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Cosmological hydrogen recombination has recently been the subject of renewed attention because of its

importance for predicting the power spectrum of cosmic microwave background anisotropies. It has

become clear that it is necessary to account for a large number n * 100 of energy shells of the hydrogen

atom, separately following the angular momentum substates in order to obtain sufficiently accurate

recombination histories. However, the multilevel atom codes that follow the populations of all these levels

are computationally expensive, limiting recent analyses to only a few points in parameter space. In this

paper, we present a new method for solving the multilevel atom recombination problem, which splits the

problem into a computationally expensive atomic physics component that is independent of the

cosmology and an ultrafast cosmological evolution component. The atomic physics component follows

the network of bound-bound and bound-free transitions among excited states and computes the resulting

effective transition rates for the small set of ‘‘interface’’ states radiatively connected to the ground state.

The cosmological evolution component only follows the populations of the interface states. By pretabu-

lating the effective rates, we can reduce the recurring cost of multilevel atom calculations by more than

5 orders of magnitude. The resulting code is fast enough for inclusion in Markov chain Monte Carlo

parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon

processes considered in some recent papers. Further work on analytic treatments for these effects will be

required in order to produce a recombination code usable for Planck data analysis.
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I. INTRODUCTION

The advent of high precision cosmic microwave back-
ground (CMB) experiments, such as Planck [1], has re-
cently motivated several authors to revisit the theory of
cosmological recombination pioneered by Peebles [2] and
Zeldovich et al. [3] in the 1960s. The free electron fraction
as a function of redshift xeðzÞ is one of the major theoretical
uncertainties in the prediction of the CMB temperature and
polarization anisotropy power spectra [4–6]. To obtain a
recombination history accurate to the percent level, it is
necessary to account for a high number of excited states
of hydrogen, up to a principal quantum number nmax ¼
Oð100Þ [7,8]. The desired subpercent accuracy can only be
reached when explicitly resolving the out-of-equilibrium
angular momentum substates, which requires the multi-
level atom (MLA) codes to follow Nlevel ¼ nmaxðnmax þ
1Þ=2 individual states. Moreover, the ordinary differential
equations (ODEs) describing the level populations are stiff,
requiring the solution of large Nlevel � Nlevel systems of
equations at each integration time step. This problem has
been solved by several authors [9–11], but each of these
codes takes hours to days to run.

Eventually, it is necessary to be able to produce not only
accurate but also fast recombination histories, to be in-
cluded in Markov chain Monte Carlo (MCMC) codes for
cosmological parameter estimation. The MCMC requires
CMB power spectra (and hence recombination histories) to
be generated at each proposed point in cosmological
parameter space, with a typical chain sampling Oð105Þ

points [12]. Furthermore, dozens of MCMCs are often run
with different combinations of observational constraints and
different parameter spaces. This makes it impractical to
include recombination codes that run for more than
a few seconds in the MCMC. One solution is to precompute
recombination histories xeðzjH0; TCMB;�mh

2;�bh
2;

YHe; N�Þ on a grid of cosmological parameters, and then
use elaborate interpolation algorithms to evaluate the re-
combination history for any cosmology [13], or to construct
fitting functions [8,14]. However, such procedures need to
be retrained every time additional parameters are added,
and are rather unsatisfying regarding their physical
significance.
In this work we present a new method of solution for the

recombination problem, perfectly equivalent to the stan-
dard MLA method, but much more efficient computation-
ally. The basic idea is that the vast majority of the excited
hydrogen levels are populated and depopulated only by
optically thin radiative transitions (bound-bound and
bound-free) in a bath of thermal photons; we show that
their effect can be ‘‘integrated out’’ leaving only a few
functions of the matter and radiation temperatures Tm and
Tr (this list would include the free electron density ne if we
incorporated collisions), which can be pretabulated. In an
actual call to the recombination code from an MCMC, it is
then only necessary to solve an effective MLA (hereafter,
EMLA) with a smaller number of levels (perhaps only 3:
2s, 2p, and 3p), which eliminates the computationally
difficult Nlevel � Nlevel system solution in the traditional
MLA. [The idea is similar in spirit to the line-of-sight
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integral method for the computation of the CMB power
spectrum [15], which eliminated a large number of inde-
pendent variables from the cosmological perturbation
theory system of ODEs (the high-order moments of the
radiation field, �‘ for ‘ � 1) in favor of pretabulated
spherical Bessel functions.] Our method achieves a
speedup of the recombination calculation by 5 to 6 orders
of magnitude.

We note that our method only eliminates the computa-
tional complexity associated with the high-n excited states
and does not include continuum processes and radiative
transfer effects that have been studied by previous authors
[16–26]. However, we note that there has been much
progress in analytic treatments of these effects [21–23];
ultimately, we expect to improve these analytic treatments
and graft them (and an analytic treatment of helium re-
combination [27–31]) onto the ultrafast EMLA code de-
scribed herein to yield a recombination code that is
accurate enough for Planck data analysis.

This paper is organized as follows. In Sec. II we review
the general picture of hydrogen recombination, and the
bound-bound and bound-free transition rates involved in
the calculation. In Sec. III we describe the standard MLA
method. We present our new EMLA method in Sec. IVand
demonstrate its equivalence with the standard MLA for-
mulation. We describe our numerical implementation and
results in Sec. V, and conclude in Sec. VI. Appendix A is
dedicated to demonstrating the invertibility of the system
defining the EMLA equations. Appendix B proves a com-
plementarity relation between effective transition proba-
bilities. We prove detailed balance relations between
effective transition rates in Appendix C. Appendix D ex-
poses the post-saha approximation we use at early times
when computing recombination histories.

II. BOUND-BOUND AND BOUND-FREE
TRANSITION RATES

The evolution of the free electron fraction is governed by
the network of transitions between bound states of hydro-
gen as well as recombination and photoionization rates.
Before giving detailed expressions for these rates, let us
first outline the general picture of the process of
recombination.

