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One of the strongest arguments against the cosmological constant as an explanation of the current epoch

of accelerated cosmic expansion is the existence of an earlier, dynamical acceleration, i.e. inflation.

We examine the likelihood that acceleration is an occasional phenomenon, putting stringent limits on the

length of any accelerating epoch due to minimally coupled dark energy between recombination and the

recent acceleration; such an epoch must last less than 0.05 e-fold (at z > 2) or the matter power spectrum

is modified by more than 20%.
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I. INTRODUCTION

Cosmic acceleration holds the key to physics beyond the
standard model of particle physics and gravitation. One of
the great puzzles is why its characteristic energy scale is so
much less than other energy scales in the standard model.
No physical principle seems to explain the finite magnitude
required for the cosmological constant. As well, one
could ask what is so special about today that acceleration
is just now coming to dominate the expansion of the
Universe. This is even more of a telling argument against
a cosmological constant explanation in that its lack of
dynamics adds a coincidence problem to the fine-tuning.
Furthermore, another epoch of accelerated expansion is
known in the early universe—inflation—and this was
decidedly dynamical and not a cosmological constant since
it ended.

This leads one to ask: if we have two periods of accel-
eration, why not more? Could acceleration be an occa-
sional phenomenon? Such a view ameliorates the
coincidence problem, since the present is one of many
epochs where such physics is manifest. Various models
have been proposed to achieve this, e.g. a high energy
physics ‘‘slinky’’ potential [1] and stochastic beating be-
tween multiple fields [2]. This has also been addressed
phenomenologically, notably by [3], and oscillating field
models that can achieve this are common in the literature
(e.g. see [4–6] and references therein). Note that even such
a technically natural and well-motivated model such as a
pseudo-Nambu Goldstone boson [7] in fact goes through
numerous cycles of acceleration (see Fig. 3 of [8]). Any
scalar field oscillating about a potential minimum will
possess equation of state w ¼ �1 at the turning points
where the kinetic energy is zero, and so can cause accel-
eration if its energy density is sufficiently large.

So the uniqueness of current acceleration is a question of
key interest not just from the perspective of the cosmologi-
cal constant and the coincidence problem, but also as a
guide to the type of physics behind cosmic acceleration. In
Sec. II we examine the general characteristics of and

constraints on acceleration pre- and postrecombination.
In Sec. III we investigate the effects of persistent accelera-
tion postrecombination on the matter density, growth of
structure, and distances, placing constraints on the length
and onset of any such period for the two general, compre-
hensive scenarios.

II. PERSISTENCE OF ACCELERATION

A. Very early universe

Acceleration in the early universe is difficult to probe,
except at particular epochs or if it lasts for many e-folds of
expansion. Above 1 TeV in energy, such acceleration falls
under the rubric of inflation, and we do not have tight
constraints on the energy/time scale or number of individ-
ual periods. Once dark matter is detected and understood,
we may be able to use the freeze-out abundance, involving
the competition between the interaction rate and the dilu-
tion rate due to expansion, to probe the cosmic expansion
in the 1 GeV–1 TeV region.
Around the time of primordial nucleosynthesis, when

the energy scale was �1 MeV, the expansion rate is much
better known [9]. Radiation dominates, with total equation
of state wtot ¼ þ1=3. The evolution in the expansion rate,
i.e. the Hubble parameter H as a function of scale factor a,
is less well determined, as seen in Fig. 6 of [9] (also see
[10,11]). Recalling that

d lnH2

d lna
¼ �3ð1þ wtotÞ; (1)

we see that the total equation of state (with wtot <�1=3
determining acceleration) is not well known even during
this well-understood and tested period. We can translate
the variation in the slopes of the expansion behaviors in
Fig. 6 of [9] into the constraint�0:4<wtot < 1:4 for their
conservative case and 0<wtot < 1 for their tighter case.
The recombination and decoupling epochs of the cosmic

microwave background (CMB) are also well measured.
The decoupling depends again on the competition between
the ionization rate and the expansion rate. The explicit
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dependence on the function HðaÞ was described analyti-
cally by [12], generalizing [13]. Again, the magnitude
HðaÞ is better determined [14] than the logarithmic deriva-
tive d lnH2=d lna that gives information on the total equa-
tion of state. Acceleration during and prerecombination
will be treated in future work.

