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We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at

very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of

de Broglie and Bohm, allow the existence of vacuum states with nonstandard field fluctuations (‘‘quantum

nonequilibrium’’). We show that inflationary expansion can transfer microscopic nonequilibrium to

macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The

conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in

particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum.

We also show how nonequilibrium can generate primordial perturbations with nonrandom phases and

intermode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly

at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise.

Recent observations are used to set an approximate bound on violations of quantum theory in the early

Universe.
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I. INTRODUCTION

According to inflationary cosmology [1], the early
Universe underwent a period of exponential expansion,
during which microscopic quantum fluctuations were
stretched to macroscopic scales. The resulting (classical)
primordial perturbations seem to be of the form required to
explain the observed temperature anisotropy in the CMB,
and are widely believed to have seeded the formation of
large-scale structure generally. In this scenario, precision
CMB measurements today can provide information
about—and tests of—microscopic physics in the very early
Universe. For this reason, many workers have turned to
inflationary CMB predictions in the hope that these will
provide a ‘‘cosmic microscope’’ with which to probe high-
energy physics at very short distances and at very early
times. However, if the primordial perturbations do indeed
have a quantum origin, then inflationary CMB predictions
will also be sensitive to the structure of quantum theory
itself, as well as to that of high-energy physics. Therefore,
inflationary cosmology and CMB measurements may
equally be used to probe possible deformations of quantum
theory at very short distances and at very early times.

In a typical inflationary scenario, at very early times the
cosmological scale factor aðtÞ undergoes a period of ap-
proximately exponential growth, a / eHt with H � const.
During inflation, field perturbation modes have physical
wavelengths �phys ¼ aðtÞ� / eHt. (As usual, � ¼ 2�=k is

the wavelength today—the ‘‘comoving wavelength’’—and
we set the scale factor today to be a0 ¼ 1.) A mode ‘‘exits’’
the Hubble radiusH�1 when �phys * H�1, at a time texit ¼

texitðkÞ [which can be defined by 2�aðtexitÞ=k�H�1 or by
aðtexitÞ=k�H�1]. Soon after texitðkÞ, the perturbation
‘‘freezes’’ and becomes part of the primordial spectrum.
After inflation ends, physical wavelengths �phys / a grow

more slowly than the Hubble radius H�1 � a= _a / t

(where a / t1=2 or t2=3, for radiation-dominated or
matter-dominated expansion, respectively). Mode ‘‘reen-
try’’ occurs at a time tenterðkÞ when �phys & H�1, after

which the (formerly frozen) perturbations begin to grow,
eventually giving rise to anisotropies in the CMB and to
large-scale structure [2].
While there are many uncertainties surrounding the de-

tails of inflationary cosmology, there is a broad consensus
that the formation of (frozen) primordial perturbations
takes place when the corresponding physical wavelengths
�phys * H�1 are truly microscopic. Further, because of the

huge expansion during the inflationary phase, the relevant
modes will have had very short physical wavelengths,
�phys � H�1, at the onset of inflation (where the shorter

the wavelength, the later the time at which the mode exits
the Hubble radius during the inflationary phase). Indeed, it
appears that even modes with initial �phys & lP, where lP �
10�33 cm is the Planck length, may contribute to the
primordial spectrum [3]. Clearly, if inflation did indeed
occur, then precision measurements of the CMB (and of
large-scale structure generally) can probe physics at very
early times and at very short distances (possibly even at
distances & lP, to the extent that this might be
meaningful).
A number of possible deformations of high-energy phys-

ics have been considered in an inflationary context. These
include (a) modified dispersion relations (which may be
introduced ad hoc [3,4], or which may be motivated by
quantum-gravitational deformations of Lorentz invariance
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[5] or by quantum cosmology [6]), (b) an ultraviolet cutoff
coming from a fundamental length associated with de-
formed uncertainty relations (possibly associated with
quantum gravity or string theory) [7], and (c) short-
distance noncommutative geometry [8]. Some authors con-
sider that changes in physics at very high energies may
have an effective description in terms of different choices
of quantum vacuum [9] (for a review, see Ref. [10]).
Excited, nonvacuum states have also been considered
[11]. However, while it is generally agreed that inflationary
primordial perturbations have a quantum origin, effects on
the CMB arising from possible deformations of quantum
theory itself are not usually considered. (By ‘‘quantum
theory’’ we mean, essentially, the representation of physi-
cal states in Hilbert space, with unitary evolution, and with
probabilities given by the Born rule.) An exception is Perez
et al. [12], who discuss how predictions for the CMB could
be affected by a hypothetical dynamical collapse of the
wave function, a proposal that is motivated by the quantum
measurement problem (which seems especially severe in a
cosmological setting).

Despite the widespread reluctance to consider deforma-
tions of quantum theory itself, there is in fact no good
scientific reason for believing that the structure of standard
quantum theory is ‘‘final,’’ or that the predictions of quan-
tum theory will continue to hold under all conditions. The
following arguments are often presented as evidence for
the finality of quantum theory: that it provides a universal
framework applicable to all systems independently of their
composition (electrons, fields, atoms, etc.); that it is based
on simple, elegant axioms; that it provides the basis for
powerful new technologies; and, of course, that in all cases
so far it agrees with experiment. However, arguments
similar to these could have been made in the 18th and
19th centuries concerning the status of Newtonian mechan-
ics: at that time, Newtonian mechanics seemed to provide a
universal framework applicable to all systems indepen-
dently of their composition (rocks, fluids, planets, etc.); it
was based on simple, elegant axioms (Newton’s three laws
of motion); it provided the basis for powerful new tech-
nologies; and it agreed with all experiments performed to
date. And yet, we now know that Newtonian mechanics is
in fact merely approximate and emergent, arising from a
classical and low-energy limit of relativistic quantum field
theory. Of course, that Newtonian mechanics proved to be
approximate and emergent does not imply that quantum
theory will necessarily turn out likewise. However, the case
of Newtonian mechanics does suggest that the above (fre-
quently cited) arguments for the finality of a physical
theory are not reliable.

