs. (3.1) and (2.1), one obtains �0 ¼ �
trivially for either AdSnþ1 or Schwarzschild-AdSnþ1. For
a given S1 � Sn�1 boundary the periodicity of the t coor-
dinate of the AdSnþ1 metric is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

�t ¼ 2��: (3.2)

Obviously for a given set (�, �) the periodicity is unique.3

On the other hand, for Schwarzschild-AdSnþ1 one needs to
find the periodicity via (2.7) by solving the following
equation for M first:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

�n�2
þ �2

s
¼ ��ðMÞ: (3.3)

This is the standard relationship between the local tem-
perature at the cavity-wall and the Hawking temperature

Tloc ¼ THffiffiffiffiffiffiffi
g00

p � THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� M

�n�2 þ �2Þ
q : (3.4)

Equation (3.3) leads to a complicated algebraic expression
inM. Obviously there is no a priori obstruction as one can
start with a Schwarzschild-AdS with known mass and take
a constant �-slice for which Eq. (3.3) is true trivially.
However, it is not clear for what values of � and �
black-hole solutions exist and what their possible number
and properties are. Wewill be addressing these questions in
the following sections. But before doing that we briefly
recapitulate what we know about the � ¼ 0 case which is
also a limiting case of the present study (i.e. l ! 1 limit).
The results for � ¼ 0 will be a constant reference for
judging success of the �< 0 case. The results for � ¼ 0
will also help us understand the limit when the cavity-
radius is very small compared to l2, i.e., when � � 1.

A. The case of zero cosmological constant

For � ¼ 0, Eq. (3.3) simplifies considerably and can be
rewritten as [8]

xn � x2 þ p ¼ 0; (3.5)

where x � M1=n�2=� and p ¼ ðn�2Þ2
4

�2

�2 . It is easy to see

that there are in general two solutions if

p �
�
2

n

�
2=n�2

�
1� 2

n

�
: (3.6)

For a given �, this sets an upper limit to �, i.e., this gives a
lower limit to the temperature of the cavity-wall

T � Tm � 1

4�

�
n

2

�
1=n�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 2Þp 1

�
: (3.7)

For T < Tm no black-hole solution exists. For T ¼ Tm the
two solutions are degenerate with

�b ¼
�
2

n

�
1=n�2

�: (3.8)

For T > Tm, there are always two positive roots of
Eq. (3.5). For a given cavity, the higher the wall-
temperature the heavier (lighter) is the larger (smaller)
solution.
For four dimensions Eq. (3.5) is cubic and is solvable

[7]. However, apart from a few other special values of n
this is not solvable using ordinary algebraic methods.
Fortunately, Eq. (3.5) falls under a special class of alge-
braic equations—commonly known as trinomial equations
in the mathematical literature—which can be solved using
higher order hypergeometric functions in one variable, as
was first shown by Birkeland [15]. For arbitrary n and p the
solutions have been obtained in [8]. Thus the correspond-
ing Riemannian Dirichlet problem is exactly solvable for
arbitrary dimension.4

3This slightly different convention for notation, which makes
� the ‘‘radius’’ of the S1 fiber, would avoid the recurrent
appearance of � in the rest of the paper.

4Restricting of course within the class of cohomogeneity one
metrics whose principal orbits share the symmetry and topology
of the boundary.
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B. � < 0: Schwarzschild-AdSnþ1 solutions

For � ¼ 0 the problem reduces to studying Eq. (3.5) for
which it is only the squashing�=� that matters. For�< 0,
the analogue of Eq. (3.5) reads

F :¼ �nþ2
b þ �n

b þ
1

4
�n�2�2n2�4

b þ
1

2
�n�2½�2nðn� 2Þ

� 2ð�2 þ 1Þ��2
b þ

1

4
�n�2�2ðn� 2Þ2 ¼ 0: (3.9)

This is obtained from Eq. (3.3) by simply eliminating the
square-root and using Eq. (2.6). Since M and �b are in 1-1
correspondence both are in principle equivalent variables.
However, use of �b leads to algebraic simplifications,
albeit the resulting equation is still difficult to solve
exactly.

Only the positive roots �b < � of Eq. (3.9) will give the
mass and hence the geometries of the infilling black holes.
Note that Eq. (3.9) cannot be reduced to a one-parameter
problem by any redefinition of variables. This is true even
for the infinite-cavity limit although a different kind of
simplification occurs in this limit. The infinite-cavity limit
has been studied exhaustively in [2–4] and will emerge as a
special case in our study.

In four dimensions Eq. (3.9) is quintic and hence, ordi-
nary algebraic methods fail to produce analytic solutions
for the masses of the two black holes for four dimensions in
terms of radicals unlike the � ¼ 0 case found in [7]. One
can, however, solve Eq. (3.9) in terms of hypergeometric
functions by following Birkeland’s general solution of
algebraic equations of order n with arbitrary coefficients
[15] or by usingA-hypergeometric functions [16]. Unlike
the � ¼ 0 case, the solutions will be in terms of hyper-
geometric functions of several variables. The variables will
be nontrivial functions of � and �. This method would be
unsuitable for obtaining direct information as the cavity-
radius and temperature are varied and hence will not be
used in the rest of the paper. We will return to the issue of
explicit solutions in five dimensions in Sec. V. However, as
we will see below it is possible to study the infilling
solutions and their thermodynamics without requiring ex-
plicit solutions.

