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To make predictions for an eternally inflating ‘‘multiverse,’’ one must adopt a procedure for regulating

its divergent spacetime volume. Recently, a new test of such spacetime measures has emerged: normal

observers—who evolve in pocket universes cooling from hot big bang conditions—must not be vastly

outnumbered by ‘‘Boltzmann brains’’—freak observers that pop in and out of existence as a result of rare

quantum fluctuations. If the Boltzmann brains prevail, then a randomly chosen observer would be

overwhelmingly likely to be surrounded by an empty world, where all but vacuum energy has redshifted

away, rather than the rich structure that we observe. Using the scale-factor cutoff measure, we calculate

the ratio of Boltzmann brains to normal observers. We find the ratio to be finite, and give an expression for

it in terms of Boltzmann brain nucleation rates and vacuum decay rates. We discuss the conditions that

these rates must obey for the ratio to be acceptable, and we discuss estimates of the rates under a variety of

assumptions.
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I. INTRODUCTION

The simplest interpretation of the observed accelerating
expansion of the Universe is that it is driven by a constant
vacuum-energy density ��, which is about 3 times greater
than the present density of nonrelativistic matter. While
ordinary matter becomes more dilute as the Universe ex-
pands, the vacuum-energy density remains the same, and in
another 10� 109 yrs or so the Universe will be completely
dominated by vacuum energy. The subsequent evolution of
the Universe is accurately described as de Sitter (dS) space.

It was shown by Gibbons and Hawking [1] that an
observer in de Sitter space would detect thermal radiation
with a characteristic temperature TdS ¼ H�=2�, where

H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

3
G��

s
(1)

is the de Sitter Hubble expansion rate. For the observed
value of ��, the de Sitter temperature is extremely low,
TdS ¼ 2:3� 10�30 K. Nevertheless, complex structures
will occasionally emerge from the vacuum as quantum
fluctuations, at a small but nonzero rate per unit spacetime
volume. An intelligent observer, like a human, could be
one such structure. Or, short of a complete observer, a
disembodied brain may fluctuate into existence, with a
pattern of neuron firings creating a perception of being
on Earth and, for example, observing the cosmic micro-
wave background radiation. Such freak observers are
collectively referred to as ‘‘Boltzmann brains’’ [2,3]. Of
course, the nucleation rate �BB of Boltzmann brains is
extremely small, its magnitude depending on how one

defines a Boltzmann brain. The important point, however,
is that �BB is always nonzero.
De Sitter space is eternal to the future. Thus, if the

accelerating expansion of the Universe is truly driven by
the energy density of a stable vacuum state, then Boltzmann
brains will eventually outnumber normal observers, no
matter how small the value of �BB [4–8] might be.
To define the problem more precisely, we use the term

‘‘normal observers’’ to refer to those that evolve as a result
of nonequilibrium processes that occur in the wake of the
hot big bang. If our Universe is approaching a stable
de Sitter spacetime, then the total number of normal ob-
servers that will ever exist in a fixed comoving volume of the
Universe is finite. On the other hand, the cumulative number
of Boltzmann brains grows without bound over time, grow-
ing roughly as the volume, proportional to e3H�t. When
extracting the predictions of this theory, such an infinite
preponderance of Boltzmann brains cannot be ignored.
For example, suppose that some normal observer, at

some moment in her lifetime, tries to make a prediction
about her next observation. According to the theory there
would be an infinite number of Boltzmann brains, distrib-
uted throughout the spacetime, that would happen to share
exactly all her memories and thought processes at that
moment. Since all her knowledge is shared with this set
of Boltzmann brains, for all she knows she could equally
likely be any member of the set. The probability that she is
a normal observer is then arbitrarily small, and all predic-
tions would be based on the proposition that she is a
Boltzmann brain. The theory would predict, therefore,
that the next observations that she will make, if she
survives to make any at all, will be totally incoherent,
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with no logical relationship to the world that she thought
she knew. (While it is of course true that some Boltzmann
brains might experience coherent observations, for ex-
ample, by living in a Boltzmann solar system, it is easy
to show that Boltzmann brains with such dressing would be
vastly outnumbered by Boltzmann brains without any
coherent environment.) Thus, the continued orderliness
of the world that we observe is distinctly at odds with the
predictions of a Boltzmann-brain-dominated cosmology.1

This problem was recently addressed by Page [7], who
concluded that the least unattractive way to produce more
normal observers than Boltzmann brains is to require that
our vacuum should be rather unstable. More specifically, it
should decay within a few Hubble times of vacuum-energy
domination, that is, in 20� 109 yrs or so.

In the context of inflationary cosmology, however, this
problem acquires a new twist. Inflation is generically eter-
nal, with the physical volume of false-vacuum inflating
regions increasing exponentially with time, and ‘‘pocket
universes’’ like ours constantly nucleating out of the false
vacuum. In an eternally inflating multiverse, the numbers
of normal observers and Boltzmann brains produced over
the course of eternal inflation are both infinite. They can be
meaningfully compared only after one adopts some pre-
scription to regulate the infinities.

The problem of regulating the infinities in an eternally
inflating multiverse is known as the measure problem [9],
and has been under discussion for some time. It is crucially
important in discussing predictions for any kind of obser-
vation. Most of the discussion, including the discussion in
this paper, has been confined to the classical approxima-
tion. While one might hope that someday there will be an
answer to this question based on a fundamental principle
[10], most of the work on this subject has focused on
proposing plausible measures and exploring their proper-
ties. Indeed, a number of measures have been proposed
[11–27], and some of them have already been disqualified,
as they make predictions that conflict with observations.

In particular, if one uses the proper-time cutoff measure
[11–15], one encounters the ‘‘youngness paradox,’’ pre-
dicting that humans should have evolved at a very early
cosmic time, when the conditions for life were rather
hostile [28]. The youngness problem, as well as the
Boltzmann brain problem, can be avoided in the stationary

measure [18,27], which is an improved version of the
proper-time cutoff measure. However, the stationary mea-
sure, as well as the pocket-based measure, is afflicted with
a runaway problem, suggesting that we should observe
extreme values (either very small or very large) of the
primordial density contrast Q [29,30] and the gravitational
constant G [31], while these parameters appear to sit
comfortably in the middle of their respective anthropic
ranges [32,33]. Some suggestions to get around this issue
have been described in Refs. [30,33–35]. In addition, the
pocket-based measure seems to suffer from the Boltzmann
brain problem. The comoving coordinate measure [11,36]
and the causal-patch measures [23,24] are free from these
problems, but have an unattractive feature of depending
sensitively on the initial state of the multiverse. This does
not seem to mix well with the attractor nature of eternal
inflation: the asymptotic late-time evolution of an eternally
inflating universe is independent of the starting point, so it
seems appealing for the measure to maintain this property.
Since the scale-factor cutoff measure2 [12–14,16,17,37]
has been shown to be free of all of the above issues [38],
we consider it to be a promising candidate for the measure
of the multiverse.
As we have indicated, the relative abundance of normal

observers and Boltzmann brains depends on the choice of
measure over the multiverse. This means the predicted
ratio of Boltzmann brains to normal observers can be
used as yet another criterion to evaluate a prescription to
regulate the diverging volume of the multiverse: regulators
predicting that normal observers are greatly outnumbered
by Boltzmann brains should be ruled out. This criterion has
been studied in the context of several multiverse measures,
including a causal-patch measure [8], several measures
associated with globally defined time coordinates
[17,18,27,39,40], and the pocket-based measure [41]. In
this work, we apply this criterion to the scale-factor cutoff
measure, extending the investigation that was initiated in
Ref. [17]. We show that the scale-factor cutoff measure
gives a finite ratio of Boltzmann brains to normal observ-
ers; if certain assumptions about the landscape are valid,
the ratio can be small.3

The remainder of this paper is organized as follows. In
Sec. II we provide a brief description of the scale-factor
cutoff and describe salient features of the multiverse under

1Here we are taking a completely mechanistic view of the
brain, treating it essentially as a highly sophisticated computer.
Thus, the normal observer and the Boltzmann brains can be
thought of as a set of logically equivalent computers running the
same program with the same data, and hence they behave
identically until they are affected by further input, which might
be different. Since the computer program cannot determine
whether it is running inside the brain of one of the normal
observers or one of the Boltzmann brains, any intelligent proba-
bilistic prediction that the program makes about the next obser-
vation would be based on the assumption that it is equally likely
to be running on any member of that set.

2This measure is sometimes referred to as the volume-
weighted scale-factor cutoff measure, but we will define it below
in terms of the counting of events in spacetime, so the concept of
weighting will not be relevant. The term ‘‘volume-weighted’’ is
relevant when a measure is described as a prescription for
defining the probability distribution for the value of a field. In
Ref. [17], this measure is called the ‘‘pseudo-comoving volume-
weighted measure.’’

3In a paper that appeared simultaneously with version 1 of this
paper, Raphael Bousso, Ben Freivogel, and I-Sheng Yang inde-
pendently analyzed the Boltzmann brain problem for the scale-
factor cutoff measure [42].
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the lens of this measure. In Sec. III we calculate the ratio of
Boltzmann brains to normal observers in terms of multi-
verse volume fractions and transition rates. The volume
fractions are discussed in Sec. IV, in the context of toy
landscapes, and the section ends with a general description
of the conditions necessary to avoid Boltzmann brain
domination. The rate of Boltzmann brain production and
the rate of vacuum decay play central roles in our calcu-
lations, and these are estimated in Sec. V. Concluding
remarks are provided in Sec. VI.

II. THE SCALE-FACTOR CUTOFF

Perhaps the simplest way to regulate the infinities of
eternal inflation is to impose a cutoff on a hypersurface of
constant global time [12–16]. One starts with a patch of a
spacelike hypersurface � somewhere in an inflating region
of spacetime, and follows its evolution along the congru-
ence of geodesics orthogonal to �. The scale-factor time is
defined as

t ¼ lna; (2)

where a is the expansion factor along the geodesics. The
scale-factor time is related to the proper time � by

dt ¼ Hd�; (3)

where H is the Hubble expansion rate of the congruence.
The spacetime region swept out by the congruence will
typically expand to unlimited size, generating an infinite
number of pockets. (If the patch does not grow without
limit, one chooses another initial patch � and starts again.)
The resulting four-volume is infinite, but we cut it off at
some fixed scale-factor time t ¼ tc. To find the relative
probabilities of different events, one counts the numbers of
such events in the finite spacetime volume between � and
the t ¼ tc hypersurface, and then takes the limit tc ! 1.

The term ‘‘scale factor’’ is often used in the context of
homogeneous and isotropic geometries; yet on very large
and on very small scales the multiverse may be very
inhomogeneous. A simple way to deal with this is to take
the factor H in Eq. (3) to be the local divergence of the
four-velocity vector field along the congruence of
geodesics orthogonal to �,

HðxÞ � ð1=3Þu�;�: (4)

When more than one geodesic passes through a point, the
scale-factor time at that point may be taken to be the
smallest value among the set of geodesics. In collapsing
regions HðxÞ is negative, in which case the corresponding
geodesics are continued unless or until they hit a singularity.

This ‘‘local’’ definition of scale-factor time has a simple
geometric meaning. The congruence of geodesics can be
thought of as representing a ‘‘dust’’ of test particles
scattered uniformly on the initial hypersurface �. As one
moves along the geodesics, the density of the dust in the
orthogonal plane decreases. The expansion factor a in

Eq. (2) can then be defined as a / ��1=3, where � is the
density of the dust, and the cutoff is triggered when � drops
below some specified level.
Although the local scale-factor time closely follows

the Friedmann-Robertson-Walker (FRW) scale factor in
expanding spacetimes—such as inflating regions and ther-
malized regions not long after reheating—it differs dra-
matically from the FRW scale factor as small-scale
inhomogeneities develop during matter domination in uni-
verses like ours. In particular, the local scale-factor time
nearly grinds to a halt in regions that have decoupled from
the Hubble flow. It is not clear whether we should impose
this particular cutoff, which would essentially include the
entire lifetime of any nonlinear structure that forms before
the cutoff, or impose a cutoff on some nonlocal time
variable that more closely tracks the FRW scale factor.4

There are a number of nonlocal modifications of scale-
factor time that both approximate our intuitive notion of
FRW averaging and also extend into more complicated
geometries. One drawback of the nonlocal approach is
that no single choice looks more plausible than the others.
For instance, one nonlocal method is to define the factor H
in Eq. (3) by spatial averaging of the quantity HðxÞ in
Eq. (4). A complete implementation of this approach,
however, involves many seemingly arbitrary choices
regarding how to define the hypersurfaces over which
HðxÞ should be averaged, so here we set this possibility
aside. A second, simpler method is to use the local scale-
factor time defined above, but to generate a new cutoff
hypersurface by excluding the future light cones of all
points on the original cutoff hypersurface. In regions
with nonlinear inhomogeneities, the underdense regions
will be the first to reach the scale-factor cutoff, after which
they quickly trigger the cutoff elsewhere. The resulting
cutoff hypersurface will not be a surface of constant
FRW scale factor, but the fluctuations of the FRW scale
factor on this surface should be insignificant.
As a third and final example of a nonlocal modification

of scale-factor time, we recall the description of the local
scale-factor cutoff in terms of the density � of a dust of test
particles. Instead of such a dust, consider a set of massless
test particles, emanating uniformly in all directions from
each point on the initial hypersurface �. We can then
construct the conserved number density current J� for
the gas of test particles, and we can define � as the rest
frame number density, i.e. the value of J0 in the local

Lorentz frame in which Ji ¼ 0, or equivalently � ¼
ffiffiffiffiffi
J2
p

.

Defining a / ��1=3, as we did for the dust of test particles,
we apply the cutoff when the number density � drops
below some specified level. Since null geodesics are barely
perturbed by structure formation, the strong perturbations

4The distinction between these two forms of scale-factor time
was first pointed out by Bousso, Freivogel, and Yang in
Ref. [42].
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inherent in the local definition of scale-factor time are
avoided. Nonetheless, we have not studied the properties
of this definition of scale-factor time, and they may lead to
complications. Large-scale anisotropic flows in the gas of
test particles can be generated as the particles stream into
expanding bubbles from outside. Since the null geodesics
do not interact with matter except gravitationally, these
anisotropies will not be damped in the same way as they
would be for photons. The large-scale flow of the gas will
not redshift in the normal way, either; for example, if the
test particles in some region of a FRW universe have a
nonzero mean velocity relative to the comoving frame, the
expansion of the universe will merely reduce the energies
of all the test particles by the same factor, but will not cause
the mean velocity to decrease. Thus, the detailed predic-
tions for this definition of scale-factor cutoff measure
remain a matter for future study.

The local scale-factor cutoff and each of the three
nonlocal definitions correspond to different global-time
parametrizations and thus to different spacetime measures.
In general, they make different predictions for physical
observables; however, with regard to the relative number
of normal observers and Boltzmann brains, their predic-
tions are essentially the same. For the remainder of this
paper we refer to the generic nonlocal definition of scale-
factor time, for which we take FRW time as a suitable
approximation. Note that the use of local scale-factor time
would make it slightly easier to avoid Boltzmann brain
domination, since it would increase the count of normal
observers while leaving the count of Boltzmann brains
essentially unchanged.

To facilitate later discussion, let us now describe some
general properties of the multiverse. The volume fraction
fi occupied by vacuum i on constant scale-factor time
slices can be found from the rate equation [43],

dfi
dt
¼X

j

Mijfj; (5)

where the transition matrix Mij is given by

Mij ¼ �ij � �ij

X
r

�ri; (6)

and �ij is the transition rate from vacuum j to vacuum i per

Hubble volume per Hubble time. This rate can also be
written

�ij ¼ ð4�=3ÞH�4j �ij; (7)

where �ij is the bubble nucleation rate per unit spacetime

volume and Hj is the Hubble expansion rate in vacuum j.

The solution of Eq. (5) can be written in terms of the
eigenvectors and eigenvalues of the transition matrix Mij.

It is easily verified that each terminal vacuum is an
eigenvector with eigenvalue zero. We here define ‘‘termi-
nal vacua’’ as those vacua j for which �ij ¼ 0 for all i.

