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(Received 4 June 2010; published 29 September 2010)

It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model

yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology.

However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of

relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we

add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no

bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of

the radiation field and its Lee-Wick partner.
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I. INTRODUCTION

The inflationary scenario [1] is the current paradigm of
early universe cosmology. It addresses some of the prob-
lems which the previous paradigm, the standard big bang
model, could not address, and it gave rise to the first theory
of cosmological structure formation based on fundamental
physics [2] whose predictions were later confirmed by the
precision observations of the cosmic microwave back-
ground. Inflationary models, however, are faced with seri-
ous conceptual problems (see e.g. [3]), among which the
singularity problem and the ‘‘Trans-Planckian’’ problem
for fluctuations. In the context of General Relativity as the
theory of space-time, it has been shown [4] that inflationary
models have a singularity in the past and therefore cannot
yield a complete theory of the early universe. The ‘‘Trans-
Planckian’’ problem for fluctuations [3,5] relates to the fact
that in inflationary models, the wavelengths of perturbation
modes which are observed today were smaller than the
Planck scale in the early periods of inflation, and were thus
in the ‘‘short wavelength zone of ignorance’’ in which we
cannot trust the theory which is being used to track the
fluctuations. In fact, in [5] it is shown that the predictions
for observations are in fact rather sensitive to the physics
assumed in this zone of ignorance. These conceptual prob-
lems of inflationary cosmology form one of the motiva-
tions for considering possible alternatives to inflation.

One of the alternative scenarios to inflation is the ‘‘mat-
ter bounce’’ paradigm (see e.g. [6,7] for introductory ex-
positions). In this scenario it is assumed that the universe
undergoes a nonsingular cosmological bounce. Time runs
from �1 to þ1. The time coordinate can always be
adjusted such that the bounce point is at time t ¼ 0. The
Hubble radius HðtÞ�1 is the scale which separates wave-
lengths on which microphysics dominates (sub-Hubble)
from those where matter forces are frozen out (super-
Hubble). If the contracting and expanding phases far

away from the bounce point are described by General
Relativity and we consider matter with pressure density
p >��=3 (where � is the energy density), then it follows
that scales which are currently observed exited the Hubble
radius at some point during the contracting phase. As was
realized in [8–10], if the curvature fluctuations start out
early in the contracting phase on sub-Hubble scales in their
vacuum state, then the growth of the perturbations on
super-Hubble scales during the period of contraction leads
to a scale-invariant spectrum of curvature fluctuations on
super-Hubble scales before the bounce. Detailed analyses
of the evolution of cosmological fluctuations through the
nonsingular bounce performed in the context of specific
bouncing models (see e.g. [11–13]) shows that the spec-
trum of curvature fluctuations is unchanged during the
bounce on wavelengths which are large compared to the
bounce time, a result which agrees with what is obtained by
applying the Hwang-Vishniac matching conditions [14,15]
to connect perturbations across a spacelike ‘‘matching’’
hypersurface between a contracting and an expanding
Friedmann universe.
By construction, a bouncing cosmology is nonsingular.

In such a model, the wavelength of fluctuations which are
being probed in current observations always remains far
larger than typical microphysical scales. If the energy
density at the bounce point is set by the scale of particle
physics grand unification, then the physical wavelength
corresponding to the current Hubble radius is about
1 mm, to quote just one number. Hence, the fluctuations
remain in the regime controlled by the infrared limit of the
theory, far from the trans-Planckian zone of ignorance.
The challenge is to obtain a bouncing cosmology. One

must either give up General Relativity as the theory of
space-time, or else one must invoke a new form of matter
which violates some of the ‘‘usual’’ energy conditions (see
[16] for a discussion of the assumptions underlying the
singularity theorems of General Relativity). For a recent
review on how bouncing cosmologies can be obtained, see
[17]. We here mention but a few recent attempts.
Introducing higher derivative gravity terms can lead to
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nonsingular cosmologies, as in the ‘‘nonsingular universe
construction’’ of [18]. Similarly, the ghost-free higher
derivative action of [19] leads to a bouncing cosmological
background. Horava-Lifshitz gravity also leads to a bounc-
ing cosmology provided that the spatial curvature does not
vanish [20]. Bouncing cosmologies may also arise from
quantum gravity, as e.g. in loop quantum cosmology (see
e.g. [21] for a recent review). If we maintain General
Relativity as the theory of space and time, then one can
obtain a bounce by introducing new forms of matter such
as ‘‘quintom’’ matter [22]. In this case, in addition to the
matter sector with regular sign kinetic action, there is a new
sector (a ‘‘ghost’’ sector) which has an opposite sign ki-
netic action.

