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We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic

strings. We find that the angular pattern of the radiation has features that differ significantly from that for

bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed

around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin

polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic

strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale

comparable to the string energy scale.
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I. INTRODUCTION

The Aharonov-Bohm (AB) interaction [1,2] between
charged particles and thin magnetic fluxes is of much
interest as it provides a physical consequence of a pure
gauge field with vanishing field strength but nontrivial
topology. Further, the physical effects emerge only in
quantum theory and hence the AB interaction provides
an example of a quantum, topological interaction.

The classic Aharonov-Bohm setup involves scattering an
electron off a solenoid, with nontrivial scattering obtained
even for an arbitrarily thin solenoid, whereby the electron is
exclusively localized in a region of vanishing magnetic
field. A novel feature of the scattering is a periodic depen-
dence of the scattering cross section on the magnetic flux
through the solenoid. If � denotes the magnetic flux in the
solenoid and e the electron charge, the cross section is
proportional to sin2ð��Þ, where � � e�=2�.

The classic AB setup was recently extended in another
direction [3], where it was shown that an oscillating sole-
noid in vacuum can produce charged particle-antiparticle
bosons from the vacuum due to the AB interaction. The AB
radiation rate also has the characteristic sin2ð��Þ depen-
dence on the magnetic flux.

AB radiation is relevant to the evolution of cosmic
strings, which are similar to solenoids, except the magnetic
flux within them is massive, unlike electromagnetic fluxes
in laboratory solenoids. Moreover, the gravitational analog
of the AB effect can cause cosmic strings to emit light,
even if the fields composing the cosmic string are unrelated
to electromagnetic fields [3,4].

In this paper we will investigate fermionic AB radiation.
One motivation is that the electron is a fermion. Hence
fermionic AB radiation is what is relevant to oscillating
solenoids. The investigation is also relevant, for instance,
to neutrino emission from cosmic strings by the AB pro-
cess. A second motivation is that the spin of the fermion
adds another degree of freedom to the emission and the
polarization properties of the radiation are of interest.

Our results show a significant difference between AB
radiation of bosons and fermions. For example, if a sole-
noid aligned with the z axis oscillates along the x direction,
the angular distribution of bosonic AB radiation is peaked
in the y direction. Fermionic AB radiation, however, is
(approximately) isotropically distributed.
The outline of the paper is as follows. In Secs. II through

IV, we use conventional interaction picture perturbation
theory to calculate the fermion-antifermion pair production
rate in the small AB phase (�) limit. We consider AB
radiation from an infinite, straight solenoid oscillating
perpendicular to its length in Sec. III, a cosmic string
loop with kinks in Sec. IVA, and a cosmic string loop
with cusps in Sec. IVB. In Sec. V, we solve the problem
using a different technique that does not assume that � is
small. We call this the ‘‘moving frames’’ scheme and use it
to obtain the sinð��Þ dependence of the radiation on the
AB phase, provided the motion of the solenoid is slow. We
conclude in Sec. VI and describe our conventions in the
Appendix.

II. AB FERMION PAIR PRODUCTION

A. Setup

The interaction of fermions with the gauge potential of
the thin solenoid or string is contained within the Dirac
action

Sc �
Z

d4x �c ði 6D�mÞc : (1)

(See the Appendix for conventions.) The relevant interac-
tion term is

Lint ¼ eA�
�c��c ; (2)

where A� is the classical solution around the flux tube [2]

A� ¼ �

2
�����@

� 1

@2
S�� (3)

with
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S��ðxÞ ¼
Z

d�d	
ffiffiffiffiffiffiffiffi��

p
�ab@aX

�@bX
�
ð4Þðx�Xð	;�ÞÞ

¼
Z

d�d	ð _X�X�0 � _X�X�0 Þ
ð4Þðx�Xð	;�ÞÞ (4)

and X�ð	; �Þ gives the position of the flux tube in terms of
world-sheet coordinates 	 and �.

We will need the Fourier transform of A� and this is

given by

~A � ¼ �i
�

2
�����

k�

k2
~S�� (5)

with

~S ��ðkÞ ¼
Z

d4xeþik�xS��ðxÞ

¼ 1

2

Z
dt

Z
d	

@X½�

@t

@X��

@	
eik�X

�
; (6)

where � ¼ t and superscripts within square brackets are
antisymmetrized.

In the case of a straight solenoid, we will impose the
dynamics by hand and consider oscillatory motion. In
the case of a cosmic string, the dynamics will be given
by the Nambu-Goto action as discussed in Sec. IV.

B. Pair production amplitude

The amplitude for pair production is then given by the
Feynman diagram in Fig. 1

M ð0 ! eþe�Þ ¼ e�

p2
�����p

�J �~S��

J �ðk; s; k0; s0Þ � �usk�
�vs0

k0ffiffiffiffiffiffiffiffi
2k0

p ffiffiffiffiffiffiffiffi
2k00

q ; p� ¼ k� þ k0�;

where the s and k are the spin and momentum labels for
the outgoing fermion state and the primed labels are for the
antifermion.

It will turn out, for all three cases of interest in this paper,
~S�� can be factorized into an antisymmetrized product of
two independent integrals,

~S �� ¼ 1

2
I½�þ I��� :

Furthermore, as can be checked explicitly, the I
�
� and

electromagnetic current J � are conserved1

p�I
�
� ¼ p�J � ¼ 0:

This allows us to rewrite

�����p
�J �~S�� ¼ p2

p0

J � ðIþ � I�Þ

so that the amplitude now reads

M ¼ 2��

p0

J � ðIþ � I�Þ; � � e�

2�
: (7)

Total rate: Our normalization of the Dirac spinors (A3)
is such that the square of the amplitude itself is the total
number of fermion-antifermion pairs produced. First let us
evaluate the total rate, and hence sum over the spins of the
final particles. In squaring the amplitude, we may then
exploit the spin sumsX

s

usk �u
s
k ¼ kþm;

X
s0
vs0
k0 �v

s0
k0 ¼ k0 �m;

and the Clifford algebra f��; ��g ¼ 2��� to deduce

X
s;s0

J �ðJ �Þ� ¼ k0�k� þ k0�k� � ðm2 þ k � k0Þ���

k0k
0
0

:

Within the small AB phase approximation, the result of this
spin sum accounts for the entire difference in angular
distribution for the outgoing fermion-antifermion pairs
from that of the scalar case in [3]. We see that, even at
the level of unpolarized rates, the spin of the particles
interacting with the vector potential gives rise to significant
observational signatures.
For comparison, in the bosonic case the corresponding

quantity is [3]

J �ðJ �Þ� ¼ ðk� k0Þ�ðk� k0Þ�
k0k

0
0

:

The difference in this expression versus the expression for
the fermionic case gives rise to different angular distribu-
tions for the AB radiation of bosons and fermions. In
particular, AB bosonic radiation vanishes when k� ¼ k0�,
whereas fermionic radiation does not.
Now the square of the amplitude, summed over the

possible spins of the outgoing particles, reads

k

e+

A

k’

e

FIG. 1 (color online). Feynman diagram for fermion-
antifermion (which we have named eþe� for convenience)
pair production from a magnetic flux tube in motion. The black
dot represents the classical gauge field of the flux tube and the
solid lines are the outgoing electron and positron states.

1For I��, see Eq. (33), and more explicitly, (16), (37), and (40).
The identity for J � follows from the free massive Dirac equa-
tions ðk0 þmÞvs0

k0 ¼ 0 ¼ �uskðk�mÞ.
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X
s;s0

jMj2 ¼ ð2�Þ2�2
p2
0k0k

0
0

fjIþ � I�j2ðm2 þ k � k0Þ

þ ððIþ � I�Þ � kðIþ � I�Þ� � k0 þ c:c:Þg (8)

with the ‘‘c.c.’’ representing complex conjugation of the
term preceding it.