C. Number of solutions

As mentioned earlier, the local study of Schwarzschild-
AdS within finite isothermal cavities was made in four
spacetime dimensions in [9]. It was shown there that there
are two black-hole solutions with negative and positive
specific heats within the cavity. Both survive in the infinite
cavity-radius limit unlike the Schwarzschild case in flat
space. We will now see that this is true for higher dimen-
sions as well.

It is easy to see that Eq. (3.9) does not admit positive

solutions if �2 � 2ð�2þ1Þ
nðn�2Þ since no changes of sign occur in

the coefficients of the various powers which are all positive

in this case. Only the coefficient of �2
b can be negative and

this happens if

�2 <
2ð�2 þ 1Þ
nðn� 2Þ : (3.10)

There can be up to two positive roots and up to two (for n
even) or three (for n odd) negative roots (see, for example,
[17]). Note that (3.10) places a necessary, and not a suffi-
cient condition on � (equivalently T). For n even, the
quantity ð�1Þnþ2�2ðn� 2Þ2 is positive and hence there
can never be one positive root and one negative root. The
possibility of having a single positive root is thus ruled out
(a double-root is counted twice). Since complex roots
appear in pairs, similar arguments apply for n odd. Thus,
there will be two positive roots (double root counted twice)
or no positive roots. Only the positive roots which are less
than the cavity-radius� can qualify as black-hole solutions
inside the cavity. It is easy to check that this would auto-
matically be the case for the two possible positive roots of
Eq. (3.9). To see this rewrite Eq. (3.9) in the following
form:

�2 ¼ 4�2
bð�n þ �n�2 � �n

b � �n�2
b Þ

�n�2ðn�2
b þ n� 2Þ2 : (3.11)

�2 is a single-valued function of �b and is positive if and
only if �b 2 ð0; �Þ. It is continuous and well-defined
within this interval (the denominator is strictly positive).
This is true for n � 3 and for any positive value of �. Since
the maximum number of positive roots of Eq. (3.9) is two,
it immediately follows that�2 grows from zero (at �b ¼ 0)
and ends with zero (at � ¼ �) with one ‘‘hump’’ in the
middle, i.e., �2 increases monotonically to a maximum �2

m

and then decreases monotonically to zero (Fig. 1).
Therefore there will be two �b, i.e., two black-hole solu-
tions for a given boundary with specified (�,�) provided�
(or T) is equal to or less (greater) than the minimum value
needed for the cavity-radius of �. Because � is a continu-
ous function of �b within the interval (0, �) the two black-
hole solutions exist for any temperature above the mini-

FIG. 1 (color online). �2 (for n ¼ 11) as a function of �b for
� ¼ 4, 5, 6 : there is a unique maximum in each case. Note that
the curves corresponding to different values of � do not cross as
explained in Sec. III C.
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mum value without any discontinuity. This holds for arbi-
trary cavity-radius. The minimum temperature needed for
the solutions to exist is a function of the radius of the cavity
and will be discussed in Sec. III D. Note that the shape of
the curve for �2 as a function of �b is not obvious from
Eq. (3.11) alone because of the nontriviality of the denomi-
nator. The fact that there will be two/no positive roots, as
we have shown before, is crucial to the argument for the
general number of solutions.

D. The minimum temperature Tm as a function of
cavity-radius

For a cavity of fixed radius the minimum temperature Tm

required for the black-hole solutions to exist is the one
corresponding to the maximum of � � �m at which the
solutions are degenerate. By differentiating Eq. (3.11) one
obtains that at � ¼ �m

nðn� 2Þ�nþ2
bm

þ 2ðn2 � 2n� 2Þ�n
bm

þ nðn� 2Þ�n�2
bm

þ 2nð�n þ �n�2Þ�2
bm

� 2ðn� 2Þð�n þ �n�2Þ ¼ 0

(3.12)

where �bm is the value corresponding to the maximum

(minimum) of � (T) (and does not stand for the mini-
mum/maximum value of �b). One obtains the minimum
temperature as a function of the cavity-radius by directly
substituting the root of Eq. (3.12) in Eq. (3.11).5 However,
note that, like Eq. (3.9), Eq. (3.12) is not generally solvable
using ordinary algebraic methods.

For n � 3, all terms in Eq. (3.12) are positive except the
last. It therefore follows that

2nð�n þ �n�2Þ�2
bm

� 2ðn� 2Þð�n þ �n�2Þ< 0 (3.13)

implying

�bm <

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

s
: (3.14)

After dividing Eq. (3.12) by (�n þ �n�2) it is easy to see
that the larger the value of � the larger is �bm . This

accounts for the gradual shift of the peak to the right in
Fig. 1 for larger values of the cavity-radius. At the infinite-
cavity limit (3.13) is replaced by an equality giving

�bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

s
(3.15)

exactly. This therefore gives an absolute upper bound on
the horizon-radius, and hence the entropy, the Hawking
temperature given by the inverse of�t. With a finite cavity,
one needs to vary the product of the Hawking temperature

multiplied by the Tolman redshift factor for which the
extremum occurs at a different value of �b. For the finite
cavity this value of �b is less than that obtained by varying
the Hawking temperature alone which is Eq. (3.15) and
gradually increases asymptotically to (3.15) as one in-
creases the cavity-radius.