Several decades ago, Lee and Wick [23] introduced a
field theory construction which involves degrees of free-
dom with opposite sign kinetic terms. The Lee-Wick
(L-W) model aims at stabilizing the Higgs mass against
quadratically divergent terms and is interesting to particle
physicists since it can address the ‘‘hierarchy problem.’’
The Lee-Wick construction was recently resurrected and
extended to yield a ‘‘Lee-Wick standard model’’ [24,25].
The Lee-Wick model can thus potentially provide a frame-
work for obtaining a bouncing cosmology. In [26], the
Higgs sector of the Lee-Wick standard model was analyzed
and it was shown that, indeed, a bouncing cosmology
emerges. However, the scalar field Lee-Wick bounce is
unstable against the addition of regular radiation to the
matter sector (as will be explained in Sect. II of this paper).
Since we know that there is radiation in the universe, one
may than worry whether the Lee-Wick bounce can be
realized at all. However, to be consistent with the philoso-
phy of the Lee-Wick construction, Lee-Wick radiation
terms with opposite sign kinetic actions must be added.
In this paper we address the question whether, in this
context, a cosmological bounce can be achieved. We find
that unless the phases of the two fields are chosen in a very
special way, then no bounce will occur.

The outline of this paper is as follows: in the next section
we briefly review the philosophy behind the Lee-Wick
model and discuss why the scalar sector of the Lee-Wick
model taken alone would yield a bouncing cosmology. In
Sec. III we introduce the Lagrangian for Lee-Wick elec-
tromagnetism and derive the expression for the energy
density. In order to study the cosmological implications
of our action, we need to know how plane waves of the
Lee-Wick partner of the radiation field evolves. This is the
focus of Sec. IV. After understanding how regular and Lee-
Wick radiation evolve, we can then study under which
conditions a bouncing cosmology might result.

II. REVIEWOF THE LEE-WICKMODEL AND THE
SCALAR LEE-WICK BOUNCE

We will review the Lee-Wick model and the Lee-Wick

bounce in the simple case of a single scalar field �̂. The

hypothesis of Lee and Wick [23] was to add an extra scalar
degree of freedom designed to cancel the quadratic diver-
gences in scattering matrix elements. Originally, the new
degree of freedom was introduced by adding a higher

derivative term of the form ð@2�̂Þ2 to the action, yielding
a higher order differential equation and hence a new degree
of freedom. It is, however, simpler to isolate the new
degree of freedom by introducing an auxiliary scalar field
~� and redefining the ‘‘physical’’ field to be � (see [24]).
After doing this and after a field rotation, the Lagrangian
becomes

L ¼ 1

2
@��@��� 1

2
@� ~�@� ~�þ 1

2
M2 ~�2

� 1

2
m2ð�� ~�Þ2 � Vð�� ~�Þ; (1)

where M � m is the mass scale of the new degree of
freedom, and V is the original potential which after the
field redefinition depends on both fields.

The field ~� is called the Lee-Wick partner of �. It has
the opposite sign kinetic Lagrangian and the opposite sign
of the mass square term. Hence, without any coupling to

other fields or to gravity the evolution of ~� would be stable

and would consist of oscillations about ~� ¼ 0. However, in

the presence of any coupling of ~� with other fields there
are serious potential instability and unitarity problems [27–
30]. Ways to make the theory consistent were discussed
many years ago in [31] and more recently in [32] in the
case of interest in the current paper, namely, Lee-Wick
electromagnetism. In [32], a proposal for a ultraviolet (UV)
complete theory of quantum electrodynamics via the Lee-
Wick construction was made. It was argued that the pres-
ence of ghost poles in virtual state propagators and the loss
of microcausality do not necessary mean that causality is
violated at macroscopic scales. This would be the case if
the Lee-Wick particles decayed fast enough [33].
The Lee-Wick model has been resurrected in [24] with

the goal of studying signatures of this alternative model to
supersymmetry in LHC experiments. For some projects to
try to test experimentally the predictions of the Lee-Wick
model see e.g. [34,35].
Let us now review [26] how a nonsingular bouncing

cosmology can emerge from the scalar sector of a Lee-
Wick model. In fact, for this to happen no coupling be-
tween these fields is required, and hence we will assume
V ¼ 0 in the following discussion. We take initial condi-
tions at some initial time in which both the scalar field �

and its Lee-Wick partner ~� are both oscillating about their
ground states, and that the positive energy density of �
exceeds the absolute value of the negative energy density

of ~�, i.e. we start in a phase dominated by regular matter.
We assume that the universe is contracting with a Hubble
rate dictated by the Friedmann equations.
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Initially both fields are oscillating and their energy
densities both scale as a�3ðtÞ, where aðtÞ is the cosmic

scale factor. SinceM � mwhile the energy density of ~� is

smaller than that of �, the amplitude ~A of ~� must be
much smaller than the amplitude A of �. During the
initial period of contraction, both amplitudes increase at

the same rate. At some point, however, ~A becomes com-
parable to mpl, the four dimensional Planck mass. As we

know from the dynamics of chaotic inflation [36], at super-
Planckian field values � will cease to oscillate—instead, it
will enter a ‘‘slow-climb’’ regime, the time reverse of the
inflationary slow-roll phase. During this phase, the energy

density of� increases only slightly. However, ~� continues
to oscillate and its energy density increases in amplitude

exponentially (still proportional to a�3). The energy in ~�
(i.e. its absolute value) will hence rapidly catch up with that
of �. When this happens, H will vanish. Since the kinetic

energy of ~� overwhelms that of �, _H > 0 and thus a
nonsingular bounce will occur [26], and the Universe will
begin to expand.