It has long been known that direct recombinations to the
ground state are ineffective for recombination [2,3], since
the resulting emitted photons are immediately reabsorbed
by hydrogen in the ground state, as soon as the neutral
fraction is higher than �10�9. Electrons and protons can
efficiently combine only to form hydrogen in excited
states. The minute amount of excited hydrogen at all
relevant times during cosmological recombination is not
sufficient to distort the blackbody radiation field near the
ionization thresholds of the excited states. Recombination
to the excited states is therefore a thermal process: it
depend on the matter temperature Tm which characterizes

the free electrons and protons velocity distribution, and
also on the radiation temperature Tr, since the abundant
low-energy thermal photons can cause stimulated recom-
binations. Photoionization rates from excited states depend
only on the radiation temperature since they do not involve
free electrons in the initial state.
Transitions between bound excited states may be radia-

tive or collisional. Radiative transition rates are well
known and depend only on the radiation temperature char-
acterizing the blackbody radiation field, undistorted in the
vicinity of the optically thin lines from the Balmer series
and beyond. Collisional transition rates are much less
precisely known, but depend only on the matter tempera-
ture and the abundance of charged particles causing the
transitions (i.e. free electrons and free protons, which, once
helium has recombined, have the same abundance ne ¼ np
due to charge neutrality).
Finally, some of the excited states can radiatively decay

to the ground state. The most obvious route to the ground
state is through Lyman transitions from the p states.
However, because of the very high optical depth of these
transitions, emitted Lyman photons are immediately reab-
sorbed by hydrogen atoms in their ground state. This
‘‘bottleneck’’ can only be bypassed by the systematic red-
shifting of photons, which can escape reabsorption once
their frequency is far enough below the resonant frequency
of the line. The relevant transition rate in this case is the net
decay rate to the ground state, which is a statistical average
accounting for the very small escape probability of Lyman
photons. Two-photon transitions are usually much slower
than single-photon transitions. However, the rate of two-
photon decays from the metastable 2s state is comparable
to the net decay rate in the highly self-absorbed Lyman
transitions, and this process should therefore be included in
a recombination calculation [2,3].
We now give explicit expressions for the bound-bound

and bound-free rates discussed above. Subscripts nl refer
to the bound state of principal quantum number n
and angular momentum quantum number l. We denote
�fs the fine structure constant, �e � memp=ðme þmpÞ
the reduced mass of the electron-proton system, EI the
ionization energy of hydrogen, and En � �EIn

�2 the

energy of the nth shell. Finally, we denote by fBBðE; TrÞ �
ðeE=Tr � 1Þ�1 the photon occupation number at energy E in
the blackbody radiation field at temperature Tr.

A. Recombination to and photoionization
from the excited states

The recombination coefficient to the excited state
nl, including stimulated recombinations, is denoted
�nlðTm; TrÞ (it has units of cm3 s�1). The photoionization
rate per atom in the state nl is denoted �nlðTrÞ. Both can be
expressed in terms of the bound-free radial matrix elements
gðn; l; �; l0Þ [32]. Defining
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�nlð�Þ � 2

3n2
�3
fs

EI

h
ð1þ n2�2Þ3

� X
l0¼l�1

maxðl; l0Þgðn; l; �; l0Þ2; (1)

where � denotes the momentum of the outgoing electron in
units of @=a0 (where a0 is the reduced-mass Bohr radius),
the recombination coefficient is given by [32]

�nlðTm; TrÞ ¼ h3

ð2��eTmÞ3=2
�

Z þ1

0
e�EI�

2=Tm�nlð�Þ

� ½1þ fBBðE�n; TrÞ�dð�2Þ; (2)

where E�n � EIð�2 þ n�2Þ. The photoionization rate
depends only on the radiation temperature and can be
obtained by detailed balance considerations from the
recombination coefficient:

�nlðTrÞ ¼ ð2��eTrÞ3=2
ð2lþ 1Þh3 eEn=Tr�nlðTm ¼ Tr; TrÞ: (3)

B. Transitions between excited states

We denote Rnl!n0l0 the transition rate from the excited
state nl to the excited state n0l0. It has units of sec�1 per
atom in the initial state. Transitions among excited states
can be either radiative or collisional:

Rnl!n0l0 ¼ Rrad
nl!n0l0 ðTrÞ þ Rcoll

nl!n0l0 ðTm; neÞ; (4)

where ne ¼ np is the abundance of free electrons or free

protons. In this paper, we follow exclusively the radiative
rates. These are given by

Rrad
nl!n0l0 ¼

8<
:
Anl;n0l0 ½1þ fBBðEnn0 ; TrÞ� En > En0

gl0
gl
e�En0n=TrRrad

n0l0!nl En < En0
;

(5)

where Enn0 � En � En0 is the energy difference between
the excited levels, gl � 2lþ 1 is the degeneracy of the
state nl, and Anl;n0l0 is the Einstein A coefficient for the

nl ! n0l0 transition, which may be obtained from the radial
matrix element Rnl

n0l0 [33]:

Anl;n0l0 ¼ 2�

3
�3
fs

EI

h

�
1

n02
� 1

n2

�
3 maxðl; l0Þ

2lþ 1
jRnl

n0l0 j2: (6)