E. Geometry of Eq. (3.9)

The difficulties in obtaining exact solutions of Eq. (3.12)
do not preclude us from observing the following general
fact : Tmð�Þ increases with decreasing radius of the cavity.
This is because the curve for � as a function of �b for any
fixed value � of the cavity-radius completely covers the
curve corresponding to a lower value of �. We have al-
ready noticed this from Fig. 1. To see that this holds in
general consider the converse: if two curves of � (corre-
sponding to two different values of cavity-radius �) as a
function of �b meet at some point in the�2 � �b plane, the
two values of � should satisfy Eq. (3.9) for the same pair
(�2, �b). Treating Eq. (3.9) as an equation for �, it is easy
to see that there can be only one/no positive solution for �
for a given (�2, �b). Therefore nowhere in the �2 � �b

plane can two curves corresponding to two different values
of � meet. The curves corresponding to lower values of �
will be within the envelopes of those corresponding to
higher values of �. Therefore the minimum temperature
Tm needed for the existence of two black-hole solutions
increases with decreasing cavity-radius. Since � (as a
function of �b) is continuous, for any arbitrarily higher
temperature the two solutions continue to exist.
As derivatives of �2 with respect to � are smooth, the

curves in the �2 � �b plane for various values of � fill in
densely. The two-dimensional surface of Eq. (3.9) in the
�2 � �2 � �b space is therefore smooth and continuous.
Therefore Tm is a smooth function of the cavity-radius and
increases with decreasing value of the radius. It remains to
be seen whether it is possible to obtain Tm as a function of
the cavity-radius. We will return to this issue in Sec. VA.

F. Infinite-cavity limit

For any finite Schwarzschild-AdS black hole the local
temperature at infinity is zero. Therefore the above pic-
ture—where one fixes the cavity-radius and its wall-
temperature—is not well-defined in the infinite limit of
the cavity in the case of Schwarzschild-AdS. In other
words, one cannot simply fix a nonzero temperature at
infinity and look for a finite Schwarzschild-AdS black-
hole solution in the interior. This, however, is possible
only in the � ¼ 0 limit. For vanishing temperature at
infinity all Schwarzschild-AdS black holes are equally
good infilling solutions.
However, the product of the local temperature and the

cavity-radius is well-defined in the infinite-cavity limit.
This product essentially is the Hawking temperature (2.9)
and substitutes for the wall-temperature of the cavity in this

5One can check that Eq. (3.12) has a positive root in the
interval (0,�). However, this trivially follows from our previous
analysis.
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limit. One can now study the thermodynamics of black
holes in terms of the Hawking temperature alone. This has
been done in [2]. For a given Hawking temperature, there
are in general two black holes—this corresponds to the
doubled-valuedness of the former as one can see from

(2.9). The Hawking temperature has a minimum, Tm ¼
1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 2Þp

, which corresponds to a horizon-radius of

�b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 2Þ=np

in conformity with our analysis above.
The mass of one hole decreases and the other increases as
one raises the Hawking temperature.

One can immediately see the simplifications arising in
the infinite limit of the cavity. It is rather trivial to find the
masses of the two black holes from the Hawking tempera-
ture (2.9) in contrast to the finite-cavity case where one
needs to solve (3.9). This leads to a much simplified
semiclassical picture that we will see in the next section
when we discuss the finite-cavity case.

IV. ON-SHELL ACTIONS, SEMICLASSICAL
RESULTS AND PHASE TRANSITION

Our discussion so far was purely classical in that we only
discussed infilling Riemannian geometries of the Einstein
equations for a prescribed codimension-one boundary (rep-
resenting a canonical boundary condition in the Lorentzian
picture) without reference to their roles in the path integral.
This has set the ground for semiclassical considerations as
we will discuss now. First, let us briefly recall the facts for
the � ¼ 0 case. We have already mentioned that the
Dirichlet problem is exactly solvable in this case [7,8].
This enables one to find the classical actions IE of the
infilling black-hole solutions as functions of boundary
variables and thus study semiclassical physics. The specific
heat of the larger solution is positive and that of the smaller
solution is negative. From the action one also finds that the
larger mass solution in (nþ 1)-dimensions, which has a
positive specific heat, has a lower action than hot flat space,
for temperatures [8]

T > Tc � 1

4�

n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ðn�1Þ

n2
Þ2=ðn�2Þ � ð4ðn�1Þ

n2
Þn=ðn�2Þ

q 1

�
: (4.1)

The lower mass solution always has a larger action than flat
space. Thus above Tcð�Þ the larger black-hole solution can
spontaneously nucleate from hot flat space within the
cavity in a thermodynamically consistent manner in which
the free energy of the system, F ¼ IE=ð2��Þ, does not
increase. As one takes the cavity-radius to infinity the
larger solution fills in the entire cavity irrespective of its
wall-temperature and hence becomes irrelevant and only
the smaller solution exists. Therefore, black-hole nuclea-
tion is thermodynamically consistent only within a finite
cavity. Note that the critical temperature Tc is inversely
proportional to the cavity-radius and is higher than the
minimum temperature Tm (3.7) needed for the two black-
hole solutions to exist classically. We will see below that

the situation is similar for anti–de Sitter space as well. To
the best of our knowledge, such a study has not been
carried out before for four or higher dimensions except
the study made in the infinite-cavity limit in [2] and which
will reappear as a special case below.