Thus the terminal vacua include both negative-energy

vacua, which collapse in a big crunch, and stable zero-
energy vacua. It was shown in Ref. [21] that all of the other
eigenvalues of Mij have negative real parts. Moreover, the

eigenvalue with the smallest (by magnitude) real part is
pure real; we call it the ‘‘dominant eigenvalue’’ and denote
it by �q (with q > 0). Assuming that the landscape is
irreducible, the dominant eigenvalue is nondegenerate.
In that case the probabilities defined by the scale-factor
cutoff measure are independent of the initial state of the
multiverse, since they are determined by the dominant
eigenvector.5

For an irreducible landscape, the late-time asymptotic
solution of Eq. (5) can be written in the form6

fjðtÞ ¼ fð0Þj þ sje
�qt þ . . . ; (8)

where the constant term fð0Þj is nonzero only in terminal

vacua and sj is proportional to the eigenvector of Mij

corresponding to the dominant eigenvalue �q, with the
constant of proportionality determined by the initial distri-
bution of vacua on �. It was shown in Ref. [21] that sj � 0

for terminal vacua, and sj > 0 for nonterminal vacua, as is

needed for Eq. (8) to describe a non-negative volume
fraction, with a nondecreasing fraction assigned to any
terminal vacuum.
By inserting the asymptotic expansion (8) into the dif-

ferential equation (5) and extracting the leading asymptotic
behavior for a nonterminal vacuum i, one can show that

ð�i � qÞsi ¼
X
j

�ijsj; (9)

where �j is the total transition rate out of vacuum j,

�j �
X
i

�ij: (10)

5In this work we assume that the multiverse is irreducible; that
is, any metastable inflating vacuum is accessible from any other
such vacuum via a sequence of tunneling transitions. Our results,
however, can still be applied when this condition fails. In that
case the dominant eigenvalue can be degenerate, in which case
the asymptotic future is dominated by a linear combination of
dominant eigenvectors that is determined by the initial state. If
transitions that increase the vacuum-energy density are included,
then the landscape can be reducible only if it splits into
several disconnected sectors. That situation was discussed in
Appendix A of Ref. [38], where two alternative prescriptions
were described. The first prescription (preferred by the authors)
leads to initial-state dependence only if two or more sectors have
the same dominant eigenvalue q, while the second prescription
always leads to initial-state dependence.

6Mij is not necessarily diagonalizable, but Eq. (8) applies in
any case. It is always possible to form a complete basis from
eigenvectors and generalized eigenvectors, where generalized
eigenvectors satisfy ðM� �IÞks ¼ 0, for k > 1. The generalized
eigenvectors appear in the solution with a time dependence given
by e�t times a polynomial in t. These terms are associated with
the nonleading eigenvalues omitted from Eq. (8), and the poly-
nomials in t will not change the fact that they are nonleading.
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The positivity of si for nonterminal vacua then implies
rigorously that q is less than the decay rate of the
slowest-decaying vacuum in the landscape:

q � �min � minf�jg: (11)

Since ‘‘upward’’ transitions (those that increase the
energy density) are generally suppressed, we can gain
some intuition by first considering the case in which all
upward transition rates are set to zero. (Such a landscape is
reducible, so the dominant eigenvector can be degenerate.)
In this case Mij is triangular, and the eigenvalues are

precisely the decay rates �i of the individual states. The
dominant eigenvalue q is then exactly equal to �min.

If upward transitions are included but assumed to have a
very low rate, then the dominant eigenvalue q is approxi-
mately equal to the decay rate of the slowest-decaying
vacuum [44],

q � �min: (12)

The slowest-decaying vacuum (assuming it is unique) is
the one that dominates the asymptotic late-time volume of
the multiverse, so we call it the dominant vacuum and
denote it by D. Hence,

q � �D: (13)

The vacuum decay rate is typically exponentially sup-
pressed, so for the slowest-decaying vacuum we expect it
to be extremely small,

q ��1: (14)

Note that the corrections to Eq. (13) are comparable to the
upward transition rate from D to higher-energy vacua, but
for large energy differences this transition rate is sup-
pressed by the factor expð�8�2=H2

DÞ [45]. Here and
throughout the remainder of this paper we use reduced
Planck units, where 8�G ¼ c ¼ kB ¼ 1. We shall argue
in Sec. V that the dominant vacuum is likely to have a very
low-energy density, so the correction to Eq. (13) is very
small even compared to q.

A possible variant of this picture, with similar conse-
quences, could arise if one assumes that the landscape
includes states with nearby energy densities for which
the upward transition rate is not strongly suppressed. In
that case there could be a group of vacuum states that
undergo rapid transitions into each other, but very slow
transitions to states outside the group. The role of the
dominant vacuum could then be played by this group of
states, and q would be approximately equal to some
appropriately averaged rate for the decay of these states
to states outside the group. Under these circumstances q
could be much less than �min. An example of such a
situation is described in Sec. IVE.

In the asymptotic limit of late scale-factor time t, the
physical volumes in the various nonterminal vacua are
given by

VjðtÞ ¼ V0sje
ð3�qÞt; (15)

where V0 is the volume of the initial hypersurface � and
e3t is the volume expansion factor. The volume growth in
Eq. (15) is (very slightly) slower than e3t due to the constant
loss of volume from transitions to terminal vacua. Note that
even though upward transitions from the dominant vacuum
are strongly suppressed, they play a crucial role in populat-
ing the landscape [44]. Most of the volume in the asymp-
totic solution of Eq. (15) originates in the dominant vacuum
D, and ‘‘trickles’’ to the other vacua through a series of
transitions starting with at least one upward jump.

III. THE ABUNDANCE OF NORMAL OBSERVERS
AND BOLTZMANN BRAINS

Let us now calculate the relative abundances of
Boltzmann brains and normal observers, in terms of the
vacuum transition rates and the asymptotic volume
fractions.
Estimates for the numerical values of the Boltzmann

brain nucleation rates and vacuum decay rates will be
discussed in Sec. V, but it is important at this stage to
be aware of the kind of numbers that will be considered.
We will be able to give only rough estimates of these rates,
but the numbers that will be mentioned in Sec. V will range
from expð�10120Þ to expð�1016Þ. Thus, when we calculate
the ratio N BB=N NO of Boltzmann brains to normal
observers, the natural logarithm of this ratio will always
include one term with a magnitude of at least 1016.
Consequently, the presence or absence of any term in
lnðN BB=N NOÞ that is small compared to 1016 is of no
relevance. We therefore refer to any factor f for which

j lnfj< 1014 (16)

as ‘‘roughly of order one.’’ In the calculation of
N BB=N NO such factors—although they may be minus-
cule or colossal by ordinary standards—can be ignored. It
will not be necessary to keep track of factors of 2, �, or

even 1010
8
. Dimensionless coefficients, factors of H, and

factors coming from detailed aspects of the geometry are
unimportant, and in the end all of these will be ignored.
We nonetheless include some of these factors in the inter-
mediate steps below simply to provide a clearer description
of the calculation.
We begin by estimating the number of normal observers

that will be counted in the sample spacetime region speci-
fied by the scale-factor cutoff measure. Normal observers
arise during the big bang evolution in the aftermath of
slow-roll inflation and reheating. The details of this evolu-
tion depend not only on the vacuum of the pocket in
question, but also on the parent vacuum from which it
nucleated [46]. That is, if we view each vacuum as a local
minimum in a multidimensional field space, then the
dynamics of inflation, in general, depend on the direction
from which the field tunneled into the local minimum.
We therefore label pockets with two indices ik, indicating
the pocket and parent vacua, respectively.
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To begin, we restrict our attention to a single
‘‘anthropic’’ pocket—i.e., one that produces normal
observers—which nucleates at scale-factor time tnuc. The
internal geometry of the pocket is that of an open FRW
universe. We assume that, after a brief curvature-
dominated period ���H�1k , slow-roll inflation inside

the pocket gives Ne e-folds of expansion before thermal-
ization. Furthermore, we assume that all normal observers
arise at a fixed number NO of e-folds of expansion after
thermalization. (Note that Ne and NO are both measured
along FRW comoving geodesics inside the pocket, which
do not initially coincide with, but rapidly asymptote to, the
‘‘global’’ geodesic congruence that originated outside the
pocket.) We denote the fixed-internal-time hypersurface on
which normal observers arise by �NO, and call the average
density of observers on this hypersurface nNOik .

The hypersurface �NO would have infinite volume, due
to the constant expansion of the pocket, but this divergence
is regulated by the scale-factor cutoff tc, because the global
scale-factor time t is not constant over the �NO hypersur-
face. For the pocket described above, the regulated physi-
cal volume of �NO can be written as

VðikÞO ðtnucÞ ¼ H�3k e3ðNeþNOÞwðtc � tnuc � Ne � NOÞ; (17)

where the exponential gives the volume expansion factor
coming from slow-roll inflation and big bang evolution to
the hypersurface �NO, and H�3k wðtc � tnuc � Ne � NOÞ
describes the comoving volume of the part of the �NO

hypersurface that is underneath the cutoff. The function
wðtÞ was calculated, for example, in Refs. [39,47], and was
applied to the scale-factor cutoff measure in Ref. [48]. Its
detailed form will not be needed to determine the answer
up to a factor that is roughly of order one, but to avoid
mystery we mention that wðtÞ can be written as

wðtÞ ¼ �

2

Z ��ðtÞ

0
sinh2ð�Þd� ¼ �

8
½sinhð2 ��ðtÞÞ � 2 ��ðtÞ�;

(18)

where ��ðtc � tnuc � Ne � NOÞ is the maximum value of
the Robertson-Walker radial coordinate � that lies under
the cutoff. If the pocket universe begins with a moderate
period of inflation [ expðNeÞ � 1] with the same vacuum
energy as outside, then

��ðtÞ � 2cosh�1ðet=2Þ: (19)

Equation (17) gives the physical volume on the �NO

hypersurface for a single pocket of type ik, which nucleates
at time tnuc. The number of ik pockets that nucleate
between time tnuc and tnuc þ dtnuc is

dnðikÞnucðtnucÞ ¼ ð3=4�ÞH3
k�ikVkðtnucÞdtnuc

¼ ð3=4�ÞH3
k�ikskV0e

ð3�qÞtnucdtnuc; (20)

where we use Eq. (15) to give VkðtnucÞ. The total number of
normal observers in the sample region is then

N NO
ik ¼ nNOik

Z tc�Ne�NO

VðikÞO ðtnucÞdnðikÞnucðtnucÞ

� nNOik �ikskV0e
ð3�qÞtc

Z 1
0

wðzÞe�ð3�qÞzdz: (21)

In the first expression we have ignored the (very small)
probability that pockets of type ik may transition to other
vacua during slow-roll inflation or during the subsequent
period NO of big bang evolution. In the second line, we
have changed the integration variable to z ¼ tc � tnuc �
Ne � NO (reversing the direction of integration) and have

dropped the Oð1Þ prefactors, and also the factor eqðNeþNOÞ,
since q is expected to be extraordinarily small. We have
kept e�qtc , since we are interested in the limit tc ! 1.
We have also kept the factor eqz long enough to verify that
the integral converges with or without the factor, so we can
carry out the integral using the approximation q � 0,
resulting in an Oð1Þ prefactor that we will drop.
Finally,

N NO
ik � nNOik �ikskV0e

ð3�qÞtc : (22)

Note that the expansion factor e3ðNeþNOÞ in Eq. (17) was
canceled when we integrated over nucleation times, illus-
trating the mild youngness bias of the scale-factor cutoff
measure. The expansion of the Universe is canceled, so
objects that form at a certain density per physical volume
in the early Universe will have the same weight as objects
that form at the same density per physical volume at a later
time, despite the naive expectation that there is more
volume at later times.
To compare, we now need to calculate the number of

Boltzmann brains that will be counted in the sample space-
time region. Boltzmann brains can be produced in any
anthropic vacuum, and presumably in many nonanthropic
vacua as well. Suppose Boltzmann brains are produced in
vacuum j at a rate �BB

j per unit spacetime volume. The

number of Boltzmann brains N BB
j is then proportional to

the total four-volume in that vacuum. Imposing the cutoff
at scale-factor time tc, this four-volume is

V ð4Þ
j ¼

Z tc
VjðtÞd� ¼ H�1j

Z tc
VjðtÞdt

¼ 1

3� q
H�1j sjV0e

ð3�qÞtc ; (23)

where we have used Eq. (15) for the asymptotic volume
fraction. By setting d� ¼ H�1j dt, we have ignored the time

dependence of Hð�Þ in the earlier stages of cosmic evolu-
tion, assuming that only the late-time de Sitter evolution
is relevant. In a similar spirit, we will assume that the
Boltzmann brain nucleation rate �BB

j can be treated as

time independent, so the total number of Boltzmann brains
nucleated in vacua of type j, within the sample volume, is
given by
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N BB
j � �BB

j H�1j sjV0e
ð3�qÞtc ; (24)

where we have dropped the Oð1Þ numerical factor.
For completeness, we may want to consider the effects

of early universe evolution on Boltzmann brain production,
effects which were ignored in Eq. (24). We will separate
the effects into two categories: the effects of slow-roll
inflation at the beginning of a pocket universe, and the
effects of reheating.

To account for the effects of slow-roll inflation, we argue
that, within the approximations used here, there is no need
for an extra calculation. Consider, for example, a pocket
universe Awhich begins with a period of slow-roll inflation
during which Hð�Þ � Hslow roll ¼ const. Consider also a
pocket universe B, which throughout its evolution has
H ¼ Hslow roll, and which by hypothesis has the same for-
mation rate, Boltzmann brain nucleation rate, and decay
rates as pocket A. Then clearly the number of Boltzmann
brains formed in the slow-roll phase of pocket A will be
smaller than the number formed throughout the lifetime
of pocket B. Since we will require that generic bubbles of
type B do not overproduce Boltzmann brains, there will be
no need to worry about the slow-roll phase of bubbles of
type A.

To estimate how many Boltzmann brains might form as
a consequence of reheating, we can make use of the
calculation for the production of normal observers
described above. We can assume that the Boltzmann brain
nucleation rate has a spike in the vicinity of some particular
hypersurface in the early Universe, peaking at some value
�BB
reheat;ik which persists roughly for some time interval

��BBreheat;ik, producing a density of Boltzmann brains equal

to �BB
reheat;ik��

BB
reheat;ik. This spatial density is converted into a

total number for the sample volume in exactly the same
way that we did for normal observers, leading to

N BB;reheat
ik � �BB

reheat;ik��
BB
reheat;ik�ikskV0e

ð3�qÞtc : (25)

Thus, the dominance of normal observers is assured if

X
i;k

�BB
reheat;ik��

BB
reheat;ik�iksk 	

X
i;k

nNOik �iksk: (26)

If Eq. (26) did not hold, it seems likely that wewould suffer
from Boltzmann brain problems regardless of our measure.
We leave numerical estimates for Sec. V, but we will see
that Boltzmann brain production during reheating is not a
danger.

Ignoring the Boltzmann brains that form during reheat-
ing, the ratio of Boltzmann brains to normal observers can
be found by combining Eqs. (22) and (24), giving

N BB

N NO
�

P
j H

3
j �

BB
j sjP

i;k n
NO
ik �iksk

; (27)

where the summation in the numerator covers only the
vacua in which Boltzmann brains can arise, the summation
over i in the denominator covers only anthropic vacua,
and the summation over k includes all of their possible
parent vacua. �BB

j is the dimensionless Boltzmann brain

nucleation rate in vacuum j, related to �BB
j by Eq. (7). The

expression can be further simplified by dropping the
factors of Hj and nNOi , which are roughly of order one, as

defined by Eq. (16). We can also replace the sum over j in
the numerator by the maximum over j, since the sum is at
least as large as the maximum term and no larger than the
maximum term times the number of vacua. Since the
number of vacua (perhaps 10500) is roughly of order one,
the sum over j is equal to the maximum up to a factor that
is roughly of order one. We similarly replace the sum over i
in the denominator by its maximum, but we choose to leave
the sum over k. Thus we can write

N BB

N NO
�

max
j
f�BB

j sjg
max

i
fPk �ikskg ; (28)

where the sets of j and i are restricted as for Eq. (27).
In dropping nNOi , we are assuming that nNOi H3

i is roughly
of order one, as defined at the beginning of this section. It is
hard to know what a realistic value for nNOi H3

i might be, as
the evolution of normal observers may require some highly
improbable events. For example, it was argued in Ref. [49]
that the probability for life to evolve in a region of the
size of our observable Universe per Hubble time may be as
low as �10�1000. But even the most pessimistic estimates
cannot compete with the small numbers appearing in
estimates of the Boltzmann brain nucleation rate, and
hence by our definition they are roughly of order one.
Nonetheless, it is possible to imagine vacua for which
nNOi might be negligibly small, but still nonzero. We shall
ignore the normal observers in these vacua; for the remain-
der of this paper we will use the phrase ‘‘anthropic
vacuum’’ to refer only to those vacua for which nNOi H3

i is
roughly of order one.
For any landscape that satisfies Eq. (8), which includes

any irreducible landscape, Eq. (28) can be simplified by
using Eq. (9):

N BB

N NO
�

max
j
f�BB

j sjg
max

i
fð�i � qÞsig ; (29)

where the numerator is maximized over all vacua j that
support Boltzmann brains, and the denominator is maxi-
mized over all anthropic vacua i.
In order to learn more about the ratio of Boltzmann

brains to normal observers, we need to learn more about
the volume fractions sj, a topic that will be pursued in the

next section.
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IV. MINI-LANDSCAPES AND THE GENERAL
CONDITIONS TO AVOID BOLTZMANN

BRAIN DOMINATION

In this section we study a number of simple models of
the landscape, in order to build intuition for the volume
fractions that appear in Eqs. (28) and (29). The reader
uninterested in the details may skip the pedagogical
examples given in Secs. IVA, IVB, IVC, IVD, and
IVE, and continue with Sec. IV F, where we state the
general conditions that must be enforced in order to avoid
Boltzmann brain domination.