C. Transitions to the ground state

Finally, the ground state population x1s � 1� xe evolves
due to transitions from and into the np and 2s states (two-
photon transitions from higher energy states are dominated
by ‘‘1þ 1’’ photon decays, already accounted for). Photons
emitted in the Lyman lines are very likely to be immediately
reabsorbed, and the only meaningful quantity for these
transitions is the net decay rate in the line, which is a
statistical average over a large number of atoms, and
accounts for the very low escape probability of a photon

emitted in the line. In the Sobolev approximation [34] with
optical depth �np;1s � 1, the net decay rate in the np ! 1s

transition is

_x 1sjnp ¼ � _xnpj1s ¼
Anp;1s

�np;1s
ðxnp � 3x1sf

þ
npÞ

¼ 8�H

3	3
nnHx1s

ðxnp � 3x1sf
þ
npÞ; (7)

where 	n � hc=En1 is the transition wavelength, and f
þ
np is

the photon occupation number at the blue side of the
corresponding Ly-n line. In this paper, we will take fþnp ¼
fBBðEn1; TrÞ, i.e. assume the incoming radiation on the blue
side of the line has a blackbody spectrum. This assumption
is actually violated due to feedback from higher-frequency
Lyman lines (e.g. radiation escaping from Ly� can redshift
into Ly�) [27,35,36]; while our formalism is general
enough to incorporate different fþnp, we have not yet

implemented this in our code.
The 2s state cannot decay to the ground state through a

radiatively allowed transition. This decay is, however,
possible with a two-photon emission, which, although
slow, is comparable in efficiency to the highly self-
absorbed Lyman transitions. The simplest expression for
the net 2s ! 1s two-photon decay rate is

_x 1sj2s ¼ � _x2sj1s ¼ �2s1sðx2s � x1se
�E2=TrÞ; (8)

where �2s1s � 8:22 s�1 is the total 2s ! 1s two-photon
decay rate [37].
In each case, we denote the net downward rate in the

i ! 1s transition, where i 2 f2s; 2p; 3p; . . .g:
_x 1sji ¼ � _xij1s ¼ xi ~Ri!1s � x1s ~R1s!i; (9)

where the rates ~R depend on atomic physics, Tr, and the
optical depths in the Lyman lines.
Both the Sobolev approximation for the np ! 1s tran-

sitions Eq. (7), and the simple expression Eq. (8) for the net
2s ! 1s two-photon decay do not account for subtle yet
important radiative transfer effects. An accurate recombi-
nation calculation should account for time-dependent
effects in Ly� [21,24], a suite of two-photon continuum
processes [17,18,21,25], and resonant scattering in Ly�
[23,26]. These are not included in the present code, and we
plan to add them in the future using analytic treatments.

III. THE STANDARD MLA METHOD

Although the standard MLA formulation does not make
this distinction, we cast the excited states of hydrogen into
two categories. On the one hand, most excited states are not
directly radiatively connected to the ground state. We call
these states ‘‘interior’’ states and denote XK the fractional
abundance of hydrogen in the interior state K 2
f3s; 3d; 4s; 4d; 4f; 5s; . . .g. On the other hand, the 2s and
np states (n 	 2) are directly radiatively connected with
the ground state. We call these states ‘‘interface’’ states and
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denote xi the fractional abundance of hydrogen in the
interface state i 2 f2s; 2p; 3p; . . .g.

In the standard MLA formulation, the free electron
fraction xeðzÞ is evolved by solving the hierarchy of
coupled differential equations: for the interior states,

_XK ¼ x2enH�K þX
L

XLRL!K þX
j

xjRj!K

� XK

�
�K þX

L

RK!L þX
j

RK!j

�
; (10)

for the interface states,

_x i ¼ x2enH�i þ
X
L

XLRL!i þ
X
j

xjRj!i þ x1s ~R1s!i

� xi

�
�i þ

X
L

Ri!L þ
X
j

Ri!j þ ~Ri!1s

�
; (11)

and for the free electrons and ground state,

_x e ¼ � _x1s ¼ x1s
X
i

~R1s!i �
X
i

xi ~Ri!1s: (12)

The radiative rates between excited states are many orders
of magnitude larger than the rate at which recombination
proceeds, which is of the order of the Hubble rate. Even the
relatively small net rates out of the interface states (�2s;1s

and A2p;1s=�2p;1s) are still more than 12 orders of magni-

tude larger than the Hubble rate. The populations of the
excited states can therefore be obtained to high accuracy in
the steady-state approximation (this approximation is ubiq-
uitous in many problems and has long been used in the
context of cosmological recombination [2,10,21], where its
accuracy has been tested explicitly [11]). Setting _XK and _xi
to zero in Eqs. (10) and (11), we see that the problem
amounts to first solve a system of linear algebraic equa-
tions for the XK, xi, with an inhomogeneous term depend-
ing on xe, and then use the populations xi in Eq. (12) to
evolve the free electron fraction. The solution of the system
of Eqs. (10) and (11) needs to be done at every time step,
since the inhomogeneous term of the equation depends on
the ionization history, which explicitly depends on time as
well as on the cosmological parameters. Recent work
[10,11] has shown that to compute sufficiently accurate
recombination histories, one needs to account for excited
states up to a principal quantum number nmax � 100, re-
solving the angular momentum substates. This requires
solving an Oð104 � 104Þ system of equations at each
time step, which, even with modern computers, is ex-
tremely time consuming.

IV. NEW METHOD OF SOLUTION: THE
EFFECTIVE MULTILEVEL ATOM

We now give a computationally efficient method of
solution for the primordial recombination problem. We
factor the effect of the numerous transitions involving

interior states in terms of effective transitions into and
out of the much smaller number of interface states. Once
the rates of these effective transitions are tabulated, the
cosmological evolution of the free electron fraction can be
obtained from a simple effective few-level atom calcula-
tion. We describe the method in Sec. IVA and give the
proof of its exact equivalence to the standard MLA method
in Sec. IVB. In the subsequent Sec. IVC, we consider
which states should be treated as interface states.