B. Postrecombination acceleration

We concentrate on possibilities for acceleration between
decoupling and the onset of the current acceleration, at
redshifts z � 1–1000. Most of this period is not well
probed by distance measures (but see the next section) so
we do not have direct measures of the expansion. However,
acceleration breaks matter domination, diluting the matter
density and affecting the growth of structure in two ways.
First, it reduces the source term for matter perturbation
growth, and second it increases the Hubble friction term,
proportional to 3� q where q � �a €a= _a2 is the decelera-
tion parameter. In terms of the total equation of state, the
friction term is proportional to 5� 3wtot. See Eq. (8) of
[15] and Sec. 4.1 of [16] for more details.

The effects of intermediate acceleration on growth were
discussed for certain models in detail by [17]. That article
found two key effects on growth: the suppression during
the actual period of acceleration, but also the stunting of

the growth rate, i.e. the velocity _� of the perturbations, that
persisted to much later times. We continue the exploration
here, allowing more degrees of freedom to the model
for acceleration and looking for analytic scalings of the
effects, while giving a more general and systematic
treatment.

Consider the total equation of state of the Universe,

wtot ¼ w�wðaÞ (2)

for a flat universe. To attain acceleration a necessary but
not sufficient condition is w<�1=3; one requires wtot <
�1=3. Equation (2) immediately suggests two alternatives
for achieving wtot <�1=3. The first is to have a large dark
energy fraction �wðaÞ, hence dark energy will dominate
over matter. However, once the dark energy dominates it
will continue to do so while w< 0 and we do not achieve
the desired occasional, or stochastic, nature of the accel-
erating epoch. Thus in this approach we will need to allow
w> 0 at some time to undo the dark energy domination.
We refer to this as the ‘‘superdecelerating’’ scenario.

The second approach is to keep �wðaÞ<�mðaÞ but
attain acceleration through a strongly negative dark energy
equation of state. Thus the Universe accelerates but dark
energy does not dominate—this is in fact exactly what
happens in �CDM in the range z � 0:4–0:7. Then there
is no need for a subsequent period that reduces the dark
energy density fraction, and hence no need for w> 0. We
will see that in order to get an early acceleration period
separate from the current acceleration, this requires

w � �1. We therefore refer to this alternative as the
‘‘superaccelerating scenario.’’
Figures 1 and 2 illustrate the characteristics of the two

different scenarios. Note that the superacceleration case

FIG. 1 (color online). The superaccelerating scenario has a
period of strongly negative dark energy equation of state
wj <�1, which drives wtot <�1=3 and so causes acceleration.

The top panel plots the logs of the dark energy density
8�G�wðaÞ=ð3H2

0Þ, dark matter density 8�G�mðaÞ=ð3H2
0Þ, and

Hubble parameter H2=H2
0 vs the log of the scale factor a. The

wj <�1 epoch is taken to last for N ¼ 0:6 or 1 e-folds, ending

at zu ¼ 2. However, the actual acceleration lasts for a much
shorter time, shown by the thick portions of the �w curves
(including for the current epoch of acceleration). In particular,
note the early acceleration only lasts for 0.034 e-folds. The
bottom panel plots wðaÞ on the same horizontal scale so one
can see directly the effect of wðaÞ on the densities. The accel-
erated epochs are again indicated by the thick parts of the curves.
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has a lower value of the dark energy density in the past than
today (effectively a smaller cosmological constant), while
the superdeceleration case has a higher value. We show the
behaviors of the matter density �mðaÞ, dark energy density
�wðaÞ, and the Hubble parameterH2ðaÞ, as well as the dark
energy equation of state wðaÞ. For the last quantity we take
a simple model of a constant deviation down (up) from the
cosmological constant value w ¼ �1 for superaccelera-
tion (superdeceleration), for N e-folds of expansion. Note
that the number of e-folds of early acceleration Nacc is
much smaller than the duration N of the deviation in w.

The periods of acceleration are shown by the thick parts of
the �w or w curves.

III. PATHS TO ACCELERATION

Let us examine the scenarios in detail. These two pos-
sibilities of superacceleration and superdeceleration span
the range of ways to achieve acceleration, stemming from
the simple definition wtot <�1=3. Note that Eq. (2) con-
tinues to hold for interacting dark energy and so the general
qualitative discussion is not affected, but in the quantitative
analysis below we will assume the dark energy is a non-
interacting, minimally coupled, canonical scalar field (one
might generally expect interaction to give an even greater
signature in the matter growth).