A. Action of the infilling black holes

For an (nþ 1)-dimensional manifold M with an
n-dimensional boundary @M, the Euclidean action is
[18–21]:

IE ¼ � 1

16�G

Z
M

dnþ1x
ffiffiffi
g

p ðR� 2�Þ

� 1

8�G

Z
@M

dnx
ffiffiffi
h

p
K (4.2)

where g�� is the metric on M and hij is the induced

n-metric on the boundary, i.e., gijj@M ¼ hij. K is the trace

of the extrinsic curvature Kij of the boundary defined

according to the convention that the outward normal to
the boundary is positive.
The Einstein equation obtained from this action is

R�� ¼ 2�
n�1g��. Recall that � ¼ � nðn�1Þ

2l2
and that we set

l ¼ 1. The on-shell action therefore reads

IE ¼ � 1

16�G

�
�2n

Z
M

ffiffiffi
g

p
dnþ1xþ 2

Z
@M

ffiffiffi
h

p
dnxK

�
:

(4.3)

The first integral is the (nþ 1)-volume of M and the
second integral geometrically is the rate of change of the
n-volume of the boundary @M along the unit outward
normal.
For a Schwarzschild-AdSnþ1 with an S1 � Sn�1 bound-

ary at a constant radial distance it is fairly straightforward
to calculate both the above bulk and boundary contribu-
tions to the on-shell action. They, respectively, are

Vbh ¼
Z
M

ffiffiffi
g

p
dnþ1x ¼ 2�

n�
ð�n � �n

bÞVolðSn�1Þ (4.4)

and Z
@M

dnx
ffiffiffi
h

p
K ¼ 2�

�

�
n�n þ ðn� 1Þ�n�2

� n

2
M

�
VolðSn�1Þ: (4.5)

Recalling that M ¼ �n
b þ �n�2

b , one obtains

IEbh
¼ 1

4G

�
�b

n�2
b þ n� 2

�
ððn� 2Þ�n

b þ n�n�2
b

� 2ðn� 1Þð�n þ �n�2ÞÞVolðSn�1Þ: (4.6)

In the convention the (nþ 1)-dimensional Schwarzschild-
AdS and AdS metrics have been written, the base manifold
Sn�1 (with the canonical round metric on it) satisfies the
(n� 1)-dimensional Einstein equation with a cosmologi-
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cal constant (n� 1). This is what is referred to as the
‘‘unit’’ ðn� 1Þ-dimensional sphere in the literature. Its

volume VolðSn�1Þ ¼ 2�n=2=�ðn2Þ.
A few comments are in order. First, note that the action

(4.6) is in terms of the horizon-radius. The actions for the
two infilling black-hole solutions in terms of the boundary
variables (�, �) are obtained from it via substitution once
the two solutions of (3.9) are known. This takes us back to
the classical Dirichlet problem; explicit expressions for
actions can be obtained only when we know the explicit
solutions of the infilling geometries. Also note that action
(4.6) is finite for finite�. Hence, there is no a priori need to
do a background subtraction (by taking off the action of
AdS) in this case to make the action finite as is needed in
the infinite-cavity limit [2]. However, such a subtraction
will appear in the next section in the course of determining
which of the classical solutions will dominate the path-
integral as one varies cavity-radius and wall-temperature.

B. Entropy and specific heats

The canonical entropy of the system is

S ¼ �

�
@IEbh

@�

�
� IE (4.7)

in which the derivative is evaluated while keeping the area
of cavity fixed. The variation of � changes IE through
variation of the mass, or equivalently the horizon-radius
�b of an infilling hole, and so

S ¼ �

�
@IEbh

@�b

��
@�b

@�

�
� IE: (4.8)

One calculates the above two derivative terms using (4.6)
and (3.11). After some lengthy algebra one finds

S ¼ 1

4G
�n�1
b (4.9)

precisely. This shows that the universal law of black-hole
entropy remains valid for such boundary conditions. As
mentioned earlier, in four dimensions this result follows
from the entropy of Reissner-Nordström-AdS black holes
in isothermal cavities derived in [10]. It now immediately
follows from the area-law and the study we made in
Sec. III D on the variation of the mass of the two holes as
functions of wall-temperature that the specific heat

CA ¼ T
@S

@T
(4.10)

is positive for the larger black hole and negative for the
smaller black hole, and hence they are thermodynamically
stable and unstable, respectively.

C. Phase transitions between hot AdSnþ1 and
Schwarzschild-AdSnþ1 within a finite cavity

To see that a phase transition from hot AdS to
Schwarzschild-AdS can occur within the cavity, we
need to compare the action of the infilling
Schwarzschild-AdSnþ1 solutions with that of hot AdSnþ1

space which is unique for any given S1 � Sn boundary. We
do so by computing the actions of the infilling
Schwarzschild-AdSnþ1 solutions in the ‘‘background’’ of
the hot unique AdSnþ1 space, i.e., by subtracting the action
of the AdSnþ1 from that of the black hole (4.6). In the
infinite limit of the cavity this calculation simplifies as the
boundary terms of the AdS and Schwarzschild-AdS cancel
[2,3]. Compared to the � ¼ 0 case, on the other hand, the
periodically identified AdS space has a nontrivial Tolman
redshift factor. This makes the boundary term more im-
portant and the corresponding calculation more delicate
than in flat space [8]. One therefore needs to be cautious in
subtracting the AdS action from the Schwarzschild-AdS
action in the case of the finite cavity. This is done as
follows. First calculate the volume and boundary terms
for AdSnþ1. They, respectively, are