A. Motivations and general formulation

We first note that the only quantity of importance for
CMB power spectrum calculations is the free electron
fraction as a function of redshift, xeðzÞ. The populations
of the excited states are calculated only as an intermediate
step—if they are desired (e.g. to calculate H� scattering
features [38]), the populations of the excited states can
be obtained by solving Eqs. (10) and (11) once the free
electron fraction is known. Furthermore, only the interface
states 2s and np are directly connected to the ground
state and directly appear in the evolution equation for the
free electron fraction Eq. (12). All other (interior) excited
states are only connected with other excited states or with
the continuum, through optically thin radiative transitions
(and to a lesser extent through collisions [9]). Interior states
are only transitional states: an electron in the interior
rapidly transitions through spontaneous and stimulated
decays or absorptions caused by the blackbody radiation
field (or collisions with free electrons and protons), until it
either is photoionized or reaches an interface state. There
can be a very large number of transitions before any of
these outcomes occurs, but the passage through the interior
is always very short compared to the overall recombination
time scale, and can be considered as instantaneous (for the
same reason that the steady-state approximation is valid in
the standard MLA formulation).
Instead of computing the fraction of hydrogen in each

interior state K, one can rather evaluate the probabilities
that an atom initially in the interior state K ultimately
reaches one of the interface states or gets photoionized.
Of course, after reaching an interface state, the atom may
perfectly transition back to an interior state, or get photo-
ionized. However, we consider the probability of first
reaching a given interface state before any other one, which
is uniquely defined. For an atom in the interior state K, we
denote by Pi

K the probability of ultimately reaching the
interface state i, and Pe

K the probability of ultimately being
photoionized. The probabilities Pi

K must self-consistently
account for both direct transitions K ! i and all possible
indirect transitions K ! L ! i (with an arbitrary number
of intermediate states). Mathematically, this translates to
the system of linear equations:

Pi
K ¼ X

L

RK!L

�K

Pi
L þ RK!i

�K

; (13)
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where �K is the total width (or inverse lifetime) of the
state K:

�K � X
L

RK!L þX
j

RK!j þ �K: (14)

Similarly, the Pe
K must satisfy the self-consistency

relations:

Pe
K ¼ X

L

RK!L

�K

Pe
L þ �K

�K

; (15)

We show in Appendix A that these linear systems are
invertible and therefore uniquely determine Pi

K and Pe
K.

In Appendix B we prove the complementarity relation,X
i

Pi
K þ Pe

K ¼ 1; (16)

which has the simple physical interpretation that an atom
in the Kth interior state eventually reaches an interface
state or is photoionized with unit probability.

Once these probabilities are known, it is possible to
describe the large number of transitions between all the
states in a simplified manner, in terms of effective rates into
and out of the interface states. To clarify the explanation,
we illustrate in Fig. 1 the processes described below.

An electron and a proton can effectively recombine to
the interface state i either through a direct recombination
(with coefficient �i) or following a recombination to an
interior state K (with coefficient �K), from which a se-
quence of interior transitions may ultimately lead to the
interface state i with probability Pi

K. The effective recom-
bination coefficient to the interface state i is therefore

A i � �i þ
X
K

�KP
i
K: (17)

Conversely, an atom in the interface state i may effectively
be ionized either through a direct photoionization (with
rate �i) or after being first excited to an interior state K
(with rate Ri!K), from which the atom may ultimately be
photoionized after a series of interior transitions with
probability Pe

K. The effective photoionization rate from
the interface state i is therefore

B i � �i þ
X
K

Ri!KP
e
K: (18)

Finally, atoms can effectively transition from an interface
state i to another interface state j, either through a direct
transition if it is allowed or after first transitioning through
the interior. The effective transfer rate between the ith and
jth interface states is therefore

R i!j � Ri!j þ
X
K

Ri!KP
j
K ðj � iÞ: (19)

The rate of change of the population of the interface state i
is therefore

_xi ¼ x2enHAi þ
X
j�i

xjRj!i þ x1s ~R1s!i

� xi

�
Bi þ

X
j�i

Ri!j þ ~Ri!1s

�
; (20)

where we have included the effective transitions described
above, as well as transitions from and to the ground state.
The system of Eqs. (13)–(20) is exactly equivalent to

the standard MLA formulation, as we shall show in
Sec. IVB below.
Let us now consider the dependences of the effective

rates. In the purely radiative case, the probabilities Pi
K and

Pe
K depend only on the radiation temperature Tr, since

transitions between excited states and photoionizations
depend only on the locally thermal radiation field. As a
consequence, the effective recombination ratesAiðTm; TrÞ
are only functions of matter and radiation temperatures and
the effective photoionization and bound-bound rates
BiðTrÞ and Ri!jðTrÞ are functions of the radiation tem-

perature only. When including collisional transitions, all
effective rates become functions of the three variables Tr,
Tm, and ne. In all cases, effective rates can easily be
tabulated and interpolated when needed for a recombina-
tion calculation.
Intuitively, we would expect that Ai, Bi, and Ri!j

satisfy the detailed balance relations,

gie
�Ei=TrRi!jðTrÞ ¼ gje

�Ej=TrRj!iðTrÞ (21)

and

gie
�Ei=TrBiðTrÞ ¼ ð2��eTrÞ3=2

h3
AiðTm ¼ Tr; TrÞ: (22)

We show in Appendix C that these equations are indeed
valid. This means that we only need to tabulate half of the
Ri!j [the other half can be obtained from Eq. (21)] and all

theAi [theBi can be obtained from Eq. (22); in particular,
we do not need to solve for the Pe

K].
We note that the probabilities Pi

K, P
e
K are a generalization

of the cascade matrix technique introduced by Seaton [39].
Seaton’s calculation assumed a vanishing ambient radiation
field, so that electrons can only ‘‘cascade down’’ to lower
energy states. In the context of the recombination of the

FIG. 1. Schematic representation of the formulation of the
recombination problem adopted in this work. Dotted arrows
represent possibly numerous fast transitions within the interior.
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primeval plasma, one cannot ignore the strong thermal
radiation field, and electrons rather ‘‘cascade up and
down,’’ following spontaneous and stimulated decays or
photon absorption events. The spirit of our method is,
however, identical to Seaton’s cascade-capture equations
[39], where the ‘‘cascading’’ process is decoupled from
the particular process populating the excited states, or
from the depopulation of the interface states.