A. The FIB landscape

Let us first consider a very simple model of the land-
scape, described by the schematic

F ! I ! B; (30)

where F is a high-energy false vacuum, I is a positive-
energy anthropic vacuum, and B is a terminal vacuum. This
model, which we call the FIB landscape, was analyzed in
Ref. [21] and was discussed in relation to the abundance of
Boltzmann brains in Ref. [17]. As in Ref. [17], we assume
that both Boltzmann brains and normal observers reside
only in vacuum I.

Note that the FIB landscape ignores upward transitions
from I to F. The model is constructed in this way as an
initial first step, and also in order to more clearly relate our
analysis to that of Ref. [17]. Although the rate of upward
transitions is exponentially suppressed relative to the other
rates, its inclusion is important for the irreducibility of the
landscape, and hence the nondegeneracy of the dominant
eigenvalue and the independence of the late-time asymp-
totic behavior from the initial conditions of the multiverse.
The results of this subsection will therefore not always
conform to the expectations outlined in Sec. II, but this
shortcoming is corrected in the next subsection and all
subsequent work in this paper.

We are interested in the eigenvectors and eigenvalues of
the rate equation, Eq. (5). In the FIB landscape the rate
equation gives

_f F ¼ ��IFfF; _fI ¼ ��BIfI þ �IFfF: (31)

We ignore the volume fraction in the terminal vacuum as it
is not relevant to our analysis. Starting with the ansatz,

f ðtÞ ¼ se�qt; (32)

we find two eigenvalues of Eqs. (31). These are, with their
corresponding eigenvectors,

q1 ¼ �IF; s1 ¼ ð1; CÞ; q2 ¼ �BI;

s2 ¼ ð0; 1Þ;
(33)

where the eigenvectors are written in the basis s � ðsF; sIÞ
and

C ¼ �IF

�BI � �IF

: (34)

Suppose that we start in the false vacuum F at t ¼ 0,
i.e. fðt ¼ 0Þ ¼ ð1; 0Þ. Then the solution of the FIB rate
equation, Eq. (31), is

fFðtÞ ¼ e��IFt; fIðtÞ ¼ Cðe��IFt � e��BItÞ: (35)

The asymptotic evolution depends on whether �IF < �BI

(case I) or not (case II). In case I,

f ðt! 1Þ ¼ s1e
��IFt ð�IF < �BIÞ; (36)

where s1 is given in Eq. (33), while in case II,

f ðt! 1Þ ¼ ðe��IFt; jCje��BItÞ ð�BI < �IFÞ: (37)

In the latter case, the inequality of the rates of decay for
the two volume fractions arises from the reducibility of the
FIB landscape, stemming from our ignoring upward tran-
sitions from I to F.
For case I (�IF < �BI), we find the ratio of Boltzmann

brains to normal observers by evaluating Eq. (28) for the
asymptotic behavior described by Eq. (36):

N BB

N NO
� �BBsI

�IFsF
� �BB

�IF

�IF

�BI � �IF

� �BB

�BI

; (38)

where we drop �IF compared to �BI in the denominator,
as we are only interested in the overall scale of the solution.
We find that the ratio of Boltzmann brains to normal
observers is finite, depending on the relative rate of
Boltzmann brain production to the rate of decay of
vacuum I. Meanwhile, in case II (where �BI < �IF) we find

N BB

N NO
� �BB

�IF

eð�IF��BIÞt ! 1: (39)

In this situation, the number of Boltzmann brains over-
whelms the number of normal observers; in fact the ratio
diverges with time.
The unfavorable result of case II stems from the fact

that, in this case, the volume of vacuum I grows faster than
that of vacuum F. Most of this I volume is in large pockets
that formed very early, and this volume dominates because
the F vacuum decays faster than I and is not replenished
due to the absence of upward transitions. This leads to
Boltzmann brain domination, in agreement with the
conclusion reached in Ref. [17]. Thus, the FIB landscape
analysis suggests that Boltzmann brain domination can be
avoided only if the decay rate of the anthropic vacuum is
larger than both the decay rate of its parent false vacuum F
and the rate of Boltzmann brain production. Moreover, the
FIB analysis suggests that Boltzmann brain domination in
the multiverse can be avoided only if the first of these
conditions is satisfied for all vacua in which Boltzmann
brains exist. This is a very stringent requirement, since
low-energy vacua like I typically have lower decay rates
than high-energy vacua (see Sec. V). We shall see,
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however, that the above conditions are substantially re-
laxed in more realistic landscape models.

B. The FIB landscape with recycling

The FIB landscape of the preceding section is reducible,
since vacuum F cannot be reached from vacuum I. We can
make it irreducible by simply allowing upward transitions,

F $ I ! B: (40)

This ‘‘recycling FIB’’ landscape is more realistic than the
original FIB landscape, because upward transitions out of
positive-energy vacua are allowed in semiclassical quan-
tum gravity [45]. The rate equation of the recycling FIB
landscape gives the eigenvalue system,

� qsF ¼ ��IFsF þ �FIsI; �qsI ¼ ��IsI þ �IFsF;

(41)

where �I � �BI þ �FI is the total decay rate of vacuum I,
as defined in Eq. (10). Thus, the eigenvalues q1 and q2
correspond to the roots of

ð�IF � qÞð�I � qÞ ¼ �IF�FI: (42)

Further analysis is simplified if we note that upward
transitions from low-energy vacua like ours are very
strongly suppressed, even when compared to the other
exponentially suppressed transition rates, i.e. �FI 	
�IF; �BI. We are interested mostly in how this small cor-
rection modifies the dominant eigenvector in the case
where �BI < �IF (case II), which led to an infinite ratio
of Boltzmann brains to normal observers. To the lowest
order in �FI, we find

q � �I � �IF�FI

�IF � �I

(43)

and

sI � �IF � �I

�FI

sF � sF: (44)

The above equation is a consequence of the second of
Eqs. (41), but it also follows directly from Eq. (9), which
holds in any irreducible landscape. In this case fIðtÞ and
fFðtÞ have the same asymptotic time dependence, / e�qt,
so the ratio fIðtÞ=fFðtÞ approaches a constant limit,
sI=sF � R. However, due to the smallness of �FI, this ratio
is extremely large. Note that the ratio of Boltzmann brains
to normal observers is proportional to R. Although it is also
proportional to the minuscule Boltzmann brain nucleation
rate (estimated in Sec. V), the typically huge value of R
will still lead to Boltzmann brain domination (again, see
Sec. V for relevant details). But the story is not over, since
the recycling FIB landscape is still far from realistic.

C. A more realistic landscape

In the recycling model of the preceding section, the
anthropic vacuum I was also the dominant vacuum, while

in a realistic landscape this is not likely to be the case. To
see how it changes the situation to have a nonanthropic
vacuum as the dominant one, we consider the model

A D$ F ! I ! B; (45)

which we call the ‘‘ADFIB landscape.’’ Here, D is the
dominant vacuum and A and B are both terminal vacua.
The vacuum I is still an anthropic vacuum, and the vacuum
F has large, positive vacuum energy. As explained in
Sec. V, the dominant vacuum is likely to have very small
vacuum energy; hence we consider that at least one upward
transition (here represented as the transition to F) is
required to reach an anthropic vacuum.
Note that the ADFIB landscape ignores the upward

transition rate from vacuum I to F; however, this is
exponentially suppressed relative to the other transition
rates pertinent to I and, unlike the situation in Sec. IVA,
ignoring the upward transition does not significantly affect
our results. The important property is that all vacuum
fractions have the same late-time asymptotic behavior;
this property is assured whenever there is a unique domi-
nant vacuum, and all inflating vacua are accessible from
the dominant vacuum via a sequence of tunneling transi-
tions. The uniformity of asymptotic behaviors is sufficient
to imply Eq. (9), which suggests immediately that

sI
sF
¼ �IF

�BI � q
� �IF

�BI � �D

� �IF

�BI

; (46)

where we used q � �D � �AD þ �FD, and assumed that
�D 	 �BI.
This holds even if the decay rate of the anthropic

vacuum I is smaller than that of the false vacuum F.
Even though the false vacuum F may decay rather

quickly, it is constantly being replenished by upward
transitions from the slowly decaying vacuum D, which
overwhelmingly dominates the physical volume of the
multiverse. Note that, in light of these results, our con-
straints on the landscape to avoid Boltzmann brain domi-
nation are considerably relaxed. Specifically, it is no longer
required that the anthropic vacua decay at a faster rate than
their parent vacua. Using Eq. (46) with Eq. (28), the ratio
of Boltzmann brains to normal observers in vacuum I is
found to be

N BB
I

N NO
I

� �BB
I sI

�IFsF
� �BB

I

�BI

: (47)

If Boltzmann brains can also exist in the dominant
vacuum D, then they are a much more severe problem.
By applying Eq. (9) to the F vacuum, we find

sF
sD
¼ �FD

�F � q
� �FD

�F � �D

� �FD

�F

; (48)

where �F ¼ �IF þ �DF, and where we have assumed that
�D 	 �F. The ratio of Boltzmann brains in vacuum D to
normal observers in vacuum I is then
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N BB
D

N NO
I

� �BB
D sD
�IFsF

� �BB
D

�FD

�F

�IF

: (49)

Since we expect that the dominant vacuum has very small
vacuum energy, and hence a heavily suppressed upward
transition rate �FD, the requirement that N BB

D =N NO
I be

small could be a very stringent one. Note that compared to
sD, both sF and sI are suppressed by the small factor �FD;
however, the ratio sI=sF is independent of this factor.

Since sD is so large, one should ask whether Boltzmann
brain domination can be more easily avoided by allowing
vacuum D to be anthropic. The answer is no, because the
production of normal observers in vacuum D is propor-
tional [see Eq. (22)] to the rate at which bubbles of D
nucleate, which is not large. D dominates the spacetime
volume due to slow decay, not rapid nucleation. If we
assume that D is anthropic and restrict Eq. (28) to vacuum
D, we find using Eq. (48) that

N BB
D

N NO
D

� �BB
D sD

�DFsF
� �BB

D

�FD

�F

�DF

; (50)

so again the ratio is enhanced by the extremely small
upward tunneling rate �FD in the denominator.

Thus, in order to avoid Boltzmann brain domination, it
seems we have to impose two requirements: (1) the
Boltzmann brain nucleation rate in the anthropic vacuum
I must be less than the decay rate of that vacuum, and
(2) the dominant vacuum D must either not support
Boltzmann brains at all, or must produce them with a
dimensionless rate �BB

D that is small even compared to
the upward tunneling rate �FD. If the vacuum D is an-
thropic then it must support Boltzmann brains, so the
domination by Boltzmann brains could be avoided only
by the stringent requirement �BB

D 	 �FD.

D. A further generalization

The conclusions of the last subsection are robust to more
general considerations. To illustrate, let us generalize the
ADFIB landscape to one with many low-vacuum-energy
pockets, described by the schematic

A D$ Fj ! Ii ! B; (51)

where each high-energy false vacuum Fj decays into a set

of vacua fIig, all of which decay (for simplicity) to the same
terminal vacuum B. The vacua Ii are taken to be a large set
including both anthropic vacua and vacua that host only
Boltzmann brains. Equation (9) continues to apply, so
Eqs. (46) and (48) are easily generalized to this case, giving

sIi �
1

�Ii

X
j

�IiFj
sFj

(52)

and

sFj
� 1

�Fj

�FjDsD; (53)

where we have assumed that q	 �Ii ; �Fj
, as we expect for

vacua other than the dominant one. Using these results with
Eq. (28), the ratio of Boltzmann brains in vacua Ii to
normal observers in vacua Ii is given by

N BB
fIig

N NO
fIig
�

max
i
f�BB

Ii
sIig

max
i
fPj �IiFj

sFj
g

�
max

i

n
�BB
Ii

1
�Ii

P
j �IiFj

1
�Fj

�FjDsD
o

max
i
fPj �IiFj

1
�Fj

�FjDsDg

�
max

i

�
�BB
Ii

�Ii

P
j

�IiFj

�Fj

�FjD

�

max
i

nP
j

�IiFj

�Fj

�FjD

o ; (54)

where the denominators are maximized over the restricted
set of anthropic vacua i (and the numerators are maximized
without restriction). The ratio of Boltzmann brains in the
dominant vacuum (vacuum D) to normal observers in
vacua Ii is given by

N BB
D

N NO
fIig
� �BB

D sD
max

i
fPj �IiFj

sFj
g �

�BB
D

max
i

nP
j

�IiFj

�Fj

�FjD

o ; (55)

and, if vacuum D is anthropic, then the ratio of Boltzmann
brains in vacuum D to normal observers in vacuum D is
given by

N BB
D

N NO
D

� �BB
DP

j

�DFj

�Fj

�FjD

: (56)

In this case our answers are complicated by the presence
of many different vacua. We can, in principle, deter-
mine whether Boltzmann brains dominate by evaluating
Eqs. (54)–(56) for the correct values of the parameters,
but this gets rather complicated and model dependent.
The evaluation of these expressions can be simplified
significantly, however, if we make some very plausible
assumptions.
For tunneling out of the high-energy vacua Fj, one

can expect the transition rates into different channels
to be roughly comparable, so that �IiFj

� �DFj
� �Fj

.

That is, we assume that the branching ratios �IiFj
=�Fj

and �DFj
=�Fj

are roughly of order one in the sense of

Eq. (16). These factors (or their inverses) will therefore
be unimportant in the evaluation of N BB=N NO, and may
be dropped. Furthermore, the upward transition rates from
the dominant vacuum D into Fj are all comparable to one

another, as can be seen by writing [45]
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�FjD � e
AFjDe�SD ; (57)

where AFjD is the action of the instanton responsible for the

transition and SD is the action of the Euclideanized
de Sitter four-sphere,

SD ¼ 8�2

H2
D

: (58)

But generically jAFjDj � 1=�Fj
. If we assume that

��������
1

�Fj

� 1

�Fk

��������<1014 (59)

for every pair of vacua Fj and Fk, then �FjD ¼ �FkD up to a

factor that can be ignored because it is roughly of order
one. Thus, up to subleading factors, the transition rates
�FjD cancel out7 in the ratio N BB

fIig=N
NO.

Returning to Eq. (54) and keeping only the leading
factors, we have

N BB
fIig

N NO
�max

i

��BB
Ii

�Ii

�
; (60)

where the index i runs over all (nondominant) vacua in
which Boltzmann brains can nucleate. For the dominant
vacuum, our simplifying assumptions8 convert Eqs. (55)
and (56) into

N BB
D

N NO
� �BB

D

�up

� �BB
D eSD; (61)

where �up �
P

j�FjD is the upward transition rate out of

the dominant vacuum.
Thus, the conditions needed to avoid Boltzmann brain

domination are essentially the same as what we found in
Sec. IVC. In this case, however, we must require that in
any vacuum that can support Boltzmann brains, the

Boltzmann brain nucleation rate must be less than the
decay rate of that vacuum.

