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It seems generic to have vacua with lower dimensionality than ours. We consider the possibility that the

observable universe originated in a transition from one of these vacua. Such a universe has anisotropic

spatial curvature. This may be directly observable through its late-time effects on the CMB if the last

period of slow-roll inflation was not too long. These affect the entire sky, leading to correlations which

persist up to the highest CMB multipoles, thus allowing a conclusive detection above cosmic variance.

Further, this anisotropic curvature causes different dimensions to expand at different rates. This leads to

other potentially observable signals including a quadrupolar anisotropy in the CMB which limits the size

of the curvature. Conversely, if isotropic curvature is observed it may be evidence that our parent vacuum

was at least 3þ 1 dimensional. Such signals could reveal our history of decompactification, providing

evidence for the existence of vastly different vacua.
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I. INTRODUCTION AND SUMMARY

Our current understanding of cosmology and high en-
ergy physics leaves many questions unanswered. One of
the most fundamental of these questions is why our uni-
verse has three large dimensions. This may be tied to the
more general question of the overall shape and structure of
the universe. In fact, it is possible that our universe was not
always three dimensional or that other places outside of our
observable universe have a different dimensionality. There
are surely long-lived vacua where one or more of our three
dimensions are compactified, since this does not even rely
on the presence of extra dimensions and indeed happens in
the standard model [1]. Eternal inflation can provide a
means to populate these vacua, and naturally leads to a
highly inhomogeneous universe on very long length scales.
Further, it seems likely that these lower-dimensional vacua
are at least as numerous as three-dimensional ones since
there are generally more ways to compactify a greater
number of spatial dimensions. If we do indeed have a
huge landscape of vacua (e.g. [2]) then it seems all the
more reasonable that there should be vacua of all different
dimensionalities and transitions between them (see e.g. [3–
7]). We will ignore the subtle issues of the likelihood of
populating those vacua (the ‘‘measure problem’’). Instead
we will focus on the possibility of observing such regions
of lower dimensionality since surely such a discovery
would have a tremendous effect on our understanding of
cosmology and fundamental physics.

Our compact dimensions are generically unstable to
decompactification [8]. Thus it seems possible that the
universe began with all the dimensions compact (the start-
ing point in [9,10] for example). In this picture our current
universe is one step in the chain towards decompactifying
all dimensions. Of course, eternal inflation may lead to a

very complicated history of populating different vacua, but
in any case, it seems reasonable to consider the possibility
that we came from a lower-dimensional ‘‘ancestor’’ vac-
uum. We will assume that prior to our last period of slow-
roll inflation our patch of the universe was born in a
transition from a lower-dimensional vacuum.
Our universe then underwent the normal period of slow-

roll inflation. For our signals to be observable we will
assume that there were not too many more than the mini-
mal number of efolds of inflation necessary to explain the
CMB sky. This may be reasonable because this is very near
a catastrophic boundary: large scale structures such as
galaxies would not form if inflation did not last long
enough to dilute curvature sufficiently [11–13]. Since
achieving slow-roll inflation is difficult and the longer it
lasts the more tuned the potential often is, there may be a
pressure to be close to this lower bound on the length of
inflation. We will actually use the energy density in curva-
ture, �k, in place of the number of efolds of inflation. The
observational bound requires that �k & 10�2 today (this
corresponds to �62 efolds for high scale inflation). The
existence of galaxies requires �k & 1 today (correspond-
ing to �59:5 efolds if we use the bound from [11]). Thus
�k may be close to the observational bound today. Other,
similar arguments have also been made for a relatively
large curvature today [14].
Most signals of the presence of other vacua, e.g. bubble

collisions [15–17], also rely on this assumption. These
signals have also mostly been explored assuming that the
other vacua are all 3þ 1 dimensional. While an important
first step, this seems like a serious oversimplification. We
find interesting differences in the case that our parent
vacuum was lower dimensional. In particular, our universe
can be anisotropic, with different spatial curvatures in the
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different directions. This anisotropic curvature dilutes ex-
ponentially during inflation, making the universe appear
very isotropic at early times. However, this curvature (�k)
grows at late times, leading to several observable effects.
This anisotropic curvature sources an anisotropy in the
Hubble expansion rate, since the different dimensions ex-
pand at different rates. The most interesting signal is an
anisotropy in the normal CMB curvature measurement.
The angular size of a ‘‘standard ruler’’ now appears to
depend on the orientation of that ruler. In the CMB this
shows up as unexpected correlations between modes of all
angular sizes. Unlike the normal curvature measurement,
this anisotropic curvature measurement is not degenerate
with the scale factor expansion history and is thus easier to
measure. This anistropic curvature also leads to a signifi-
cant quadrupolar anisotropy in the CMB which constrains
the size of �k. There are possibly other observables from
21 cm measurements, direct measurements of the Hubble
expansion (e.g. from supernovae), or from searches look-
ing for nontrivial topology of the universe.

II. THE ANISOTROPIC UNIVERSE

In this section we will compute the evolution of a uni-
verse that began with one or two of our three spatial
dimensions compactified.

A. The initial transition

We will consider the possibility that our universe began
in a lower-dimensional vacuum. In particular we assume
that just prior to our recent period of slow-roll inflation, the
currently observable part of the universe (our ‘‘pocket
universe’’ in landscape terminology) was in a vacuum
with only one or two large, uncompactified spatial dimen-
sions. The other dimensions, including the one or two that
will eventually become part of our three large spatial
dimensions, are compactified and stable. The universe
then tunnels, nucleating a bubble of our vacuum in which
three spatial dimensions are uncompactified and thus free
to grow with the cosmological expansion. We will consider
starting from either a 1þ 1- or 2þ 1-dimensional vacuum.
We will not consider the 0þ 1-dimensional case in great
detail, as it is significantly different [1]. However, it is
possible that it will have the same type of signatures as
we discuss for the other two cases, depending on the details
of the compactification manifold.

Consider first the case that the universe is initially 2þ
1-dimensional, and in the tunneling event one of the pre-
viously compactified spatial dimensions becomes decom-
pactified, losing whatever forces were constraining it and
becoming free to grow (in the tunneling event it may also
grow directly). We can think of this as a radion for that
dimension which is initially trapped in a local minimum,
tunneling to a section of its potential where it is free to roll.
Of course, the tunneling event may actually be due to a
change in the fluxes wrapping the compact dimension, or in

general to a change in whatever is stabilizing that dimen-
sion. The exact nature of this tunneling will not concern us
since the further evolution of the universe is relatively
insensitive to this. In all cases a bubble of the new vacuum
is formed in the original 2þ 1-dimensional space. The
bubble wall (which is topologically an S1 not an S2)
expands outward. The interior of this Coleman-
De Luccia bubble [18] is an infinite, open universe with
negative spatial curvature (see e.g. [19] for this bubble in
arbitrary dimensionality space-times). But this negative
spatial curvature is only in two dimensions. The third,
previously small, dimension may be topologically an S1

or an interval, but in any case will not have spatial curva-
ture. Thus the metric after the tunneling inside the bubble is

ds2 ¼ dt2 � aðtÞ2
�

dr2

1� kr2
þ r2d�2

�
� bðtÞ2dz2 (1)

where z is the coordinate of the previously compactified
dimension and k ¼ �1 for negative spatial curvature in the
r-� plane. This is known as a Bianchi III spactime.
If instead the universe is initially 1þ 1-dimensional and

two spatial dimensions decompactify in the transition then
the situation will be reversed. The single originally large
dimension (now labeled with coordinate z) will be flat but
the other two dimensions may have curvature (either posi-
tive or negative). For example, if they were compactified
into an S2 they would have positive curvature and so would
be described by Eq. (1) with k ¼ þ1, known as a
Kantowski-Sachs space-time. Or if those two dimensions
were a compact hyperbolic manifold, for example, they
would be negatively curved with k ¼ �1. In fact, generi-
cally compactifications do have curvature in the extra
dimensions (see for example [20]). Of course it is also
possible that the two compact dimensions had zero spatial
curvature. We will not consider this special case in great
detail since it does not lead to most of our observable
signals.