The matter bounce in the Lee-Wick scalar field model
was analyzed in detail in [26]. In particular, it was verified
explicitly that initial vacuum fluctuations on sub-Hubble
scales in the contracting period develop into a scale-
invariant spectrum of curvature fluctuations on super-
Hubble scales after the bounce. A distinctive prediction
of this scenario is the shape and amplitude of the three-
point function, the ‘‘bispectrum’’ [37].

However, the scalar field Lee-Wick bounce in unstable
towards the addition of radiation before the bounce [38]:
Since the energy density in radiation scales as a�4 it

becomes more important than that of ~� as the universe
decreases in size, and will hence destabilize the bounce.
Can the addition of a Lee-Wick partner to regular radiation
help restore the bounce? This is the question we ask in this
work. We will follow the same type of reasoning as above,
but for the case of radiation: we now introduce a Lee-Wick
gauge field, the partner of the standard one, which will
initially be dominant. We use the Lagrangian for a U(1)
Lee-Wick gauge boson (see [24]) to which we add a
coupling term between the normal and the Lee-Wick field
in order to allow the energy to flow from one component to
the other. Our goal is to see if we can get a bouncing
universe using this setup.

III. THE MODEL

We will consider the radiation sector of Lee-Wick quan-
tum electrodynamics and will start with a higher derivative
Lagrangian [24] for a Uð1Þ gauge field A� of the form

Lhd ¼ � 1

4
F̂��F̂

�� þ 1

2M2
A

D�F̂��D�F̂�
�; (2)

where F�� is the field strength tensor associated with A�

and D denotes the covariant derivative. Note the sign

difference in the second term compared to [24]: This will
prevent the appearance of a tachyonic massive L-W gauge
boson. The mass MA corresponds to the mass of the new
physics in the model. To solve the hierarchy problem of the
standard model, this mass should be of the order of 1 TeV.
The higher derivative terms in the above Lagrangian

lead to an extra propagating mode. We can isolate it using
the usual Lee-Wick construction by introducing a new field
~A (Â ¼ Aþ ~A) called Lee-Wick partner, which depends on
derivatives of the original field and adjusting the gauge
fields such that the kinetic term of the Lagrangian becomes

diagonal in A� and ~A�. We find that the propagator for the
~Aa field has pole at p2 ¼ M2

A and has an opposite sign
compared to the normal one. Thus, it is a ghost field (with
the associated problems of instability and nonunitarity
mentioned in the previous section). The Lagrangian be-
comes

L ¼ � 1

4
ðF��F

�� � ~F��
~F��Þ þ cF��

~F�� þM2
A

2
~Aa

~Aa:

(3)

We have added a coupling term, with coupling constant c,
in order to allow the energy density to be able to flow from
the normal field to the Lee-Wick field. Since the Lee-Wick
sector is not observed in experiments today, we choose the
two fields to be weakly coupled. In the case when the
coupling constant is equal to zero, MA is the mass of the
L-W gauge field.
Note that the Uð1Þ gauge invariance of electromagne-

tism is broken by the addition of the Lee-Wick sector. In
addition to the problem of ghosts, this is another serious
potential problem for the model which we are currently
investigating. Given that gauge invariance is violated, we
need to justify our choice of the coupling between the two
fields. We have used gauge invariance and power counting
renormalizability to pick out the term we have added to the
Lagrangian in order to describe the coupling. If the entire
Lagrangian were gauge-invariant, this would clearly be the
correct procedure. In the presence of a symmetry breaking
term which is very small (for large values of MA) we can
use gauge invariance of the low energy terms in the action
to justify neglecting small symmetry breaking coupling
terms if we are interested in energy transfer between the
two fields which should be operational already at low
energies.
As our initial conditions in a contracting universe, we

imagine that the usual radiation field dominates the energy-
momentum tensor. This implies that we must set the initial

amplitude of ~A� to be very small compared to that of the

regular gauge field A�. In this case, then if MA is large

enough compared to the experimental energy scale, we
would not expect to see the ghost radiation field in
experiments.
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The energy-momentum tensor following from (3) is

T�� ¼ � 1

4
g��ðF��F

�� � ~F��
~F�� � 4cF��

~F��Þ

þ F�
�F�� � ~F�

� ~F�� þ 1

2
g��MA

2 ~Aa
~Aa

�M2
A
~A�

~A� � 4cF��
~F�
� (4)

and its trace is, contrary to the case of pure radiation,
nonzero:

T�
� ¼ M2

A
~Aa

~Aa: (5)