E. A dominant vacuum system

In the next to last paragraph of Sec. II, we described a
scenario where the dominant vacuum was not the vacuum
with the smallest decay rate. Let us now study a simple
landscape to illustrate this situation. Consider the toy
landscape

where as in Sec. IVD the vacua Ii are taken to include both
anthropic vacua and vacua that support only Boltzmann
brains. Vacua A and B are terminal vacua and the Fj have

large, positive vacuum energies. Assume that vacuum S has
the smallest total decay rate.
We have in mind the situation in which D1 and D2 are

nearly degenerate, and transitions from D1 to D2 (and vice
versa) are rapid, even though the transition in one direction
is upward. With this in mind, we divide the decay rates of
D1 and D2 into two parts,

�1 ¼ �21 þ �out
1 ; (63)

�2 ¼ �12 þ �out
2 ; (64)

with �12; �21 � �out
1;2. We assume as in previous sections

that the rates for large upward transitions (S to D1 or D2,
and D1 or D2 to Fj) are extremely small, so that we can

ignore them in the calculation of q. The rate equation,
Eq. (9), then admits a solution with q ’ �D, but it also
admits solutions with

q ’ 1

2

�
�1 þ �2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2Þ2 þ 4�12�21

q �
: (65)

Expanding the smaller root to linear order in �out
1;2 gives

q ’ 	1�
out
1 þ 	2�

out
2 ; (66)

where

	1 � �12

�12 þ �21

; 	2 � �21

�12 þ �21

: (67)

In principle, this value for q can be smaller than �D, which
is the case that we wish to explore.
In this case the vacua D1 and D2 dominate the volume

fraction of the multiverse, even if their total decay rates �1

and �2 are not the smallest in the landscape. We can
therefore call the states D1 and D2 together a dominant
vacuum system, which we denote collectively as D.
The rate equation [Eq. (9)] shows that

7Depending on the range of vacua Fj that are considered, the
bound of Eq. (59) may or may not be valid. If it is not, then the
simplification of Eq. (60) below is not justified, and the original
Eq. (54) has to be used. Of course one should remember that
there was significant arbitrariness in the choice of 1014 in the
definition of ‘‘roughly of order one.’’ It was chosen to accom-
modate the largest estimate that we discuss in Sec. V for the
Boltzmann brain nucleation rate, �BB � expð�1016Þ. In consid-
ering the other estimates of �BB, one could replace 1014 by a
much larger number, thereby increasing the applicability of
Eq. (59).

8The dropping of the factor e
AFjD is a more reliable approxi-

mation in this case than it was in Eq. (60) above. In this case the
factor e�SD does not cancel between the numerator and denomi-
nator, so the factor e

AFjD can be dropped if it is unimportant
compared to e�SD . We of course do not know the value of S for
the dominant vacuum, but for our vacuum it is of order 10122,
and it is plausible that the value for the dominant vacuum is
similar or even larger. Thus as long as 1=�Fj

is small compared
to 10122, it seems safe to drop the factor e

AFjD .
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sD1
� 	1sD; sD2

� 	2sD; (68)

where sD � sD1
þ sD2

, and the equations hold in the

approximation that �out
1;2 and the upward transition rates

from D1 and D2 can be neglected. To see that these vacua
dominate the volume fraction, we calculate the modified
form of Eq. (53):

sFj

sD
� 	1�FjD1

þ 	2�FjD2

�Fj

: (69)

Thus the volume fractions of the Fj, and hence also the Ij
and B vacua, are suppressed by the very small rate for large
upward jumps from low-energy vacua, namely, �FjD1

and

�FjD2
. The volume fraction for S depends on �AD1

and

�AD2
, but it is maximized when these rates are negligible,

in which case it is given by

sS
sD
� q

�S � q
: (70)

This quantity can, in principle, be large, if q is just a little
smaller than �S, but that would seem to be a very special
case. Generically, we would expect that since q must be
smaller than �S [see Eq. (11)], it would most likely be
many orders of magnitude smaller, and hence the ratio in
Eq. (70) would be much less than 1. There is no reason,
however, to expect it to be as small as the ratios that are
suppressed by large upward jumps. For simplicity,
however, we will assume in what follows that sS can be
neglected.

To calculate the ratio of Boltzmann brains to normal
observers in this toy landscape, note that Eqs. (54) and (55)
are modified only by the substitution

�FjD ! ��FjD � 	1�FjD1
þ 	2�FjD2

: (71)

Thus, the dominant vacuum transition rate is simply
replaced by a weighted average of the dominant vacuum
transition rates. If we assume that neither of the vacua, D1

orD2, are anthropic, and make the same assumptions about
magnitudes used in Sec. IVD, then Eqs. (60) and (61)
continue to hold as well, where we have redefined �up

by �up �
P

j ��FjD.

If, however, we allowD1 orD2 to be anthropic, then new
questions arise. Transitions between D1 and D2 are, by
assumption, rapid, so they copiously produce new pockets
and potentially new normal observers. We must recall,
however (as discussed in Sec. III), that the properties of a
pocket universe depend on both the current vacuum and the
parent vacuum. In this case, the unusual feature is that the
vacua within the D system are nearly degenerate, and
hence very little energy is released by tunnelings within
D. For pocket universes created in this way, the maximum
particle energy density during reheating will be only a
small fraction of the vacuum-energy density. Such a big
bang is very different from the one that took place in our

pocket, and presumably much less likely to produce life.
We will call a vacuum in the D system ‘‘strongly
anthropic’’ if normal observers are produced by tunnelings
fromwithinD, and ‘‘mildly anthropic’’ if normal observers
can be produced, but only by tunnelings from higher-
energy vacua outside D.
If either of the vacua in D were strongly anthropic, then

the normal observers in D would dominate the normal
observers in the multiverse. Normal observers in the vacua
Ii would be less numerous by a factor proportional to the
extremely small rate ��FjD for large upward transitions.

This situation would itself be a problem, however, similar
to the Boltzmann brain problem. It would mean that ob-
servers like ourselves, who arose from a hot big bang with
energy densities much higher than our vacuum-energy
density, would be extremely rare in the multiverse. We
conclude that if there are any models which give a domi-
nant vacuum system that contains a strongly anthropic
vacuum, such models would be considered unacceptable
in the context of the scale-factor cutoff measure.
On the other hand, if theD system included one or more

mildly anthropic vacua, then the situation is very similar to
that discussed in Secs. IVC and IVD. In this case the
normal observers in the D system would be comparable
in number to the normal observers in the vacua Ii, so they
would have no significant effect on the ratio of Boltzmann
brains to normal observers in the multiverse. If any of theD
vacua were mildly anthropic, however, then the stringent
requirement �BB

D 	 �up would have to be satisfied without

resort to the simple solution �BB
D ¼ 0.

Thus, we find that the existence of a dominant vacuum
system does not change our conclusions about the abun-
dance of Boltzmann brains, except insofar as the
Boltzmann brain nucleation constraints that would apply
to the dominant vacuummust apply to every member of the
dominant vacuum system. Probably the most important
implication of this example is that the dominant vacuum
is not necessarily the vacuum with the lowest decay rate, so
the task of identifying the dominant vacuum could be very
difficult.

F. General conditions to avoid
Boltzmann brain domination

In constructing general conditions to avoid Boltzmann
brain domination, we are guided by the toy landscapes
discussed in the previous subsections. Our goal, however,
is to construct conditions that can be justified using only
the general equations of Secs. II and III, assuming that the
landscape is irreducible, but without relying on the prop-
erties of any particular toy landscape. Wewill be especially
cautious about the treatment of the dominant vacuum and
the possibility of small upward transitions, which could be
rapid. The behavior of the full landscape of a realistic
theory may deviate considerably from that of the simplest
toy models.
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To discuss the general situation, it is useful to divide
vacuum states into four classes. We are only interested in
vacua that can support Boltzmann brains. These can be

(1) anthropic vacua for which the total dimensionless
decay rate satisfies �i � q,

(2) nonanthropic vacua that can transition to anthropic
vacua via unsuppressed transitions,

(3) nonanthropic vacua that can transition to anthropic
vacua only via suppressed transitions,

(4) anthropic vacua for which the total dimensionless
decay rate is �i � q.

Here q is the smallest-magnitude eigenvalue of the rate
equation [see Eqs. (5)–(8)]. We call a transition ‘‘unsup-
pressed’’ if its branching ratio is roughly of order one in
the sense of Eq. (16). If the branching ratio is smaller than
this, it is ‘‘suppressed.’’ As before, when calculating
N BB=N NO we assume that factors that are roughly of
order one can be ignored. Note that Eq. (11) forbids �i

from being less than q, so the above four cases are
exhaustive.

We first discuss conditions that are sufficient to guaran-
tee that Boltzmann brains will not dominate, postponing
until later the issue of what conditions are necessary.

We begin with the vacua in the first class. Very likely all
anthropic vacua belong to this class. For an anthropic
vacuum i, the Boltzmann brains produced in vacuum i
cannot dominate the multiverse if they do not dominate
the normal observers in vacuum i, so we can begin with this
comparison. Restricting Eq. (29) to this single vacuum, we
obtain

N BB
i

N NO
i

� �BB
i

�i

; (72)

a ratio that has appeared in many of the simple examples.
If this ratio is small compared to 1, then Boltzmann brains
created in vacuum i are negligible.

Let us now study a vacuum j in the second class. First
note that Eq. (9) implies the rigorous inequality

�isi � �ijsj ðno sum on repeated indicesÞ; (73)

which holds for any two states i and j. [Intuitively, Eq. (73)
is the statement that, in a steady state, the total rate of loss
of the volume fraction must exceed the input rate from any
one channel.] To simplify what follows, it will be useful to
rewrite Eq. (73) as

ð�isiÞ � ð�jsjÞBj!i; (74)

where Bj!i � �ij=�j is the branching ratio for the transi-

tion j! i.
Suppose that we are trying to bound the Boltzmann brain

production in vacuum j, and we know that it can undergo
unsuppressed transitions

j! k1 ! . . .! kn ! i; (75)

where i is an anthropic vacuum. We begin by using
Eqs. (22) and (24) to express N BB

j =N NO
i , dropping

irrelevant factors as in Eq. (28), and then we can iterate
the above inequality:

N BB
j

N NO
i

� �BB
j sjP
k �iksk

� �BB
j sj

�isi
� �BB

j sj

ð�jsjÞBj!k1Bk1!k2 � � �Bkn!i

¼ �BB
j

�j

1

Bj!k1Bk1!k2 � � �Bkn!i

; (76)

where again there is no sum on repeated indices, and
Eq. (9) was used in the second step on the first line. Each
inverse branching ratio on the right of the last line is greater
than or equal to 1, but by our assumptions can be consid-
ered to be roughly of order one, and hence can be dropped.
Thus, the multiverse will avoid domination by Boltzmann
brains in vacuum j if �BB

j =�j 	 1, the same criterion

found for the first class.
The third class—nonanthropic vacua that can only tran-

sition to an anthropic state via at least one suppressed
transition—presumably includes many states with very
low-vacuum-energy density. The dominant vacuum of
our toy landscape models certainly belongs to this class,
but we do not know of anything that completely excludes
the possibility that the dominant vacuum might belong to
the second or fourth class. That is, perhaps the dominant
vacuum is anthropic, or decays to an anthropic vacuum. If
there is a dominant vacuum system, as described in
Sec. IVE, then �i � q, and the dominant vacua could
belong to the first class, as well as to either of classes (2)
and (3).
To bound the Boltzmann brain production in this

class, we consider two possible criteria. To formulate the
first, we can again use Eqs. (75) and (76), but this time
the sequence must include at least one suppressed transi-
tion, presumably an upward jump. Let us therefore denote
the branching ratio for this suppressed transition as Bup,

noting that Bup will appear in the denominator of Eq. (76).

Of course, the sequence of Eq. (75) might involve more
than one suppressed transition, but in any case the product
of these very small branching ratios in the denominator
can be called Bup, and all the other factors can be taken as

roughly of order one. Thus, a landscape containing a
vacuum j of the third class avoids Boltzmann brain
domination if

�BB
j

Bup�j

	 1; (77)

in agreement with the results obtained for the dominant
vacua in the toy landscape models in the previous
subsections.
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A few comments are in order. First, if the only sup-
pressed transition is the first, then Bup ¼ �up=�j, and the

above criterion simplifies to �BB
j =�up 	 1. Second, we

should keep in mind that the sequence of Eq. (75) is
presumably not unique, so other sequences will produce
other bounds. All the bounds will be valid, so the strongest
bound is the one of maximum interest. Finally, since the
vacua under discussion are not anthropic, a likely method
for Eq. (77) to be satisfied would be for �BB

j to vanish, as

would happen if the vacuum j did not support the complex
structures needed to form Boltzmann brains.

The criterion above can be summarized by saying that if
�BB
j =ðBup�jÞ 	 1, then the Boltzmann brains in vacuum j

will be overwhelmingly outnumbered by the normal
observers living in pocket universes that form in the decay
chain starting from vacuum j. We now describe a second,
alternative criterion, based on the idea that the number of
Boltzmann brains in vacuum j can be compared with the
number of normal observers in vacuum i if the two types of
vacua have a common ancestor.

Denoting the common ancestor vacuum as A, we assume
that it can decay to an anthropic vacuum i by a chain of
transitions,

A! k1 ! . . .! kn ! i; (78)

and also to a Boltzmann-brain-producing vacuum j by a
chain

A! ‘1 ! . . .! ‘m ! j: (79)

From the sequence of Eq. (78) and the bound of Eq. (74),
we can infer that

ð�isiÞ � ðkAsAÞBA!k1Bk1!k2 � � �Bkn!i: (80)

To make use of the sequence of Eq. (79) we will want a
bound that goes in the opposite direction, for which wewill
need to require additional assumptions. Starting with
Eq. (9), we first require q	 �i, which is plausible pro-
vided that vacuum i is not the dominant vacuum. Next we
look at the sum over j on the right-hand side, and we call
the transition j! i ‘‘significant’’ if its contribution to the
sum is within a factor roughly of order one of the entire
sum. (The sum over j is the sum over sources for vacuum i,
so a transition j! i is significant if pocket universes of
vacuum j are a significant source of pocket universes
of vacuum i.) It follows that for any significant transition
j! i for which q	 �i,

ð�isiÞ � ð�jsjÞZmaxBj!i � ð�jsjÞZmax; (81)

where Zmax denotes the largest number that is roughly of
order one. By our conventions, Zmax ¼ expð1014Þ. If we
assume now that all the transitions in the sequence of

Eq. (79) are significant, and that q is negligible in each
case, then

ð�jsjÞ � ðkAsAÞZmþ1
max : (82)

Using the bounds from Eqs. (80) and (82), the Boltzmann
brain ratio is bounded by

N BB
j

N NO
i

� �BB
j sjP
k �iksk

� �BB
j sj

�isi

� Zmþ1
max

BA!k1Bk1!k2 � � �Bkn!i

�BB
j

�j

: (83)

But all the factors on the right are roughly of order one,
except that some of the branching ratios in the denominator
might be smaller, if they correspond to suppressed transi-
tions. If Bup denotes the product of branching ratios for

all the suppressed transitions shown in the denominator
[i.e., all suppressed transitions in the sequence of Eq. (78)],
then the bound reduces to Eq. (77).9

To summarize, the Boltzmann brains in a nonanthropic
vacuum j can be bounded if there is an ancestor vacuum A
that can decay to j through a chain of significant transitions
for which q	 �‘ for each vacuum, as in the sequence of
Eq. (79), and if the same ancestor vacuum can decay to an
anthropic vacuum through a sequence of transitions
as in Eq. (78). The Boltzmann brains will never dominate
provided that �BB

j =ðBup�jÞ 	 1, where Bup is the product

of all suppressed branching ratios in the sequence
of Eq. (78).
Finally, the fourth class of vacua consists of anthropic

vacua i with decay rate �i ’ q, a class which could be
empty. For this class, Eq. (29) may not be very useful, since
the quantity (�i � q) in the denominator could be very
small. Yet, as in the two previous classes, this class can
be treated by using Eq. (76), where in this case the vacuum
i can be the same as j or different, although the case i ¼ j
requires n � 1. Again, if the sequence contains only un-
suppressed transitions, then the multiverse avoids domina-
tion by Boltzmann brains in vacuum i if �BB

i =�i 	 1. If
upward jumps are needed to reach an anthropic vacuum,
whether it is the vacuum i again or a distinct vacuum j,
then the Boltzmann brains in vacuum iwill never dominate
if �BB

i =ðBup�iÞ 	 1.

9Note, however, that the argument breaks down if the sequen-
ces in either Eq. (78) or (79) become too long. For the choices
that we have made, a factor of Zmax is unimportant in the
calculation of N BB=N NO, but Z100

max ¼ expð1016Þ can be sig-
nificant. Thus, for our choices we can justify the dropping of
Oð100Þ factors that are roughly of order one, but not more than
that. For choices appropriate to smaller estimates of �BB, how-
ever, the number of factors that can be dropped will be many
orders of magnitude larger.
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The conditions described in the previous paragraph are
very difficult to meet, so if the fourth class is not empty,
Boltzmann brain domination is hard to avoid. These vacua
have the slowest decay rates in the landscape, �i � q, so it
seems plausible that they have very low-energy densities,
precluding the possibility of decaying to an anthropic
vacuum via unsuppressed transitions; in that case
Boltzmann brain domination can be avoided if

�BB
i 	 Bup�i: (84)

However, as pointed out in Ref. [42], Bup / e�SD [see

Eq. (57)] is comparable to the inverse of the recurrence
time, while in an anthropic vacuum one would expect the
Boltzmann brain nucleation rate to be much faster than
once per recurrence time.