B. Equivalence with the standard MLA method

This section is dedicated to proving the equivalence of
the EMLA equations, Eqs. (13)–(20), with the standard
MLA equations, Eqs. (10) and (11), in the steady-state
limit for the interior states (i.e. where we set _XK � 0).
The steady-state approximation does not need to be made
for the interface states to demonstrate the equivalence of
the two formulations (but we do use it for practical com-
putations since it is valid to very high accuracy).

We denote by N the number of interior states and n

the number of interface states [we will address in Sec. IVC
the issue of which states need to be considered as interface
states].

We begin by defining the N � N rate matrix M whose
elements are

MKL � 
KL�K � ð1� 
KLÞRK!L: (23)

We also define the n
 þ 1 length-N vectors Pi and Pe

whose elements are the probabilities Pi
K and Pe

K, respec-
tively, and the n
 þ 1 length-N vectors Ri and Re of
components

Ri
K � RK!i; (24)

Re
K � �K: (25)

The defining equations for the probabilities, Eqs. (13) and
(15) can be written in matrix formMPi ¼ Ri and MPe ¼
Re, respectively (after multiplication by �K). We show in
Appendix A that the matrix MðTrÞ is invertible, for any
temperature Tr 	 0. The formal solutions for the probabil-
ities are therefore

P i ¼ M�1Ri; (26)

P e ¼ M�1Re: (27)

We also define the length-N vector X which contains the
populations of the interior states XK, and the length-N
vector S of components

SK � x2enH�K þX
j

xjRj!K: (28)

A careful look at Eq. (10) in the steady-state approximation
( _XK ¼ 0) shows that it is the matrix equation MTX ¼ S,
which has the solution:

X ¼ ðMTÞ�1S ¼ ðM�1ÞTS: (29)

Both Eqs. (11) and (20) can be cast in the form

_xi ¼ x2enH�i þ
X
j�i

xiRj!i þ x1s ~R1s!i

� xi

�
�i þ

X
j�i

Ri!j þ ~Ri!1s

�
þ _xijinterior: (30)

The only a priori different term is the net transition rate
from the interior to the state i, _xijinterior. In the standard
MLA formulation, Eq. (11), this term is

_x ijðMLAÞ
interior ¼

X
K

ðXKR
i
K � xiRi!KÞ (31)

¼ XTRi � xi
X
K

Ri!K: (32)

With our new formulation, Eq. (20), using the definitions of
the effective rates Eqs. (17)–(19), the net transition rate
from the interior to the state i is

_x ijðEMLAÞ
interior ¼ X

K

�
x2enH�KP

i
K þX

j�i

xjRj!KP
i
K

� xiRi!K

�
Pe
K þX

j�i

Pj
K

��
: (33)

Using the complementarity relation Eq. (16), we rewrite

Pe
K þP

j�iP
j
K ¼ 1� Pi

K. We then recognize that the com-

mon factor of Pi
K is just theKth component of the vector S,

Eq. (28), so we can rewrite Eq. (33) as

_x ijðEMLAÞ
interior ¼ STPi � xi

X
K

Ri!K: (34)

From the formal solution for the populations of the interior
states Eq. (29), we have

X TRi ¼ STM�1Ri ¼ STPi; (35)

where the second equality is obtained from the formal
solution for the probabilities Pi

K, Eq. (26). We therefore
see from Eqs. (32) and (34) that

_x ijðMLAÞ
interior ¼ _xijðEMLAÞ

interior ; (36)

and hence the two formulations are exactly equivalent.
They only differ by the order in which the bilinear product
STM�1Ri is evaluated.

C. Choice of interface states

If one naively includes all np states up to n ¼ nmax ¼
Oð100Þ in the list of interface states, the interpolation of
effective rates can become somewhat cumbersome as it
involves Oð104Þ functions of one to three variables.
However, only the lowest few of these states actually
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have significant transition rates to the ground state; indeed,
most of the decays to the ground state proceed through
either 2s (two-photon decay) or 2p (Ly� escape), as
anticipated in the earliest studies [2,3].

The rate of Lyman line escape is dominated by the
lowest few lines. For example, if the relative populations
of the excited states were given by the Boltzmann ratios
(which is a good approximation until late times), then the
net decay rate in the np ! 1s transition (not accounting for
feedback from the next line) would be proportional to

_x np!1s / ð1� n�2Þ3e�En=Tr : (37)

This relation would imply that the Ly� escape rate is<1%
of the Ly� escape rate, and the higher-order Lyman lines
contribute even less. Our previous computations of the
escape rates (e.g. Ref. [21]) agree with this expectation.
These considerations imply that for n 	 3, _x1sjnp � _x1sj2p
in Eq. (12). Moreover, an atom in the np state with n 	 3 is
much more likely to spontaneously decay to n0s or n0d,
with 2 � n0 < n, than to emit a Lyman-n photon that
successfully escapes the line. This implies that j _xnpj1sj �
j _xnpj in Eq. (11).

In addition to a very low net decay rate out of the np
states for n 	 3, feedback between neighboring lines fur-
ther suppresses their efficiency as interface states. The few
photons that escape the Lyðnþ 1Þ line will be reabsorbed
almost certainly in the next lower line, after a redshift
interval

�z ¼ zem � zab ¼ ð1þ zabÞ
�
Enþ1;1

En1

� 1

�
: (38)

Feedback between the lowest-lying lines is not instanta-
neous: �z=ð1þ zabÞ ¼ 0:185 for Ly� ! Ly� feedback,
0.055 for Ly� ! Ly�, and 0.024 for Ly
 ! Ly�.
However, for higher-order lines, feedback rapidly becomes
nearly instantaneous as �z=ð1þ zabÞ � 2=n3. Thus the
effect of the higher Lyman lines is even weaker than
Eq. (37) would suggest. Recent work [36] has shown that
including lines above Ly� results in a fractional error
j�xej=xe of at most � 3� 10�4.