The jIþ � I�j2 will contain an infinite series involving
the square of 
 functions, of the form ð
ðp0 � ‘�ÞÞ2,
where � is the characteristic frequency of oscillation and
‘ is the radiation harmonic. This may be interpreted as a
single 
 function multiplied by an infinite constant corre-
sponding to the total duration of time divided by 2�:

ð
ðp0 � ‘�ÞÞ2 ! 
ðp0 � ‘�Þ T

2�
; (9)

where T is the total time duration over which the radiation
is calculated. This can be justified formally by using the
integral representation of the 
 function and setting the
exponential to unity,


ð0Þ ! lim
T!1 lim

�!0

Z T=2

�T=2

dt

2�
ei�t ¼ T

2�
:

The rate of pair production is then given by
P

s;s0 jMj2=T,
integrated over all kinematically possible momenta of the
outgoing particles

dN

dt
¼ ð2�Þ2�2

T

Z d3k

ð2�Þ3
Z d3k0

ð2�Þ3
1

p2
0k0k

0
0

� fjIþ � I�j2ðm2 þ k � k0Þ
þ ððIþ � I�Þ � kðIþ � I�Þ� � k0 þ c:c:Þg: (10)

Spin-dependence: If one wishes to evaluate the spin-
dependence of the scattering it is convenient to work out
the amplitudes for the creation of particles and antiparticles
with definite helicity. In other words the particle of mo-
mentum k is assumed to have its spin aligned or antialigned
with the momentum k corresponding to positive or nega-
tive helicity. This is accomplished by evaluating the current

J ðk; s; k0; s0Þ taking the spinors usk and vs0
k0 to be of definite

helicity (see the Appendix). An example of such a spin-
dependent pair production rate is given in Sec. III.

The spin-dependence of pair production has a general
feature that can be deduced immediately from the form of
the matrix element M. Let us suppose that Iþ � I� / m̂
where m̂ is a unit vector. This assumption will be seen to be
valid below for the cases of a straight oscillating string and
for degenerate kinky loops discussed below in Secs. III and
IVA. For this case one can show that

M / J � m̂ ¼ �y
s S�;0�s0 þ �y

s S� � ��s0 : (11)

Here

S�;0 ¼ 2im̂ � ðn̂0 � n̂Þ sinh
2
sinh

 0

2
;

S� ¼ 2 cosh


2
cosh

 0

2
m̂þ 2 sinh



2
sinh

 0

2
½ðn̂ � m̂Þn̂0

þ ðn̂0 � m̂Þn̂� ðn̂ � n̂0Þm̂�: (12)

The rapidity is defined via cosh ¼ k0=m, cosh 0 ¼ k00=m
and n̂ and n̂0 are unit vectors along the directions of the
momenta k and k0, respectively. Equation (11) is a simple

consequence of the forms of the spinors usk and v
s0
k0 given in

the Appendix. Here �s is a spinor that corresponds to the
spin of the particle in its rest frame; �s0 corresponds to the
spin of the antiparticle in its rest frame. Thus we see that if
the particle is measured to be up along the direction S� in
its rest frame, the antiparticle will definitely be down along
the same direction in its rest frame and vice-versa. To see
this explicitly, if �T

s ¼ ð1; 0Þ then the amplitude is maxi-
mized by taking �T

s0 ¼ ð1; 0Þ. However this choice of spin-
ors means that the particle is spin up and the antiparticle is
spin down. Hence there is a definite anticorrelation in the
spin of the produced particles.

III. INFINITE, STRAIGHT SOLENOID

In this section we will consider the pair production due
to an infinite, straight solenoid aligned parallel to the z
axis, moving in a sinusoidal fashion along the x axis.
Hence, with 	 ¼ z,

X�ðt; zÞ ¼ ðt;�ðtÞ;0; zÞ �ðtÞ � v0

�
sinð�tÞ; �> 0:

(13)

Putting (13) into (6) we find that the t and z integrals may
be factorized (into Iþ and I�, respectively). To evaluate Iþ
we express the cosð�tÞ in its integrand in terms of expo-
nentials, and perform a cylindrical wave expansion via

ei� cos� ¼ Xþ1

‘¼�1
i‘J‘ð�Þei‘�: (14)

The resulting Bessel functions in Iþ can be combined using
the recursion relation

�

z
J�ðzÞ ¼ 1

2
ðJ��1ðzÞ þ J�þ1ðzÞÞ: (15)

The integral for I� simply gives a 
 function. Together,

I�þ ¼ 2�
X1

‘¼�1

ðp0 � ‘�Þð�1Þ‘J‘

�
px

v0

�

��

�
0 � 
�

x

p0

px

�

I�� ¼ 
�
3 2�
ðpzÞ (16)

and therefore

Iþ � I� ¼ ŷð2�Þ2 X1
‘¼�1


ðpzÞ
ðp0 � ‘�Þ

� ð�1Þ‘J‘
�
px

v0

�

�
p0

px

;
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where we have used

J�nðzÞ ¼ ð�1ÞnJnðzÞ; n 2 f0;�1;�2; . . .g: (17)

Making use of the formal identity

ð
ðpzÞÞ2 ! 
ðpzÞ L

2�
;

where L is the total length of the solenoid we find that the
fermion-antifermion pair production rate (10) per unit
length of the solenoid in sinusoidal motion is

_N 0 ¼ X1
‘¼1

Z
d3k

Z
d3k0

X
s;s0¼�

d7Nðks; k0s0Þ
dtd3kd3k0

; (18)

where the differential rate

d7Nðks; k0s0Þ
dtd3kd3k0

¼ �2

ð2�Þ2
N ðks; k0s0Þ
4k0k

0
0p

2
x

J2‘

�
px

v0

�

�
� 
ðpzÞ
ðp0 � ‘�Þ (19)

and s and s0 represent the helicity of the particle and
antiparticle, respectively. The quantity N is given by

N ðks; k0s0Þ ¼ ðk0k00 þm2 � ss0jkjjk0jÞ

�
�
1þ ss0

jkjjk0j ðkzk
0
z þ kxk

0
x � kyk

0
yÞ
�
: (20)

Note that in the limit that the particle and antiparticle are
ultrarelativistic N ðks; k0s0Þ is negligible for s ¼ s0; thus
pairs are predominantly produced with opposite helicity in
this limit. The pair production rate summed over final state
polarization is given by the simpler expression

N ðk; k0Þ ¼ X
s;s0¼�

N ðks; k0s0Þ

¼ 4ðm2 þ k0k
0
0 � kzk

0
z � kxk

0
x þ kyk

0
yÞ

! 2ðð‘�Þ2 � ðkx þ k0xÞ2 � ðky � k0yÞ2Þ: (21)

The second line in (21) is the direct consequence of
the term in curly brackets in (10). The third line, which
is kz-independent, has been obtained from the first by
imposing kz ¼ �k0z and rewriting k0k

0
0 ¼ ð1=2Þ�

ð‘�Þ2 � ð1=2Þk20 � ð1=2Þk020 , using the constraints implied

by the 
 functions.
Note that when we square the amplitude we obtain a

double sum over harmonics. This collapses to a single sum
because 
ðp0 � ‘�Þ
ðp0 � ‘0�Þ is zero unless ‘ ¼ ‘0,
since the requirement that both the 
 function arguments
be null cannot otherwise be satisfied. Since the sum of the
positive energies p0 ¼ k0 þ k00 cannot be zero or negative,
we have also removed all the ‘ � 0 terms in the summation
in Eq. (18).