B. Evolution of the anisotropic universe

We will thus assume that our universe begins with
anisotropic spatial curvature, with metric as in Eq. (1).
Immediately after the tunneling event the universe is cur-
vature dominated, though in this case of course the curva-
ture is only in the r-� plane. We assume the universe then
goes through the usual period of slow-roll inflation, with a
low number of efolds & 70 near the curvature bound.
The equations of motion [the ‘‘FRW’’ (Friedmann-

Robertson-Walker) equations] are

_a2

a2
þ 2

_a

a

_b

b
þ k

a2
¼ 8�G�; (2)

€a

a
þ

€b

b
þ _a

a

_b

b
¼ �8�Gpr; (3)
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2
€a

a
þ _a2

a2
þ k

a2
¼ �8�Gpz; (4)

where the dot _ denotes d
dt , � is the energy density, and pr

and pz are the pressures in the r and z direction, i.e. the rr
and zz components of the stress tensor T

�
� . These can be

rewritten in terms of the two Hubble parameters Ha � _a
a

and Hb � _b
b as

H2
a þ 2HaHb þ k

a2
¼ 8�G�; (5)

_Ha þH2
a þ _Hb þH2

b þHaHb ¼ �8�Gpr; (6)

2 _Ha þ 3H2
a þ k

a2
¼ �8�Gpz: (7)

At least in the case of tunneling from 2þ 1 to 3þ 1
dimensions, immediately after the tunneling event the
universe is curvature dominated. In this case Eq. (4) can
be solved for a directly. Since this is just the usual isotropic
FRW equation, the solution is as usual aðtÞ � t, where t ¼
0 is the bubble wall. Actually, since we will assume the
universe transitions to a period of slow-roll inflation after
curvature dominance, we will assume there is a subdomi-
nant vacuum energy during the period of curvature domi-
nance. This then gives a perturbutive solution accurate up
to linear order in the vacuum energy � of aðtÞ � tð1þ
4�
9 G�t2Þ. Then we can solve Eq. (2) perturbatively for bðtÞ.
There are several possible solutions but these are reduced
because we will assume that immediately after the tunnel-

ing event _b ¼ 0. If we imagine the transition as a radion
field tunneling through a potential barrier then we know
that the radion generically starts from rest after the tunnel-
ing. With this boundary condition the solution to linear
order in the vacuum energy is bðtÞ � bið1þ 4�

3 G�t2Þ
where bi is the initial value of b. Since the period of
curvature dominance ends when t2G�� 1, we see that
roughly a expands linearly while b remains fixed during
this period. Thus the different expansion rates Ha and Hb

remain very different during this period. Ha is large while
Hb � 0. The flat dimension will not begin growing rapidly
until inflation begins. At that point though, it will be driven
rapidly towards the same expansion rate as the other di-
mensions, Ha � Hb, as we will now show.

Since our observed universe is approximately isotropic,
we will only need to solve these equations in the limit of
small �H � Ha �Hb. We will always work to linear
order in �H. Subtracting Eq. (6) and (7) gives

d

dt
�H þ 3Ha�H þ k

a2
¼ 8�Gðpr � pzÞ � 0: (8)

Note that we have taken the pressure to be isotropic, pr ¼
pz � p, which is approximately true in all cases of interest
to us. This is clearly true during inflation. During radiation
dominance (RD) the radiation is in thermal equilibrium.

Since the reactions keeping it in equilibrium have rates
much higher than the Hubble scales during this time, the
pressure is kept locally isotropic. During matter dominance
(MD) the pressure is zero to leading order. The subleading
order piece due to the photons will also remain isotropic
until after decoupling since the photons remain in equilib-
rium until this time. After decoupling the energy density in
radiation is quite small compared to the matter density.
Further, this small pressure only develops anisotropy due
to the differential expansion (and hence red shifting) be-
tween the r and z directions. Thus the anisotropy in pres-
sure is proportional to both �H and the small overall size
of the pressure and is therefore negligible for us.
The anisotropic spatial curvature in the metric (1) is the

only effect breaking isotropy in this universe and thus the
only reason for a differential expansion rate�H. In fact, as
we will see shortly, the differential expansion �H is pro-
portional to�k, the curvature energy density, defined to be

�k �
k
a2

H2
a

: (9)

Since�k grows during RD and MD and it is � 1 today, it
was quite small during the entire history of the universe
after the period of curvature dominance (to which we will
return later). So we will treat both �H and�k as our small
parameters and work to linear order in each.
If we combine Eqs. (7) and (8) we find an equation for

Hb which is true in the limit of small �H

2 _Hb þ 3H2
b �

k

a2
¼ �8�Gp: (10)

Notice that this is exactly the same as the equation for Ha

[Eq. (7)] but with the sign of the curvature term flipped.
Eqation (7) forHa is just the usual isotropic FRWequation.
Thus aðtÞ behaves exactly as it would in the normal iso-
tropic universe with a subleading curvature component and
bðtÞ behaves as if it was the scale factor in a universe with
an equal magnitude but opposite sign of curvature.
Equation (8) can be solved easily because we only need

the leading order behavior of a and Ha which are just the
usual isotropic FRW solutions as can be seen easily since
Eqs. (4) and (7) are just the usual FRW equations. Solving
Eq. (8) during the eras of interest and keeping only the
inhomogeneous solutions yields

Inflation
�H

Ha

¼ ��k; (11)

RD
�H

Ha

¼ � 1

3
�k; (12)

MD
�H

Ha

¼ � 2

5
�k: (13)

As we will show later, the homogeneous solutions all die
off as faster functions of time and are thus negligible.

OBSERVING THE DIMENSIONALITY OF OUR PARENT VACUUM PHYSICAL REVIEW D 82, 063524 (2010)

063524-3



Interestingly, this implies that �H is effectively indepen-
dent of initial conditions. At every transition some of the
homogeneous solution for �H is sourced, for example, to
make up the missing � 2

3�k when transitioning from in-

flation to RD. But this homogeneous piece dies off faster,
leaving only the inhomogeneous piece which is indepen-
dent of the initial value of �H.

To find the solutions for the scale factors aðtÞ and bðtÞ up
to linear (subleading) order in the curvature, we solve
Eqs. (2)–(4) perturbatively in �k. The leading order be-
havior comes from the dominant energy density (vacuum
energy, radiation, or matter in our three eras). We will only
need the solution during MD so we can assume pr ¼ pz ¼
0 then. Equation (4) contains no b’s so it can be solved
directly for aðtÞ. Once we have the solution for aðtÞ up to
linear order in�k we then plug in to Eq. (3) to find bðtÞ also
to linear order. The solutions during MD to linear order in
�k are

aðtÞ ¼ c0t
2=3

�
1� 9k

20c20
t2=3

�
� c0t

2=3

�
1��k

5

�
; (14)

bðtÞ ¼ c0t
2=3

�
1þ 9k

20c20
t2=3

�
� c0t

2=3

�
1þ�k

5

�
; (15)

where c0 is an arbitrary, physically meaningless constant
arising from the coordinate rescaling symmetry.

Thus this universe always has a differential expansion
rate between the z direction and the r-� directions which is
proportional to�k. The precise constant of proportionality
depends only on the era (inflation, RD, or MD) and not on
initial conditions. Further, the r-� plane expands as in the
usual isotropic FRW universe, while the z direction ex-
pands as if it was in that same universe except oppositely
curved. During an initial period of curvature dominance
the z dimension remains constant while the other two
dimensions expand, diluting curvature. During this period
the expansion rates Ha and Hb are maximally different.
Then a period of slow-roll inflation takes over. During this
period the expansion rates are driven exponentially close
together. This difference in expansion rates is largest at the
beginning of inflation, immediately after curvature domi-
nance, when �k is still large. During inflation curvature
dilutes exponentially as �k / a�2. So at the end of infla-
tion the differential expansion rate is completely negligible
�H
H � e�60. Then during RD�k and hence also�H remain

small, though growing as / a2. During MD �k and �H
continue to grow / a, finally reaching their maximal value
when the universe transitioned to vacuum energy domi-
nance around red shift�2. Since this final transition was so
recent (and the homogeneous solution for �H has not even
had much time to die off yet) we will approximate the
universe as matter dominated until today.