To summarize, the domination of Boltzmann brains can
be avoided by, first of all, requiring that all vacuum states in
the landscape obey the relation

�BB
j

�j

	 1: (85)

That is, the rate of nucleation of Boltzmann brains in each
vacuum must be less than the rate of nucleation, in that
same vacuum, of bubbles of other phases. For anthropic
vacua i with �i � q, this criterion is enough. Otherwise,
the Boltzmann brains that might be produced in vacuum j
must be bounded by the normal observers forming in some
vacuum i, which must be related to j through decay chains.
Specifically, there must be a vacuum A that can decay
through a chain to an anthropic vacuum i, i.e.

A! k1 ! . . .! kn ! i; (86)

where either A ¼ j, or else A can decay to j through a
sequence

A! ‘1 ! . . .! ‘m ! j: (87)

In the above sequence we insist that �j � q and that

�l � q for each vacuum ‘p in the chain, and that each

transition must be significant, in the sense that pockets of
type ‘p must be a significant source of pockets of type

‘pþ1. [More precisely, a transition from vacuum j to i is

significant if it contributes a fraction that is roughly of
order one to

P
j�ijsj in Eq. (9).] For these cases, the bound

which ensures that the Boltzmann brains in vacuum j are
dominated by the normal observers in vacuum i is given by

�BB
j

Bup�j

	 1; (88)

where Bup is the product of any suppressed branching

ratios in the sequence of Eq. (86). If all the transitions in
Eq. (86) are unsuppressed, this bound reduces to Eq. (85).
If j is anthropic, the case A ¼ j ¼ i is allowed, provided
that n � 1.

The conditions described above are sufficient to guar-
antee that Boltzmann brains do not dominate over normal
observers in the multiverse, but without further assump-
tions there is no way to know if they are necessary. All
of the conditions that we have discussed are quasilocal, in
the sense that they do not require any global picture of the
landscape of vacua. For each of the above arguments, the
Boltzmann brains in one type of vacuum j are bounded by
the normal observers in some type of vacuum i that is either
the same type or directly related to it through decay chains.
Thus, there was no need to discuss the importance of the
vacua j and i compared to the rest of the landscape as a
whole. The quasilocal nature of these conditions, however,
guarantees that they cannot be necessary to avoid the
domination by Boltzmann brains. If two vacua j and i
are both totally insignificant in the multiverse, then it
will always be possible for the Boltzmann brains in vac-
uum j to overwhelm the normal observers in vacuum i,
while the multiverse as a whole could still be dominated by
normal observers in other vacua.
We have so far avoided making global assumptions

about the landscape of vacua, because such assumptions
are generally hazardous. While it may be possible to make
statements that are true for the bulk of vacua in the land-
scape, in this context the statements are not useful unless
they are true for all the vacua of the landscape. Although
the number of vacua in the landscape, often estimated at
10500 [50], is usually considered to be incredibly large, the
number is nonetheless roughly of order one compared to
the numbers involved in the estimates of Boltzmann brain
nucleation rates and vacuum decay rates. Thus, if a single
vacuum produces Boltzmann brains in excess of re-
quired bounds, the Boltzmann brains from that vacuum
could easily overwhelm all the normal observers in the
multiverse.
Recognizing that our conclusions could be faulty, we

can nonetheless adopt some reasonable assumptions to see
where they lead. We can assume that the multiverse is
sourced by either a single dominant vacuum or by a domi-
nant vacuum system. We can further assume that every
anthropic and/or Boltzmann-brain-producing vacuum i can
be reached from the dominant vacuum (or dominant vac-
uum system) by a single significant upward jump, with a
rate proportional to e�SD , followed by some number of
significant, unsuppressed transitions, all of which have
rates �k � q and branching ratios that are roughly of
order one:

D! k1 ! . . .! kn ! i: (89)

We will further assume that each nondominant anthropic
and/or Boltzmann-brain-producing vacuum i has a decay
rate �i � q, but we need not assume that all of the �i are
comparable to each other. With these assumptions, the
estimate of N BB=N NO becomes very simple.

BOLTZMANN BRAINS AND THE SCALE-FACTOR CUTOFF . . . PHYSICAL REVIEW D 82, 063520 (2010)

063520-15



Applying Eq. (9) to the first transition of Eq. (89),

�k1sk1 � �k1DsD � �upsD; (90)

where we use �up to denote the rate of a typical transition

D! k, assuming that they are all equal to each other up to
a factor roughly of order one. Here� indicates equality up
to a factor that is roughly of order one. If there is a
dominant vacuum system, then �k1D is replaced by ��k1D �P

‘	‘�k1D‘
, where the D‘ are the components of the domi-

nant vacuum system, and the 	‘ are defined by generaliz-
ing Eqs. (67) and (68).10 Applying Eq. (9) to the next
transition, k1 ! k2, we find

�k2sk2 ¼ Bk1!k2�k1sk1 þ . . .� �k1sk1 ; (91)

where we have used the fact that Bk1!k2 is roughly of

order one, and that the transition is significant. Iterating,
we have

�isi � �knskn � �upsD: (92)

Since the expression on the right is independent of i, we
conclude that under these assumptions any two nondomi-
nant anthropic and/or Boltzmann-brain-producing vacua i
and j have equal values of �s, up to a factor that is roughly
of order one:

�jsj � �isi: (93)

Using Eq. (22) and assuming, as always, that nNOik is

roughly of order one, Eq. (93) implies that any two non-
dominant anthropic vacua i and j have comparable num-
bers of ordinary observers, up to a factor that is roughly of
order one:

N NO
j �N NO

i : (94)

The dominant vacuum could conceivably be anthropic,
but we begin by considering the case in which it is not. In
that case all anthropic vacua are equivalent, so the
Boltzmann brains produced in any vacuum j will either
dominate the multiverse or not, depending on whether they
dominate the normal observers in an arbitrary anthropic
vacuum i. Combining Eqs. (9), (22), (24), and (93), and
omitting irrelevant factors, we find that for any nondomi-
nant vacuum j,

N BB
j

N NO
i

� �BB
j sjP
k �iksk

� �BB
j sj

�isi
� �BB

j

�j

: (95)

Thus, given the assumptions described above, for any non-
dominant vacuum j, the necessary and sufficient condition
to avoid the domination of the multiverse by Boltzmann
brains in vacuum j is given by

�BB
j

�j

	 1: (96)

For Boltzmann brains formed in the dominant vacuum,
we can again find out if they dominate the multiverse by
determining whether they dominate the normal observers
in an arbitrary anthropic vacuum i. Repeating the above
analysis for vacuum D instead of vacuum j, using Eq. (92)
to relate si to sD, we have

N BB
D

N NO
i

� �BB
D sDP
k �iksk

� �BB
D sD
�isi

� �BB
D

�up

: (97)

Thus, for a single dominant vacuum D or a dominant
vacuum system with members Di, the necessary and suffi-
cient conditions to avoid the domination of the multiverse
by these Boltzmann brains is given by

�BB
D

�up

	 1 or
�BB
Di

�up

	 1: (98)

As discussed after Eq. (84), probably the only way to
satisfy this condition is to require that �BB

D ¼ 0.
If the dominant vacuum is anthropic, then the conclu-

sions are essentially the same, but the logic is more
involved. For the case of a dominant vacuum system, we
distinguish between the possibility of vacua being
‘‘strongly’’ or ‘‘mildly’’ anthropic, as discussed in
Sec. IVE. Strongly anthropic means that normal observers
are formed by tunneling within the dominant vacuum
system D, while mildly anthropic implies that normal
observers are formed by tunneling, but only from outside
D. Any model that leads to a strongly anthropic dominant
vacuum would be unacceptable, because almost all observ-
ers would live in pockets with a maximum reheat energy
density that is small compared to the vacuum-energy den-
sity. With a single anthropic dominant vacuum, or with one
or more mildly anthropic vacua within a dominant vacuum

10In more detail, the concept of a dominant vacuum system is
relevant when there is a set of vacua ‘ that can have rapid
transitions within the set, but only very slow transitions con-
necting these vacua to the rest of the landscape. As a zeroth order
approximation one can neglect all transitions connecting these
vacua to the rest of the landscape, and assume that �‘ � q, so
Eq. (9) takes the form

�‘s‘ ¼
X
‘0
B‘‘0�‘0s‘0 :

Here B‘‘0 � �‘‘0=�‘0 is the branching ratio within this restricted
subspace, where �‘ ¼

P
‘0�‘0‘ is summed only within the domi-

nant vacuum system, so
P

‘B‘‘0 ¼ 1 for all ‘0. B‘‘0 is non-
negative, and if we assume also that it is irreducible, then the
Perron-Frobenius theorem guarantees that it has a nondegenerate
eigenvector v‘ of eigenvalue 1, with positive components. From
the above equation �‘s‘ / v‘, and then

	‘ ¼ s‘P
‘0 s‘0

¼ v‘

�‘

P
‘0

v‘0
�‘0

:
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system, the normal observers in the dominant vacuum
would be comparable in number (up to factors roughly of
order one) to those in other anthropic vacua, so they would
have no significant effect on the ratio of Boltzmann
brains to normal observers in the multiverse. An anthropic
vacuum would also produce Boltzmann brains, however,
so Eq. (98) would have to somehow be satisfied for
�BB
D � 0.

V. BOLTZMANN BRAIN NUCLEATION AND
VACUUM DECAY RATES

A. Boltzmann brain nucleation rate

Boltzmann brains emerge from the vacuum as large
quantum fluctuations. In particular, they can be modeled
as localized fluctuations of some mass M, in the
thermal bath of a de Sitter vacuum with temperature
TdS ¼ H�=2� [1]. The Boltzmann brain nucleation rate
is then roughly estimated by the Boltzmann suppression
factor [6,8],

�BB � e�M=TdS ; (99)

where our goal is to estimate only the exponent, not the
prefactor. Equation (99) gives an estimate for the nuclea-
tion rate of a Boltzmann brain of mass M in any particular
quantum state, but we will normally describe the
Boltzmann brain macroscopically. Thus �BB should be
multiplied by the number of microstates eSBB correspond-
ing to the macroscopic description, where SBB is the
entropy of the Boltzmann brain. Thus we expect

�BB � e�M=TdSeSBB ¼ e�F=TdS ; (100)

where F ¼ M� TdSSBB is the free energy of the
Boltzmann brain.

Equation (100) should be accurate as long as the
de Sitter temperature is well defined, which will be
the case as long as the Schwarzschild horizon is small
compared to the de Sitter horizon radius. Furthermore,
we shall neglect the effect of the gravitational potential
energy of de Sitter space on the Boltzmann brain, which
requires that the Boltzmann brain be small compared to the
de Sitter horizon. Thus we assume

M=4�< R	 H�1� ; (101)

where the first inequality assumes that Boltzmann brains
cannot be black holes. The general situation, which allows
for M� R�H�1� , will be discussed in the Appendix and

in Ref. [51].
While the nucleation rate is proportional to eSBB , this

factor is negligible for any Boltzmann brain made of atoms
like those in our Universe. The entropy of such atoms is
bounded by

S & 3M=mn; (102)

where mn is the nucleon mass. Indeed, the actual value of
SBB is much smaller than this upper bound because of
the complex organization of the Boltzmann brain.
Meanwhile, to prevent the Boltzmann brain from being
destroyed by pair production, we require that TdS 	 mn.
Thus, for these Boltzmann brains the entropy factor
eSBB is irrelevant compared to the Boltzmann suppression
factor.
To estimate the nucleation rate for Boltzmann brains, we

need at least a crude description of what constitutes a
Boltzmann brain. There are many possibilities. We argued
in the Introduction to this paper that a theory that predicts
the domination of Boltzmann brains over normal observers
would be overwhelmingly disfavored by our continued
observation of an orderly world, in which the events that
we observe have a logical relationship to the events that we
remember. In making this argument, we considered a class
of Boltzmann brains that share exactly the memories and
thought processes of a particular normal observer at some
chosen instant. For these purposes the memory of the
Boltzmann brain can consist of random bits that just hap-
pen to match those of the normal observer, so there are no
requirements on the history of the Boltzmann brain.
Furthermore, the Boltzmann brain need only survive long
enough to register one observation after the chosen instant,
so it is not required to live for more than about a second.
We will refer to Boltzmann brains that meet these require-
ments as minimal Boltzmann brains.
While an overabundance of minimal Boltzmann

brains is enough to cause a theory to be discarded, we
nonetheless find it interesting to discuss a wide range of
Boltzmann brain possibilities. We will start with very large
Boltzmann brains, discussing the minimal Boltzmann
brains last.
We first consider Boltzmann brains much like us, who

evolved in stellar systems like ours, in vacua with low-
energy particle physics like ours, but allowing for a
de Sitter Hubble radius as small as a few astronomical
units or so. These Boltzmann brains evolved in their
stellar systems on a time scale similar to the evolution of
life on Earth, so they are in every way like us, except that,
when they perform cosmological observations, they find
themselves in an empty, vacuum-dominated universe.
These ‘‘Boltzmann solar systems’’ nucleate at a rate of
roughly

�BB � expð�1085Þ; (103)

where we have set M� 1030 kg and H�1� ¼ ð2�TdSÞ�1 �
1012 m. This nucleation rate is fantastically small; we
found it, however, by considering the extravagant possi-
bility of nucleating an entire Boltzmann solar system.
Next, we can consider the nucleation of an isolated

brain, with a physical construction that is roughly similar
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to our own brains. If we take M� 1 kg and H�1� ¼
ð2�TdSÞ�1 � 1 m, then the corresponding Boltzmann
brain nucleation rate is

�BB � expð�1043Þ: (104)

If the construction of the brain is similar to ours, however,
then it could not function if the tidal forces resulted in a
relative acceleration from one end to the other that is
much greater than the gravitational acceleration g on the
surface of the Earth. This requires H�1� * 108 m, giving a

Boltzmann brain nucleation rate

�BB � expð�1051Þ: (105)

Until now, we have concentrated on Boltzmann brains
that are very similar to human brains. However, a common
assumption in the philosophy of mind is that of substrate
independence. Therefore, pressing onward, we study the
possibility that a Boltzmann brain can be any device
capable of emulating the thoughts of a human brain. In
other words, we treat the brain essentially as a highly
sophisticated computer, with logical operations that can
be duplicated by many different systems of hardware.11

With this in mind, from here out we drop the assumption
that Boltzmann brains are made of the same materials as
human brains. Instead, we attempt to find an upper bound
on the probability of creation of a more generalized com-
puting device, specified by its information content IBB,
which is taken to be comparable to the information content
of a human brain.

To clarify the meaning of information content, we can
model an information storage device as a system with N
possible microstates. Smax ¼ lnN is then the maximum
entropy that the system can have, the entropy correspond-
ing to the state of complete uncertainty of microstates.
To store B bits of information in the device, we can
imagine a simple model in which 2B distinguishable mac-
roscopic states of the system are specified, each of which
will be used to represent one assignment of the bits. Each
macroscopic state can be modeled as a mixture of N=2B

microstates, and hence has entropy S ¼ lnðN=2BÞ ¼
Smax � B ln2. Motivated by this simple model, one defines
the information content of any macroscopic state of en-
tropy S as the difference between Smax and S, where Smax is
the maximum entropy that the device can attain. Applying
this definition to a Boltzmann brain, we write

IBB ¼ SBB;max � SBB; (106)

where IBB= ln2 is the information content measured in bits.