Nonrelativistic limit: In the nonrelativistic limit,
v0 	 1, we may utilize

J�ðzÞ 
 1

�ð�þ 1Þ
�
z

2

�
�ð1þOðz2ÞÞ; jzj 	 1 (22)

to see that the contribution to the pair production rate at
each harmonic begins at Oðv2‘

0 Þ plus corrections of

Oðv2‘þ2
0 Þ. [For ‘ � 1, the J‘ðzÞ becomes exponentially

suppressed; see Eq. (25).] Therefore, provided that
�> 2m, the first harmonic is the dominant production
channel in the nonrelativistic limit.
We first, however, begin by performing a consistency

check of our calculations based on the ‘ ¼ 1 term. Using
the pair production rate in the form (10), and keeping only
the leading order term in the series expansion of J1 and
eliminating the kxk

0
x and kyk

0
y term by integrating over the

appropriate angular coordinates,

Eq: ð18Þ !
Z 1

0
dkk

Z 1

0
dk0k0

Z 1

�1
dkz

Z 1

�1
dk0z
ðkz þ k0zÞ

� 
ðk0 þ k00 ��Þ �2

k0k
0
0

v2
0

4�2
ðm2 þ k0k

0
0 þ k2zÞ:

(23)

This will match (63) from the small flux limit of the
moving frames perturbation theory calculation below.
Now, the differential pair production rate is the integrand

in (18). Upon integrating kz (or k
0
z), the third line in (21)

indicates that the only kz ¼ �k0z dependence in the inte-
grand occurs in the k0k

0
0. Enforcing the constraint

k0 þ k00 ¼ � by introducing a Lagrange multiplier we

see that the integrand, and hence the emission rate, is
maximum at kz ¼ 0. (This is true of the full relativistic
emission.) Applying (22) to ‘ ¼ 1 and going to cylindrical
coordinates, ðkx; kyÞ ¼ k?ðcos�; sin�Þ and ðk0x; k0yÞ ¼
k0?ðcos�0; sin�0Þ, together with the second line of (21)

then yields

d5 _N

dk?dk0?d�d�
0dkz

ð‘¼ 1; kz ¼ k0z ¼ 0Þ

¼
�
v0�

4��

�
2 k?k0?
k0k

0
0


ðk0þ k00��Þ

� ðm2þ k0k
0
0� k?k0? cosð�þ�0ÞÞ

with

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
? þm2

q
; k00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02
? þm2

q
:

The differential rate is largest in the xy plane and when the
outgoing particles’ azimuthal angles are supplementary,
�þ �0 ¼ �. In contrast, boson emission is maximum
along2 �þ �0 ¼ 2� and dipolar (see Fig. 2).
We may proceed to employ the second line of (21) to

obtain the total rate of production of pairs with energy �
per unit length of the infinite flux tube

2This corrects [3] where it was mistakenly stated that the
maximum emission is along �þ �0 ¼ �.
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_N0ð‘ ¼ 1Þ ¼ �2

2ð2�Þ2
�
v0

2�

�
2

�
Z ��m

m
dk0

Z ffiffiffiffiffiffiffiffiffiffiffi
k2
0
�m2

p

�
ffiffiffiffiffiffiffiffiffiffiffi
k20�m2

p dkz
Z 2�

0
d�

Z 2�

0
d�0

� ½�2 � ðkx þ k0xÞ2 � ðky � k0yÞ2�;

where

ðkx; kyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 �m2 � k2z

q
ðcos�; sin�Þ

ðk0x; k0yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� k0Þ2 �m2 � k2z

q
ðcos�0; sin�0Þ:

In terms of the mass-to-energy ratio � � 2m=�, the
result is

_N0ð‘ ¼ 1Þ ¼ v2
0�

2�2

384

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p ½16� �f�ð3�þ 2Þ þ 8g�

� 6�4 ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1

�
� 1

s
þ

ffiffiffi
1

�

s ��
þOðv4

0Þ: (24)

This pair production rate begins at v2
0�

2�2=12 for � ¼ 0
and, for increasing �, decreases monotonically to zero at
the threshold � ¼ 1. As the fermion-antifermion pair gets
heavier, it becomes harder to produce.
At very high harmonics (‘ � 1), we may rescale all

momenta by ‘�=v0 and denote the new variables by over-
bars, e.g. �k � kv0=ð‘�Þ. Then we invoke [5]

J�

�
�

cosh�

�
� expð��ð�� tanh�ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�� tanh�
p ; �> 0; �� 1;

(25)

to say that, within the integration limits 0< �px & v0 	 1,�
J‘ð‘ �pxÞ

�px

�
2 � exp½�2‘ð�0 � tanh�0Þ þ 2 lnðcosh�0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�‘ tanh�0

p ;

(26)

where �0 is the positive solution to the equation
cosh�0 ¼ 1= �px.
The exponent on the right-hand side of the asymptotic

expression (26) is a monotonically increasing function of
�px, and takes on large negative values for small �px (i.e.
large �0), while tanh�0 � 1. Hence the pair production
rate (18) is exponentially small for ‘ � 1, in the non-
relativistic limit. In Fig. 3 we show the power emitted
per harmonic for a few values of v0.
High frequency limit: When � � 2m, such that the

fermion-antifermion pairs are produced with very large
momentum, to a good approximation, they may be treated
as effectively massless. If we rescale all momenta by the
energy, k � ‘��k etc., and integrate over �k0?, the emission

rate in the xy plane is

FIG. 2 (color online). The radiated power as a function of �
and �0. The top figure is for fermion radiation ‘ ¼ 1 with jkj ¼
‘�=2 ¼ jk0j, and the lower figure is for bosonic radiation with
the same parameters. There is maximum radiation along the line
�þ �0 ¼ � in the fermionic case and the radiation is (approxi-
mately) circularly symmetric. The bosonic emission is dipolar
and along the �þ �0 ¼ 2� line (plot taken from Ref. [3]).
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FIG. 3. The radiated power as a function of harmonic for
v0 ¼ 0:001 (squares), 0.1 (circles), and 1 (triangles).
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d4 _N

d �k?d�d�0dkz
ðkz ¼ k0z ¼ 0; m ¼ 0Þ

¼
�
‘��

2�

J‘ð‘v0 �pxÞ
�px

�
2
�k?ð1� �k?Þð1� cosð�þ �0ÞÞ;

with

�p x ¼ �k? cos�þ ð1� �k?Þ cos�0:
The rescaled momentum, �k?, lies in (0, 1) and so �px lies
in the interval ðcos�; cos�0Þ for cos� < cos�0, and
ðcos�0; cos�Þ for cos� > cos�0. Therefore the absolute
value of the argument of J‘ is always less than its order,
j‘v0 �pxj � ‘v0 < ‘. For ‘ ¼ 1, as a first approximation,
we may recall (22), and observe that ðJ‘ð‘v0 �pxÞ= �pxÞ2 stays
roughly constant within the range of interest at hand.
Hence, the maximum emission occurs for �k? 
 1=2 and
�þ �0 ¼ �. For ‘  2, we may employ (15) followed by
the fact that both the first turning point and zero of J‘ðzÞ
occurs only for z  ‘, to argue that ðJ‘ð‘v0 �pxÞ= �pxÞ2 is a
monotonically increasing function of �px—this means the
�k? at which there is maximum emission now shifts away
from 1=2, with the direction depending on whether cos� is
greater or less than cos�0.

At higher harmonics, ‘ � 1, J‘ becomes exponentially
suppressed, according to (25) and (26), in most of the
ð�; �0Þ plane. If the motion is relativistic (v0 � 1), however,
the asymptotic formula [5]

J‘ðzÞ � 1

3�

�
sinð�=3Þ�ð1=3Þ

ðz=6Þ1=3

þ sinð2�=3Þ�ð2=3Þ
ðz=6Þ2=3 ðz� ‘Þ þ � � �

�
; ‘ � 1;

(27)

valid for z� ‘, says that ðJ‘ð‘v0 �pxÞ= �pxÞ2 will transition to
an inverse power law in ‘ and hence peak in the region
where j �pxj lies closest to unity, namely, where cos� ¼
cos�0 ¼ �1. [Note that ðJ‘ð�zÞ=ð�zÞÞ2 ¼ ðJ‘ðzÞ=zÞ2.]
Therefore, ignoring the (1� cosð�þ �0Þ) factor for now,
the peak occurs at ð�; �0Þ ¼ ð0; 0Þ or ð�;�Þ. The shape of
the peak is determined by the constant �px contour lines on
the ð�; �0Þ plane near (0, 0) and ð�;�Þ. They are ellipses
with �k?-dependent eccentricity, because

�pxð0; 0Þ ¼ 1� 1

2
ð �k?�2 þ ð1� �k?Þ�02Þ þ � � �

�pxð�;�Þ ¼ �1þ 1

2
ð �k?ð�� �Þ2

þ ð1� �k?Þð�0 � �Þ2Þ þ � � � :
Now we include the effect of the (1� cosð�þ �0Þ) factor
which vanishes along the lines �þ �0 ¼ 2�n, where
n 2 Z. The peaks at (0, 0) and ð�;�Þ lie precisely on
these lines. So the multiplicative factor (1� cosð�þ �0Þ)

modulates the peak and splits it into two, one on either side
of the �þ �0 ¼ 2�n lines.
To summarize, at large oscillation frequencies and rela-

tivistic solenoid speeds, we expect the high energy spec-
trum of the fermion-antifermion pairs to be produced
predominantly in the xy plane, in narrow pairs of nearly
collinear beams, in the �x̂ directions. This beaming effect
is due to the presence of the Bessel functions J‘ð‘v0 �pxÞ,
common to both the fermion and boson amplitudes, and
hence will occur in the boson case too [3].