Using the Friedmann metric given by (16), the energy
density is equal to

T00 ¼ 1

4
ðF2 � ~F2Þ � cF��

~F�� þ F0
�F0� � ~F0

� ~F0�

�M2
A

� ~A2

2
þ ~A0

2

�
� 4cF0�

~F�
0 : (6)

We can split this into three different terms: the contribution
of normal radiation,

�A ¼ 1

4
ðF2 þ F0

�F0�Þ; (7)

the contribution from Lee-Wick radiation,

� ~A ¼ � 1

4
ð ~F2 þ ~F0

� ~F0�Þ �M2
A

� ~A2

2
þ ~A0

2

�
; (8)

and the term coming from the mixing between the two
fields,

�A� ~A ¼ �cðF��
~F�� þ 4F0�

~F�
0 Þ: (9)

The equation of state is like that of radiation but with an
additional term proportional to the mass of the Lee-Wick
gauge field:

w � p

�
¼ �

3�
þ T�

�

3�
¼ 1

3
þM2

A
~Aa

~Aa

3T00

: (10)

We note that this expression is valid only when the total
energy density is nonzero, and thus it would not be valid at
the bouncing point if there were a bounce.

We can actually define three different equation of state
parameters, one for each type of energy:

wA ¼ wA� ~A ¼ 1

3
and w ~A ¼ 1

3
þM2

A
~Aa

~Aa

� ~A

; (11)

the last of which is nonconstant in time. The equation of
state parameter for the coupling term is the same as the one
for normal radiation since the trace of the coupling energy-
momentum tensor vanishes.

Our goal is to see under which conditions the above
matter Lagrangian leads to a cosmological bounce. Wewill
initially turn off the coupling between the two fields (i.e.
set c ¼ 0), derive the solutions of the equations of motion

for both fields, and study what scaling with the cosmologi-
cal scale factor aðtÞ these solutions imply for the three
contributions to the energy density discussed above. We
find that—unlike what happens for the scalar field Lee-
Wick model of [26]—there is no mechanism which leads
to a faster increase in the energy density of the Lee-Wick
partner field than that of the original radiation field. Thus, a
bounce can only occur if there is a mechanism which
drains energy from the original gauge field sector to the
Lee-Wick partner field. It is for this reason that we have
introduced a direct coupling term between the two fields in
our Lagrangian. We will then study the effects of the
coupling between the two fields, working in Fourier space
and making use of the Green function method. We find that
the sign of the energy transfer depends not only on the sign
of the coupling coefficient c, but also on the phases of the
oscillations of the two fields. Averaging over the phases,
we find no net energy transfer, and hence there can be no
cosmological bounce.
As initial conditions we choose a state in the contracting

phase in which the regular radiation field is in thermal
equilibrium at some initial time ti. Since we want to start
with a state which looks like the time reflection of the state
we are currently in, we assume that the energy density in
~A� is initially subdominant. We, however, do assume that
~A� has excitations for modes with wave-number compa-

rable to the initial temperature.
In the absence of coupling between the two fields, the

distribution of A� would remain thermal, with a tempera-

ture T which blueshifts as the universe contracts. The
corresponding energy density would scale as a�4. The
presence of coupling will lead to a departure from thermal
equilibrium. We will assume, however, that aðtÞ continues
to scale like

ffiffi
t

p
, the scale factor of radiation. If there were a

bounce, this approximation would fail at some point suffi-
ciently close to the bounce time.

IV. EQUATIONS OF MOTION

The equations of motion obtained from varying the

Lagrangian with respect to A� and ~A� are

@�ðF�� � 2c ~F��Þ þ 3HðF0� � 2c ~F0�Þ ¼ 0 (12)

�M2
A
~A� þ @�ð ~F�� þ 2cF��Þ þ 3Hð ~F0� þ 2cF0�Þ ¼ 0:

(13)

Combining them, we find that the L-W field will act as a
source term for the normal field:

@�F
�� þ 3HF0� ¼ 2cM2

A

1þ 4c2
~A� (14)

but that the L-W field is decoupled from the normal one
and therefore only depends on the initial conditions:
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@� ~F�� þ 3H ~F0� � M2
A

1þ 4c2
~A� ¼ 0: (15)

From this last equation, we can also read off the new mass
which the Lee-Wick partner field obtains in the presence of

coupling: M0
A ¼ MAffiffiffiffiffiffiffiffiffiffi

1þ4c2
p , which is about the same as MA at

weak coupling. We can notice that at very strong coupling,
the L-W gauge field becomes massless and therefore would
evolve like a normal photon.

We will consider a homogeneous and isotropic universe
with metric

ds2 ¼ �dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; (16)

where t is physical time, x, y and z are the three spatial
comoving coordinates, and we have for notational simplic-
ity assumed that the universe is spatially flat.

Since the equations of motion are linear, we can work in
Fourier space, i.e. with plane wave solutions. There will be
no coupling between different plane waves. For simplicity,
we focus on waves propagating along the z-axis with the
same wave number, k, for the Lee-Wick and the normal
gauge field. We work in the real basis of Fourier modes
cosðkzÞ and sinðkzÞ.