VAdS ¼
Z
M

ffiffiffi
g

p
dnþ1x ¼ �t

n
�nVolðSn�1Þ (4.11)

andZ
@M

dnx
ffiffiffi
h

p
K0 ¼ �tðn�n þ ðn� 1Þ�n�2ÞVolðSn�1Þ

(4.12)

where �t ¼ 2��=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ as given by Eq. (3.2). Since

the infilling hot AdSnþ1 space and the two infilling black
holes have the same n-metric on the S1 � Sn�1 boundary,
we can replace � using Eq. (3.3), giving

�t ¼ 2�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

�n�2 þ �2

1þ �2

s
(4.13)

where M is either of the two infilling black-hole masses.
The reason for replacing � is to express the action in the
same form as the black-hole action. The volume and the
boundary terms for AdSnþ1 then read

VAdS ¼
Z
M

ffiffiffi
g

p
dnþ1x ¼ 2�

n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

�n�2 þ �2

1þ �2

s
�nVolðSn�1Þ;

(4.14)

Z
@M

dnx
ffiffiffi
h

p
K0 ¼ 2�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

�n�2 þ�2

1þ�2

s
ðn�n þ ðn� 1Þ�n�2Þ

�VolðSn�1Þ: (4.15)

Note that because periodically identified AdSnþ1 space has
a nontrivial Tolman shift factor unlike hot flat space, the
boundary term (4.15) contains contributions from the
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changes in the volume of cavity as well as the local
temperature along the radial direction of the cavity, or
equivalently, in the Euclidean language, changes in the
volume of the Sn�1 base as well as the radius of the
S1-fibre along the outward normal at the boundary. The
action of a black hole minus that of hot AdS therefore reads

IE ¼ 1

4G

�
�b

n�2
b þ n� 2

�
ððn� 2Þ�n

b þ n�n�2
b

� 2ðn� 1Þð1� sÞð�n þ �n�2ÞÞVolðSn�1Þ (4.16)

where, for shorthand,

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

�n�2 þ �2

1þ �2

s
� 1: (4.17)

The action for either of the two infilling black holes is
found by substituting the corresponding solutions of �b of
Eq. (3.9). The actions are then functions of cavity-radius
and the wall-temperature, i.e. expressed in terms of bound-
ary data. Therefore once analytic solutions of Eq. (3.9) are
known the actions are known exactly.

1. Phase transition

The action (4.16) is a smooth, single-valued function of
�b. It is zero for �b ¼ 0 and is positive for small �b

(compared to �) since the first two terms in the bracket
dominate. As one increases �b it grows monotonically to a
maximum value and then decreases monotonically to

IEð�Þ¼� 1

4G

�

n�2þn�2
ðn�nþðn�2Þ�n�2Þ2�n=2=�

�
n

2

�
(4.18)

corresponding to �b ¼ �. This is negative definite. The
overall behavior is similar to that in flat space [8]. Below
(Figs. 2 and 3) we plot IE for various values of � for n ¼ 3.
We choose four dimensions here because of its obvious
physical importance and also because the case of five
dimensions, which is physically interesting from a holo-
graphic point of view, will be discussed in detail in Sec. V.
We set G ¼ 1. This phase transition, however, is in terms
of the horizon-radius (equivalently, the mass) of a black
hole within the cavity. This shows that within any finite
cavity for sufficiently large value of its horizon-radius
Schwarzschild-AdS becomes more probable than hot
AdS. This phase transition is possible for any value of
the cavity-radius and is physical, i.e. the black hole does
not engulf the cavity. However, to revert to the canonical
language we need to understand how the phase transition
takes place as a function of the temperature of the wall
instead of horizon-radius (or mass) of the hole while the
radius of the cavity is held fixed. This needs care and is not
obvious because of the double-valuedness of the infilling
black-holes solutions. Can both of the two black holes have
larger action than AdS? Does the scenario vary with vary-
ing radius of the wall? To answer these questions we need
to recall what we have learned about the classical nature of
the two solutions within the cavity. It is not difficult to see
that it is the larger mass solution that nucleates from hot
AdS for sufficiently high temperature of the heat-bath. The
action (4.16) of the lower mass solution is always positive
thus making it the least probable solution semiclassically.
To see this recall that there is an absolute upper bound,

�b <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 2Þ=np

, of the horizon-radius of the smaller
black hole. When the cavity-radius is not too small the
action (4.16) will always be positive within this range

FIG. 3. Actions in four dimensions as functions of �b (� ¼ 2:0, 4.0, 8.0).

FIG. 2. Actions in four dimensions as functions of �b (� ¼ 1� 10�6, 1� 10�1, 1.0).
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(Fig. 3). On the other hand, when the cavity is small the
action (4.16) (as well as the overall scenario) approaches
the flat-space limit (see Fig. 2 above) and remains positive
for the smaller hole as discussed briefly above and in detail
in [8]. Therefore the action of the lower mass black hole is
always positive irrespective of the cavity-radius and tem-
perature. Only the action of the larger mass hole is negative
for T > Tc and remains so for all higher temperatures.

2. Critical temperature

The critical temperature Tc can be found by equating
(4.16) to zero and eliminating the square roots. In (nþ 1)
dimensions this gives us an equation

ðn� 2Þ2�nþ2
bc þ 2nðn� 2Þ�n

bc þ n2�n�2
bc þ 4ðn� 1Þ

� �n�2ð1þ �2Þ�2
bc � 4ðn� 1Þ�n�2ð1þ �2Þ ¼ 0

(4.19)

where �bc is the radius of the larger black hole at the
critical temperature.