IV. COSMIC STRING LOOPS

We now turn to fermion pair production from cosmic
string loops for which the dynamics is given by the
Nambu-Goto action

SNG � ��
Z

d�
Z

d	
ffiffiffiffiffiffiffiffi��

p
; (28)

where the world-sheet metric is

�ab ¼ ���@aX
�@bX

�; � � detð�abÞ (29)

and a ¼ ð�; 	Þ are world-sheet coordinates.
Referring to the Nambu-Goto dynamics for relativistic

strings in (28), we will choose 	 such that constant t lines
and 	 lines on the string world sheet are orthogonal, and
the energy per unit (proper) length of the string is constant,

X0 � _X ¼ 0; X02 þ _X2 ¼ 0: (30)

These choices of coordinate conditions (30) put the
world-sheet metric �ab into a conformally flat form, and
lead us from the Nambu-Goto action (28) to the wave
equation for X�

ð@2t � @2	ÞX�ðt; 	Þ ¼ 0: (31)

The X� solution may be written as an average of left- and
right-movers, L� ¼ L�ð	þ tÞ and R� ¼ R�ð	� tÞ
respectively,

X� ¼ 1

2
L�ð	þÞ þ 1

2
R�ð	�Þ;

where we also have introduced world-sheet light cone
coordinates

	� � 	� t

and

L0 ¼ 	þ; R0 ¼ �	�:

The world-sheet coordinate conditions (30) translate into
constraints on the spatial components of X�,

L 02 ¼ R02 ¼ 1:

We will focus our attention on two specific loop con-
figurations. The kinky loop has tangent vectors to the string
that are discontinuous at isolated points; whereas the cuspy
loop has isolated points that reach the speed of light
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periodically. These configurations satisfy the equations of
motion (31) that follow from (28).

If the coordinate length of a given cosmic string loop is
L, the 	 integration limits for its corresponding S�� [see
Eq. (6)] runs from 0 to L. Since we have closed loops, X
and derivatives @tX

� and @	X
� are periodic in 	 as well

as t. To facilitate the computation, we utilize a formal
device introduced in [3] that allows us to factorize S��

into a product of two one-dimensional integrals, one for
each world-sheet light-cone coordinate. This is based on
the observation that, for a periodic function f with period
L, the integral over one period of f is equivalent to the
integral over the real line, divided by the (infinite) number
of times the former has been over-counted

Z L

0
d	fð	Þ ¼ 1


Zð0Þ
Z þ1

�1
d	fð	Þ; (32)

where


Zð0Þ �
Rþ1
�1 d	ei2�‘	=LR
L
0 d	e

i2�‘	=L
; ‘ 2 Z:

We may now extend the 	 integral in S�� to the entire real
line using (32), before changing variables from ðt; 	Þ to
ð	þ; 	�Þ. S�� then factorizes into

S�� ¼ 1

2
I½�þ I���

I�þ � 1

2

Z þ1

�1
d	þ@þL�eip�L=2

I�� � 1

2
Zð0Þ
Z þ1

�1
d	�@�R�eip�R=2;

(33)

where the derivatives are with respect to 	�.
3 Periodicity

in 	 and t implies that the integrands in (33) are periodic in
	þ and 	� and we can replace them in Eq. (6) with their
discrete Fourier series expansions,

I�þ ¼ 2�
X1

‘¼�1



�
p0 þ 4�

L
‘

�

�
Z L

0

d	þ
L

@þL�e�i‘2�	þ=Le�ip�L=2; (34)

I�� ¼ 2�


Zð0Þ
X1

‘¼�1



�
p0 � 4�

L
‘

�

�
Z L

0

d	�
L

@�R�e�i2�‘	�=Le�ip�R=2:

The Iþ � I� that follows from (34) will be an infinite
sum involving ð
ðp0 � ‘4�=LÞÞ2. We write

ð
ðp0 � ‘4�=LÞÞ2 ¼ 
ðp0 � ‘4�=LÞ
Zð0Þ L

4�
(35)

and the 
Zð0Þ in (35) will cancel that in I� (34).

A. Kinky loops

The ‘‘degenerate’’ kinky loop solution we will con-
sider is

Lð	þÞ ¼
�	þA 0 � 	þ � L

2

ðL� 	þÞA L
2 � 	þ � L

Rð	�Þ ¼
�	�B 0 � 	� � L

2

ðL� 	�ÞB L
2 � 	� � L

;

(36)

where A and B are unit vectors. This loop is degenerate
because it consists of four straight segments and is kinky
because of its four corners. The four straight segments
propagate with constant speed but shrink and expand due
to the motion of the kinks.
Now, denoting

pA � piA
i; pB � piB

i;

and putting the kinky loop trajectory (36) into (34) then
leads to

I�þ ¼ X1
‘¼�1

ðpA;�p0AÞ

�
p0 � 4�

L
‘

�
16�eiðpAL=8��‘=2Þ

Lðp2
A � p2

0Þ

� sin

�
pA

8
L� �

2
‘

�

I�� ¼ 1


Zð0Þ
X1

‘¼�1
ð�pB; p0BÞ


�
p0 � 4�

L
‘

�

� 16�eiðpBL=8þ�‘=2Þ

Lðp2
B � p2

0Þ
sin

�
pB

8
Lþ �

2
‘

�
(37)

and

Iþ � I� ¼ �16
X1

‘¼�1
p2
0

4�

L

eiðpAþpBÞL=8

ðp2
A � p2

0Þðp2
B � p2

0Þ

� sin

�
pA

8
L� �

2
‘

�
sin

�
pB

8
Lþ �

2
‘

�

� 


�
p0 � 4�

L
‘

�
A� B:

The power radiated from the kinky loop due to fermion
pairs emitted with energy ‘�, for a fixed ‘, is the corre-
sponding pair production rate multiplied by the energy
4�‘=L,

3If we had not applied (32), upon converting to light-cone
coordinates, the inner 	� integration would have limits that
depend on the outer integration variable, and S�� would not
factorize.
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_EðKÞ
‘ ¼ 2��2

�
64�

L

�
2
�
4�‘

L

�
3Z d3k

ð2�Þ3
d3k0

ð2�Þ3
1

k0k
0
0

� sin2ðpAL=8��‘=2Þsin2ðpBL=8þ�‘=2Þ
ðp2

A �p2
0Þ2ðp2

B�p2
0Þ2

�½ðA�BÞ2ðm2 þ k � k0Þ þ 2A�B �kA�B �k0�
�


�
p0 � 4�

L
‘

�
: (38)

The total power radiated is then

_E ðKÞðNÞ ¼ XN
‘¼1

_EðKÞ
‘ :

We have truncated the summation at some large integer N
because it will turn out, just like in the bosonic case [3],
that the total power obtained from summing to ‘ ¼ 1 will
diverge. The cutoff is related to the rounding off of the kink
and may be estimated as the ratio of the length of the
cosmic string loop, L, to its width w. Taking L� 1 Mpc
and w� 1 TeV�1, we obtain N � 1041. For the electron—
the lightest electrically charged fermion—note that the
relevant range of mode number is 1035 & ‘eþe� & 1041

for such an L and w, where the lower limit is determined
by the product of the electron mass and L. In the high
energy range of the spectrum, which gives the dominant
contribution to the power emitted, the fermions can be
treated as effectively massless.