As discussed in Ref. [52], the only known substrate-
independent limit on the storage of information is the
Bekenstein bound. It states that, for an asymptotically flat
background, the entropy of any physical system of size R
and energy M is bounded by12

S � SBek � 2�MR: (107)

One can use this bound in de Sitter space as well if the size
of the system is sufficiently small, R	 H�1� , so that the

system does not ‘‘know’’ about the horizon. A possible
generalization of the Bekenstein bound for R ¼ OðH�1� Þ
was proposed in Ref. [53]; we will study this and other
possibilities in the Appendix and in Ref. [51]. To begin,
however, we will discuss the simplest case, R	 H�1� , so

that we can focus on the most important issues before
dealing with the complexities of more general results.
Using Eq. (106), the Boltzmann brain nucleation rate of

Eq. (100) can be rewritten as

�BB � exp

�
� 2�M

H�

þ SBB;max � IBB

�
; (108)

which is clearly maximized by choosing M as small as
possible. The Bekenstein bound, however, implies that
SBB;max � SBek and therefore M � SBB;max=ð2�RÞ. Thus

�BB � exp

�
�SBB;max

RH�

þ SBB;max � IBB

�
: (109)

Since R<H�1� , the expression above is maximized by

taking SBB;max equal to its smallest possible value, which

is IBB. Finally, we have

�BB � exp

�
� IBB

RH�

�
: (110)

Thus, the Boltzmann brain production rate is maximized
if the Boltzmann brain saturates the Bekenstein bound,
with IBB ¼ SBB;max ¼ 2�MR. Simultaneously, we should

make RH� as large as possible, which means taking our

11Note that the validity of the assumption of substrate indepen-
dence of mind is not entirely self-evident. Some of us are
skeptical of identifying human consciousness with operations
of a generic substrate-independent computer, but accept it as a
working hypothesis for the purpose of this paper.

12In an earlier version of this paper we stated an incorrect form
of this bound, and from it derived some incorrect conclusions,
such as the statement that the largest Boltzmann brain nucleation
rate �BB consistent with the Bekenstein bound is attained only
when the radius R approaches the Schwarzschild radius RSch.
This in turn led to the conclusion that the maximum rate allowed
by the Bekenstein bound is e�2IBB , which can be achieved only if
M2 ¼ IBB=ð9�GÞ and H2

� ¼ �=ð3GIBBÞ. While these relations
hold in the regime we considered, they are not necessary in the
general case. With the corrected bound, we find that the maxi-
mum nucleation rate is independent of R=RSch if R	 H� [see
Eq. (110)], and otherwise grows with R=RSch (see the Appendix).
However, once one is forced to consider values of R� RSch,
then other issues become relevant. How can the system be
stabilized against the de Sitter expansion? Can the Bekenstein
bound really be saturated for a system with large entropy,
especially if it is dilute? In this version of the paper we have
added a discussion of these issues. We thank R. Bousso, B.
Freivogel, and I. Yang for pointing out the error in our earlier
statement of the Bekenstein bound.
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assumption R	 H�1� to the boundary of its validity. Thus

we write the Boltzmann brain production rate

�BB � e�aIBB ; (111)

where a � ðRH�Þ�1, the value of which is of order a
few. In the Appendix we explore the case in which the
Schwarzschild radius, the Boltzmann brain radius, and the
de Sitter horizon radius are all about equal, in which case
Eq. (111) holds with a ¼ 2.

The bound of Eq. (111) can be compared to the estimate
of the Boltzmann brain production rate, �BB � e�SBB ,
which follows from Eq. (2.13) of Freivogel and Lippert,
in Ref. [54]. The authors of Ref. [54] explained that by SBB
they mean not the entropy, but the number of degrees of
freedom, which is roughly equal to the number of particles
in a Boltzmann brain. This estimate appears similar to our
result, if one equates SBB to IBB, or to a few times IBB.
Freivogel and Lippert describe this relation as a lower
bound on the nucleation rate for Boltzmann brains,
commenting that it can be used as an estimate of the
nucleation rate for vacua with ‘‘reasonably cooperative
particle physics.’’ Here we will explore in some detail
the question of whether this bound can be used as an
estimate of the nucleation rate. While we will not settle
this issue here, we will discuss evidence that Eq. (111) is a
valid estimate for at most a small fraction of the vacua of
the landscape, and possibly none at all.

So far, the conditions to reach the upper bound in
Eq. (111) are R ¼ ðaH�Þ�1 �OðH�1� Þ and IBB ¼
Smax;BB ¼ SBek. However, these are not enough to ensure

that a Boltzmann brain of size R�H�1� is stable and can

actually compute. Indeed, the time required for communi-
cation between two parts of a Boltzmann brain separated
by a distance OðH�1� Þ is at least comparable to the Hubble

time. If the Boltzmann brain can be stretched by cosmo-
logical expansion, then after just a few operations the
different parts will no longer be able to communicate.
Therefore we need a stabilization mechanism by which
the brain is protected against expansion.

A potential mechanism to protect the Boltzmann brain
against de Sitter expansion is the self-gravity of the brain.
A simple example is a black hole, which does not expand
when the Universe expands. It seems unlikely that black
holes can think,13 but one can consider objects of mass
approaching that of a black hole with radius R. This,
together with our goal to keep R as close as possible to
H�1� , leads to the following condition:

M� R�H�1� : (112)

If the Bekenstein bound is saturated, this leads to the
following relations between IBB, H�, and M:

IBB �MR�MH�1� �H�2� : (113)

A second potential mechanism of Boltzmann brain sta-
bilization is to surround it by a domain wall with a surface
tension 
, which would provide pressure preventing the
exponential expansion of the brain. An investigation of this
situation reveals that one cannot saturate the Bekenstein
bound using this mechanism unless there is a specific
relation between IBB, H�, and 
 [51]:


� IBBH
3
�: (114)

If 
 is less than this magnitude, it cannot prevent the
expansion, while a larger 
 increases the mass and there-
fore prevents saturation of the Bekenstein bound.
Regardless of the details leading to Eqs. (113) and (114),

the important point is that both of them lead to constraints
on the vacuum hosting the Boltzmann brain.
For example, the Boltzmann brain stabilized by gravita-

tional attraction can be produced at a rate approaching
e�aIBB only if IBB �H�2� . For a given value of IBB, say
IBB � 1016 (see the discussion below), this result applies
only to vacua with a particular vacuum energy, �� 10�16.
Similarly, according to Eq. (114), for Boltzmann brains
with IBB � 1016 contained inside a domain wall in a vac-
uumwith�� 10�120, the Bekenstein bound on �BB cannot
be reached unless the tension of the domain wall is incredi-
bly small, 
� 10�164. Thus, the maximal Boltzmann brain
production rate �e�aIBB saturating the Bekenstein bound
cannot be reached unless Boltzmann brains are produced on
a narrow hypersurface in the landscape.
This conclusion by itself does not eliminate the danger

of a rapid Boltzmann brain production rate, �BB � e�aIBB .
Given the vast number of vacua in the landscape, it seems
plausible that this bound could actually be met. If this is the
case, Eq. (111) offers a stunning increase over previous
estimates of �BB.
Setting aside the issue of Boltzmann brain stability, one

can also question the assumption of Bekenstein bound
saturation that is necessary to achieve the rather high
nucleation rate that is indicated by Eq. (111). Of course
black holes saturate this bound, but we assume that a black
hole cannot think. Even if a black hole can think, it would
still be an open question whether this information process-
ing could make use of a substantial fraction of the degrees
of freedom associated with the black hole entropy. Avariety
of other physical systems are considered in Ref. [55], where
the validity of SmaxðEÞ � 2�ER is studied as a function of
energy E. In all cases, the bound is saturated in a limit
where Smax ¼ Oð1Þ. Meanwhile, as we shall argue below,
the required value of Smax should be greater than 1016.
The present authors are aware of only one example of a

physical system that may saturate the Bekenstein bound

13The possibility of a black hole computer is not excluded,
however, and has been considered in Ref. [52]. Nonetheless, if
black holes can compute, our conclusions would not be changed,
provided that the Bekenstein bound can be saturated for the near-
black hole computers that we discuss. At this level of approxi-
mation, there would be no significant difference between a black
hole computer and a near-black hole computer.
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and at the same time store sufficient information I to
emulate a human brain. This may happen if the total
number of particle species with mass smaller than H� is
greater than IBB * 1016. No realistic examples of such
theories are known to us, although some authors have
speculated about similar possibilities [56].

If Boltzmann brains cannot saturate the Bekenstein
bound, they will be more massive than indicated in
Eq. (110), and their rate of production will be smaller
than e�aIBB .

To put another possible bound on the probability of
Boltzmann brain production, let us analyze a simple model
based on an ideal gas of massless particles. Dropping all
numerical factors, we consider a box of size R filled with a

gas with maximum entropy Smax ¼ ðRTÞ3 and energy E ¼
R3T4 ¼ S4=3max=R, where T is the temperature and we as-
sume there is not an enormous number of particle species.
The probability of its creation can be estimated as follows:

�BB � e�E=H�eSBB � exp

�
� S4=3max

H�R

�
; (115)

where we have neglected the Boltzmann brain entropy

factor, since SBB � Smax 	 S4=3max. This probability is maxi-
mized by taking R�H�1� , which yields

�BB & e�S
4=3
max : (116)

In case the full information capacity of the gas is used, one
can also write

�BB & e�I
4=3
BB : (117)

For IBB � 1, this estimate leads to a much stronger sup-
pression of Boltzmann brain production as compared to our
previous estimate, Eq. (111).

Of course, such a hot gas of massless particles cannot
think—indeed it is not stable in the sense outlined below
Eq. (111)—so we must add more parts to this construction.
Yet it seems likely that this will only decrease the
Boltzmann brain production rate. As a partial test of this
conjecture, one can easily check that if instead of a gas of
massless particles we consider a gas of massive particles,
the resulting suppression of Boltzmann brain production
will be stronger. Therefore in our subsequent estimates we
shall assume that Eq. (117) represents our next ‘‘line of
defense’’ against the possibility of Boltzmann brain domi-
nation, after the one given by Eq. (111). One should note
that this is a rather delicate issue; see, for example, a
discussion of several possibilities to approach the
Bekenstein bound in Ref. [57]. A more detailed discussion
of this issue will be provided in Ref. [51].

Having related �BB to the information content IBB of the
brain, we now need to estimate IBB. How much informa-
tion storage must a computer have to be able to perform all
the functions of the human brain? Since no one can write a

computer program that comes close to imitating a human
brain, this is not an easy question to answer.
One way to proceed is to examine the human brain, with

the goal of estimating its capacities based on its biological
structure. The human brain contains �1014 synapses that
may, in principle, connect to any of �1011 neurons [58],
suggesting that its information content14 might be roughly
IBB � 1015–1016. (We are assuming here that the logical
functions of the brain depend on the connections among
neurons, and not, for example, on their precise locations,
cellular structures, or other information that might be
necessary to actually construct a brain.) A minimal
Boltzmann brain is only required to simulate the workings
of a real brain for about a second; but with neurons firing
typically at 10 to 100 times a second, it is plausible that a
substantial fraction of the brain is needed even for only 1 s
of activity. Of course the actual number of required bits
might be somewhat less.
An alternative approach is to try to determine how much

information the brain processes, even if one does not
understand much about what the processing involves.
In Ref. [59], Landauer attempted to estimate the total

content of a person’s long-term memory, using a variety of
experiments. He concluded that a person remembers only
about 2 bits=second, for a lifetime total in the vicinity of
109 bits. In a subsequent paper [60], however, he emphati-
cally denied that this number is relevant to the information
requirements of a ‘‘real or theoretical cognitive processor,’’
because such a device ‘‘would have so much more to do
than simply record new information.’’
Besides long-term memory, one might be interested in

the total amount of information a person receives but does
not memorize. A substantial part of this information is
visual; it can be estimated by the information stored on
high definition DVDs, watched continuously on several
monitors over the span of a hundred years. The total
information received would be about 1016 bits.
Since this number is similar to the number obtained

above by counting synapses, it is probably as good an
estimate as we can make for a minimal Boltzmann brain.
If the Bekenstein bound can be saturated, then the esti-
mated Boltzmann brain nucleation rate for the most favor-
able vacua in the landscape would be given by Eq. (111):

�BB & e�1016 : (118)

If, however, the Bekenstein bound cannot be reached for
systems with IBB � 1, then it might be more accurate to
use instead the ideal gas model of Eq. (117), yielding

�BB & e�1021 : (119)

Obviously, there are many uncertainties involved in
the numerical estimates of the required value of IBB.

14Note that the specification of one out of 1011 neurons requires
log2ð1011Þ ¼ 36:5 bits.
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Our estimate IBB � 1016 concerns the information stored in
the human brain that appears to be relevant for cognition. It
certainly does not include all the information that would be
needed to physically construct a human brain, and it there-
fore does not allow for the information that might be
needed to physically construct a device that could emulate
the human brain.15 It is also possible that extra mass might
be required for the mechanical structure of the emulator, to
provide the analogues of a computer’s wires, insulation,
cooling systems, etc. On the other hand, it is conceivable
that a Boltzmann brain can be relevant even if it has fewer
capabilities than what we called the minimal Boltzmann
brain. In particular, if our main requirement is that the
Boltzmann brain is to have the same ‘‘perceptions’’ as a
human brain for just 1 s, then one may argue that this can
be achieved using much less than 1014 synapses. And if one
decreases the required time to a much smaller value re-
quired for a single computation to be performed by a
human brain, the required amount of information stored
in a Boltzmann brain may become many orders of magni-
tude smaller than 1016.

We find that regardless of how one estimates the infor-
mation in a human brain, if Boltzmann brains can be
constructed so as to come near the limit of Eq. (111), their
nucleation rate would provide stringent requirements on
vacuum decay rates in the landscape. On the other hand, if

no such physical construction exists, we are left with the
less dangerous bound of Eq. (117), perhaps even further
softened by the speculations described in Footnote 15. Note
that none of these bounds is based upon a realistic model of
a Boltzmann brain. For example, the nucleation of an
actual human brain is estimated at the vastly smaller rate
of Eq. (105). The conclusions of this paragraph apply to the
causal-patch measures [23,24] as well as the scale-factor
cutoff measure.
In Sec. III we discussed the possibility of Boltzmann

brain production during reheating, stating that this process
would not be a danger. We postponed the numerical dis-
cussion, however, so we now return to that issue.
According to Eq. (26), the multiverse will be safe from
Boltzmann brains formed during reheating provided that

�BB
reheat;ik��

BB
reheat;ik 	 nNOik (120)

holds for every pair of vacua i and k, where �BB
reheat;ik is the

peak Boltzmann brain nucleation rate in a pocket of
vacuum i that forms in a parent vacuum of type k,
��BBreheat;ik is the proper time available for such nucleation,

and nNOik is the volume density of normal observers in these

pockets, working in the approximation that all observers
form at the same time.
Compared to the previous discussion about late-time

de Sitter space nucleation, here �BB
reheat;ik can be much

larger, since the temperature during reheating can be
much larger than H�. On the other hand, safety from
Boltzmann brains requires the late-time nucleation rate to
be small compared to the potentially very small vacuum
decay rates, while in this case the quantity on the right-
hand side of Eq. (120) is not exceptionally small. In dis-
cussing this issue, we will consider in sequence three
descriptions of the Boltzmann brain: a humanlike brain, a
near-black hole computer, and a diffuse computer.
The nucleation of humanlike Boltzmann brains during

reheating was discussed in Ref. [27], where it was pointed
out that such brains could not function at temperatures
much higher than 300 K, and that the nucleation rate for
a 100 kg object at this temperature is � expð�1040Þ. This
suppression is clearly more than enough to ensure that
Eq. (120) is satisfied.
For a near-black hole computer with IBB � SBB;max �

1016, the minimum mass is 600 g. If we assume that
the reheat temperature is no more than the reduced

Planck mass, mPlanck � 1=
ffiffiffiffiffiffiffiffiffiffi
8�G
p � 2:4� 1018 GeV �

4:3� 10�6 g, we find that �BB
reheat < expð� ffiffiffiffiffiffiffiffiffiffi

2IBB
p Þ �

expð�108Þ. Although this is not nearly as much suppres-
sion as in the previous case, it is clearly enough to
guarantee that Eq. (120) will be satisfied.
For the diffuse computer, we can consider an ideal gas of

massless particles, as discussed in Eqs. (115)–(117). The
system would have approximately Smax particles, and a

total energy of E ¼ S4=3max=R, so the Boltzmann suppression

15That is, the actual construction of a brainlike device would
presumably require large amounts of information that are not
part of the schematic ‘‘circuit diagram’’ of the brain. Thus there
may be some significance to the fact that 1� 109 yrs of evolu-
tion on Earth has not produced a human brain with fewer than
about 1027 particles, and hence of order 1027 units of entropy. In
counting the information in the synapses, for example, we
counted only the information needed to specify which neurons
are connected to which, but nothing about the actual path of the
axons and dendrites that complete the connections. These are
nothing like nearest-neighbor couplings, but instead axons from
a single neuron can traverse large fractions of the brain, resulting
in an extremely intertwined network [61]. To specify even the
topology of these connections, still ignoring the precise loca-
tions, could involve much more than 1016 bits. For example, the
synaptic ‘‘wiring’’ that connects the neurons will, in many cases,
form closed loops. A specification of the connections would
presumably require a topological winding number for every
pair of closed loops in the network. The number of bits
required to specify these winding numbers would be
proportional to the square of the number of closed loops, which
would be proportional to the square of the number of synapses.
Thus, the structural information could be something like Istruct �
b� 1028, where b is a proportionality constant that is probably a
few orders of magnitude less than 1. In estimating the resulting
suppression of the nucleation rate, there is one further compli-
cation: since structural information of this sort presumably has
no influence on brain function, these choices would contribute to
the multiplicity of Boltzmann brain microstates, thereby multi-
plying the nucleation rate by eIstruct . There would still be a net
suppression, however, with Eq. (111) leading to �BB /
e�ða�1ÞIstruct , where a is generically greater than 1. See the
Appendix for further discussion of the value of a.
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factor is exp½�S4=3max=ðRTreheatÞ�. The Boltzmann brain pro-
duction can occur at any time during the reheating process,
so there is nothing wrong with considering Boltzmann
brain production in our Universe at the present time. For
Treheat ¼ 2:7 K and Smax ¼ 1016, this formula implies that

the exponent has magnitude 1 for R ¼ S4=3maxT�1reheat �
200 light-years. Thus, the formula suggests that diffuse-
gas-cloud Boltzmann brains of radius 200 light-years can
be thermally produced in our Universe, at the present time,
without suppression. If this estimate were valid, then
Boltzmann brains would almost certainly dominate the
Universe.