Once the solution of this equation is found, Tc is deter-
mined via (3.11). Note that this equation has an appearance
similar to Eq. (3.12). Using the identical arguments used
for Eq. (3.12) it is easy to demonstrate that for large value
of the cavity-radius �bc tends to unity. Also, this value is
the upper bound to �bc. This is because like Eq. (3.12), the
coefficients of various powers in (4.19) do not involve the
cavity-radius. As in the case of � ¼ 0, the horizon-radius
of the nucleated black hole (or its mass) at the critical
temperature increases with the cavity-radius. Therefore
this provides us with another example in which a sharp
contrast exists between the �< 0 and � ¼ 0 cases. We
will come back to this issue in the next section when we
discuss five dimensions specifically and in the Conclusion.

D. Infinite-cavity limit

For large �

s ¼ 1� 1

2

m

�n þ higher order terms: (4.20)

Therefore for � ! 1 one obtains the following action of
[2,4]

IE ¼ 1

16�G
ð�n�2

b � �n
bÞVolðSn�1Þ (4.21)

giving the Hawking-Page phase transition at �b ¼ 1. This
action is certainly much simpler than its finite boundary
analogue (4.16).

It is straightforward to check the area-law of entropy and
from it the specific heats of the two solutions. Following
our discussion in Sec. III F on the Hawking temperature it
is easy to see that the specific heat expression (4.10)

CA ¼ T
@S

@T
(4.22)

essentially reduces to one where T can be replaced by TH,
the Hawking temperature. Thus for any value of the
Hawking temperature (above the minimum temperatureffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 2Þp

=2�, of course), the larger and the smaller
black-hole solutions will have positive and negative spe-
cific heats, respectively. The critical (Hawking) tempera-
ture in this case is ðn� 2Þ=ð2�Þ, as one can check easily.

V. FIVE DIMENSIONS: EXACT RESULTS

We have already remarked that Eq. (3.9) is a quintic in
four dimensions and the degree of this equation increases
linearly with dimensionality. However, an observation that
we have not made so far is that in odd dimensions Eq. (3.9)
is an equation in �2

b. For five and seven dimensions

Eq. (3.9) is cubic and quartic, respectively, and can be
solved exactly using ordinary algebraic methods. Thus
the Dirichlet problem in these dimensions is exactly solv-
able and one obtains the bulk geometries in terms of the
boundary variables. From a holographic perspective five
dimensions is special and we will treat it in detail. In this
case Eq. (3.9) reads

z3 þ ð1þ 4�2�2Þz2 þ �2½4�2 � ð�2 þ 1Þ�zþ �2�2 ¼ 0;

(5.1)

in which we have substituted z for �2
b.

Explicit Solutions: The three roots of (5.1) are given by
Cardano’s solution of the cubic:

z1 ¼ 1

6
ðPþ 12

ffiffiffiffi
Q

p Þ1=3 � R

6ðPþ 12
ffiffiffiffi
Q

p Þ1=3

� 1

3
ð1þ 4�2�2Þ; (5.2)

z2 ¼ � 1

12
ðPþ 12

ffiffiffiffi
Q

p Þ1=3 � R

12ðPþ 12
ffiffiffiffi
Q

p Þ1=3

� 1

3
ð1þ 4�2�2Þ � i

ffiffiffi
3

p
2

�
1

6ðPþ 12
ffiffiffiffi
Q

p Þ1=3

� R

ðPþ 12
ffiffiffiffi
Q

p Þ1=3
�

(5.3)

and

z3 ¼ � 1

12
ðPþ 12

ffiffiffiffi
Q

p Þ1=3 � R

12ðPþ 12
ffiffiffiffi
Q

p Þ1=3

� 1

3
ð1þ 4�2�2Þ þ i

ffiffiffi
3

p
2

�
1

6ðPþ 12
ffiffiffiffi
Q

p Þ1=3

� R

ðPþ 12
ffiffiffiffi
Q

p Þ1=3
�

(5.4)

where

P ¼ �16�6�2ð32�4 þ 9Þ þ 12�4ð16�4 � 12�2 � 3Þ
� 12�2ð5�2 þ 3Þ � 8 (5.5)

and
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Q ¼ �3�2ð2�2 þ 1Þ2ð�6ð4�4 þ 1Þ � �4ð32�6 � 4�4

þ 10�2 � 2Þ þ �2ð13�4 � 10�2 þ 1Þ � 4�2Þ
(5.6)

and

R ¼ 4�4ð16�4 þ 3Þ þ 4�2ð3� 4�2Þ: (5.7)

As usual with Cardano’s solutions, the three roots of
Eq. (5.1) are given in an imaginary form and hence it is
not obvious which two are positive. However, since we
know that they will be positive/complex together, it is easy
to single out the expressions for the two positive roots; they
are z1 and z2 (see below). These two solutions therefore
give the masses of the two black holes, and hence the
infilling geometries in terms of the boundary data.

A. The minimum temperature Tm for black holes

In finding various other quantities of interest one still
needs to be judicious in choosing the correct algebraic
approach as we will see below. First we would like to
know Tm (above which the two black-hole solutions clas-
sically exist) as function of cavity-radius. This has been
discussed qualitatively in Sec. III D for arbitrary dimen-
sions. To find Tm exactly, one is required to find the
positive root of (3.12) and then obtain Tm from (3.11).
For five dimensions this is possible as (3.12) simplifies to
a cubic equation like (5.1). However, the resulting alge-
braic expression for Tm will not be economical and easy to
simplify.