When m ¼ 0, by rescaling the momenta in the integral
(38) via ðk; k0Þ � ð4�‘=LÞð �k; �k0Þ, the sole dependence
on the summation index ‘ occurs in the trigonometric
functions, which in turn can be summed using the formula

XN
‘¼1

sin2ð‘xÞsin2ð‘yÞ ¼ M

8
� sinðMxÞ

8 sinx
� sinðMyÞ

8 siny

þ sinðMðx� yÞÞ
16 sinðx� yÞ þ sinðMðxþ yÞÞ

16 sinðxþ yÞ ;
M � 2N þ 1:

The resulting integral was then evaluated numerically with
MATHEMATICA.

In Fig. 4 we have plotted the total power _EðNÞ as a
function of the cutoff N, for m ¼ 0 and for the ‘‘square’’
loop which has A �B ¼ 0, from N ¼ 1 up to N ¼ 1050.
We see that the power radiated per mode ‘ is indeed
independent of ‘, in this massless limit, and hence the total
power emitted grows linearly with N � L=w and can be
very large.

B. Cuspy loops

The cuspy loop solution we will consider is

Lð	þÞ ¼ L

2�

�
sin

�
2�	þ
L

�
; 0;� cos

�
2�	þ
L

��

Rð	�Þ ¼ L

2�

�
sin

�
2�	�
L

�
;� cos

�
2�	�
L

�
; 0

�
:

(39)

The loop has cusps because there are points such that
@þL ¼ �@�R. These occur at 2�	�=L ¼ 0, � at which
point the velocity of the string is �x̂, i.e., the point on the
string reaches the speed of light.
Putting the cuspy loop trajectory (39) into (34), combin-

ing the sines and cosines occurring in the exponential into
one trigonometric function before performing a cylindrical
wave expansion with (14) then gives us

I�þ ¼ 2�
X1

‘¼�1

�
’ðþj�‘Þ; i

4�

L
ŷ � ~@p’ðþj�‘Þ

�

� 


�
p0 � 4�

L
‘

�

I�� ¼ 2�


Z½0�
X1

‘¼�1

�
’ð�j‘Þ; i

4�

L
ẑ� ~@p’ð�j‘Þ

�

� 


�
p0 � 4�

L
‘

�
(40)

with

’ðþj‘Þðpx;pzÞ ¼ i‘J‘

�
L

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þp2

z

q �
exp

�
i‘arctan

�
px

pz

��

’ð�j‘Þðpx;pyÞ ¼�i‘J‘

�
L

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þp2

y

q �
exp

�
i‘arctan

�
px

py

��

~@p �
�

@

@px

;
@

@py

;
@

@pz

�

as well as

Iþ � I� ¼ � 16�3

L

X1
‘¼�1




�
p0 � 4�

L
‘

�
n‘

with

n ‘ � ðŷ � ~@p’ðþj�‘ÞÞ � ðẑ� ~@p’ð�j‘ÞÞ:
The derivatives on J‘ occurring in I� and n‘ may be
carried out with the aid of
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FIG. 4. Plot of power radiated in the form of massless fermion-
antifermion pairs in units of 64�2=ð�3L2Þ, from the degenerate
kinky loop with A and B perpendicular, as a function of the
cutoff mode number N.
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@zJ�ðzÞ ¼ 1

2
ðJ��1ðzÞ � J�þ1ðzÞÞ: (41)

The power radiated from the cuspy loop due to fermion
pairs emitted with energy ‘�, for a fixed ‘, is the corre-
sponding pair production rate multiplied by the energy
4�‘=L,

_E ðCÞ
‘ ¼

Z
d3k

Z
d3k0

2

‘L

�2

k0k
0
0




�
p0 � 4�

L
‘

�
fjn‘j2ðm2

þ k � k0Þ þ ðn‘ � kn�
‘ � k0 þ c:c:Þg:

(42)

Using MATHEMATICA, we evaluated (42) numerically for
‘ ¼ 1 through ‘ ¼ 1000 and m ¼ 0. Figure 5 displays the
resulting power radiated in the form of massless fermions
at each harmonic, with energy 4�‘=L. This provides
evidence that, at large mode numbers (‘ � 1), the power
radiated varies very slowly with ‘; though a thorough
analysis would have to employ more sophisticated numeri-
cal techniques [or semianalytic ones, using (25) and (27)]
to evaluate (42) for the astrophysically relevant range of
1030 & ‘ & 1050.

V. INFINITE, STRAIGHT SOLENOID VIA MOVING
FRAMES PERTURBATION THEORY

In the second half of this paper, we provide an alternate
calculation of the fermion pair production rate from the
infinite, straight solenoid, introduced in Sec. III, aligned
with the z axis, moving in sinusoidal motion along the x
axis. The spatial location of the solenoid as a function of
time t is given by Xðt; zÞ ¼ ð�ðtÞ; 0; zÞ, with �ðtÞ ¼
ðv0=�Þ sinð�tÞ. This nonrelativistic computation will
only capture the first harmonic of the infinite sum obtained
in Sec. III—see (44) below—but will make manifest the
periodic dependence of the pair production rate on the AB
phase � ¼ e�=2� that is expected from such a topological

interaction. It will also serve as a consistency check on the
results in Sec. III.
Let �ðsjþÞðxÞe�iEst denote the positive and

�ðsj�ÞðxÞeþiEst the negative energy solutions to the Dirac

equation in the presence of the gauge potential A� of a

static, infinite, straight solenoid aligned along the z axis
centered at ðx; yÞ ¼ ð0; 0Þ. (The subscripts s and s0 in this
section denote, collectively, all the rest of labels that
come with the solutions.) We will expand the Dirac opera-
tor, c , in terms of ‘‘shifted’’ mode functions, �ðsj�Þðx�
�; y; zÞe�iEst. Then we can show, as derived in Sec. VA,
that the fermion-antifermion pair production amplitude for
a solenoid moving along the x axis is provided by the
product of the integrals

ouths; s0j0iin 
 �
Z þ1

�1
dt0 _�ðt0ÞeiðEs0þEsÞt0

Z
d3x0�y

ðsjþÞðx0Þ
� @x�ðs0j�Þðx0Þ; (43)

where the left-hand side of the equation is an inner product
in the Heisenberg picture.
If we specialize to the sinusoidal trajectory considered in

Sec. III, the time integral in (43) can be evaluated imme-
diately to yield conservation of energyZ þ1

�1
dt0 _�ðt0ÞeiðEs0þEsÞt0 ¼ �i�v0
ðEs þ Es0 ��Þ: (44)

[The 
ðEs þ Es0 þ�Þ term was dropped because, for
�> 0, the sum of the two positive energies Es and Es0

will never be negative.] The presence of the overall factor
v0 in (44) and the absence of any dependence on the
trajectory in the volume integral in (43) tells us that the
perturbative scheme in this section is nonrelativistic.
We will proceed to solve for the complete set of modes,

�ðsj�ÞðxÞe�iEst, evaluating (43) for necessary combinations

of s and s0, before summing the squares of the resulting
amplitudes to obtain the pair production rates (62) and (63).