We argue, however, that the gas clouds described above
would have no possibility of computing, because the ther-
mal noise would preclude any storage or transfer of infor-
mation. The entire device has energy of order E � Treheat,
which is divided among approximately 1016 massless par-
ticles. The mean particle energy is therefore 1016 times
smaller than that of the thermal particles in the background
radiation, and the density of Boltzmann brain particles is
1048 times smaller than the background. To function, it
seems reasonable that the diffuse computer needs an
energy per particle that is at least comparable to the back-
ground, which means that the suppression factor is
expð�1016Þ or smaller. Thus, we conclude that for all three
cases, the ratio of Boltzmann brains to normal observers is
totally negligible.

Finally, let us also mention the possibility that
Boltzmann brains might form as quantum fluctuations in
stable Minkowski vacua. String theory implies at least the
existence of a 10D decompactified Minkowski vacuum;
Minkowski vacua of lower dimension are not excluded, but
they require precise fine-tunings for which motivation is
lacking. While quantum fluctuations in Minkowski space
are certainly less classical than in de Sitter space, they still
might be relevant. The possibility of Boltzmann brains in
Minkowski space has been suggested by Page [5,6,40]. If
�BB is nonzero in such vacua, regardless of how small it
might be, Boltzmann brains will always dominate in the
scale-factor cutoff measure as we have defined it. Even if
Minkowski vacua cannot support Boltzmann brains, there
might still be a serious problem with what might be called
‘‘Boltzmann islands.’’ That is, it is conceivable that a
fluctuation in a Minkowski vacuum can produce a small
region of an anthropic vacuum with a Boltzmann brain
inside it. The anthropic vacuum could perhaps even have a
different dimension than its Minkowski parent. If such a
process has a nonvanishing probability to occur, it will also
give rise to Boltzmann brain domination in the scale-factor
cutoff measure. These problems would be shared by all
measures that assign an infinite weight to stable
Minkowski vacua. There is, however, one further compli-
cation which might allow Boltzmann brains to form in
Minkowski space without dominating the multiverse. If
one speculates about Boltzmann brain production in

Minkowski space, one may equally well speculate about
spontaneous creation of inflationary universes there, each
of which could contain infinitely many normal observers
[62]. These issues become complicated, and we will make
no attempt to resolve them here. Fortunately, the estimates
of thermal Boltzmann brain nucleation rates in de Sitter
space approach zero in the Minkowski space limit �! 0,
so the issue of Boltzmann brains formed by quantum
fluctuations in Minkowski space can be set aside for later
study. Hopefully the vague idea that these fluctuations are
less classical than de Sitter space fluctuations can be
promoted into a persuasive argument that they are not
relevant.

B. Vacuum decay rates

One of the most developed approaches to the string
landscape scenario is based on the KKLT construction
[63]. In this construction, one begins by finding a set of
stabilized supersymmetric anti–de Sitter (AdS) and
Minkowski vacua. After that, an uplifting is performed,

e.g. by adding aD3-brane at the tip of a conifold [63]. This
uplifting makes the vacuum-energy density of some of
these vacua positive (AdS! dS), but, in general, many
vacua remain AdS, and the Minkowski vacuum corre-
sponding to the uncompactified 10D space does not be-
come uplifted. The enormous number of vacua in the
landscape appears because of the large number of different
topologies of the compactified space, and the large number
of different fluxes and branes associated with it.
There are many ways in which our low-energy dS

vacuum may decay. First of all, it can always decay into
the Minkowski vacuum corresponding to the uncompacti-
fied 10D space [63]. It can also decay to one of the AdS
vacua corresponding to the same set of branes and fluxes
[64]. More generally, decays occur due to the jumps be-
tween vacua with different fluxes, or due to the brane-flux
annihilation [54,65–71], and may be accompanied by a
change in the number of compact dimensions [72–74]. If
one does not take into account vacuum stabilization, these
transitions are relatively easy to analyze [65–67]. However,
in the realistic situations where the moduli fields are
determined by fluxes, branes, etc., these transitions involve
a simultaneous change of fluxes and various moduli fields,
which makes a detailed analysis of the tunneling quite
complicated.
Therefore, we begin with an investigation of the simplest

decay modes due to the scalar field tunneling. The tran-
sition to the 10D Minkowski vacuum was analyzed in
Ref. [63], where it was shown that the decay rate � is
always greater than

� * e�SD ¼ exp

�
� 24�2

VdS

�
: (121)

Here SD is the entropy of dS space. For our vacuum,
SD � 10120, which yields
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� * e�SD � expð�10120Þ: (122)

Because of the inequality in Eq. (121), we expect the
slowest-decaying vacua to typically be those with very
small vacuum energies, with the dominant vacuum-energy
density possibly being much smaller than the value in our
Universe.

The decay to AdS space (or, more accurately, a decay to
a collapsing open universe with a negative cosmological
constant) was studied in Ref. [64]. The results of Ref. [64]
are based on the investigation of Bogomol’nyi-Prasad-
Sommerfield (BPS) and near-BPS domain walls in string
theory, generalizing the results previously obtained in
N ¼ 1 supergravity [75–78]. Here we briefly summarize
the main results obtained in Ref. [64].

Consider, for simplicity, the situation where the tunnel-
ing occurs between two vacua with very small vacuum
energies. For the sake of argument, let us first ignore the
gravitational effects. Then the tunneling always takes
place, as long as one vacuum has higher vacuum energy
than the other. In the limit when the difference between the
vacuum energies goes to zero, the radius of the bubble of
the new vacuum becomes infinitely large,R! 1 (the thin-
wall limit). In this limit, the bubble wall becomes flat, and
its initial acceleration, at the moment when the bubble
forms, vanishes. Therefore, to find the tension of the
domain wall in the thin-wall approximation one should
solve an equation for the scalar field describing a static
domain wall separating the two vacua.

If the difference between the values of the scalar poten-
tial in the two minima is too small, and at least one of them
is AdS, then the tunneling between them may be forbidden
because of the gravitational effects [79]. In particular, all
supersymmetric vacua, including all KKLT vacua prior to
the uplifting, are absolutely stable even if other vacua with
lower energy density are available [80–83].

It is tempting to make a closely related but opposite
statement: nonsupersymmetric vacua are always unstable.
However, this is not always the case. In order to study
tunneling while taking account of supersymmetry (SUSY),
one may start with two different supersymmetric vacua in
two different parts of the Universe and find a BPS domain
wall separating them. One can show that if the superpo-
tential does not change its sign on the way from one
vacuum to the other, then this domain wall plays the
same role as the flat domain wall in the no-gravity case
discussed above: it corresponds to the wall of the bubble
that can be formed once the supersymmetry is broken in
either of the two minima. However, if the superpotential
does change its sign, then only a sufficiently large super-
symmetry breaking will lead to the tunneling [64,75].

One should keep this fact in mind, but since we are
discussing a landscape with an extremely large number
of vacua, in what follows we assume that there is at least
one direction in which the superpotential does not change
its sign on the way from one minimum to another. In what

follows we describe tunneling in one such direction.
Furthermore, we assume that at least some of the AdS
vacua to which our dS vacuum may decay are uplifted
much less than our vacuum. This is a generic situation,
since the uplifting depends on the value of the volume
modulus, which takes different values in each vacuum.
In this case the decay rate of a dS vacuum with

low-energy density and broken supersymmetry can be
estimated as follows [64,84]:

�� exp

�
� 8�2	

3m2
3=2

�
; (123)

where m3=2 is the gravitino mass in that vacuum and 	 is a

quantity that depends on the parameters of the potential.
Generically one can expect 	 ¼ Oð1Þ, but it can also be
much greater or much smaller thanOð1Þ. The mass m3=2 is

set by the scale of SUSY breaking,

3m2
3=2 ¼ �4

SUSY; (124)

where we recall that we use reduced Planck units,
8�G ¼ 1. Therefore the decay rate can also be repre-
sented in terms of the SUSY-breaking scale �SUSY:

�� exp

�
� 24�2	

�4
SUSY

�
: (125)

Note that in the KKLT theory, �4
SUSY corresponds to the

depth of the AdS vacuum before the uplifting, so that

�� exp

�
� 24�2	

jVAdSj
�
: (126)

In this form, the result for the tunneling looks very
similar to the lower bound on the decay rate of a
dS vacuum, Eq. (121), with the obvious replacements
	! 1 and jVAdSj ! VdS.
Let us apply this result to the question of vacuum decay

in our Universe. Clearly, the implications of Eq. (125)
depend on the details of SUSY phenomenology. The stan-
dard requirement that the gaugino mass and the scalar
masses are Oð1Þ TeV leads to the lower bound

�SUSY * 104–105 GeV; (127)

which can be reached, e.g., in the models of conformal
gauge mediation [85]. This implies that for our vacuum

�our * expð�1056Þ � expð�1060Þ: (128)

Using Eq. (99), the Boltzmann brain nucleation rate in our
Universe exceeds the lower bound of the above inequality
only if M & 10�9 kg.
On the other hand, one can imagine universes very

similar to ours except with much larger vacuum-energy
densities. The vacuum decay rate of Eq. (123) exceeds the
Boltzmann brain nucleation rate of Eq. (99) when
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�
m3=2

10�2 eV

�
2
�
M

1 kg

��
H�1�

108 m

�
* 109	: (129)

Note that H�1� � 108 m corresponds to the smallest

de Sitter radius for which the tidal force on a 10 cm
brain does not exceed the gravitational force on the surface
of the Earth, while m3=2 � 10�2 eV corresponds to

�SUSY � 104 GeV. Thus, it appears the decay rate of
Eq. (123) allows for Boltzmann brain domination.

However, we do not really know whether the models
with low �SUSY can successfully describe our world. To
mention one potential problem, in models of string infla-
tion there is a generic constraint that during the last stage of
inflation one has H & m3=2 [86]. If we assume the second

and third factors of Eq. (129) cannot be made much less
than unity, then we only require m3=2 * Oð102Þ eV to

avoid Boltzmann brain domination. While models of string
inflation with H & 100 eV are not entirely impossible in
the string landscape, they are extremely difficult to con-
struct [87]. If instead of �SUSY � 104 GeV one uses
�SUSY � 1011 GeV, as in models with gravity mediation,
one finds m3=2 � 103 GeV, and Eq. (129) is easily

satisfied.
These arguments apply when supersymmetry violation

is as large as or larger than in our Universe. If supersym-
metry violation is too small, atomic systems are unstable
[88], the masses of some of the particles will change
dramatically, etc. However, the Boltzmann computers
described in the previous subsection do not necessarily
rely on laws of physics similar to those in our Universe
(in fact, they seem to require very different laws of
physics). The present authors are unaware of an argument
that supersymmetry breaking must be so strong that
vacuum decay is always faster than the Boltzmann brain
production rate of Eq. (118).

On the other hand, up to this point we have used the
estimates of the vacuum decay rate that were obtained in
Refs. [64,84] by investigation of the transition where
only moduli fields changed. As we have already men-
tioned, the description of a more general class of transi-
tions involving the change of branes or fluxes is much more
complicated. Investigation of such processes, performed in
Refs. [54,68,69], indicates that the process of vacuum
decay for any vacuum in the KKLT scenario should be
rather fast,

� * expð�1022Þ: (130)

The results of Refs. [54,68,69], like the results of
Refs. [64,84], are not completely generic. In particular,
the investigations of Refs. [54,68,69] apply to the original
version of the KKLT scenario, where the uplifting of the

AdS vacuum occurs due to D3-branes, but not to its
generalization proposed in Ref. [89], where the uplifting
is achieved due to D7-branes. Nor does it apply to the
recent version of dS stabilization proposed in Ref. [90].

Nevertheless, the results of Refs. [54,68,69] show that the
decay rate of dS vacua in the landscape can be quite large.
The rate � * expð�1022Þ is much greater than the
expected rate of Boltzmann brain production given by
Eq. (105). However, it is just a bit smaller than the bosonic
gas Boltzmann brain production rate of Eq. (119) and
much smaller than our most dangerous upper bound on
the Boltzmann brain production rate, given by Eq. (118).

VI. CONCLUSIONS

If the observed accelerating expansion of the Universe is
driven by constant vacuum-energy density and if our
Universe does not decay in the next 20� 109 yrs or so,
then it seems cosmology must explain why we are ‘‘normal
observers’’—who evolve from nonequilibrium processes
in the wake of the big bang—as opposed to ‘‘Boltzmann
brains’’—freak observers that arise as a result of rare
quantum fluctuations [2–4,7,8]. Put in experimental
terms, cosmology must explain why we observe structure
formation in a residual cosmic microwave background, as
opposed to the empty, vacuum-energy dominated environ-
ment in which almost all Boltzmann brains nucleate. As
vacuum-energy expansion is eternal to the future, the
number of Boltzmann brains in an initially finite comoving
volume is infinite. However, if there exists a landscape of
vacua, then rare transitions to other vacua populate a
diverging number of universes in this comoving volume,
creating an infinite number of normal observers. To weigh
the relative number of Boltzmann brains to normal observ-
ers requires a spacetime measure to regulate the infinities.
Recently, the scale-factor cutoff measure was shown to

possess a number of desirable attributes, including avoid-
ing the youngness paradox [28] and the Q (and G) catas-
trophe [29–31], while predicting the cosmological constant
to be measured in a range including the observed value,
and excluding values more than about a factor of 10 larger
and smaller than this [38]. The scale-factor cutoff does not
itself select for a longer duration of slow-roll inflation,
raising the possibility that a significant fraction of observ-
ers like us measure cosmic curvature significantly above
the value expected from cosmic variance [48]. In this
paper, we have calculated the ratio of the total number of
Boltzmann brains to the number of normal observers, using
the scale-factor cutoff.
The general conditions under which Boltzmann brain

domination is avoided were discussed in Sec. IV F, where
we described several alternative criteria that can be used to
ensure safety from Boltzmann brains. We also explored a
set of assumptions that allow one to state conditions that
are both necessary and sufficient to avoid Boltzmann brain
domination. One relatively simple way to ensure safety
from Boltzmann brains is to require two conditions: (1) in
any vacuum, the Boltzmann brain nucleation rate must be
less than the decay rate of that vacuum, and (2) for any
anthropic vacuum j with a decay rate �j � q, and for any
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nonanthropic vacuum j, one must construct a sequence of
transitions from j to an anthropic vacuum; if the sequence
includes suppressed upward jumps, then the Boltzmann
brain nucleation rate in vacuum j must be less than the
decay rate of vacuum j times the product of all the sup-
pressed branching ratios Bup that appear in the sequence.