III. OBSERVABLES

In this section, we discuss the late-time observables of
anisotropic curvature. We begin by computing its effects
on standard rulers. These effects emerge due to the warping
of null geodesics in the anisotropic background metric.
Null geodesics along different directions are warped differ-
ently by the curvature, leading to differences in the ob-
served angular size of standard rulers in the sky. Following
this discussion, we compute the effect of anisotropic cur-
vature on the CMB. The CMB is also affected by the
warping of the null geodesics that propagate from the
surface of last scattering to the current epoch. This warping
affects the relation between the angle at which a CMB
photon is observed today and the point at which it was
emitted during recombination. In addition to this effect, the
anisotropic metric discussed in Sec. II also leads to differ-
ential Hubble expansion. This leads to an anisotropic red
shift in the universe, which causes a late-time observer
to see additional temperature anisotropies in the CMB.
We conclude the section with a discussion of additional
measurements that could be performed in upcoming
experiments.

A. Standard rulers

In this section we present a calculation of the effect on
standard rulers. While this is not a directly observable
effect itself since we have no exact standard rulers in the
sky, it does provide good intuition for the following calcu-
lation of the actual CMB observables in Sec. III B. Further,
many of the results of this section are used directly in that
calculation.
The space-times (1) considered in this paper are curved

and anisotropic. A canonical method to observe curvature
is through the measurement of the angular sizes of standard
rulers. Curvature modifies the Euclidean relationship be-
tween the measured angle and the linear size of the ruler. In
a universe with anisotropic curvature, we expect this de-
viation from Euclidean geometry to change with the angu-
lar position and orientation of the ruler.
Motivated by the use of baryon acoustic oscillations as

cosmological standard rulers, we compute the present-day
angular size of standard rulers located at the surface of last
scattering. This calculation gives intuition for the effects of
anisotropic curvature on the CMB (studied in detail in
Sec. III B). To do so, we first determine the null geodesics
that connect the surface of last scattering to a present-day
observer. The angle subtended between the two null geo-
desics that reach the end points of the standard ruler is then
the angular size of the ruler. For simplicity, we assume that
the universe was matter dominated throughout the period
between recombination and the present epoch.
We work with the metric

ds2 ¼ dt2 � aðtÞ2ðdr2 þ sinh2ðrÞd�2Þ � bðtÞ2dz2 (16)

which is produced when a 3þ 1-dimensional universe is
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created by tunneling from a 2þ 1-dimensional vacuum.
We restrict our attention to this scenario in order to facili-
tate concrete computation. However, our results can be
applied to a wide class of scenarios that lead to anisotropic
geometries. The metric (16) describes a universe where
two of the spatial dimensions [parameterized by the coor-
dinates ðr; �Þ in (16)] have negative curvature and grow
with scale factor aðtÞ. The other dimension, parameterized
by the coordinate z in (16), grows with scale factor bðtÞ.
The space-time geometry of such a universe can also be
described using the metric (1) with k ¼ �1. These metrics
are related by a coordinate transformation and they yield
identical FRW equations (2)–(4) for the scale factors aðtÞ
and bðtÞ. This setup also describes anisotropic universes
with positive curvature [Eq. (1) with k ¼ þ1]. Such a
universe is described by the metric (16) with the sinh2ðrÞ
term replaced by sin2ðrÞ. With this metric, the FRW
[Eqs. (2)–(4)] and null geodesic equations (17) have the
same parametric forms. Our calculations also apply to this
case, with the difference between the two cases being
captured by the sign of the curvature term �k.

An observer O (see Fig. 1) at the present time receives
photons from the surface of last scattering �. This photon
follows a null geodesic. In computing this null geodesic,
we can assume without loss in generality that the point O
lies at the origin of the coordinate system. With this choice,
we focus on geodesics that lie along a direction of constant
�. These geodesics contain all the information required to
describe our setup. The geodesics that connect the point O
with the surface of last scattering have zero velocity along
the � direction. The Oð2Þ symmetry in the ðr;�Þ plane
then implies that� remains constant during the subsequent
evolution of the geodesic. Using the metric (16), the null

geodesic equations that describe the photon’s trajectory
ðrðtÞ; zðtÞÞ are

€rþ _rHa

�
1þ�H

Ha

ð1� _r2aðtÞ2Þ
�
¼ 0;

€zþ _zHb

�
1��H

Hb

ð1� _z2bðtÞ2Þ
�
¼ 0;

(17)

where the dots denote derivatives with respect to t. With
the boundary condition that the null geodesic reaches O at
time t0, Eq. (17) can be solved perturbatively to leading
order in �k. The coordinates ðrP; zPÞ on � from which the
photon is emitted are

rP ¼ sin�
3t1=30

c0

�
1��k0

3

�
4

5
þ cos2�

��
;

zP ¼ cos�
3t1=30

c0

�
1��k0

3

�
� 4

5
þ cos2�

��
:

(18)

In the above expression, � is a parameter that governs the
direction in the ðr; zÞ plane from which the photon is
received atO and�k0 denotes the fractional energy density

in curvature at the present time. The physical angle �
between the photon’s trajectory and the z axis, as measured
by a local observer, is different from �, and is given by

tanð�Þ ¼
�
aðtÞ
bðtÞ

dr

dz

�
þOðHaÞ: (19)

For the geodesics computed in (18), the relation between
the parameter � and the physical angle �0 observed at O is

tanð�0Þ ¼ ð1� 2
5�k0Þ tan�: (20)

The OðHaÞ corrections in the definition (19) arise because
the coordinates ðt; r; �; zÞ used to describe the metric (16)

are not locally flat. Local coordinates ð~t; ~r; ~�; ~zÞ can be
constructed at any point ðtQ; rQ;�Q; zQÞ of the space-time.

These two sets of coordinates are related by

t ¼ tQ þ ~t� 1
2ðaðtÞ2Hað~r2 þ sinh2ðrQÞ ~�2Þ þ bðtÞ2Hb~z

2Þ;
r ¼ rQ þ ~r� 1

2ð2Ha~r~t� coshðrQÞ sinhðrQÞ ~�2Þ;
� ¼ �Q þ ~�� ~�ðHa~tþ cothðrQÞ~rÞ;
z ¼ zQ þ ~zð1�Hb~tÞ:

(21)

The coordinate transformations in (21) imply that opera-
tors constructed from global coordinates (e.g. d

dr ) differ

from the corresponding operator in the local inertial frame
(e.g. d

d~r ) by quantities �OðHa~rÞ. The difference between

these operators is suppressed by the ratio of the size of the
local experiment over the Hubble radius. These differences
are negligible for any local experiment today. The angle
defined by (19) is therefore very close to the physical angle
measured by a local experiment and we will use this
definition for subsequent calculations.

r

z

0

P

0

P

FIG. 1 (color online). A depiction of the motion of a photon
(red curve) from a point P on the surface of last scattering �
(black ellipse) to an observer O. Without loss in generality, the
observer’s position can be taken as the origin of the coordinate
system. The anisotropic curvature causes � to deviate from
sphericity and warps the photon trajectories. �0 is the angle
between the photon’s trajectory and the observerO’s z axis. �P is
the angle between the photon’s trajectory and the z axis at P.
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With the knowledge of the geodesics (18), we can
calculate the angular size of a standard ruler of length
�L at the time of recombination. Since �k is very small
during this time, the physical size of the ruler is indepen-
dent of its location and orientation. First, consider a ruler
oriented in the z direction. This ruler lies between the
coordinates ðrðtrÞ; zðtrÞÞ and ðrðtrÞ þ �r; zðtrÞ þ �zÞ at
the time tr of recombination. The length of this ruler is

ðaðtrÞ�rÞ2 þ ðbðtrÞ�zÞ2 ¼ �L2: (22)

Using (18) and (19) in (22), we find that the angular size
�� subtended by a ruler of length�L at a local experiment
O is

��ð�Þ ¼ �L

3t2=3r t1=30

�
1þ�k0

5
cos2�

�
: (23)