A. Derivation of Eq. (43)

We expand the Dirac operator, within the Heisenberg
picture, in terms of �ðsj�Þðx� �; y; zÞe�iEst

c ðt;xÞ ¼ X
s

½�sðtÞ�ðsjþÞðx� �; y; zÞe�iEst

þ �y
s ðtÞ�ðsj�Þðx� �; y; zÞeþiEst�:

The�sðtÞ and�y
s ðtÞ are time-dependent operators that obey

appropriate anticommutation relations and ensure positiv-
ity of the Hamiltonian. They also satisfy the equations of
motion obtained from the Heisenberg equations of motion

i@tc ¼ hDc hD � eA0 � i�0�jDj þm�0: (45)

For a solenoid at rest at � ¼ 0, the operators

as � �sðt ! �1Þ; bs � �sðt ! �1Þ
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FIG. 5. Plot of power radiated in the form of massless fermion-
antifermion pairs in units of �2=ð2�L2Þ, from the cuspy loop, as
a function of the mode number l.
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acting on the zero particle state at t ! �1 destroy,
respectively, a fermion (as) and an antifermion (bs) asso-
ciated with the wave functions �ðsj�ÞðxÞ. In particular,

fas; ays0 g ¼ 
s;s0 ; fbs; bys0 g ¼ 
s;s0 :

Then, to leading order in the Hamiltonian, the zero-particle
to two-particle amplitude is

ouths; s0j0iin

�ih0; t¼�1jasbs0

Z
dtd3xc yi@tc j0; t¼�1i: (46)

In (46), we have reexpressed the Dirac Hamiltonian density

H ¼ c yhDc ¼ c yi@tc

using its Heisenberg equations of motion (45). [This is
legitimate because the c ’s appearing in the amplitude
(46) are operator solutions to the Dirac equation.] The
reason for replacing hD with i@t is the following. Since
the time evolution of the �sðtÞ and �sðtÞ away from as and
bs are determined by the interaction between c and A�, to

lowest order in interaction, we may now approximate

�sðtÞ 
 as; �sðtÞ 
 bs

so that

fas; c yg ¼ �ðsjþÞðx� �; y; zÞe�iEst

fbs; c g ¼ �ðsj�Þðx� �; y; zÞeþiEst:

By anticommuting the as and bs0 in (46) to the right, and
noting that—because the solenoid is moving solely in
the x direction—

@t�ðx� �ðtÞ; y; zÞ ¼ � _�ðtÞ@x�ðx� �ðtÞ; y; zÞ;
we then arrive at (43) after shifting integration variables
x ! x� �.

B. Modes with kz ¼ 0

The solution for the gauge field of an infinite straight
solenoid along the z axis with 	 ¼ z has only two nonzero
components:

F0y ¼ Ey ¼ � _�
ðx� �ðtÞÞ
ðyÞ;
Fxy ¼ �Bz ¼ ��
ðx� �ðtÞÞ
ðyÞ: (47)

The gauge potential that yields (47) is, in Cartesian coor-
dinates,

A� ¼ ð0; 0;���ðx� �ðtÞÞ
ðyÞ; 0Þ: (48)

We wish to solve for the fermionic modes, �, in the
stationary solenoid [�ðtÞ ¼ 0] case. It is easier to do so
using the Lorenz gauge, where in cylindrical coordinates

AðSÞ
� ¼ �

2�
; AðSÞ

0 ¼ AðSÞ
r ¼ AðSÞ

z ¼ 0; (49)

where the superscript S denotes ‘‘stationary.’’

With the gauge potential determined, the Dirac equation
now reads4

½i��ð@� þ ieAðSÞ
� Þ þm��e�iEt ¼ 0: (50)

Translational symmetry along z implies that � has the form

�ðxÞ ¼ %ðr; �Þeikzz: (51)

Following Alford and Wilczek [2], to exploit the z trans-
lational symmetry, it helps to find a set of f��g matrices
such that all of them except �3 are block diagonal. This
way, in the reference frame where there is no momentum
along z, i.e. kz ¼ 0, the Dirac equation splits into a pair of
coupled equations, each involving only 2 component
spinors. The set of f��g we will use here is defined relative
to the ones in the chiral basis f��

c g in (A1) as �� �
U��

c Uy with

U � 1ffiffiffi
2

p
0 �i 0 i
�1 0 �1 0
0 �1 0 �1
i 0 �i 0

2
6664

3
7775:

The new �� are

�0 ¼ �	3 0
0 	3

� �
; �1 ¼ i	1 0

0 �i	1

� �

�2 ¼ �i	2 0
0 i	2

� �
; �3 ¼ 0 �iI

�iI 0

� �
:

Now the kz ¼ 0 solutions are

�kðt; r;�; zÞ ¼ �A

�B

� �
e�i!�t; !� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
(52)

with

�ð	1Þ
A ¼ N Ae

in1�
J	1ðn1þ1þ�ÞðkrÞei�
	1k

mþ!�
J	1ðn1þ�ÞðkrÞ

" #
;

�ð	2Þ
B ¼ N Be

in2�
	2k

mþ!�
J	2ðn2þ1þ�ÞðkrÞei�
J	2ðn2þ�ÞðkrÞ

" #
;

(53)

where	1;2 ¼ sgnðn1;2 þ �Þ, n1;2 2 Z, � ¼ e�=2� and the

normalization factors N A;B 2 C. The spinors �A and �B

are the two independent solutions for each set of positive or
negative energy states and we have chosen our z axis so
that � ¼ e�=ð2�Þ> 0.
For n1;2 þ � > 0 and n1;2 þ � <�1, the signs 	1;2 in

the indices of the Bessel functions are fixed by the require-
ment that the solutions �k must be square normalizable.
Specifically, the radial integral must converge at its lower

4In this section, the mass term in the Dirac equation has a þ
sign, as opposed to the � sign implied by (1). To convert
solutions for one into solutions for the other, multiply the
Dirac spinor by �5. Since this corresponds to a change of basis,
this choice of sign for the mass term does not affect the results
for the inner products.
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limit. It contains a factor of r, i.e.
R
0 drr, whereas the

Bessel functions behave, for kr 	 1, as J� / r� [see (22)].
When n1;2 þ � 2 ð�1; 0Þ, we have chosen 	1;2 ¼ �1

so that the solutions �k remain square normalizable for all
values of magnetic flux �. Even though both signs are
allowed by square normalizability for � � 0, our choice
of sign gives solutions that, in the zero flux limit, join
smoothly onto the cylindrical wave solutions to the
noninteracting massive Dirac equation ði6@þmÞc ¼ 0.

It is worth expanding upon this ambiguity and the reso-
lution we have adopted here. This is a subtle issue dis-
cussed first in context of strings in Ref. [6] (see also [7–9]).
The basic problem is that for certain angular momentum
channels there are four solutions to the radial equation that
are normalizable rather than two (for a given energy and z
momentum). Thus additional boundary conditions must be
specified at the origin to determine the two physical solu-
tions. The set of possible boundary conditions is restricted
by the condition that only those solutions are permissible
that have zero radial current at the origin (‘‘self-adjoint
boundary conditions’’). However this does not by itself
fully specify the boundary conditions and some additional
physical principle or regulation scheme must be invoked.
In effect we have made a special choice of boundary
conditions above. Our choice is natural and well-motivated
for the following reasons. (1) It extrapolates smoothly to
the case of integer flux. (2) The transition rate calculated
using this boundary condition agrees with the perturbative
result in their common domain of validity (see Sec. V F
below). (3) One can imagine natural regulation schemes in
which this boundary condition will arise [7]. Still it must be
kept in mind that the results would come out different if
different boundary conditions were used.

Shifting n1;2 in (52) by an integer, n1;2 ! n1;2 þm with

m 2 Z, takes us from one solution to another. Hence we
can absorb the integer part of � in the label n1;2 and,

without loss of generality, choose the AB phase � to lie
in the interval ½0; 1Þ. We will denote the fractional part of
� as �, defined by

� ¼ �mod 1:

In terms of �, note that the set of mode functions here (and
the set with kz � 0 below) is now manifestly periodic in
the AB phase e�. Hence the radiation rate that follows will
also enjoy this periodicity.