A much nicer algebraic expression follows if one con-
siders Eq. (5.1) directly and makes use of the known
algebraic methods. Equation (5.1) admits a negative root
and pair of positive or complex roots. These positive roots
are in 1-1 correspondence with the two positive roots of
Eq. (3.9) (for n ¼ 4) and hence all qualitative observations
made earlier apply directly. In particular, the positive roots
of Eq. (5.1) will appear and disappear simultaneously
together with the two positive roots of Eq. (3.9) as � is
varied. Because it is cubic and has a negative root, if we
ensure that Eq. (5.1) has all real roots then two of them will
be positive automatically and will correspond to the two
Schwarzschild-AdS5 infilling geometries. The condition
for a cubic equation to have all three roots real is well-
known (see, for example, [22]). In this case it reads

32�4�6 ��2ð4�4 þ 4�2 þ 13Þ�4 þ 2ð5�4 þ 5�2 þ 2Þ�2

��2ð�2 þ 1Þ2 � 0: (5.8)

When the equality of this equation holds, the two positive
roots of Eq. (5.1) are degenerate. Therefore the maximum
value of �m is simply the solution of

32�4�m
6 � �2ð4�4 þ 4�2 þ 13Þ�m

4

þ 2ð5�4 þ 5�2 þ 2Þ�m
2 � �2ð�2 þ 1Þ2 ¼ 0:

(5.9)

This is cubic in �2
m and admits a unique positive root for

any value of � giving

Tm ¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=3 � 840�4 � 856�2 � 215þ 16�4 þ 32�6 þ 13A1=3 þ 4�4A1=3 þ 4�2A1=3

96�2A1=3

s
(5.10)

where

A¼ 64�12þ192�10þ8880�8þ17440�6�10308�4

�18996�2�5291þ192ð2�2þ1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�4þ�2þ7Þ3

q
:

(5.11)

This is plotted in Fig. 4. The smaller the cavity the higher is
Tm in concordance with our observations in Sec. III (and
Fig. 1).

B. Actions, phase transition and critical temperature

The action (4.6) in five dimensions is

IE ¼ 1

4G

� ffiffiffi
z

p
2zþ 1

�
ðz2 þ 2z� 3ð�4 þ �2ÞÞVolðS3Þ:

(5.12)

The actions of the two black holes are found by substitut-
ing z1 and z2 in it. The action in the background of hot AdS
space given by (4.16) reads

IE ¼ 1

4G

� ffiffiffi
z

p
2zþ 1

�
ðz2 þ 2z� 3ð1� sÞð�4 þ �2ÞÞVolðS3Þ

(5.13)

in which

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2þz

�2 þ �2

1þ �2

s
: (5.14)

FIG. 4. The minimum temperature Tm in five dimensions
needed for the two black holes to exist classically. (For T ¼
Tm the solutions are degenerate.)
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Again it is possible to find the actions of the two black
holes by substituting z1 and z2 directly in (5.13).

Critical Temperature: We have already shown that a
phase transition takes the hot AdS to the larger mass
Schwarzschild-AdS irrespective of the radius of the cavity
if the temperature of the cavity is above a certain critical
value. This critical value of temperature Tc is a function of
cavity-radius. We found that the radius of the black hole at
the critical temperature of a cavity does not increase in-
definitely with the cavity-radius as in the case of vacuum.
With the simplification arising in the case of five dimen-
sions we are able to treat these issues exactly. First the
radius of the black hole at the critical temperature is
obtained by equating (5.13) to zero (or just setting n ¼ 4 in
(4.19)):

z3c þ 4z2c þ ð3�4 þ 3�2 þ 4Þz� 3ð�4 þ �2Þ ¼ 0:

(5.15)

For any value of � this has one positive root. Again this is
cubic and hence can be solved exactly. The square-root of
the positive solution of Eq. (5.15) �bc is plotted in Fig. 5.
We do not write the explicit form solution here to save
space. The critical radius is thus found as an exact function
of the cavity-radius and allows us to find the critical
temperature Tc needed for the cavity to undergo a semi-
classical phase transition. It is obtained simply by substi-
tuting the solutions of Eq. (5.15) in (3.11) for n ¼ 4. Again,
we do not mention the explicit solution here as the form is
not particularly illuminating. We plot Tc as a function of
the cavity-radius in Fig. 6.

VI. CONCLUSION

In this paper we studied the thermodynamics of
Schwarzschild black holes in anti–de Sitter space within
a cavity immersed in an isothermal bath as functions of the
cavity-radius and its wall-temperature, i.e., the temperature
of the bath. This led us to consider the associated Dirichlet
boundary-value problem in Riemannian geometry for an
S1 � Sn boundary specified by its two radii (�, �). The
connection between the Euclidean and Lorentzian thermo-
dynamic pictures are such that the circumference of the S1