Without loss of generality we can restrict attention to
one polarization modewhich we take to be the electric field
in the x direction and the magnetic field in the y direction.
In this case, the only nonzero components of the field
strength tensors are F01, F13, ~F01, and ~F13. Using the

temporal gauge where ~A0 ¼ A0 ¼ 0, we find that only
the first component of the gauge fields are nonzero, and
we can make the ansatz

A1ðk; tÞ ¼ fðtÞ cosðkzÞ and ~A1ðk; tÞ ¼ gðtÞ cosðkzÞ
(17)

or equivalently

A1ðk; tÞ ¼ aðtÞ�2fðtÞ cosðkzÞ and

~A1ðk; tÞ ¼ aðtÞ�2gðtÞ cosðkzÞ:
(18)

From (14) and (15), we obtain two linear second order
differential equations with a damping term for the coeffi-
cient functions fðtÞ and gðtÞ:

€fðtÞ þH _fðtÞ þ
�

k

aðtÞ
�
2
fðtÞ ¼ � 2c

1þ 4c2
M2

AgðtÞ (19)

€gðtÞ þH _gðtÞ þ
��

k

aðtÞ
�
2 þ M2

A

1þ 4c2

�
gðtÞ ¼ 0: (20)

For k
a � MAffiffiffiffiffiffiffiffiffiffi

1þ4c2
p , the L-W field behaves as a harmonic

oscillator with angular frequency MAffiffiffiffiffiffiffiffiffiffi
1þ4c2

p . As a consequence

of the cosmological dynamics the oscillator undergoes
damping (in an expanding universe) or antidamping (in
the case of interest to us, that of a contracting universe).
The regular radiation field satisfies the equation of a driven

oscillator, again subject to cosmological damping or anti-
damping. Notice that (19) has a particular solution fpðtÞ ¼
2cgðtÞ. The driving term can lead to energy transfer be-
tween the regular radiation field and its L-W partner. In the
following we wish to study if the energy transfer is able to
drain enough energy from the regular radiation field to
enable a bounce to occur.
To solve these equations for any H(t), it is easier to use

the conformal time � ¼ R
dt
a , and to make things clearer,

we introduce new functions u and v such that uð�Þ ¼ fð�Þ
and vð�Þ ¼ gð�Þ. Equations (19) and (20) can thus be
rewritten as

u00ð�Þ þ k2uð�Þ ¼ �aðtÞ2 2c

1þ 4c2
M2

Avð�Þ (21)

v00ð�Þ þ
�
k2 þ aðtÞ2 M2

A

1þ 4c2

�
vð�Þ ¼ 0; (22)

where 0 denotes the derivative with respect to �. For a
radiation-dominated universe, we have að�Þ ¼ �.
From (21) we see that in the absence of coupling, we get

simple oscillations in conformal time with frequency k for
the normal gauge field. For the L-W field we get oscilla-
tions in conformal time, with a time dependant frequency

~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ aðtÞ2 M2

A

1þ4c2

q
. In physical time these correspond to

fðtÞ ¼ C cosð2 ffiffi
t

p
kþ�Þ (23)

gðtÞ ¼ �

t1=4
WhM

��ik2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p

2MA

;
1

4
;

2iMAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�

þ 	

t1=4
WhW

��ik2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p

2MA

;
1

4
;

2iMAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�

(24)

where WhM and WhW are the Whittaker functions (see
e.g. [39]), � and 	 are constants characterizing the phase
of gðtÞ and � is the phase of fðtÞ.
Before discussing the solutions of these equations, we

must specify our initial conditions. We consider a contract-
ing phase dominated by regular radiation. Since we have in
mind an initial state which looks like the time reverse of a
state in the early radiation phase of our expanding cosmol-
ogy, we will start at some time ti in thermal equilibrium
with a temperature much smaller than the Planck scale.
The occupation numbers of the Fourier modes of the
regular radiation field are hence given by the thermal
distribution, with the peak wave number being set by the
temperature and hence much larger than the Hubble rate.
We are thus considering modes inside the Hubble radius.
Since we are interested in studying the possibility of ob-
taining a bounce, we will work at temperature higher than
the mass MA.
We assume that the energy density of the L-W radiation

field is subdominant at the initial time ti. The most con-
servative assumption is that the distribution of wave num-
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bers is also peaked at the initial temperature. These as-
sumptions will allow us to pick out the limiting cases of the
solutions of the above equations (to be discussed in the
following section) which are relevant for us.

V. SOLUTIONS

A. Solutions for the Lee-Wick field

Depending on whether the physical wave-number is
larger or smaller than the mass of the L-W gauge field,

M0
A ¼ MAffiffiffiffiffiffiffiffiffiffi

1þ4c2
p , we get different behaviors for the solution g.