We therefore conclude that very accurate recombination
histories can be obtained by only including 2s; 2p; . . . ; n
p
as interface states and neglecting higher-order Lyman tran-
sitions altogether. We will use n
 ¼ 3 in this paper, and
investigate the optimal value of this cutoff more quantita-
tively in future work.

Our formulation in terms of effective transition rates and
interface states is therefore much better adapted for a fast
recombination calculation that the standard MLA formu-
lation. To compute accurate recombination histories, ex-
plicitly accounting for high-n shells of hydrogen, one first
needs to tabulate the fAig and fRi!jg on temperature

grids. The computation of the effective rates is the time-
consuming part of the calculation; however, since they are
independent of the cosmological parameters, this can be

done once, and not repeated for each cosmology. The free
electron fraction can then be computed very quickly
for any given cosmology by solving the n
 þ 1 Eqs. (20)
and (12), interpolating the effective rates from the pre-
computed tables. Note that Eq. (20) is a simple n
 � n

system of linear algebraic equations in the steady-state
approximation.

V. IMPLEMENTATION AND RESULTS

Here we give some details on the implementation of our
EMLA code. Section VA describes the computation of
the effective rates (the computationally expensive part of
the calculation, which needs to be done only once).
Section VB describes the implementation of the ultrafast
effective few-level atom calculation. We show our recom-
bination histories and compare our results with the existing
standard MLA code RECSPARSE [10] in Sec. VC.

A. Computation of the effective rates

We have implemented the calculation of the effective
rates in the purely radiative case. Bound-free rates were
computed by numerically integrating Eq. (2) using an
11-point Newton-Cotes method, where the radial matrix
elements gðn; l; �; l0Þ were obtained using the recursion
relation given by Burgess [32]. Einstein A coefficients
were computed by using the recursion relations obtained
by Hey [40] for the radial matrix elements Rnl

n0l0 . Finally, we

obtained the probabilities Pi
K using a sparse matrix tech-

nique similar to that of Ref. [10] when solving Eq. (13).
We accounted explicitly for all excited states up to a
principal quantum number nmax, resolving angular
momentum substates. We tabulated the effective rates
AiðTm; TrÞ on a grid of 200 log-spaced points in Tr from
0.04 to 0.5 eVand 20 linearly spaced points in Tm=Tr from
0.8 to 1.0, and Ri!jðTrÞ on the grid of points in Tr. The

maximum relative change in the effective rates (� lnAi or
� lnRi!j) over the whole range of temperatures consi-

dered is 0.051 when comparing nmax ¼ 64 vs 128, 0.015
when comparing nmax ¼ 128 vs 250, and 0.005 when
comparing nmax ¼ 250 vs 500.
In the left panel of Fig. 2, we show the total effective

recombination coefficient ABðTm; TrÞ � A2sðTm; TrÞ þ
A2pðTm; TrÞ computed for n
 ¼ 2 (i.e. with interfaces

states 2s and 2p only, neglecting all Lyman transitions
above Lyman-�), normalized to the case-B recombination
coefficient �BðTmÞ. Note that �BðTmÞ is justABðTm; Tr ¼
0jnmax ¼ 1Þ with our notation; indeed, for Tr ¼ 0,
�K ¼ 0 and therefore Pe

K ¼ 0 for all K so
P

iP
i
K ¼ 1

and hence
P

iAi ¼
P

i�i þ
P

K�K ¼ P
nl�nl, where the

last sum is over all excited states. We can see that as the
radiation temperature increases (i.e. as the redshift in-
creases in Fig. 2), the convergence with nmax becomes
faster. This is to be expected, since for higher Tr, highly
excited hydrogen is more easily photoionized, i.e. Pe

nl
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becomes closer to unity. In that case adding more shells to
the calculation does not matter so much because recombi-
nations to the highest shells are very inefficient, due to the
high probability of a subsequent photoionization.

In the right panel of Fig. 2, we show the ratio
A2sðTm; TrÞ=ABðTm; TrÞ, which is the fraction of recom-
binations to the n ¼ 2 shell that are to the 2s level. This
fraction is in general different from the intuitive value of
1=4, and its exact value depends on temperature.

B. Ultrafast EMLA code

In order to actually compute the recombination history,
we require an evolution equation for the free electron
fraction,

_x eðxe; nH; H; Tm; TrÞ; (39)

and in some cases a similar equation for _Tm. For concrete-
ness, we implement the case of 3 interface states i 2
f2s; 2p; 3pg (n
 ¼ 3).

To compute _xe, we first obtain the downward Ri!jðTrÞ
from our table via cubic polynomial (4-point) interpolation
andAiðTm; TrÞ via bicubic interpolation (two-dimensional
in lnðTrÞ and Tm=Tr using 4� 4 points). The upward
Rj!iðTrÞ are obtained using Eq. (21), and the effective

photoionization rates BiðTrÞ are obtained using Eq. (22).
We then solve for the fxig using Eq. (20), and finally obtain
_xe using Eq. (12).
The matter temperature is determined by the Compton

evolution equation,

_T m ¼ �2HTm þ 8�TarT
4
r xeðTr � TmÞ

3ð1þ fHe þ xeÞmec
; (40)

where �T is the Thomson cross section, ar is the radiation
constant, fHe is the He:H ratio by number of nuclei, me is

the electron mass, and c is the speed of light. At high
redshift, one may use the steady-state solution (see
Appendix A of Ref. [21]),

Tm � Tm;ss ¼ Tr

�
1þ 3ð1þ fHe þ xeÞmecH

8�TarT
4
r xe

��1
: (41)

At the highest redshifts, the ODE describing hydrogen
recombination is stiff; therefore for z > 1570we follow the
recombination history using perturbation theory around the
Saha approximation, as described in Appendix D. At
500< z < 1570 we use Eq. (41) to set the matter tempera-
ture, and a fourth-order Runge-Kutta integration algorithm
(RK4) to follow the single ODE for xeðzÞ; and at z < 500
we use RK4 to follow the two ODEs for xeðzÞ and TmðzÞ
simultaneously. The integration step size is �z ¼ �1:0
(negative since we go from high to low redshifts).