A. Superaccelerating scenario

In the superacceleration scenario one has a down-then-
up transition in the dark energy equation of state. We
model this as a simple step away from a constant w, to a
constant wj, lasting for a number of e-folds N ¼ � lna and

then returning to w at scale factor au ¼ 1=ð1þ zuÞ (so the
overall deviation begins at ad ¼ aue

�N). We usually take
w ¼ �1 so that before and after the deviation the Universe
follows �CDM; in any case it is matter dominated at high
redshift and has a present epoch of acceleration. All physi-
cal quantities such as densities are continuous, while if we
had made steps in � or H then we would have faced
infinities in the equation of state. Although there is no
problem with our sharp steps, one could also use a
smoothed form for wðaÞ capable of rapid transitions,
such as the e-fold model [18]. Such formal smoothing
makes no difference to the results; the numerical solutions
differ by less than a percent taking a transition smoothed
over 0.01 e-fold in comparison to an instantaneous step. A
sharp step gives the most conservative results on the
amount of acceleration allowed since smoothing the tran-
sition much more broadly prolongs the dark energy effects.
The dark energy density never dominates until the usual

time near the present, but nevertheless a highly negative
equation of state can drive accelerated expansion. The
condition for accelerated expansion is determined by the
total equation of state:

wtot ¼ w�wðad < a < auÞ

¼ wj

�
1þ�m

�w

a
�3ðwj�wÞ
u a3wj

��1
<� 1

3
: (3)

This imposes the requirement that to obtain any accelera-
tion one needs

wj <� 1

3

�
1þ�m

�w

a3wu

�
: (4)

If we want the early acceleration to be distinct from the
current acceleration, then we could impose zu > 2, say,

FIG. 2 (color online). As Fig. 1, but for the superdecelerating
scenario. Here the acceleration occurs because of relatively large
�wðaÞ, rather than supernegative w. To bring the dark energy
density to the current level then requires a period of super-
deceleration, where w> 0 to redshift away the excess density.
Note that in the N ¼ 0:6 case the dark energy never dominates
the matter density during the early acceleration.
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implying wj <�3:8 (taking �m ¼ 0:28). Thus we indeed

require a highly negative equation of state.
In general the number of e-folds of accelerating expan-

sion is given by

Nacc ¼ 1

�3wj

ln

�
�w

�m

a�3w
u ð�3wj � 1Þ

�
: (5)

This is plotted in Fig. 3 as a function of wj for various

values of zu. (Note that it is actually independent of
the number of e-folds the wj transition lasts, as long as

N >Nacc.) The maximum number of e-folds allowed for a
given zu is

Nacc;max ¼ 1

�3wj;max � 1
� �w

e�m

a�3w
u ; (6)

where wj;max is the value of wj that maximizes Eq. (5) for a

fixed au. For example, for zu ¼ 2 and w ¼ �1, one has
wj;max ¼ �10:3 and Nacc;max ¼ 0:034. This relation is

shown in Fig. 3 as the red, long-dashed curve.
Increasing the redshift of the early acceleration, to alle-

viate the coincidence problem more convincingly,
decreases the period of acceleration allowed. Because
such a highly negative equation of state is required, this
means that the dark energy density grows rapidly,

�w � a�3ð1þwjÞ, so to achieve the same �w today requires
a small �w at early times. Moving the acceleration period
to earlier times reduces�wðaÞ for the same �wðaÞ, and this
in turn makes it harder to achieve wtot ¼ w�wðaÞ<�1=3
at early times. Attempting to drive wj even more negative

simply diminishes early �wðaÞ even more, and so this
scenario can never achieve long periods of early
acceleration.
In summary, at best far less than a single e-fold, only