C. Modes with arbitrary kz

Above we have found all modes with kz ¼ 0. Now we
perform boosts along the solenoid to obtain modes with
kz � 0. Denote the Lorentz boost by B and so

�k ! B � �k:

Under the transformation

t ! t cosh�� z sinh�

with the rapidity parameter � defined through

tanh� ¼ kz
k0

; (54)

the boost matrix B is

B ¼ U �Bc � U�1;

Bc � e�=2 1�	3

2 þ e��=2 1þ	3

2 0

0 e�=2 1þ	3

2 þ e��=2 1�	3

2

" #
:

Denote �I as the boosted �k with N B ¼ 0; and �II as
the boosted �k with N A ¼ 0. The two independent solu-
tions for each set of positive and negative energy wave
functions, in the Lorenz gauge for A� (49), are then

�ðI;n;k;kzj�Þðt; r; �; zÞ

¼

coshð�=2ÞJ	ð�þnþ1ÞðkrÞei�
coshð�=2Þ	��ðkÞJ	ð�þnÞðkrÞ
�i sinhð�=2ÞJ	ð�þnþ1ÞðkrÞei�
i sinhð�=2Þ	��ðkÞJ	ð�þnÞðkrÞ

2
666664

3
777775

�N �ðk; kzÞe�ik0tein�e�ikzz;

�ðII;n0;k0;k0zj�Þðt; r; �; zÞ

¼

i sinhð�0=2Þ	0��ðk0ÞJ	0ð�þn0þ1Þðk0rÞei�
�i sinhð�0=2ÞJ	0ð�þn0Þðk0rÞ

coshð�0=2Þ	0��ðk0ÞJ	0ð�þn0þ1Þðk0rÞei�
coshð�0=2ÞJ	0ð�þn0Þðk0rÞ

2
666664

3
777775

�N �ðk0; k0zÞe�ik0
0
tein

0�e�ik0zz;

(55)

now with

	;	0 ¼
�
1 if n; n0  0
�1 if n; n0 � �1

and

��ðkÞ � k

mþ!�
; N �ðk;kzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!� þm

2k0

s

k;k0 > 0; kz; k
0
z 2R; n;n0 ¼ 0;�1;�2; . . . :

(56)

We have normalized our solutions using

Z 1

0
drrJ�ðkrÞJ�ðk0rÞ ¼ 
ðk� k0Þffiffiffiffiffiffiffi

kk0
p ; k; k0 > 0;

Reð�Þ>�1
Z 2�

0
d�eiðn�n0Þ� ¼ 2�
n;n0 ; n;n0 2 Z

Z þ1

�1
dzeiðq�q0Þz ¼ 2�
ðq� q0Þ; q;q0 2R

such that
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Z
d3x0�y

ðA;n;k;kzj	EÞðx0Þ�ðA0;n0;k0;k0zj	0
EÞðx0Þ

¼ 
	E;	
0
E

A;A0
n;n0 ð2�Þ2 
ðk� k0Þ
ðkz � k0zÞffiffiffiffiffiffiffi

kk0
p ;

	E; 	
0
E ¼ �; A; A0 2 fI; IIg:

(57)

Wewill be comparing the results here to those in Sec. III,
where perturbation theory was performed with plane wave
solutions written in Cartesian coordinates. To make the
comparison, it is worthwhile to note that the normalization
in (57) is consistent with the hkjk0i ¼ ð2�Þ3
3ðk� k0Þ
one would otherwise have obtained if Cartesian coordi-
nates were utilized. Moreover,

ð2�Þ3
3ðk� k0Þ ¼ ð2�Þ3
ð���0Þ
ðk� k0Þ
ðkz � k0zÞ
� ðkk0Þ�1=2:

The
ffiffiffiffiffiffiffi
kk0

p
in (57) is the (symmetrized) Jacobian when

transforming from Cartesian to cylindrical coordinates.
The ð2�Þ
ð���0Þ is the completeness relation

2�
ð���0Þ ¼ Xþ1

n¼�1
einð���0Þ; j���0j 2 ½0; 2�Þ:

(58)

Denoting our mode functions here by jn; k; kzi (and sup-
pressing the A and 	E dependence), we see that (58)
accounts for the missing ð2�Þ in (57) because jn; k; kzi is
the nth term in the Fourier series expansion of jki, the
mode functions written in Cartesian coordinates, since

jki ¼ jk; kz; �i ¼ X
n

jk; kz; niein�

and hence (57) yieldsX
n;n0

hk; kz; njk0; k0z; n0iein0�0
e�in� ¼ hkjk0i:

D. Transformation to axial gauge

The above modes for a stationary solenoid, � ¼ 0, have
been found in Lorenz gauge. However, to find overlaps and
the radiation rate, it is easier to work in axial gauge. Hence
we now transform the modes to axial gaugewith A� in (48),

A� ¼ ð0; 0;���ðxÞ
ðyÞ; 0Þ ðCartesianÞ:
The � solutions differ from its Lorenz gauge counterpart in
(55) only by a phase factor

�ðaxialÞ ¼ ei�ð� mod 2�Þ�½Lorenz;Eq: ð55Þ�: (59)

In (59), to see it is � and not � that should occur in the
phase, refer to the solutions (52) before the introduction of
�, and note that the axial gauge version of (52) would

contain a ei�ð� mod 2�Þ. The ei�ð� mod 2�Þ in (59) would then

follow from the redefinition of the Fourier mode label n
that introduced �.

E. Matrix elements for moving solenoid

With the solutions (59) in hand, we are now ready to
evaluate the integral (43). It is only necessary to calculate
(43) for positive and negative solutions from (59) with
Fourier mode labels ðn; n0Þ ¼ ð�1; 0Þ and ð0;�1Þ, where
the n refers to the positive energy solution and n0 to the
negative energy solution. For other values of n and n0, the
factor of @x�ðs0j�Þ in Eq. (43) yields the difference of two

negative energy solutions in (59), which by (57) has zero
overlap with all its positive energy counterparts.

For n0 ¼ 0, @x�
ð	0¼þ1Þ
ðs0j�Þ is a linear combination of the

n0 ¼ �1 and the n0 ¼ þ1 negative energy solutions in (59),

except the former has	0 ¼ þ1. For n0 ¼ �1, @x�
ð	0¼�1Þ
ðs0j�Þ is

a linear combination of the n0 ¼ �2 and n0 ¼ 0 negative
energy solutions in (59), with the latter’s 	0 ¼ �1. In
addition, the n0 ¼ �1 solution with 	0 ¼ þ1 in
@x�ðn0¼0j�Þ remains orthogonal to all positive energy solu-

tions except possibly for the n ¼ �1 case; likewise the
n0 ¼ 0 solution with	0 ¼ �1 in @x�ðn0¼�1j�Þ is orthogonal
to all �ðsjþÞ except perhaps �ðn¼0jþÞ.
As we will see in a moment, these two overlap integrals,Z

d3x0½�ð	¼�1Þ
ðn¼�1jþÞ�y�ð	0¼þ1Þ

ðn0¼�1j�Þ

and Z
d3x0½�ð	¼þ1Þ

ðn¼0jþÞ�y�ð	0¼�1Þ
ðn0¼0j�Þ

do yield nonzero answers and are therefore the only ones
contributing to the pair production rate.
Computing the volume integral in (43) for solutions with

the Fourier modes given by ðn; n0Þ ¼ ð�1; 0Þ and ð0;�1Þ
requires the integralZ 1

0
drrJ�ðqrÞJ��ðkrÞ

¼ Pr

�
2 sinð��Þ
�ðq2 � k2Þ

�
q

k

�
�
�
þ cosð��Þffiffiffiffiffiffi

qk
p 
ðk� qÞ;

k; q > 0; Re½��>�1; (60)

where Pr denotes the principal value.
Define

�þþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k

þ 1

k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k0
þ 1

k00

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k

� 1

k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k0
� 1

k00

s

and

�þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k

þ 1

k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k0
� 1

k00

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k

� 1

k0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

!k0
þ 1

k00

s
:

The result then reads
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�Z
d3x0�y