Since we are interested in exploring the solutions at high
densities, close to the hypothetical bounce point, we will
assume that the temperature is larger than the mass L-W
field. We will focus on wave numbers close to the peak of
the thermal distribution function, and hence k=a >M0

A. In
this limit, the solutions for the L-W gauge field will simply
be oscillating in conformal time with frequency k:

gðtÞ ¼ ~C cosð�kÞ ¼ ~C cosð2 ffiffi
t

p
kÞ; (25)

where we have used the scaling of aðtÞ of a radiation-
dominated universe to express the conformal time � in

terms of physical time t, and where ~C is a constant
amplitude.

The normal gauge field satisfies a harmonic oscillator
equation with a driving term with which the L-W field acts
on it. The strength of the driving term is proportional to the
coupling constant c in the Lagrangian. The general solu-
tion of the inhomogeneous equation for u is the general
solution of the homogeneous equation plus a particular
solution of the inhomogeneous equation whose amplitude
is proportional to c and which can be determined using the
Green function method (see later). The homogeneous so-
lution for u is oscillating with frequency k.

For large wavelength, i.e. k
� � M0

A, the solutions for g

behave like a combination of Bessel functions:

gðtÞ ¼ �t1=4J

�
1

4
;

MAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�
þ 	t1=4Y

�
1

4
;

MAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�
;

(26)

where � and 	 are constants that can be determined using
the initial conditions and J and Y are, respectively, the
Bessel functions of order 1

4 of the first and the second kind.

A more physical way of understanding the behavior is to
rewrite the solutions in the asymptotic limits. For large
values of t and for M0

At � j 1
16 � 1j, the L-W gauge field

oscillates with a frequency corresponding to the mass of
the L-W gauge field, M0

A. Indeed, in this case,

J

�
1

4
;M0

At

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2


M0
At

s
cos

�
M0

At�
3


8

�
(27)

Y

�
1

4
;M0

At

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2


M0
At

s
sin

�
M0

At�
3


8

�
: (28)

Therefore, in this limit the L-W gauge field scales like

gðtÞ / t�1=4 � aðtÞ�1=2 when we are in a radiation-
dominated period, which we are during a certain time since
the initial state is dominated by regular radiation.
To better understand the behavior of the solutions in the

small k limit and at large times, we can rewrite the solution
using powers of the scale factor. The two independent
solutions are

gðtÞ � aðtÞ�ð1=2Þe�
R

1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðtÞ2� 4M2

A

1þ4c2

q
dt
; (29)

though this expression is valid only when the square root
term in the exponential is approximately constant.

Choosing the initial time ti such that
M2

A

1þ4c2
� HðtiÞ2, we

see that this inequality stays valid only a finite period of
time since HðtiÞ increases with time in a radiation phase of

a contracting universe. We immediately get gðtÞ /
aðtÞ�1=2 cosð MAffiffiffiffiffiffiffiffiffiffi

1þ4c2
p tÞ which is in agreement with the be-

havior we found using asymptotic values of the Bessel
functions.
In the opposite case, when t is close to 0 (and we are still

considering large wave numbers), the asymptotic forms of
the Bessel functions of first and second kind scale as a
power of t:

t1=4J

�
1

4
;

MAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�
¼

25=4ð MAffiffiffiffiffiffiffiffiffiffi
1þ4c2

p Þ1=4�ð34Þ
ffiffi
t

p



þ oðt2Þ

(30)

t1=4Y

�
1

4
;

MAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

p
�
¼ �23=4

ð MAffiffiffiffiffiffiffiffiffiffi
1þ4c2

p Þ1=4�ð34Þ

þ
23=4ð MAffiffiffiffiffiffiffiffiffiffi

1þ4c2
p Þ1=4�ð34Þ

ffiffi
t

p




þ 1

3

23=4M2
At

2

ð MAffiffiffiffiffiffiffiffiffiffi
1þ4c2

p Þ1=4ð1þ 4c2Þ�ð34Þ
þOðt2Þ: (31)

If we choose the amplitude of the two Bessel functions to
be equal and opposite in (26), we get a cancellation of the
square root term in gðtÞ and thus the L-W gauge field scales
as gðtÞ � C3 � C4t

2 þ oðt2Þ. In the general case we get
gðtÞ � C3 þ C5

ffiffi
t

p
where C3 and C5 are constants.

Note that the closer we get to t ¼ 0, less and less modes

will satisfy the condition k � j�j MAffiffiffiffiffiffiffiffiffiffi
1þ4c2

p . Instead, they will

evolve into the large wave-number regime discussed at the
beginning of this subsection. They will oscillate and be-
have exactly as normal radiation.
We note that since g(t) is just oscillating, its effect on the

normal field will decrease with time in a contracting phase
as the source will scale as aðtÞ2 � t in a radiation-
dominated era and time runs from �1 to 0 in the con-
tracting phase.
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B. Scaling of the energy densities

The energy densities for each type of radiation can be
rewritten in terms of f, g and their derivatives for each
mode k by averaging < cosðkzÞ2> over the z-direction:

�Aðt; kÞ ¼ 1

4a2

��
k

a

�
2
fðtÞ2 þ _fðtÞ2

�
(32)

� ~Aðt; kÞ ¼ � 1

4a2

���
k

a

�
2 þM2

A

2

�
gðtÞ2 þ _gðtÞ2

�
(33)

�A� ~Aðt; kÞ ¼ � c

a2

��
k

a

�
2
fðtÞgðtÞ þ _fðtÞ _gðtÞ

�
: (34)

Rewriting this in term of conformal time, �, we get

�Að�; kÞ ¼ 1

4að�Þ4 ½u
0ð�Þ2 þ k2uð�Þ2� (35)

� ~Að�; kÞ ¼
�1

4að�Þ4
�
v0ð�Þ2 þ

�
k2 þM2

A

2
að�Þ2

�
vð�Þ2

�
(36)

�A� ~Að�; kÞ ¼
�c

að�Þ4 ½u
0ð�Þv0ð�Þ þ k2uð�Þvð�Þ�: (37)

In the absence of coupling between the two fields the
solutions for u correspond to undamped oscillations.
Hence, the energy density of the regular radiation field
scales as a�4 as we know it must. The contribution of all
short wavelength modes to the L-W energy density also
scales as a�4 since for these modes v is oscillating with
constant amplitude. The coefficient is negative as expected
for a ghost field. The third energy density, that due to
interactions, also scales as a�4 for short wavelengths.

The contribution of long wavelength modes to the en-
ergy density of the L-W field and to the interaction energy
density scale as a�p with a power p which is smaller than
4. For large times, the power p is 3 in the energy density for
the L-W field, i.e. a scaling like that of nonrelativistic
matter. Close to t ¼ 0 the power changes to p ¼ 2. This
can be seen most clearly from (33) and from the scalings of
gðtÞ derived earlier.

Hence, we conclude that in the absence of coupling
between the two fields (i.e. for c ¼ 0), the energy density
in the regular radiation field will dominate throughout the
contracting phase if it initially dominates, and hence no
cosmological bounce will occur. In fact, for temperatures
T <M0

A, modes of v with values of k close to the peak of
the thermal distribution scale as matter. Hence, the ratio of
the energy density in the L-W field to the energy density in
the regular radiation field decreases which renders it even
more difficult to obtain a bounce. Once T >M0

A, the
energy densities in both fields scale as radiation.

C. Solution for the regular radiation field

We now consider the evolution of the regular radiation
field in the presence of a nonvanishing coupling with the
L-W radiation field. Our starting point is the set of equa-
tions of motion (21) and (22). From (22) it follows that the
ghost field v evolves independently. In turn, it influences
the evolution of the regular radiation field u as a source
term. We expect the coupling constant c to be small.
First, we show that the correction to the energy density

in the presence of nonvanishing coupling is very small,
namely, of order c2. We observe that if we turn on the
coupling, the following is a solution of (21):

uð�Þc�0 ¼ uð�Þc¼0 þ 2cvð�Þ: (38)

Inserting this into �Aðk; �Þ [see (35)] yields

�Ac�0 ¼ �Ac¼0 � 4c2
�
� ~A þM2

A

4
að�Þ�2vð�Þ2

�

þ c

að�Þ4 ½u
0ð�Þv0ð�Þ þ k2uð�Þvð�Þ�: (39)

Note that � ~A and v stay the same when we turn the
coupling on. We also have a change in the expression for
the coupling term in the energy density since it also de-
pends on u:

�A� ~Ac�0 ¼ � c

að�Þ4 ½u
0ð�Þv0ð�Þ þ k2uð�Þvð�Þ�

� 2c2

að�Þ4 ½v
0ð�Þ2 þ k2vð�Þ2�: (40)

The total energy density when the coupling is turned on is

�tot c�0 ¼ �A c�0 þ � ~A þ �A� ~A

¼ �A c¼0 þ ð1þ 4c2Þ� ~A � c2M2
Aað�Þ�2vð�Þ2

(41)

This looks very much like the total energy we had before
adding any coupling (�tot c¼0 ¼ �A c¼0 þ �A� ~A) but with
two correction terms of order c2. Both correction terms
appear to decrease the total energy density (recall that � ~A

is negative). The second correction term [the last term in
(41)], however, increases less fast in a contracting back-
ground than the other terms, and the first correction term
corresponds to a small time-independent renormalization
of the energy density in the L-W field. Thus, it appears that
if the energy density of the regular radiation field domi-
nates initially, then it will forever and no bounce will occur.
In the following we will confirm this conclusion by means
of an analysis which compares solutions with and without
coupling with the same initial conditions.
The evolution of u in the presence of the coupling with v

can be determined using the Green function method. The
general solution uð�Þ of (21) is the sum of the solution
u0ð�Þ of the homogeneous equation which solves the same
initial conditions as u and the particular solution �uð�Þ
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with vanishing initial conditions. The particular solution is
given by