A similar procedure can also be adopted to describe stan-
dard rulers that lie along the ðr;�Þ plane. The angular size
of these rulers is given by the angle � between the null
geodesics that connect the ends of the ruler to the origin.
Following the above procedure, this angular size �� is

�� ¼ �L

3t2=3r t1=30

�
1þ 3

5
�k0

�
: (24)

The angular size of a standard ruler thus changes when its
location and orientation are changed (see Fig. 2). For a
ruler located at z ¼ 0 (i.e. � ¼ �

2 ) the warp of the angle [in

Eqs. (23) and (24)] changes from ð1þ 3
5�k0Þ for a ruler in

the ðr; �Þ plane to ð1� 1
5�k0Þ for a ruler oriented in the z

direction. Similarly, as a ruler oriented in the z direction is
moved from �0 ¼ 0 to �0 ¼ �

2 , the angular warp factor

changes from ð1� 1
5�k0Þ to ð1þ 1

5�k0Þ. The reason for

this change can be traced to the fact that for a ruler oriented
in the z direction, all of the angular warp occurs due to the
effect of the curvature on the scale factor. aðtÞ and bðtÞ

expand as though they have the same magnitude of the
curvature but with opposite sign. Consequently, the angular
warps along the two directions also have the same magni-
tude, but are of opposite sign. This angular dependence is
an inevitable consequence of the anisotropic curvature �k

endemic to this metric. We note that this measurement of
the anisotropic curvature is relatively immune to degener-
acies from the cosmological expansion history since the
angular size changes depending upon the orientation of the
ruler along every line of sight. We discuss how this mea-
surement can be realized using CMB measurements in
Sec. III B 2.

B. Effect on the CMB

The CMB offers a unique probe of the space-time ge-
ometry between the surface of last scattering and the
current epoch. The spectral characteristics of the CMB
photons at the time of last scattering are well determined.
Differences between this well-determined spectrum and
observations of the local flux of CMB photons arise during
the propagation of the photons from recombination to the
present epoch. These differences can be used to trace the
space-time geometry since these photons travel along null
geodesics of the geometry. In this section, we use the
trajectories of CMB photons computed in Sec. III A to
derive the spectrum of the CMB flux observed today.
The CMB flux observed at O (see Fig. 1) is

�0ðE0Þ ¼ dN0ðE0Þ
sin�0d�0d�0dA0dt0dE0

; (25)

where dN0ðE0Þ is the number of photons with energies
between E0 and E0 þ dE0 received at O within a solid
angle sin�0d�0d�0 in an area dA0 during a time dt0. The
angle �0 is defined as per (19) since that definition corre-
sponds to the physical angle that a local observer measures
between the photon’s trajectory and the z axis. The photons
that are received at O within this solid angle were emitted
from the point P on the surface of last scattering � (see
Fig. 1). Since the geometry of the universe [Eq. (16)] is
curved, the solid angle sin�Pd�Pd�P is different from the
solid angle at O. The energy EP at which the photon is
emitted is also different from the energy E0 at which it is
received owing to the expansion of the universe.
Furthermore, due to the differential expansion of the
ðr; �Þ plane and the z direction, this energy shift is also a
function of the solid angle. The photons received in the
space-time volume dA0dt0 are emitted from a volume
dAPdtP. The ratio of these volume elements is proportional
to the expansion of the universe. Incorporating these ef-
fects, the flux (25) can be expressed as

�0ðE0Þ ¼ dNPðEPÞ
sin�Pd�Pd�PdAPdtPdEP

�
sin�Pd�Pd�P

sin�0d�0d�0

�

�
�
dAPdtP
dA0dt0

��
dEP

dE0

�
(26)

FIG. 2 (color online). The effect of the anisotropic curvature
on a measurement of the angular size of standard rulers. The
black ellipse is the surface of recombination and the red lines are
photon paths from standard rulers on this surface to the observer
at O. The standard rulers are depicted by the thick straight lines.
The angular size varies depending upon the location and ori-
entation of the ruler.
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or, in terms of the emission flux �P,

�0ðE0Þ ¼ �PðEPÞ
�
sin�Pd�Pd�P

sin�0d�0d�0

��
dAPdtP
dA0dt0

��
dEP

dE0

�
:

(27)

To find the local flux, we have to relate the geometric
and energy elements in (27) at P to those at O. We begin
with the angle �0. Using the definition (19) of � and the
solution (17) for the geodesic, we solve for �0 along the
null geodesic and find that

�0 ¼ �P þ 1
5�k0 sinð2�PÞ þOð�kPÞ þOð�2

kÞ; (28)

where �0 and �P are the angles of the photon’s trajectory at
the observer’s present location O and the point P (see
Fig. 1) on the surface of last scattering which is connected
toO by the null geodesic. We have ignored contributions of
order �kP , the fractional energy in curvature at the time of

recombination, in this solution. This is justified since
�kP � �k0 . The angle � is unaffected by the anisotropic

curvature since there is an Oð2Þ symmetry in the ðr; �Þ
plane. Consequently, d�0 ¼ d�P.

The volume elements are proportional to the expansion
of the universe and are given by

dAPdtP
dA0dt0

¼
�
aP
a0

�
2
�
bP
b0

�
; (29)

where ðaP; bPÞ and ða0; b0Þ are the scale factors at the
points P and O, respectively. Finally, we need to compute
the relationship between the observed energy E0 of the
photon and the emission energy EP.

The energy E observed by a local observer at some point
along the photon’s trajectory is given by

E2 ¼
�
a
dr

d�

�
2 þ

�
b
dz

d�

�
2
; (30)

where � is an affine parameter along the photon trajectory.
Using the geodesic equations (17) and the above expres-
sion, the present-day energy E0 is

E0 ¼ EP

�
aP
a0

��
1� 2

5
�k0cos

2�P

�
: (31)

Incidentally, this expression can also be arrived at by red
shifting the momentum components of the photon along

the radial and z directions by ðaPa0 ;
bP
b0
Þ, respectively.

We now have all the ingredients necessary to compute
the present-day flux �0 given an initial flux �P at recom-
bination. Since �k prior to recombination is much smaller
than �k0 � 1, the CMB spectrum at recombination is

identical to that of the usual FRW universe. In particular,
the CMB at P is a black-body at a temperature TP, with its
spectrum, independent of angle, given by the Planck dis-
tribution

�PðEPÞ ¼ E2
P

expðEP

TP
Þ � 1

: (32)

We define ~T0 ¼ TPða
2
PbP
a2
0
b0
Þ1=3. This definition is motivated

by the fact that the CMB temperature should red shift
roughly as the ratio of the scale factors of expansion. In
this anisotropic universe, where two dimensions expand
with scale factor a and the other with scale factor b, the

quantity ða2PbP
a2
0
b0
Þ1=3 is roughly the mean expansion factor.

Using (28), (29), (31), and (32) in (27), we get

�0ðE0; �0Þ ¼ E2
0

expðE0
~T0
ð1þ 8

15

ffiffiffi
�
5

p
�k0Y20ð�0; �0ÞÞÞ � 1

;

(33)

where Y20ð�0; �0Þ is the spherical harmonic with l ¼ 2,
m ¼ 0.
It is well known that primordial density fluctuations lead

to temperature anisotropies �10�5 in the CMB. The tem-
perature ~T0 in (33) inherits these anisotropies and is con-
sequently a function of the angle ð�;�Þ in the sky. Using
this input, the distribution in (33) describes a black-body
with a temperature

T0ð�0; �0Þ ¼ ~T0ð�P;�PÞ
�
1� 8

15

ffiffiffiffi
�

5

r
�k0Y20ð�0; �0Þ

�
(34)

at a given direction ð�0; �0Þ in the sky. Note that the
relation between the present-day temperature T0 and the
temperature at recombination TP is warped both by the
multiplicative factor (the term in brackets) in (34) as well
as the difference between the angles ð�P;�PÞ and ð�0; �0Þ.
Both these effects are proportional to �k0 and lead to

effects in the CMB. In the following subsections, we high-
light the key observables of this spectrum.