The condition (2) might not be too difficult to satisfy, since
it will generically involve only states with very low-
vacuum-energy densities, which are likely to be nearly
supersymmetric and therefore unlikely to support the com-
plex structures needed for Boltzmann brains or normal
observers. Condition (2) can also be satisfied if there is
no unique dominant vacuum, but instead a dominant
vacuum system that consists of a set of nearly degenerate
states, some of which are anthropic, which undergo rapid
transitions to each other, but only slow transitions to other
states. Condition (1) is perhaps more difficult to satisfy.
Although nearly supersymmetric string vacua can, in prin-
ciple, be long-lived [63,64,75–78], with decay rates possi-
bly much smaller than the Boltzmann brain nucleation rate,
recent investigations suggest that other decay channels
may evade this problem [54,68,69]. However, the decay
processes studied in [54,63,64,68,69,75–78] do not
describe some of the situations which are possible in the
string theory landscape, and the strongest constraints on
the decay rate obtained in [54] are still insufficient to
guarantee that the vacuum decay rate is always smaller
than the fastest estimate of the Boltzmann brain production
rate, Eq. (118).

One must emphasize that we are discussing a rapidly
developing field of knowledge. Our estimates of the
Boltzmann brain production rate are exponentially sensi-
tive to our understanding of what exactly the Boltzmann
brain is. Similarly, the estimates of the decay rate in the
landscape became possible only five years ago, and this
subject certainly is going to evolve. Therefore we will
mention here two logical possibilities which may emerge
as a result of the further investigation of these issues.

If further investigation will demonstrate that the
Boltzmann brain production rate is always smaller than
the vacuum decay rate in the landscape, the probability
measure that we are investigating in this paper will be
shown not to suffer from the Boltzmann brain problem.
Conversely, if one believes that this measure is correct, the
fastest Boltzmann brain production rate will give us a
rather strong lower bound on the decay rate of the meta-
stable vacua in the landscape. We expect that similar con-
clusions with respect to the Boltzmann brain problem
should be valid for the causal-patch measures [23,24].

On the other hand, if we do not find a sufficiently
convincing theoretical reason to believe that the vacuum
decay rate in all vacua in the landscape is always greater
than the fastest Boltzmann brain production rate, this
would motivate the consideration of other probability mea-
sures, where the Boltzmann brain problem can be solved

even if the probability of their production is not strongly
suppressed.
In any case, our present understanding of the Boltzmann

brain problem does not rule out the scale-factor cutoff
measure, but the situation remains uncertain.

ACKNOWLEDGMENTS

We thank Raphael Bousso, Ben Freivogel, I-Sheng
Yang, Shamit Kachru, Renata Kallosh, Delia Schwartz-
Perlov, and Lenny Susskind for useful discussion. The
work of A. D. S. is supported in part by the INFN and in
part by the U.S. Department of Energy (DOE) under
Contract No. DE-FG02-05ER41360. A.H. G. is supported
in part by the DOE under Contract No. DE-FG02-
05ER41360. A. L. and M.N. are supported by the NSF
Grant No. 0756174. M. P. S. and A.V. are supported in part
by the U.S. National Science Foundation under Grant
No. NSF 322, and A.V. is also supported in part by a grant
from the Foundational Questions Institute (FQXi).

APPENDIX: BOLTZMANN BRAINS IN
SCHWARZSCHILD–DE SITTER SPACE

As explained in Sec. VA, Eq. (100) for the production
rate of Boltzmann brains must be reexamined when
the Boltzmann brain radius becomes comparable to the
de Sitter radius. In this case we need to describe the
Boltzmann brain nucleation as a transition from an initial
state of empty de Sitter space with horizon radius H�1� to a

final state in which the dS space is altered by the presence
of an object with massM. Assuming that the object can be
treated as spherically symmetric, the space outside the
object is described by the Schwarzschild–de Sitter (SdS)
metric [91]16:

ds2 ¼�
�
1� 2GM

r
�H2

�r
2

�
dt2þ

�
1� 2GM

r
�H2

�r
2

��1
�dr2þ r2d�2: (A1)

The SdS metric has two horizons, determined by the
positive zeros of gtt, where the smaller and larger are called
RSch and RdS, respectively. We assume the Boltzmann
brain is stable but not a black hole, so its radius satisfies
RSch < R< RdS. The radii of the two horizons are given by

RSch ¼ 2ffiffiffi
3
p

H�

cos

�
�þ �

3

�
;

RdS ¼ 2ffiffiffi
3
p

H�

cos

�
�� �

3

�
;

(A2)

where

cos� ¼ 3
ffiffiffi
3
p

GMH�: (A3)

16We restore G ¼ 1=8� in this appendix for clarity.
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This last equation implies that for a given value of H�,
there is an upper limit on how much mass can be contained
within the de Sitter horizon:

M � Mmax ¼ ð3
ffiffiffi
3
p

GH�Þ�1: (A4)

Equations (A2) and (A3) can be inverted to expressM and
H� in terms of the horizon radii:

1

H2
�

¼ R2
Sch þ R2

dS þ RSchRdS; (A5)

M ¼ RdS

2G
ð1�H2

�R
2
dSÞ (A6)

¼ RSch

2G
ð1�H2

�R
2
SchÞ: (A7)

We relate the Boltzmann brain nucleation rate to the
decrease in total entropy �S caused by the nucleation
process,

�BB � e��S; (A8)

where the final entropy is the sum of the entropies of the
Boltzmann brain and the de Sitter horizon. For a
Boltzmann brain with entropy SBB, the change in entropy
is given by

�S ¼ �

G
H�2� �

�
�

G
R2
dS þ SBB

�
: (A9)

Note that for small M one can expand �S to find

�S ¼ 2�M

H�

� SBB þOðGM2Þ; (A10)

giving a nucleation rate in agreement with Eq. (100).17

To find a bound on the nucleation rate, we need an upper
bound on the entropy that can be attained for a given size
and mass. In flat space the entropy is believed to be
bounded by Bekenstein’s formula, Eq. (107), a bound
which should also be applicable whenever R	 RdS.
More general bounds in de Sitter space have been dis-
cussed by Bousso [53], who considers bounds for systems
that are allowed to fill the de Sitter space out to the horizon
R ¼ RdS of an observer located at the origin. For small
mass M, Bousso argues that the tightest known bound on
S is the D bound, which states that

S � SD � �

G

�
1

H2
�

� R2
dS

�
¼ �

G
ðR2

Sch þ RSchRdSÞ; (A11)

where the equality of the two expressions follows from
Eq. (A5). This bound can be obtained from the principle
that the total entropy cannot increase when an object
disappears through the de Sitter horizon. For larger values

of M, the tightest bound (for R ¼ RdS) is the holographic
bound, which states that

S � SH � �

G
R2
dS: (A12)

Bousso suggests the possibility that these bounds have a
common origin, in which case one would expect that there
exists a valid bound that interpolates smoothly between the
two. Specifically, he points out that the function

Sm � �

G
RSchRdS (A13)

is a candidate for such a function. Fig. 1 shows a graph of
the holographic bound, the D bound, and the m bound
[Eq. (A13)] as a function of M=Mmax. While there is no
reason to assume that Sm is a rigorous bound, it is known to
be valid in the extreme cases where it reduces to the D and
holographic bounds. In between it might be valid, but in
any case it can be expected to be valid up to a correction of
order one. In fact, Fig. 1 and the associated equations show
that the worst possible violation of the m bound is at
the point where the holographic and D bounds cross, at

M=Mmax ¼ 3
ffiffiffi
6
p

=8 ¼ 0:9186, where the entropy can be no

more than ð1þ ffiffiffi
5
p Þ=2 ¼ 1:6180 times as large as Sm.

Here we wish to carry the notion of interpolation one
step further, because we would like to discuss in the same
formalism systems for which R	 RdS, where the
Bekenstein bound should apply. Hence we will explore
the consequences of the bound

S � SI � �

G
RSchR; (A14)

which we will call the interpolating bound. This bound
agrees exactly with them bound when the object is allowed

FIG. 1. The graph shows the holographic bound, the D bound,
and the m bound for the entropy of an object that fills de Sitter
space out to the horizon. The holographic andD bounds are each
shown as broken lines in the region where they are superseded by
the other. Although the m bound looks very much like a straight
line, it is not.17We thank Lenny Susskind for explaining this method to us.
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to fill de Sitter space, with R ¼ RdS. Again we have no
grounds to assume that the bound is rigorously true, but we
do know that it is true in the three limiting cases where it
reduces to the Bekenstein bound, the D bound, and the
holographic bound. The limiting cases are generally the
most interesting for us in any case, since wewish to explore
the limiting cases for Boltzmann brain nucleation. For
parameters in between the limiting cases, it again seems
reasonable to assume that the bound is at least a valid
estimate, presumably accurate up to a factor of order
one. We know of no rigorous entropy bounds for
de Sitter space with R comparable to RdS but not equal to
it, so we do not see any way at this time to do better than the
interpolating bound.

Proceeding with the I bound of Eq. (A14), we can use
Eq. (106) to rewrite Eq. (A9) as

�S ¼ �

G
ðH�2� � R2

dSÞ � SBB;max þ IBB; (A15)

which can be combined with SBB;max � SI to give

�S � �

G
ðH�2� � R2

dS � RSchRÞ þ IBB; (A16)

which can then be simplified using Eq. (A5) to give

�S � �

G
RSchðRSch þ RdS � RÞ þ IBB: (A17)

To continue, we have to decide what possibilities to
consider for the radius R of the Boltzmann brain, which
is related to the question of Boltzmann brain stabilization
discussed after Eq. (111). If we assume that stabilization is
not a problem, because it can be achieved by a domain wall
or by some other particle physics mechanism, then �S is
minimized by taking R at its maximum value, R ¼ RdS, so

�S � �

G
R2
Sch þ IBB: (A18)

�S is then minimized by taking the minimum possible
value of RSch, which is the value that is just large enough to
allow the required entropy, SBB;max � IBB. Using again the
I bound, one finds that saturation of the bound occurs at

�sat ¼ 3sin�1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3~I
p

2

�
; (A19)

where

~I � IBB
SdS
¼ GH2

�

�
IBB (A20)

is the ratio of the Boltzmann brain information to the
entropy of the unperturbed de Sitter space. Note that ~I
varies from zero to a maximum value of 1=3, which occurs
in the limiting case for which RSch ¼ RdS. The saturating
value of the mass and the corresponding values of the
Schwarzschild radius and de Sitter radius are given by

Msat ¼
~I

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~I
p

2GH�

; (A21)

RSch;sat ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~I
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3~I
p

2H�

; (A22)

RdS;sat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3~I
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~I
p

2H�

: (A23)

Combining these results with Eq. (A18), one has for this
case (R ¼ RdS) the bound

�S

IBB
� 1þ ~I�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~I
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3~I
p

2~I
: (A24)

As can be seen in Fig. 2, the bound on�S=IBB for this case
varies from 1, in the limit of vanishing ~I (or equivalently,
the limit H� ! 0), to 2, in the limit RSch ! RdS.
The limiting case of ~IBB ! 0, with a nucleation rate of

order e�IBB , has some peculiar features that are worth
mentioning. The nucleation rate describes the nucleation
of a Boltzmann brain with some particular memory state,
so there would be an extra factor of eIBB in the sum over
all memory states. Thus, a single-state nucleation rate of
e�IBB indicates that the total nucleation rate, including all
memory states, is not suppressed at all. It may seem strange
that the nucleation rate could be unsuppressed, but one
must keep in mind that the system will function as a
Boltzmann brain only for very special values of the mem-
ory state. In the limiting case discussed here, the
‘‘Boltzmann brain’’ takes the form of a minor perturbation
of the degrees of freedom associated with the de Sitter
entropy SdS ¼ �=ðGH2

�Þ.

FIG. 2. The graph shows the ratio of �S to IBB, where the
nucleation rate for Boltzmann brains is proportional to e��S. All
curves are based on the I bound, as discussed in the text, but they
differ by their assumptions about the size R of the Boltzmann
brain.
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As a second possibility for the radius R, we can consider
the case of strong gravitational binding, R! RSch, as
discussed following Eq. (111). For this case the bound
(A17) becomes

�S � �

G
RSchRdS þ IBB: (A25)

[Interestingly, if we take I ¼ 0 (SBB ¼ Smax) this formula
agrees with the result found in Ref. [92] for black hole
nucleation in de Sitter space.] WithR ¼ RSch the saturation
of the I bound occurs at

�sat ¼ �

2
� 3sin�1

� ffiffiffiffiffi
3~I
p

2

�
: (A26)

The saturating value of the mass and the corresponding
values of the Schwarzschild radius and de Sitter radius are
given by

Msat ¼
ffiffiffi
~I
p
ð1� ~IÞ
2GH�

; (A27)

RSch;sat ¼
ffiffiffi
~I
p

H�

; (A28)

RdS;sat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3~I
p

�
ffiffiffi
~I
p

2H�

: (A29)

Using these relations to evaluate �S from Eq. (A25), one
finds

�S

IBB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3~I
p

þ
ffiffiffi
~I
p

2
ffiffiffi
~I
p ; (A30)

which is also plotted in Fig. 2. In this case (R ¼ RSch) the
smallest ratio �S=IBB is 2, occurring at ~I ¼ 1=3, where
RSch ¼ RdS. For smaller values of ~I the ratio becomes

larger, blowing up as 1=
ffiffiffi
~I
p

for small ~I. Thus, the nucleation
rates for this choice of R will be considerably smaller than
those for Boltzmann brains with R � RdS, but this case
would still be relevant in cases where Boltzmann brains
with R � RdS cannot be stabilized.

Another interesting case, which we will consider, is to
allow the Boltzmann brain to extend to R ¼ Requil, the

point of equilibrium between the gravitational attraction
of the Boltzmann brain and the outward gravitational pull
of the de Sitter expansion. This equilibrium occurs at the
stationary point of gtt, which gives

Requil ¼
�
GM

H2
�

�
1=3

: (A31)

Boltzmann brains within this radius bound would not be
pulled by the de Sitter expansion, so relatively small me-
chanical forces will be sufficient to hold them together.

Again �S will be minimized when the I bound is
saturated, which in this case occurs when

�sat ¼ �

2
� 3sin�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Að~IÞ

p
2

�
; (A32)

where

Að~IÞ � sin

�
sin�1ð1� 27~I3Þ

3

�
: (A33)

The saturating value of the mass and the Schwarzschild
and de Sitter radii are given by

Msat ¼
ffiffiffi
3
p ½1þ Að~IÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Að~IÞ

p
9GH�

; (A34)

RSch;sat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Að~IÞ

p
ffiffiffi
3
p

H�

; (A35)

RdS;sat ¼
ffiffiffi
3
p ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 2Að~IÞÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Að~IÞ

p
�

6H�

: (A36)

The equilibrium radius itself is given by

Requil;sat ¼ ½1� 2Að~IÞ�1=6½1þ Að~IÞ�1=3ffiffiffi
3
p

H�

: (A37)

Using these results with Eq. (A17), �S is found to be
bounded by

�S

IBB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 2Að~IÞÞð3þ 2Að~IÞÞ

p
� 2Að~IÞ þ 1

6~I
; (A38)

which is also plotted in Fig. 2. As one might expect it is
intermediate between the two other cases. Like the R ¼
RSch case, however, the ratio �S=IBB blows up for small ~I,

in this case behaving as ð2=~IÞ1=4.
In summary, we have found that our study of tunneling

in Schwarzschild–de Sitter space confirms the qualitative
conclusions that were described in Sec. VA. In particular,
we have found that if the entropy bound can be saturated,
then the nucleation rate of a Boltzmann brain requiring
information content IBB is given approximately by e�aIBB ,
where a is of order a few, as in Eq. (111). The coefficient a
is always greater than 2 for Boltzmann brains that are small
enough to be gravitationally bound. This conclusion
applies whether one insists that they be near-black holes,
or whether one merely requires that they be small enough
so that their self-gravity overcomes the de Sitter expansion.
If, however, one considers Boltzmann brains whose radius
is allowed to extend to the de Sitter horizon, then Fig. 2
shows that a can come arbitrarily close to 1. However, one
must remember that the R ¼ RdS curve on Fig. 2 can be
reached only if several barriers can be overcome. First,
these objects are large and diffuse, becoming more and
more diffuse as ~I approaches zero and a approaches 1.
There is no known way to saturate the entropy bound for
such diffuse systems, and Eq. (117) shows that an ideal gas
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model leads to a� I1=3BB � 1. Furthermore, Boltzmann

brains of this size can function only if some particle
physics mechanism is available to stabilize them against
the de Sitter expansion. A domain wall provides a simple
example of such a mechanism, but Eq. (114) indicates that
the domain wall solution is an option only if a domain wall

exists with tension 
� IBBH
3
�. Thus, it is not clear how

close a can come to its limiting value of 1. Finally, we

should keep in mind that it is not clear if any of the

examples discussed in this appendix can actually be at-

tained, since black holes might be the only objects that

saturate the entropy bound for S� 1.
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