�uð�Þ ¼ u1ð�Þ
Z �

�I

d�0�ð�0Þu2ð�0Þsð�0Þ

� u2ð�Þ
Z �

�I

d�0�ð�0Þu1ð�0Þsð�0Þ; (42)

where u1 and u2 are two independent solutions of the
homogeneous equation, �I is the initial conformal time,
�ð�Þ is the Wronskian

�ð�Þ ¼ ðu01u2 � u02u1Þ�1; (43)

and sð�Þ is the source inhomogeneity

sð�Þ ¼ �a2
2c

1þ 4c2
M2

Avð�Þ: (44)

In our case, the solutions of the homogeneous equation are
u1ð�Þ ¼ cosðk�Þ and u2ð�Þ ¼ sinðk�Þ and the Wronskian
is �ð�Þ ¼ �1=k.

Since it is less hard to imagine a bounce once the energy
densities in both fields scale as radiation, and since to study
the possibility of a bounce it is important to investigate the
dynamics at very high temperatures when the bulk of the
Fourier modes of both fields scale as radiation, we will
consider in the following Fourier modes for which v is
oscillating.

We will now show that the sign of the energy transfer
between the two fields depends on the relative phase
between the oscillations of u0ð�Þ and vð�Þ. We are inter-
ested in conformal time scales long compared to the oscil-
lation time k�1 but short compared to the cosmological
time. Hence, we can approximate the scale factor in (42) by
a constant. A simple calculation then shows that if we
choose phases for which vð�Þ ¼ v0 sinðk�Þ and u0 ¼
A cosðk�Þ then

uð�Þ ’
�
A� cv0

1þ 4c2
M2

A

4k
ð�� �IÞ

�
cosðk�Þ: (45)

For a coupling constant c > 0 this choice of phase hence
leads to draining of energy density from the regular radia-
tion field. On the other hand, the phase choice vð�Þ ¼
v0 cosðk�Þ and u0ð�Þ ¼ A sinðk�Þ leads to

uð�Þ ’
�
Aþ cv0

1þ 4c2
M2

A

4k
ð�� �IÞ

�
sinðk�Þ (46)

and hence to a relative increase in the energy density of the
regular radiation field.

We need to consider the full phase space of Fourier
modes. Even if we only consider modes with fixed value
of k given by the peak of the thermal distribution, we must
sum over the different angles. Since there is no reason why
the phases for different Fourier modes should be the same,
we must take the expectation value of the energy transfer
averaged over all possible choices of phases. This average

obviously vanishes. Hence, we conclude that without un-
natural fine tuning of phases it is not possible to obtain the
required draining of the energy density from u to v.

VI. CONCLUSIONS AND DISCUSSION

If the scalar field sector of the Lee-Wick standard model
is coupled to Einstein gravity, then—in the absence of
anisotropic stress—it is known that a bouncing cosmology
can be realized. Since the energy density in radiation
increases at a faster rate in a contracting universe compared
to that of nonrelativistic matter, the cosmological bounce is
unstable to the addition of radiation to the initial conditions
early in the contracting phase. However, one may entertain
the hope that the presence of the ghost radiation which is
present in the Lee-Wick model might allow a bounce to
occur in analogy to how the presence of ghost scalar field
matter is responsible for the bounce in the scalar field Lee-
Wick model.
For a Lee-Wick radiation bounce to occur, either the

energy density of the ghost radiation would have to in-
crease faster intrinsically than that of regular radiation, or
there would have to be a mechanism which drains energy
density from the regular radiation sector to the ghost sector.
We have shown that neither happens, unless the initial
phases of regular and ghost radiation are tuned in a very
special way. Thus, we have shown that in the Lee-Wick
standard model, the presence of radiation prevents a cos-
mological bounce from occurring.
The methods we have used in this paper could be applied

to other proposals to obtain a bouncing cosmology by
modifying the matter sector. Rather generically, one needs
to worry whether any given proposal is robust towards the
addition of radiative matter. The stability can be studied
using the methods we have developed. Whether a channel
to effectively drain energy density from radiation to ghost
matter will exist may depend rather sensitively on the
specific model. Here, we have shown that in the Lee-
Wick standard model this does not happen. The same
Green function method could be used to study the energy
transfer in other models.
Cosmologies in which the bounce is induced by extra

terms in the gravitational sector such as in the ‘‘nonsingu-
lar universe construction’’ [18], the model of [19] or the
Horava-Lifshitz bounce [20] are more likely to be robust
against the addition of matter. Specifically, the construc-
tions of [18,19] are based on theories which are asymptoti-
cally free in the sense that at high curvatures the coupling
of any kind of matter to gravity goes to zero. This means
that a bounce will not be affected by adding radiative
matter. In Horava-Lifshitz gravity, there are higher spatial
derivative gravitational terms which act as ghost matter
scaling as a�4 and a�6. The latter are present if we go
beyond the ‘‘detailed balance case’’ and we allow for
spatial curvature. In this case, once again radiative matter
can be added without preventing a cosmological bounce.
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