C. Results and code comparison

We have tabulated the effective rates for nmax ¼ 16, 32,
64, 128, 250, and 500. It is, in principle, possible to
compute the effective rates for an arbitrarily high nmax,
but it is not meaningful to do so as long as collisional
transitions are not properly accounted for. The recurring
computation time of our ultrafast EMLA code is 0.08 sec-
onds on a MacBook laptop computer with a 2.1 GHz
processor, independently of nmax. Our recombination his-
tories are shown in Fig. 3. We compared our results with
the existing standard MLA code RECSPARSE for nmax ¼ 16,
32, 64, 128, and 250. As can be seen in Fig. 4, the two
codes agree to better than 8� 10�5 across the range 200<
z< 1600, despite having different methods for accounting
for the excited states, and independent implementations for
matrix elements and ODE integration.

(a) (b)

FIG. 2. Left panel: ‘‘Exact fudge factor’’ as a function of redshift ABðTm; TrÞ=�BðTmÞ, for several values of nmax, using TmðzÞ
computed by RECSPARSE for cosmological parameters as in Ref. [10]. We use the fit of Ref. [41] for the case-B recombination
coefficient �BðTmÞ. For comparison, the code RECFAST uses a constant fudge factor F ¼ 1:14 to mimic the effect of high-n shells.
Right panel: Fraction of the effective recombinations to the n ¼ 2 shell that lead to atomic hydrogen in the 2s state. In both cases the
effective rates were computed for n
 ¼ 2, i.e. with interface states 2s and 2p only, neglecting escape from the Lyman �; �; . . . lines.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown that the computation of primordial
hydrogen recombination can be factored into two indepen-
dent calculations. On the one hand, most excited states are
not directly radiatively connected to the ground state, and
undergo transitions caused by the thermal bath of black-
body photons at the relevant frequencies, as well as the
thermal electrons and protons. One can account for these
numerous transitions with effective transition rates into and
out of the interface states which are connected to the
ground state. The computationally intensive aspect of a
recombination calculation, in fact, resides in the evaluation
of these effective rates, which are functions of matter and
radiation temperature only. This calculation being inde-
pendent of cosmological parameters, it can be done prior to
any recombination calculation, once and for all. A simple
effective few-level atom can then be evolved for any set of
cosmological parameters, without any need for ‘‘fudge
factors’’ or approximations.

This work does not present a final recombination code
satisfying the accuracy requirements for future CMB ex-
periments. First, collisional transitions were not included.
They may be particularly important for the high-n states.
The effective rates computed here are therefore only ap-
proximating the correct rates in the limit of zero density.
Our formalism is general and collisions can be included as
soon as accurate rates are available (the main change
would be that the interpolation tables would require
lnðneÞ as an additional independent variable). Second, we
have not included important radiative transfer effects, such
as feedback between low-lying Lyman lines [35,36], two-
photon decays from n 	 3 [16,19–21,25], resonant scat-
tering in Ly� [22,23,26], or overlap of the high-lying
Lyman lines (work in preparation). To preserve the com-
putational efficiency of our method, fast analytic approx-
imations have to be developed to include these effects,
which will be the subject of future work.

ACKNOWLEDGMENTS

We thank Dan Grin for numerous useful and stimulating
conversations, and for providing data from RECSPARSE

computations for code comparison. We also acknowledge
fruitful conversations with the participants of the July 2009
Paris Workshop on Cosmological Recombination. We
thank Dan Grin, Marc Kamionkowski, and Jens Chluba
for a careful reading of the draft of this paper. Y. A.-H. and
C.H. are supported by the U.S. Department of Energy (DE-
FG03-92-ER40701) and the National Science Foundation
(AST-0807337). C. H. is supported by the Alfred P. Sloan
Foundation.

APPENDIX A: INVERTIBILITY OF THE SYSTEM
DEFINING THE Pi

K, P
e
K

In this section we show that the matrixMðTrÞ defined in
Eq. (23) is nonsingular, for any value of the radiation
temperature Tr 	 0.

FIG. 4. A comparison of our ultrafast code to RECSPARSE [10],
for different values of nmax. The vertical axis is the fractional
difference in free electron abundance rescaled by 105 (positive
indicating that RECSPARSE gives a larger xe). We see that the
maximum fractional deviation is<8� 10�5. The feature around
z ¼ 1540 is due to a time step change in RECSPARSE.

(a) (b)

FIG. 3. Left panel: Relative differences between recombination histories computed with successively more accurate effective rates.
Right panel: Recombination history for effective rates computed with nmax ¼ 500, i.e. accounting explicitly for 125 250 states of the
hydrogen atom.
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Let us consider the eigenvalue equation Mb ¼ 0 and
select a particular K1 such that jbK1

j 	 jbLj for all L.

The eigenvalue equation implies

0 ¼ jMK1K1
bK1

þ X
L�K

MK1LbLj

	 MK1K1
jbK1

j � X
L�K1

jMK1LjjbLj; (A1)

where we have used the inverse triangle inequality.
The matrix M is diagonally dominant, i.e.

8 K; MKK ¼ �K 	 X
L�K

RK!L ¼ X
L�K

jMKLj: (A2)

Using the inequality (A2) for K ¼ K1 in Eq. (A1),
we obtain

0 	 X
L�K1

jMK1LjðjbK1
j � jbLjÞ: (A3)

For any interior state K1, there always exists a sequence of
transitions that ultimately leads to some interface state i,
K1 ! K2 ! 
 