1. The quadrupole

The temperature T0ð�0; �0Þ is nearly uniform across the
sky with an average temperature �T0 and primordial tem-
perature fluctuations�10�5. Substituting for T0ð�0; �0Þ in
(34), we find that the anisotropic curvature leads to a

quadrupole a20 �� �T0
8
15

ffiffiffi
�
5

p
�k0Y

0
2ð�0; �0Þ [(see Eq. (35)]

in the CMB temperature. The source of this quadrupole is
the differential expansion rate of the universe between the
ðr; �Þ plane and the z direction [see Eq. (16)], leading to
differential red shifts along these directions. These differ-
ential red shifts lead to a quadrupolar warp of the average
temperature of the surface of last scattering. Unlike the
primordial perturbations which are generated during infla-
tion, this contribution to the quadrupole in the CMB arises
from the late-time emergence of the anisotropic curvature.
Fractionally, the additional power due to this effect is
��k0 .
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Current observations from the WMAP mission con-
strains the quadrupolar temperature variation �10�5

[21]. Naively, this constrains �k0 & 10�5. However, the

quadrupole that is observed in the sky is a sum of the
quadrupole from the primordial density fluctuations and
this additional contribution from the anisotropic curvature.
It is then possible for these two contributions to cancel
against each other leading to a smaller observed quadru-
pole. This cancellation requires a tuning between the pri-
mordial quadrupolar density perturbation and the
anisotropic curvature contribution. Additionally, this tun-
ing can be successful only if the primordial quadrupolar
perturbation is Oð�k0Þ.

The primordial density fluctuations are �10�5 and it is
difficult for the quadrupolar fluctuations to be much higher
than this level. However, in a universe with a small number
of e-foldings of inflation, the quadrupole is the mode that
leaves the horizon at the very beginning of inflation and is
therefore sensitive to physics in the primordial preinfla-
tionary space-time. These phenomena are not constrained
by inflationary physics and they could lead to additional
power in the quadrupolar modes [16,17,22]. It is therefore
possible for the power in the primordial quadrupolar mode
to be somewhat larger, leading to possible cancellation of
the quadrupole from the late-time anisotropic curvature. In
fact, the measured quadrupole in our universe has signifi-
cantly less power than expected from a conventional
�CDM model [21]. This anomaly may already be an
indication of noninflationary physics affecting the quadru-
pole [11]. There is also some uncertainty on the overall size
of the quadrupole. For example, astrophysical uncertainties
[23–25] could potentially make the quadrupole in the CMB
larger by a factor �2–3. Owing to these uncertainties, it
may be possible for �k0 to be as large as 10�4 without

running afoul of observational bounds. Values of �k0 sig-

nificantly larger than �10�4 may also be possible.
However, the additional tuning required to cancel the
associated quadrupole may disfavor this possibility.

It is interesting to note that anisotropic curvature is much
more constrained than isotropic curvature. Current cosmo-
logical measurements constrain the isotropic curvature
contribution & 10�2 [21]. However, anisotropic curvature
leads to temperature anisotropies in the sky. Since these
anisotropies are well constrained by current measurements,
the bounds on �k0 & 10�4 are more stringent (for ex-

ample, see [26]). This bound is close to the cosmic variance
limit on �k0 6 10�5. Consequently, there is an observatio-

nal window of 10�5 & �k0 & 10�4 where the anisotropic

curvature can be discovered.

2. Statistical anisotropy

In this subsection we discuss the effects of anisotropic
curvature on the power spectrum of the CMB. The warping
of standard rulers by the anisotropic curvature (see
Sec. III A) manifests itself in the CMB through these

effects. At the present time, an observer O (see Fig. 1)
characterizes the CMB through the spectrum defined by

alm ¼
Z

d�T0ð�0; �0ÞYlmð�0; �0Þ; (35)

where the present-day temperature T0 is defined in
Eq. (34). The correlation functions halma�l0m0 i of this spec-
trum contain all the information in the CMB. In a statisti-
cally isotropic universe, all nondiagonal correlators of the
alm vanish. Anisotropies mix different angular scales and
will populate these nondiagonal correlators. We compute
them in this section.
T0 inherits the density fluctuations at the time of recom-

bination. Since anisotropies were small prior to recombi-
nation, we will assume that the spectrum of density
fluctuations at recombination is given by a statistically
isotropic, Gaussian distribution. The anisotropies prior to
recombination do alter this distribution and can give rise to
additional observables at a potentially observable level
[27,28]. In order to compute these late-time effects, it is
sufficient to assume that the spectrum of density fluctua-
tions at recombination is statistically isotropic and
Gaussian. We will therefore make this assumption for the
rest of the paper. Our task is to start with this spectrum at
recombination and compute the characteristics of the CMB
spectrum observed by O.
The anisotropic curvature warps the CMB spectrum atO

in three ways. First, the photons from the surface of last
scattering that reachO do not lie on a spherical surface (see
Fig. 1). This warped surface � is described by Eq. (18),
where the deviations from sphericity are proportional to the
late-time curvature �k0 . Second, the angle �0 at which the

photon is received at O is different from the coordinate
angle 	 on the surface of recombination at which this
photon was originally emitted. Third, the photon is red
shifted when it reachesO. This red shift also depends upon
the angle since the anisotropic curvature causes a differ-
ential Hubble expansion leading to anisotropic red shifts.
We first determine the spectrum on �, the surface from

which photons at recombination reach O. � can be de-
scribed using spherical coordinates ðR;	;�Þ. R is the
physical distance at recombination between O and a point
P on � (see Fig. 1), 	 is the polar angle between the z axis
and the unit vector atO that lies in the direction of P and�
is the azimuthal angle. These flat space coordinates appro-
priately describe the recombination surface since the spa-
tial curvature was very small during this period. In
particular, the polar angle 	 is given by

tan	 ¼ rP
zP

; (36)

while the physical distance R [using Eq. (18)] is

Rð	Þ ¼ 3t1=30 t2=3r

�
1þ�k0

45
� 8�k0

45

ffiffiffiffi
�

5

r
Y20ð	;�Þ

�
: (37)
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The spectrum at � can be characterized by

blm ¼
�
a2PbP
a20b0

�
1=3 Z

�
d�Trecð	;�ÞYlmð	;�Þ; (38)

where Trec is the temperature at the recombination surface.

The multiplicative factor ða2PbP
a2
0
b0
Þ1=3 in (38) is introduced for

convenience. It accounts for the red shift of the mean
temperature from the era of recombination to the present
time, but does not introduce additional correlations in the
power spectrum. With this definition of blm, the correlation
functions of the distributions (35) and (38) can be directly
compared.

After determining the correlators blm, we will incorpo-
rate the effects of the angular and energy warps to the
spectrum. Following [29], we express the temperature

Trecð ~PÞ at any point ~P ¼ ðR;	;�Þ on � by the expansion

Trecð ~PÞ ¼
Z
�

d3k

ð2�Þ3 e
i ~k: ~P ~Trecð ~kÞ: (39)

The Fourier components ~Trecð ~kÞ represent the power spec-
trum at recombination. Since the anisotropic curvature is

small in the era preceding recombination, the ~Trecð ~kÞ are
drawn from a statistically isotropic, Gaussian distribution.

Writing the term ei
~k: ~P using spherical harmonics, we have

Trecð ~PÞ ¼
Z
�

d3k

ð2�Þ3
~Trecð ~kÞ � 4�

X
lm

iljlðkRð	ÞÞY�
lmðk̂Þ

� Ylmð	;�Þ; (40)

where jl are the spherical Bessel functions and Ylm are
the spherical harmonics. Using the expression for R in
Eq. (37), we expand Rð	Þ for small �k0 . Comparing this

expansion with the definition of the blm in Eq. (38), we
have

blm ¼
Z
�

d3k

ð2�Þ3
~Trecð ~kÞ

� 4�ilðjlY�
lm þ�k0ð�dl�2f

l�2;m
þ2 Y�

l�2;m

þ dlf
l;m
0 Y�

l;m � dlþ2f
lþ2;m
�2 Y�

lþ2;mÞÞ: (41)

The details of this expansion, including the definitions of
the coefficients dl and flm, can be found in Appendices A
and B. The Ylm in the above expression are all functions of

the unit vector k̂ in the integrand. Armed with the expres-
sion (41), we compute the correlators to first order in �k0 .