ðA;n;k;kzjþÞðx0Þ@x�ðA0;n0;k0;k0zj�Þðx0Þ
�
k�k0

¼ � 1

2

ðkz þ k0zÞ sinð��Þ

ffiffiffiffiffiffiffi
kk0

p �

n;0
n0;�1

�
k

k0

�
�
�

�þþ
!k þ!k0

�

I
A


I
A0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k0 �m

!k þm

s
þ 
II

A

II
A0k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k þm

!k0 �m

s �

þ �þ�isgnðk0zÞ
ð!k �!k0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k þm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k0 �m

p ð
I
A


II
A0kk0 � 
II

A

I
A0 ð!k þmÞð!k0 �mÞÞ

�
� 
n;�1
n0;0

�
k0

k

�
�

�
�

�þþ
!k þ!k0

�

I
A


I
A0k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k þm

!k0 �m

s
þ 
II

A

II
A0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k0 �m

!k þm

s �
þ �þ�isgnðk0zÞ

ð!k �!k0 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k þm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k0 �m

p ð
I
A


II
A0 ð!k þmÞ

� ð!k0 �mÞ � 
II
A


I
A0kk0Þ

��
: (61)

Direct substitution of the Bessel integral Eq. (60) would
lead to an additional term in the transition amplitude above
that is proportional to 
ðk� k0Þ. We have omitted this term
following the discussion in Ref. [3]. As explained there, the
integrals must be carefully regulated in order to exclude
spurious terms that lead to particle production even in the
limit of zero flux. This is accomplished by performing the
integrals over a finite volume, imposing suitable boundary
conditions, and then taking the infinite volume limit. Such
an analysis eliminates the term proportional to 
ðk� k0Þ
(see Sec. IIIB of Ref. [3] for more details).

The expression in (61) yields 8 different channels for
pair production to occur. Moreover, at the level of individ-
ual amplitudes, the periodic dependence on the magnetic
flux is already manifest, since they depend on the AB phase
only via � ¼ �mod 1.

F. Moving frames pair production rate

Inserting (61) into (43) and summing the squares of the
resulting individual amplitudes then gives us the rate of
fermion-antifermion pair production per unit length of the
infinite solenoid

_N0 ¼
Z 1

0
dkk

Z 1

0
dk0k0

Z 1

�1
dkz

Z 1

�1
dk0z
ðk0 þ k00 ��Þ

� 
ðkz þ k0zÞ v
2
0sin

2ð��Þ
8�2�2k0k

0
0

ðm2 þ k2z þ k0k
0
0Þ

�
��

k

k0

�
2� þ

�
k0

k

�
2�
�
: (62)

In the limit when � 	 1, the last term (in parenthesis)
goes to 2 and sin2ð��Þ 
 �2�2, and

_N0 ¼ v2
0�

2

4�2

Z 1

0
dkk

Z 1

0
dk0k0

Z 1

�1
dkz

Z 1

�1
dk0z

� 
ðk0 þ k00 ��Þ
ðkz þ k0zÞ
�
1þ k2z þm2

k0k
0
0

�
: (63)

This agrees with (23), the nonrelativistic limit of the inter-
action picture perturbation theory result, if we identify
� $ �.

VI. CONCLUSIONS

We have solved for fermionic radiation first from oscil-
lating electromagnetic solenoids and then from cosmic
string loops. For the solenoid we have done the calculation
in two different ways, first using a small AB phase ap-
proximation, and second by considering slowly moving
solenoids. We have evaluated the angular distribution of
the fermionic radiation from the solenoid, and the total
power emitted from cosmic string loops and cusps. Our
results can be compared to the results of Ref. [3].
The total power emitted in bosons and fermions is very

comparable. For example, both are proportional to
�2v2

0�
2 for the lowest harmonic of the oscillating solenoid

[see Eq. (24)]. However, the angular distributions of the
radiation in the two cases are quite distinct. To highlight
the difference, we show the angular distribution in both
cases for the lowest harmonic emission from an oscillating
solenoid in Fig. 2. We also find that the fermion and
antifermion are preferably emitted in opposite helicity
states and discuss the spin distribution. Just like in the
bosonic case, fermionic AB radiation from kinks and cusps
on cosmic strings is ultraviolet divergent for massless
fermions, with a linear dependence on the cutoff. This
may translate into a significant amount of radiation of
neutrinos from strings with which neutrinos have an AB
interaction.
Our results ought to apply to the low-energy end of the

emission spectrum of electrons from idealized solenoids,
where the wavelengths of the particle pairs are much
longer than the diameter of the solenoid. A more realistic
theoretical investigation would have to take into account
the finite width of the solenoid itself.
In Ref. [3], the gravitational analog of AB radiation was

also discussed. Via the same analogy, we also expect
cosmic strings to radiate fermions. We leave that calcula-
tion for future work.
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APPENDIX: CONVENTIONS

Our metric and spacetime index convention are defined
by ��� ¼ diagð1;�1;�1;�1Þ, x� ¼ ðt; x; y; zÞ with � ¼
0; 1; 2; 3. Whenever x appears alone, without indices at-
tached, it always means the � ¼ 1 component of x�. The
Einstein summation convention always applies unless oth-
erwise stated. The spacetime inner product of a� and b� is
a � b; while a2 � a�a

�. Bold fonts denote spatial vectors;

for instance, a � b ¼ 
ija
ibj and a2 ¼ 
ija

iaj.

Dirac action: The action in (1) defines the dynamics of a
Dirac fermion interacting with the photon vector potential
A�. We make use of the Feynman slash notation. In

particular,

6Dc ¼ ��ð@� þ ieA�Þc :

Except in Sec. V, we employ the chiral basis for the f��g
matrices,

�� ¼ 0 	�

�	� 0

� �
; 	� ¼ ð12�2; 	

kÞ;

�	� ¼ ð12�2;�	kÞ;
(A1)

which is, in turn, defined via the Pauli matrices,

	1 � 0 1
1 0

� �
; 	2 � 0 �i

i 0

� �
;

	3 � 1 0
0 �1

� �
:

Spinorial solutions: Except in Sec. V, interaction picture
perturbation theory will be used. It is carried out using the
plane wave solutions to the noninteracting massive Dirac
equation ði6@�mÞc ¼ 0, where the positive energy
c ðk;sjþÞ and negative energy c ðk;sj�Þ solutions with

momentum k and spin s are

c ðk;sjþÞ � e�ik�xffiffiffiffiffiffiffiffi
2k0

p usk �
e�ik�xffiffiffiffiffiffiffiffi
2k0

p
ffiffiffiffiffiffiffiffiffiffi
	 � kp

�sffiffiffiffiffiffiffiffiffiffi
�	 � kp

�s

" #
;

c ðk;sj�Þ � eþik�xffiffiffiffiffiffiffiffi
2k0

p vs
k �

eþik�xffiffiffiffiffiffiffiffi
2k0

p
ffiffiffiffiffiffiffiffiffiffi
	 � kp

�s

� ffiffiffiffiffiffiffiffiffiffi
�	 � kp

�s

" #
;

where

ð�sÞa ¼ 
s
a; k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: (A2)

The
ffiffiffiffiffiffiffiffiffiffi
	 � kp

and
ffiffiffiffiffiffiffiffiffiffi
�	 � kp

are the matrices 	 � p and �	 � p
written in diagonalized form (i.e. UDU�1, where D is
diagonal), with the eigenvalues replaced with their positive
square roots. By going to the rest frame of the particle, it
can be seen that the �1 and �2 are the spin up (s ¼ 1) and
spin down (s ¼ 2) states for the fermion with respect to the
basis of Pauli matrices used here. For the antifermion, they
are the spin down (s0 ¼ 1) and spin up (s0 ¼ 2) states.
These plane wave solutions are normalized such thatZ

c y
ðk;sj�Þc ðk0;s0j�Þd3x ¼ ð2�Þ3
ð3Þðk� k0Þ
s

s0 : (A3)

States of definite helicity are obtained by taking the
spinors � to be eigenspinors of � � k with eigenvalues
�jkj. For the particle the positive eigenvalue corresponds
to positive helicity and negative to negative; for the anti-
particle the negative eigenvalue corresponds to positive
helicity and vice-versa.
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