N � 0:03, of early acceleration can be achieved. Thus one
seems to replace a coincidence problem with a further fine-
tuning issue: why should acceleration last for such an
apparently unnaturally short time, much less than one
e-fold? Inflation lasted for some 60 e-folds and current
acceleration appears to have existed for at least half an
e-fold so far.
Since the number of early acceleration e-folds is so small,

it should have negligible effect on growth or distance
probes. For example, even N ¼ 1 e-fold of wj ¼ �10,

ending at zu ¼ 2, changes the total growth to the present
by only 1.7% relative to the standard �CDM case. Oddly,
growth is actually increased by such an acceleration
scenario since the diminished dark energy density for
much of the history slightly increases �mðaÞ.
The velocity effect on the growth, i.e. the stopping and

restarting of the growth due to acceleration and restoration
to deceleration, can be measured via the Linder-White [19]
matching prescription for the nonlinear matter power
spectrum (cf. [17]). Here, the key parameter is the growth
ratio Rg ¼ gða ¼ 0:35Þ=g0 where gðaÞ ¼ DðaÞ=a, g0 �
gða ¼ 1Þ, and DðaÞ � �ðaÞ is the matter perturbation
growth factor; this is only suppressed by 0.1%, due to the
extremely short duration of the acceleration. The distance
to CMB last scattering is increased by 0.4%, essentially
totally from the actual acceleration period, not the transi-
tion to wj per se.

B. Superdecelerating scenario

If, unlike in the superaccelerating scenario, the dark
energy density dominates during the early acceleration,
then this must be undone to restore matter domination
allowing growth of structure. That is, there must be an
epoch after acceleration in which the dark energy redshifts
away more swiftly than the matter so the matter can rise
(again) to dominance. This requires a period when w> 0,
which we call superdeceleration.
In order to have early acceleration, one will need to have

a higher than standard dark energy density at high redshift,
in order to obtain the same dark energy density today
despite the extra dilution (see Fig. 2). In fact, the dark
energy does not even have to dominate, only have�wðaÞ>
1=ð�3wÞ, for example �wðaÞ> 1=3 for w ¼ �1, to give
rise to acceleration. We take a model with �CDM at high
redshift, though with extra dark energy density. This high
value of dark energy density kicks off a period of early

FIG. 3 (color online). The superaccelerating scenario can only
support a very small number of e-folds of acceleration because
for a supernegative equation of state wj the dark energy density

must start very small to end up at the observed level today. The
plot shows the number of e-folds of acceleration as a function of
wj and the redshift zu when superacceleration ends. The red,

long-dashed curve shows the loci of the maximum number of
e-folds for each choice of zu and its equivalent wjðNmaxÞ. For an
early period of acceleration sufficiently distinct from the present
acceleration, e.g. zu < 2, less than 0.034 e-folds of acceleration
are allowed.
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acceleration, lasting for Nacc e-folds. Then, at zj the dark

energy equation of state jumps up to wj > 0 (note the jump

is up not down, in contrast to the superacceleration sce-
nario). This superdecelerating phase lasts for Ndec e-folds,
then w ¼ �1 is restored and the expansion proceeds again
as �CDM.

Figure 4 shows the behavior of the fractional dark
energy density �wðaÞ and total equation of state wtot.
The recent universe is standard �CDM, while there are
epochs of acceleration (wtot <�1=3) and superdecelera-
tion (wtot > 0) in the early universe. The dark energy
density is boosted at high redshift relative to the standard
case.

One sees that a substantial period of superdeceleration is
required to permit even a brief period of early acceleration.
Indeed, no early acceleration can occur unless

Ndec >
1

3ð1þ wjÞ ln
�

�m

2�wa
3
j

�
: (7)

For zj ¼ 4, for example, one requires Ndec > 0:53. In

general, the number of e-folds of early acceleration, Nacc,
is related to Ndec and the transition scale factor from
acceleration to deceleration, aj, by

Nacc ¼ Ndec

�
1� wj

w

�
þ lnaj � 1

3w
ln
2�w

�m

; (8)

where w is the dark energy equation of state outside the
superdeceleration period (i.e. w ¼ �1 if we take �CDM
as the baseline).
Equation (7) gives a lower limit onNdec in terms of aj. If