Each blm receives contributions from the spherical har-
monics Ylm and Yl�2;m. Consequently, we expect nonzero

power in the auto correlation of each mode and correlation
between modes separated by two units of angular momen-
tum. These correlators are

hblmb�lmi ¼ Cl

�
1þ 16

45

ffiffiffiffi
�

5

r
�k0�lf

lm
0

�
; (42)

hblmb�lþ2;mi ¼
8

45

ffiffiffiffi
�

5

r
�k0ðflþ2;m

�2 �lþ2Clþ2 þ flmþ2�lClÞ;
(43)

where the coefficients �l are Oð1Þ numbers with a weak
dependence on l. All other correlators vanish. We relegate
the details of this calculation to Appendix A.
Let us now relate the coefficients alm and blm. The

present-day temperature T0 is given by (34). The relation-
ship between 	 and �0 can be obtained from their respec-
tive definitions (36) and (19). This relationship is given by

	 ¼ �0 �
�k0

15
sin2�0: (44)

Owing to the Oð2Þ symmetry in the ðr; �Þ plane, the angle
� is the same as the azimuthal angle�0 used byO. We use
the above relation to expand T0 to leading order in �k0 ,

obtaining

T0ð�0; �0Þ ¼
�
a2PbP
a20b0

�
1=3

�
Trecð�0; �0Þ

� 8

15

ffiffiffiffi
�

5

r
�k0Y20Trecð�0; �0Þ

��k0

15
sinð2�0Þ@�0Trecð�0; �0Þ

�
: (45)

The second term in the above expression arises as a result
of the differential red shift caused by the nonisotropic
Hubble expansion (34), while the third time arises due to
the warp between the angles �0 and 	 [as in Eq. (44)]. This
expansion is valid for angular scales l & ð�kÞ�1. Using the
spherical harmonic expansions for T0 and Trec in terms of
alm and blm, respectively, we find

alm ¼ blm ��k0ðhlm0 blm þ hl�2;m
þ2 bl�2;m þ hlþ2;m

�2 blþ2;mÞ:
(46)

The coefficients hlm in (46) are obtained by combining the
different spherical harmonics in (45). These coefficients
are computed in Appendix B. Using the correlators of the
blm [see Eq. (43)], we can compute the expectation values

halma�lmi ¼ Cl

�
1þ 2�k0

�
8

45

ffiffiffiffi
�

5

r
�lf

lm
0 þ hlm0

��
;

halma�lþ2;mi ¼ �k0

�
Clþ2

�
8

45

ffiffiffiffi
�

5

r
�lþ2f

lþ2;m
�2 þ hlþ2;m

�2

�

þ Cl

�
8

45

ffiffiffiffi
�

5

r
�lf

lmþ2 þ hlmþ2

��
: (47)

Other correlation functions are unaffected by the aniso-
tropic curvature �k0 . Equation (47) specifies that modes

separated by two units of angular momentum l are mixed
while there is no mixing between modes of different m.
Physically, this implies correlations between modes of
different angular scales (separated by two units of scale),
but not of different orientation. The absence of mixing
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between modes of different orientation is due to the fact
that the space-time preserves an Oð2Þ symmetry in the
ðr;�Þ plane. However, even though there is no correlation
between modes of different m, the power halma�lmi in a

mode depends uponm through the coefficients flm0 and hlm0 .

Both these coefficients scale as �ðl2 �m2Þ [see Eqs. (B1)
and (B3)]. Hence, we expect different amounts of power in
the high m mode versus the low m mode for a given l.

Equipped with the knowledge of the correlators (47), we
can perform tests of the statistical isotropy of the CMB.We
follow the bipolar power spectrum analysis proposed by
[30] and adopt their notation (note that the normalization
convention adopted by [30] is different from that used by
the WMAP team [23]). In this analysis, one computes the
correlator

ALM
ll0 ¼ X

mm0
halma�l0m0 ið�1Þm0

CLMl;m;l0;�m0 ; (48)

where the CLMl;m;l0;�m0 are Clebsch Gordan coefficients. In a

statistically isotropic universe, these correlators are all zero
except when L ¼ 0,M ¼ 0, and l ¼ l0. In the present case,
we use the correlators (47) to compute the above statistic.
For large l, the only nonzero correlators are

A20
ll � ð�1Þl ffiffi

l
p

�k0

2

15

ffiffiffi
2

5

s
Cl

�
1� 2

3
�l

�
;

A20
lþ2;l � ð�1Þl ffiffi

l
p

�k0

2

15
ffiffiffiffiffiffi
15

p

�
�
lðClþ2 � ClÞ þ ðClþ2�lþ2 þ Cl�lÞ

� 15

4

�
Cl � 1

5
Clþ2

��
:

(49)

Since the Cl are smooth functions of l, ðClþ2 � ClÞ � Cl

l .

The above correlators then scale as

A20
ll � A20

l;lþ2 �
ffiffi
l

p
�k0Cl: (50)

We note that these correlators are nonzero for all angular
scales. This is precisely because the late-time warp caused
by the anisotropic curvature affects all the modes in the
CMB. Consequently, this is a statistically robust test of
anisotropy. Furthermore, this test of anisotropic curvature
is immune to degeneracies from the expansion history of
the universe that plague the measurement of isotropic
curvature. Indeed, in an isotropic universe, irrespective of
the cosmological expansion history, this statistic would be
zero. This is similar to the effect discussed in Sec. III A on
standard rulers. In both cases, the anisotropic curvature
affects measurements along every line of sight, breaking
degeneracies with the cosmological expansion history. The
similarity between these two effects is not surprising since
the statistic (48) captures the effect of the angular warp of
the CMB by the anisotropic curvature [the third term in
(45)].

Statistical analyses of the sort discussed in this section
have been performed with the WMAP data [23]. In a
universe with anisotropic curvature, these statistical tests
can lead to quadrupolar dependence of the two point
function. The expected answer for the statistic (49) has
power only in the A20

ll and A20
l;l�2 modes. Furthermore, since

these correlators are proportional to Cl, the effect shows a
bump around the first acoustic peak. Interestingly, the two
point quadrupolar anomaly in the WMAP data shows
similar characteristics with power only in the A20

ll and

A20
l;l�2 modes, which peaks around the first acoustic peak.

This anomaly could be explained in our scenario if the
anisotropic curvature �k0 � 10�2. However, such a large

anisotropic curvature is heavily constrained by the absence
of a correspondingly large quadrupole in the CMB (see
Sec. III B 1). While this anomaly may be due to other
systematic effects [23], similar searches could be per-
formed with upcoming CMB experiments. It is conceiv-
able that these experiments could discover correlations
from anisotropic curvatures �k0 � 10�4, as allowed by

the size of the CMB quadrupole.

C. Compact topology

We have so far considered only signals arising from the
geometry of the universe, but observable signals may also
arise from the topology. The normal eternal inflation pic-
ture makes it appear that space should be very large or
infinite in all directions [31]. If our observable universe
nucleated as a bubble from (3þ 1-dimensional) false vac-
uum inflation then it will appear as an infinite, open uni-
verse. However, in our picture it is natural that the
observable universe could have one or two compact di-
mensions, even though it came from an eternally inflating
space [32]. Interestingly, the size of these compact dimen-
sions may be close to the Hubble scale today because the
period of slow-roll inflation was not too long. In the case of
a 2þ 1-dimensional parent vacuum, the topology of the
spatial dimensions of the observable universe would be
R2 � S1. Since the curvature is all in the R2 and not the S1,
the curvature radius of the universe and the topology scale
(in this case the radius of the S1) are disconnected. Thus,
even though the curvature radius today is restricted to be
�102 times longer than the Hubble scale, the size of the
compact dimension can be smaller than the Hubble scale.
In fact, we expect that slow-roll inflation began when the
curvature radius was around the Hubble scale of inflation.
Thus, for the S1 to be around the Hubble scale today it
would have needed to be about 102 times smaller than the
Hubble size at the beginning of inflation. For high scale
inflation this is near the GUT scale, a very believable initial
size for that dimension. This scenario is interestingly dif-
ferent from the compact topologies often considered, for
which an isotropic geometry (S3, E3, or H3) is usually
assumed (though see [33]). Any compact topology neces-
sarily introduces a global anisotropy, but in our scenario
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even the local geometry of the universe is anisotropic. This
allows the curvature radius and the topology scale to be
different by orders of magnitude.