 
 ! Kn ! i, for any temperature Tr 	 0
(i.e. there are no ‘‘dead end’’ interior states). In particular,
jMK1K2

j ¼ RK1!K2
> 0. For Eq. (A3) to hold, it is therefore

necessary that jbK1
j ¼ jbK2

j. Repeating the above reason-

ing recursively leads to jbK1
j ¼ jbK2

j ¼ 
 
 
 ¼ jbKn
j.

For the last interior state of this sequence, Kn, the
inequality (A2) is strict since RKn!i > 0. The eigenvalue

equation projected on Kn leads to Eq. (A1) for Kn:

0 	 MKnKn
jbKn

j � X
L�Kn

jMKnLjjbLj: (A4)

If b � 0, then jbKn
j> 0 and the strict inequality (A2) for

K ¼ Kn used in Eq. (A4) implies the contradictory result

0>
X

L�Kn

jMKnLjðjbKn
j � jbLjÞ 	 0: (A5)

As a consequence,Mb ¼ 0 implies that b ¼ 0 necessarily.
This proves that MðTrÞ is nonsingular, for any Tr 	 0.

APPENDIX B: PROOF OF THE
COMPLEMENTARITY RELATION

P
iP

i
K þ Pe

K ¼ 1

We define the length-N vector V � ð1; 1; . . . ; 1ÞT, and
note that

ðMVÞK ¼ X
L

MKL ¼ X
j

RK!j þ �K (B1)

(the RK!L terms cancel). In matrix form, this reads:

MV ¼ X
j

Rj þRe ¼ M

�X
j

Pj þ Pe

�
: (B2)

The matrix M being invertible, this implies
P

jP
j þ

Pe ¼ V, which once projected on each component K
is just the complementarity relation Eq. (16).

APPENDIX C: DETAILED BALANCE RELATIONS

This appendix is dedicated to proving the detailed bal-
ance relations forRi!j and Bi. Defining the contributions

of individual states to the partition function,

QK � gKe
�EK=Tr (C1)

and similarly forQi, we make use of the standard principle
of detailed balance for rates connecting individual states,

QKRK!L ¼ QLRL!K; (C2)

and similarly QKRK!i ¼ QiRi!K.
We begin by defining the N � N nonsingular diagonal

matrix F that is proportional to the equilibrium
abundances,

FKL � QK
KL: (C3)

Then Eq. (C2) combined with the definition Eq. (23)
implies that FM is symmetric. It therefore follows that its
matrix inverse M�1F�1 is symmetric, and hence that

ðM�1ÞKL

QL

¼ ðM�1ÞLK
QK

: (C4)

The transition rate, Eq. (19), can be expanded using
Eq. (26) as

R i!j ¼ Ri!j þ
X
K;L

ðM�1ÞKLRi!KRL!j: (C5)

We then see that

QiRi!j ¼ QiRi!j þ
X
K;L

QiðM�1ÞKLRi!KRL!j

¼ QiRi!j þ
X
K;L

QKðM�1ÞKLRK!iRL!j

¼ QjRj!i þ
X
K;L

QLðM�1ÞLKRK!iRL!j

¼ QjRj!i þ
X
K;L

QjðM�1ÞLKRK!iRj!L

¼ QjRj!i; (C6)

where we have used Eq. (C2) twice and in the third equality
used Eq. (C4). This proves Eq. (21).
We may also relate the effective recombination and

photoionization rates. To do so, we consider the case of
Tm ¼ Tr and define

q �
�
2��eTr

h2

�
3=2

: (C7)

Then Eq. (3) can be written as Qnl�nl ¼ q�nl. Using
Eq. (27), we see that

YACINE ALI-HAÏMOUD AND CHRISTOPHER M. HIRATA PHYSICAL REVIEW D 82, 063521 (2010)

063521-10



QiBi ¼ Qi�i þ
X
K;L

QiRi!KðM�1ÞKL�L

¼ q�i þ
X
K;L

QKRK!iðM�1ÞKL�L

¼ q�i þ
X
K;L

QLRK!iðM�1ÞLK�L

¼ q�i þ
X
K;L

qRK!iðM�1ÞLK�L ¼ qAi; (C8)

where in the last equality we have used Eq. (17) with the
Pi
K determined by Eq. (26). This proves Eq. (22).

APPENDIX D: IMPLEMENTATIONOF POST-SAHA
CORRECTION AT EARLY TIMES

At the highest redshifts, the ODE describing hydrogen
recombination is stiff, and we follow the recombination
history using perturbation theory around the Saha approxi-
mation, which we describe here. The idea is that the actual
ionization fraction xeðzÞ is slightly greater than the Saha
equation would predict because there are more recombi-
nations than ionizations ( _xe < 0) and a slight deviation
from thermodynamic equilibrium is required in order to

drive this imbalance. We may thus take an ODE for the
recombination history (for simplicity we use the Peebles
ODE [2] with an updated recombination coefficient �B

[41]), and Taylor expand it around the Saha ionization
fraction:

_x P
eðxe; zÞ ¼ D1ðxe � xSahae Þ þOðxe � xSahae Þ2: (D1)

Here the superscript ‘‘P’’ denotes the Peebles ODE, and the
zeroth-order coefficient in the Taylor series vanishes since
thermal equilibrium considerations imply _xPeðxSahae ; zÞ ¼ 0.
The coefficient D1 may be obtained by numerical differ-
entiation; we use a two-sided finite difference with �xe ¼
�0:01xSahae ð1� xSahae Þ. Then we obtain a post-Saha cor-
rected solution by setting the left-hand side of Eq. (D1)
with _xSahae ðzÞ (again obtained by a two-sided finite differ-
ence with �z ¼ �1):

xcorre ðzÞ ¼ xSahae ðzÞ þ _xSahae ðzÞ
D1

: (D2)

At the transition redshift zt ¼ 1570, we use xcorre ðztÞ as an
initial condition for the integration with our full ODE.
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