Ndec is too large, however, then growth will be severely
affected. Recall that any deviation frommatter domination,
whether acceleration or superdeceleration, can suppress
growth. This constraint then gives an upper limit on Ndec

so we can evaluate the viability of the superdecelerating
scenario for early acceleration based on the comparison of
these upper and lower limits. From Fig. 5 we see that in fact
superdeceleration fails.
Only a thin sliver of parameter space for zj < 2:7

survives, and such a late epoch of acceleration does
nothing to help the coincidence problem (decreasing
wj <þ1 worsens the situation). In addition, the length

of the acceleration is quite short: for zj ¼ 1:5, say, one

has at best a number of e-folds Nacc ¼ 0:12. This does not
seem like a very natural value, being much less than an
e-fold. Attempting to create several epochs of acceleration,
necessitating even shorter durations, simply exacerbates
the problems. At high redshift, the curve Nacc ¼ 0 roughly
corresponds to �g0=g0 ¼ 15% (one can think of this
roughly as a shift in the mass amplitude �8), or 30%
deviation in the matter power spectrum amplitude.

FIG. 4 (color online). The fractional dark energy density
�wðaÞ (dotted, positive only curves) and total equation of state
wtotðaÞ (solid curves) are plotted for the superdecelerating sce-
nario with three different values of Ndec. Note that the Ndec ¼ 0:1
case never achieves early acceleration (wtot <�1=3, shown by
the horizontal dashed line), the Ndec ¼ 0:6 case barely does, and
even the Ndec ¼ 1 model has only a short period of early
acceleration. All models shown have wj ¼ þ1 and return at z ¼
2 to �CDM with �wða ¼ 1Þ ¼ 0:72. The smooth, green curves
correspond to �CDM without any transition.

FIG. 5 (color online). Early acceleration due to a high early
dark energy density can only occur, and still deliver the same
dark energy density today, if it is followed by sufficient super-
deceleration (here wj ¼ þ1). Only the space above the solid,

black curve, giving Nacc > 0, achieves this. Too much super-
deceleration, however, strongly suppresses the total growth to the
present. Only the space below the dashed, blue curve diminishes
the growth relative to �CDM by less than 10%. The only
surviving region is the thin crescent between the curves at aj >

0:27, or zj < 2:7, which hardly qualifies as early acceleration.

UNIQUENESS OF CURRENT COSMIC ACCELERATION PHYSICAL REVIEW D 82, 063514 (2010)

063514-5



The growth velocity factor, measured through Rg, is

affected at the 5.1% (2.7%) level for zj ¼ 1:5 (2.0) and

the maximum number of e-folds of acceleration, 0.12 and
0.05, respectively. More severe is the impact on the dis-
tance to last scattering, mostly due to the higher early dark
energy density: this is reduced by 2.9% (2.7%), which
essentially means that even the thin sliver of allowed
parameter space in Fig. 5 is in doubt when including
CMB constraints. Compensating by decreasing the matter
density can preserve the distance to last scattering, but
worsens the growth deviation.

IV. CONCLUSIONS

Only two paths exist to obtaining a period of cosmic
acceleration: the dark energy density is subdominant but its
equation of state is highly negative (superacceleration), or
the dark energy density is dominant, or nearly so, and its
equation of state is at least moderately negative (super-
deceleration). In the first case, we have seen that the
dynamics unavoidably forces the dark energy density to
be so low that acceleration is quite transient—less than
0.035 e-folds for acceleration before z ¼ 2. This conclu-
sion only depends on a dark energy density fraction today
�w � 0:7, not on any external data.

In the second case, the acceleration is caused by an
unusually high early dark energy density, which then
must be diluted in order to restore matter domination.
To accomplish this, the dark energy equation of state
must become positive, hence leading to a period of

superdeceleration. A period of acceleration requires a lon-
ger period of superdeceleration, yet these both suppress the
growth of matter density perturbations. The two constraints
of requiring sufficient superdeceleration to allow for some
early acceleration, yet not disrupting growth, pinch the
allowed parameter space to permit at most 0.05 e-folds of
acceleration before z ¼ 2. Taking a model for the transi-
tion in equation of state much broader than the step model
used here would exacerbate the constraints, due to the
prolonged influence of the dark energy.
Thus, neither possibility for achieving wtot <�1=3—

via superacceleration or superdeceleration—can truly pro-
vide early, or occasional acceleration, or provide any help
in ameliorating the coincidence problem. It is interesting
that such a clear conclusion falls out from such simple
arguments, at least as long as the dark energy is minimally
coupled. The current acceleration indeed appears to be
unique since the time of CMB decoupling.
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