Thus it is reasonable that in our picture we may also have
the ‘‘circles in the sky’’ signal of compact topology [34].
Current limits from the WMAP data require the topology
scale to be greater than 24 Gpc [35]. This limit can be
improved by further searching, especially with data from
the Planck satellite, to close to the �28 Gpc diameter of
our observable universe. If discovered in conjunction with
anisotropic curvature this would provide a dramatic further
piece of evidence that we originated in a lower-
dimensional vacuum. Further the directions should be
correlated. If the parent vacuum was 2þ 1-dimensional
then we expect the circles in the sky to be in the previously
compact direction (the S1) while the curvature is in the
other two dimensions. On the other hand, if the parent
vacuum was 1þ 1-dimensional then it seems possible
that both the signals of curvature and the compact topology
would be in the same two dimensions, with the third
dimension appearing flat and infinite. Thus seeing both
the anisotropic curvature and signals of the compact topol-
ogy may provide another handle for determining the di-
mensionality of our parent vacuum.

D. Other measurements

The CMB is a precise tool to measure cosmological
parameters. However, it is a two-dimensional snapshot of
the universe at a given instant in time. Additional infor-
mation can be obtained through three-dimensional probes
of the universe. Several experiments that yield three-
dimensional data are currently being planned. These in-
clude 21 cm tomography experiments and galaxy surveys.
A complete study of the effects of anisotropic curvature in
these experiments is beyond the scope of this work. In this
section, we briefly mention some possible tests of this
scenario in these upcoming experiments.

A three-dimensional map of the universe can be used to
distinguish anisotropic curvature from fluctuations in the
matter density. Anisotropic curvature does not lead to
inhomogeneities in the matter distribution. Consequently,
measurements of the large scale matter density can be used
to distinguish between these two situations. Such measure-
ments may be possible using upcoming 21 cm experiments
and high red shift surveys, for example, LSST (Large
Synoptic Survey Telescope). LSST should be sensitive to
isotropic curvatures down to�10�3 with objects identified
out to red shift z � 1 [36]. Since the dominant effect of
anisotropic curvature occurs at late times, LSST should be
a good way to probe our signals. Additionally, 21 cm
experiments may also be sensitive to isotropic curvatures
�k0 � 10�4 [37], and so may offer a very precise test of

anisotropic curvature.
The curvature anisotropy also gives rise to a differential

Hubble expansion rate �H ��k0Ha (see Sec. II), which

contributes to the quadrupole in the CMB (see Sec. III B).
This effect will also be visible in direct measurements of
the Hubble parameter. Current experimental constraints on
this effect are at the level of a few percent [38] and are
likely to become better than & 10�2 in future experiments
[39,40].

IV. DISCUSSION

A universe produced as a result of bubble nucleation
from an ancestor vacuum which has two large dimensions
and one small, compact dimension is endowed with aniso-
tropic curvature �k. Such an anisotropic universe is also
produced in the case when our 3þ 1-dimensional universe
emerges from a transition from a 1þ 1-dimensional vac-
uum. In this case, depending upon the curvature of the
compact dimensions, the resulting universe can have either
positive or negative curvature along two dimensions, with
the other remaining flat. The geometry of the equal time
slices of the daughter universe are such that two of the
directions are curved while the other dimension is flat.
Immediately after the tunneling event, the energy density
of the universe is dominated by this anisotropic curvature
�k. This curvature drives the curved directions to expand
differently from the flat direction, resulting in differential
Hubble expansion �H between them.
The expansion of the universe dilutes �k until it be-

comes small enough to allow slow-roll inflation. At this
time, the universe undergoes a period of inflation during
which the curvature�k and the differential Hubble expan-
sion �H are exponentially diluted. However, during the
epochs of radiation and matter domination, the curvature
red shifts less strongly than either the radiation or the
matter density. Consequently, the fractional energy density
�k in curvature grows with time during these epochs. This
late-time emergence of an anisotropic curvature �k also
drives a late-time differential Hubble expansion �H in the
universe.
These late-time, anisotropic warps of the space-time

geometry are all proportional to the current fractional
energy density in curvature, �k0 . They can be observed

in the present epoch if inflation does not last much longer
than the minimum number of efolds required to achieve a
sufficiently flat universe (� 65 efolds for high scale in-
flation). Anisotropic curvature leads to the warping of the
angular size of standard rulers. This warping is a function
of both the angle and orientation of the ruler in the sky.
Consequently, this effect is immune to degeneracies from
the expansion history of the universe since it affects rulers
that are along the same line of sight but oriented
differently.
The CMB is also warped by the anisotropic curvature. In

addition to the geometric warping, the differential Hubble
expansion �H also preferentially red shifts the energies of
the CMB photons. This energy shift differentially changes
the monopole temperature of the CMB giving rise to a
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quadrupole in the CMB. Furthermore, since the anisotropic
curvature is a late-time effect, it affects all the modes that
can be seen in the CMB. Consequently, this effect leads to
statistical anisotropy on all angular scales. This effect is
different from other signatures of anisotropy considered in
the literature [41,42]. Previous work has concentrated on
the correlations that are produced due to the initial anisot-
ropy in the universe at the beginning of inflation. Since
these modes are roughly stretched to the Hubble size today,
these initial anisotropies only affect the largest modes in
the sky and are hence low l effects in the CMB. The late-
time anisotropy however warps the entire sky and leads to
statistically robust correlations on all angular scales. The
anisotropies in the preinflationary vacuum can however
lead to other interesting signatures, for example, in the
gravitational wave spectrum [41]. These signatures are an
independent check of this scenario. Anisotropies that affect
all angular scales have also been previously considered
[43,44]. These required violations of rotational invariance
during inflation and the anisotropy emerges directly in
the primordial density perturbations. In our case, the
density perturbations are isotropic and the anisotropy ob-
served today is a result of a late-time warp of the space-
time.

Anisotropic curvature is already more stringently con-
strained than isotropic curvature. While isotropic curvature
is bounded to be & 10�2, it is difficult for anisotropic
curvature to be much larger than �10�4 without running
afoul of current data, in particular, the size of the CMB
quadrupole. Since the measurement of curvature is ulti-
mately limited by cosmic variance �10�5, there is a
window between 10�5 & �k0 & 10�4 that can be probed

by upcoming experiments, including Planck.
Future cosmological measurements like the 21 cm ex-

periments will significantly improve bounds on the curva-
ture of the universe. A discovery of isotropic curvature
would be evidence suggesting that our ancestor vacuum
had at least three large space dimensions. On the other
hand, a discovery of anisotropic curvature would be strong
evidence for the lower dimensionality of our parent vac-
uum. The anisotropy produced from such a transition has a
very specific form due to the symmetries of the transition.
It leads to correlations only amongst certain modes in the
CMB (for example, only A20

ll and A20
l;l�2). This distinguishes

it from a generic anisotropic 3þ 1-dimensional preinfla-
tionary vacuum which will generically have power in all
modes. In these scenarios, it is also natural for the universe
to have nontrivial topology. The existence of a nontrivial
topological scale within our observable universe can be
searched for using the classic ‘‘circles in the sky’’ signal. If
both the nontrivial topology and anisotropic curvature can
be discovered, implying a period of inflation very close to
the catastrophic boundary, it would be powerful evidence
for a lower-dimensional ancestor vacuum. A discovery of
these effects would establish the existence of vacua vastly

different from our own standard model vacuum, lending
observational credence to the landscape.
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APPENDIX A: CALCULATION OF THE
CORRELATIONS

The temperature Trecð ~PÞ at any point ~P ¼ ðR;	;�Þ on
the surface of last scattering � (see Fig. 1) can be ex-
pressed using spherical harmonics [see Eq. (40)]