fiber gives the inverse temperature of the bath. Two topo-
logically distinct infillings are possible—one with a nut
(the Euclidean AdS) and the other with a bolt (the
Euclidean Schwarzschild-AdS). In the latter case one finds
that the infilling geometry is double-valued and exists for a
restricted range in the �� � plane.6 We studied the con-
dition on � and � for the existence of such classical
infillings and explored the possibility of obtaining their
explicit solutions in terms � and � (or T). We then con-
sidered which solutions will dominate the path-integral
semiclassically as one varies the boundary data by comput-
ing their actions and studying them carefully. We found the
overall qualitative picture to be similar to that found in flat
space [7,8]: For any value of the wall-temperature a unique
hot AdS solution exists whereas for wall-temperatures
below a minimum value Tm no Schwarzschild-AdS solu-
tions exist. Above this temperature there are two black-
hole solutions which continue to exist for all higher tem-
peratures. As one increases the temperature of the cavity
the larger hole becomes heavier and the smaller one gets
lighter. We found the on-shell action of the holes and
showed that the standard area-law of black-hole entropy
holds for such boundary conditions from which one can
immediately deduce that the larger and the smaller holes
have positive and negative specific heats, respectively, as in
the flat-space case. At Tm, both of the black holes have a
positive action and hence the AdS infilling is most prob-
able and continues to remain so until a critical temperature
Tc is reached when the action of the larger hole is zero. For
T > Tc the action of the larger hole becomes negative
definite. Note that as one increases the temperature of the
cavity from Tm, the mass of the smaller hole decreases and
its action decreases monotonically (and reaches zero at
infinite temperature). But, although its mass increases
monotonically with temperature, the action of the larger

FIG. 5. The horizon-radius of the black hole nucleated pre-
cisely at the critical temperature of the cavity as a function of
cavity-radius �: its behavior is different from that of the � ¼ 0
case.

FIG. 6. The critical temperature Tc increases with decreasing
radius of the cavity as in the � ¼ 0 case.

6In the case of �< 0, for a boundary which is a nontrivial
S1-bundle over S2 the number of regular bolt-type infillings
(Taub-Bolt-AdS infillings) can be as high as ten [23] while the
nut-type infillings (self-dual Taub-Nut-AdS infillings) are unique
[24]; in the case of the latter explicit solutions can be obtained.
In the � ¼ 0 case, such boundaries are studied for arbitrary
dimensions in [8] where it is shown that bolt-type infillings are
always double-valued with the only exception of Eguchi-Hanson
metrics in which case the solutions are unique as in the case of
all nut-type infillings.
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hole increases only up to a certain positive value before it
starts decreasing monotonically to zero at Tc and becomes
more negative for increasing temperatures and reaches a
fixed value (4.18) at infinite temperature. This picture is the
same for an arbitrary value of the cavity-radius and quan-
titatively approaches the flat-space limit for small radii.
Both Tm and Tc decrease for larger value of the cavity-
radius as in flat space. However, despite the similarity, we
have noted certain differences between the�< 0 and� ¼
0 cases. As we have seen in Sec. III D, there is an absolute
upper bound on the horizon-radius of the smaller hole for
�< 0whereas there is no such absolute limit in the case of
� ¼ 0 (Sec. III A)—the upper limit in this case is only on x
which translates to the limit (3.8). Another difference that
occurs is in the horizon-radius of the larger hole nucleated
at the critical temperature. This approaches an absolute
value of unity (in the units of the paper) for �< 0. In the
flat-space limit this gets larger and larger for higher values
of the cavity-radius. From a dimensional point of view, we
did not find any qualitative changes either in the local
stability results or entropy formula in higher dimensions
as compared to four dimensions [9,10]. The analysis of
global stability and phase transitions—done here for four
and higher dimensions for the first time and which brings
the�< 0 case in par with the much-studied� ¼ 0 case—
also shows that no qualitative differences exist between
four and higher dimensions.

In the infinite limit of the cavity the above study reduces
to the study made in [2]. We have shown how this happens
and how the only meaningful thermodynamic variable in
this limit is the Hawking temperature. In the Euclidean
picture, this corresponds to the fact that it is only the ratio
of the radii of the fiber and the base of the (infinite
boundary) that is meaningful in this limit—this, in fact,
is pivotal for the AdS/CFT correspondence studied in [3].
The problem of finding explicit masses of black-hole so-
lutions as functions of the Hawking temperature and evalu-
ation of other thermodynamic quantities simplifies
enormously in this limit. Note that the phase transition
found in this paper for finite cavity does not follow from
the Hawking-Page phase transition by means of logical
extrapolation. This is because the larger black-hole solu-

tion and the hot AdS solution, which induce the same
metric on the finite S1 � Sn-boundary, do not have the
same S1 � Sn-metric at infinity and if they match near
infinity they would not match anywhere at a finite radial
distance. That there is only one meaningful variable at
infinity is slightly analogous to the situation in the flat-
space limit where, although both the radii of the base and
the fiber enter into the explicit solutions, it is only the
squashing of the two radii that is truly meaningful as
one can see from Eq. (3.5). In the case of the finite
S1 � Sn-boundary both of the radii play a nontrivial role
for �< 0.
All of the above results were obtained without taking

recourse to explicit infilling black-hole solutions for which
one needs to solve Eq. (3.9). This equation cannot be
simplified by some redefinition of variables and hence
solutions are not possible for arbitrary dimensions.
However, the case of five dimensions turns out to be rather
special in which case this can be reduced to a cubic
equation and hence one can solve it exactly using ordinary
algebraic methods and thus obtaining the infilling black-
hole geometries as exact functions of � and � (or, T). This
makes it possible to compute the corresponding actions of
the two black holes exactly as functions of the boundary
variables. We have found Tm and Tc as exact functions of
cavity-radius. The latter is an exact geometric statement for
any regular Euclidean Schwarzschild-AdS metric. Other
quantities of interest can be computed from the action and
the solutions by using their standard definitions. These
exact results therefore provide a basis for further dynami-
cal and thermodynamical study and should find applica-
tions in brane-world cosmology, holography and other
related issues of current interest and are left for future
investigations.
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