Trecð ~PÞ ¼
Z
�

d3k

ð2�Þ3
~Trecð ~kÞ

� 4�
X
lm

iljlðkRð	ÞÞY�
lmðk̂ÞYlmð	;�Þ: (A1)

Expanding the Bessel functions jl in (A1) around R0 ¼
3t1=30 t2=3r ð1þ �k0

45 Þ to linear order in �k0 , we get

jlðkRð	ÞÞ ¼ jlðkR0Þ þ�k0dlY20ð	;�Þ; (A2)

where the coefficient dl is

dl ¼ 8

45

ffiffiffiffi
�

5

r
ðkR0jlþ1ðkR0Þ � ljlðkR0ÞÞ: (A3)

This expansion is valid for l & ð�k0Þ�1. The spherical

harmonic Y20ð	;�Þ in (A2) multiplies Ylmð	;�Þ in the
expansion (A1). These harmonics can be combined, yield-
ing

Y20Ylm ¼ flm�2Yl�2;m þ flm0 Yl;m þ flmþ2Ylþ2;m: (A4)

The definitions of the flm are given in Appendix B. Using
(A4), the coefficient blm of Ylmð	;�Þ in (A2) is the ex-
pression in Eq. (41). With this information, we can com-
pute the correlations amongst the blm. Imposing the

requirement that ~Trecð ~kÞ are drawn from a statistically
isotropic, Gaussian distribution [29], the two point func-
tion hblmb�lmi to linear order in �k0 is

hblmb�lmi ¼
Z dk

k

2

�
N2ðkÞðj2l þ 2�k0jldlf

lm
0 Þ; (A5)

where N2ðkÞ is the two point function ða2PbP
a20b0

Þ2=3 �
h�Trecð ~kÞ�Trecð ~kÞi of the temperature anisotropies �Trec
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(as defined in [29]). We have again scaled out the piece that
accounts for the red shift between the era of recombination
and the present epoch. The first term in the integrand is the
usual contribution Cl to the power in the l mode. The
second term, proportional to �k0 , arises from the aniso-

tropic curvature. To compute this term, we substitute for dl
[from (A3)] in (A5). The resulting integral has the formZ dk

k

2

�
N2ðkÞjlðkR0jlþ1 � ljlÞ: (A6)

The second term in the above integrand is lCl. For the first
term,

Sl ¼
Z dk

k

2

�
N2ðkÞkR0jljlþ1; (A7)

we use the fact that the jl satisfy the identity

jlþ1ðkR0Þ þ jl�1ðkR0Þ ¼ 2lþ 1

kR0

jlðkR0Þ: (A8)

This implies

Sl þ Sl�1 ¼ ð2lþ 1ÞCl: (A9)

Physically, since there is roughly similar amounts of power
in all the Cl, we expect Sl � Sl�1. This implies

Sl ¼ lCl þ �lCl; (A10)

where �l is an order one coefficient. �l can be computed
by integrating (A7). This calculation requires explicit use
of the two point function N2ðkÞ at recombination and is
beyond the scope of this paper.

Using (A10) in (A6) and (A5), we have

hblmb�lmi ¼ Cl

�
1þ 16

45

ffiffiffiffi
�

5

r
�k0�lf

lm
0

�
: (A11)

A similar calculation can be performed for the other
correlators of the blm. In the expression (41) for blm, each
blm receives contributions from the spherical harmonics

Ylm and Yl�2;m. Consequently, we expect nontrivial corre-

lations only between modes separated by two units of
angular momentum. This correlator is

hblmb�lþ2;mi ¼
8

45

ffiffiffiffi
�

5

r
�k0ðflþ2;m

�2 �lþ2Clþ2 þ flmþ2�lClÞ:
(A12)

With this knowledge, we can compute the correlators of
the alm. Equation (45) expresses the temperature T0 (char-
acterized by alm) observed today in terms of the tempera-
ture Trec (characterized by blm) at recombination. Writing
Trec in terms of the blm in (45), we get

T0ð�0; �0Þ ¼
X
lm

�
blm

�
Ylm ��k0

�
8

15

ffiffiffiffi
�

5

r
Y20Ylm

þ 1

15
sinð2�0Þ@�0Ylm

���
: (A13)

The spherical harmonics in (A13) are all functions of
ð�0; �0Þ. The products of the spherical harmonics Y20Ylm

and sinð2�0Þ@�0Ylm can be expressed as a linear combina-

tion of the Ylm. The term Y20Ylm can be expressed as the
combination (A4), while sinð2�0Þ@�0Ylm is expressed as

sinð2�0Þ@�0Ylm ¼ glm�2Yl�2;m þ glm0 Ylm þ glmþ2Ylþ2;m:

(A14)

The coefficients glm are defined in Appendix B. Using (A4)
and (A14) in (A13), we get the expression (46) for the alm
in terms of the blm. The alm in (46) are expressed as a linear
combination of blm and bl�2;m. Consequently, to linear

order in �k0 , we expect power in the modes halma�lmi and
halma�l�2;mi. Using (46), the correlators (47) can be

computed.
We now give the exact answers for the measures of

statistical anisotropy computed approximately in Eq. (49):

A20
l;l ¼ � 4ð�1Þllð1þ 3lþ 2l2Þ�k0Clð�3þ 2�lÞ

45
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð�3� 5lþ 10l2 þ 20l3 þ 8l4Þp ; (A15)

A20
lþ2;l ¼ �

2ð�1Þl
ffiffiffiffi
2
15

q
ð1þ lÞð2þ lÞ�k0ðClð3þ l��lÞ � Clþ2ðlþ �lþ2ÞÞ

15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 13lþ 9l2 þ 2l3

p : (A16)

APPENDIX B: SPHERICAL HARMONICS

In this Appendix, we give the definitions of the coefficients flm, glm, and hlm.
The flm are defined by the relation

Y20Ylm ¼ flm�2Yl�2;m þ flm0 Ylm þ flþ2;m
þ2 Ylþ2;m:

They evaluate to
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flm�2 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l� 3Þð2lþ 1Þðl�m� 1Þðl�mÞðlþm� 1ÞðlþmÞp ffiffiffi
5
�

q
4ð8l3 � 12l2 � 2lþ 3Þ ; flm0 ¼ ðl2 þ l� 3m2Þ

ffiffiffi
5
�

q
8lðlþ 1Þ � 6

;

flmþ2 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2lþ 5Þðl�mþ 1Þðl�mþ 2Þðlþmþ 1Þðlþmþ 2Þp ffiffiffi
5
�

q
4ð8l3 þ 36l2 þ 46lþ 15Þ :

(B1)

The glm are defined by the relation

sinð2�0Þ@�0Ylm ¼ glm�2Yl�2;m þ glm0 Ylm þ glmþ2Ylþ2;m:

They evaluate to

glm�2 ¼ � 2ðlþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmÞððl�1Þ2�m2Þ

4l2�4l�3

q
2l� 1

; glm0 ¼ 6m2 � 2lðlþ 1Þ
4lðlþ 1Þ � 3

;

glmþ2 ¼
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2lþ 5Þðl�mþ 1Þðl�mþ 2Þðlþmþ 1Þðlþmþ 2Þp
8l3 þ 36l2 þ 46lþ 15

:

(B2)

The coefficients hlm [see Eq. (46)] are defined by the addition of the effects from the energy warp of the CMB by the
anisotropic Hubble expansion and the warp of the angle �0 at which the photon is observed and the angle 	 at which it was
emitted at the surface of last scattering. These evaluate to

hlm�2 ¼
2ðl� 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmÞððl�1Þ2�m2Þ

4l2�4l�3

q
30l� 15

; hlm0 ¼ � 2ðl2 þ l� 3m2Þ
15ð4lðlþ 1Þ � 3Þ ;

hlmþ2 ¼ � 2ðlþ 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2lþ 5Þðl�mþ 1Þðl�mþ 2Þðlþmþ 1Þðlþmþ 2Þp
15ð8l3 þ 36l2 þ 46lþ 15Þ :

(B3)
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