The ultimate test of the domain of validity of a scientific
theory is, of course, experiment. No matter how well a
theory has been tested in the past, it will always be subject
to possible modification in the future, in hitherto untested
regimes. Therefore, in order to expand our knowledge of

the domain of validity of any given theory, it is necessary to
subject it to ever more stringent tests in ever more extreme
conditions. To accomplish this, it is helpful to have a
‘‘foil’’ against which to test the theory in question—that
is, to have a model reducing to the given theory only in
some limit.
In the case of quantum theory, a number of alternatives

or foils might be considered. Models with a nonlinear
evolution or with a dynamical collapse of the wave func-
tion have, for example, been subjected to considerable
experimental scrutiny. In this paper, we focus on a different
possibility: that of nonequilibrium hidden variables [13–
26].
A deterministic hidden-variables theory, such as the

pilot-wave theory of de Broglie [27,28] and Bohm [29],
agrees with quantum theory only in the limit in which the
hidden parameters have a particular ‘‘quantum equilib-
rium’’ distribution [13–15,18,24,26]. A foil against which
to test quantum theory may then be obtained from such a
theory by allowing the hidden variables to have a non-
standard or ‘‘quantum nonequilibrium’’ distribution, re-
sulting in statistical predictions that deviate from those of
quantum theory [25].1 Such possible corrections to quan-
tum theory will be explored here, in the context of infla-
tionary cosmology, where it will be shown how CMB
observations may be used to set bounds on the presence
of quantum nonequilibrium at very short distances and
very early times.
If anomalies are observed in the CMB, one must of

course ask if they are caused by corrections to quantum
theory or by some other effect. (For example, the quantum
state during the inflationary phase might differ signifi-
cantly from the standard Bunch-Davies vacuum [11].) A
similar issue arises for other proposed corrections to stan-
dard physics in the early Universe. Ideally, one would like
to find a unique signature that could not be predicted by
any quantum state compatible with inflation. In practice,
one would at least require a quantitative prediction of a
deviation from standard results. The present paper focuses
on showing that early quantum nonequilibrium—for a
given (standard) quantum state—could have observable
consequences for the CMB. We also sketch two scenarios
that would lead to a specific prediction: for example,
deviations for wavelengths larger than a certain (predicted)
infrared cutoff. But the full development of these scenar-
ios, and the extraction of precise quantitative predictions
from them, is left for future work.
In Sec. II, we review the notion of quantum nonequilib-

rium, in de Broglie-Bohm theory and in general (determi-
nistic) hidden-variables theories, and we provide

1Note the clear distinction from the foils based on local
hidden-variables models [30] or on a particular restricted class
of nonlocal models [31]: such models disagree with the quantum
predictions for any distribution (equilibrium or otherwise) of the
hidden variables.
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motivation for why quantum nonequilibrium might exist in
the very early Universe. In Sec. III, we develop pilot-wave
field theory on an expanding space, and we write down
equations for the time evolution of arbitrary (nonequilib-
rium) distributions in an expanding universe. In Sec. IV, we
discuss two scenarios whereby quantum nonequilibrium
could exist during inflation: first, nonequilibrium for large-
wavelength modes could survive from a preinflationary
era, since under the right conditions relaxation can be
suppressed at large wavelengths on an expanding space;
second, nonequilibriummight be generated by novel gravi-
tational processes at the Planck scale. In Sec. V, we review
the standard theory of CMB temperature anisotropies, their
explanation in terms of primordial curvature perturbations,
and the production of the latter by inflaton fluctuations
during inflation. In Sec. VI, we calculate the time evolution
of quantum nonequilibrium in the Bunch-Davies vacuum
on de Sitter space, and we show that the width DkðtÞ of the
nonequilibrium distribution for each mode of wave number

k remains in a fixed ratio
ffiffiffiffiffiffiffiffiffi
�ðkÞp � DkðtÞ=�kðtÞ with the

equilibrium (quantum) width �kðtÞ. In Sec. VII, we show
how the power spectrum for the primordial curvature per-
turbations is corrected by the factor �ðkÞ. Some general
remarks are made in Sec. VIII, concerning the transfer of
microscopic nonequilibrium to cosmological scales, the
effective quantum measurement of the inflaton field during
the ‘‘quantum-to-classical’’ transition, and the weak de-
pendence of our results on the details of pilot-wave dy-
namics. In Sec. IX, we use current CMB data to derive an
approximate bound on quantum nonequilibrium during
inflation; specifically, under certain assumptions, we
show that the hidden-variable relative entropy ShvðkÞ
(which measures the difference between nonequilibrium
and quantum probabilities for a mode of wave number k)
satisfies the approximate bound jShvðkÞj & 10�2 for values
of k close to k0 ¼ 0:002 Mpc�1. In Sec. X, we consider the
possibility of a low-power anomaly at large angular scales,
and we discuss how it might arise from a nonequilibrium
suppression of quantum noise [�ðkÞ< 1] in certain regions
of k space. In Sec. XI, we show how nonequilibrium can
generate primordial perturbations with nonrandom phases
and intermode correlations. Our conclusions are given in
Sec. XII.

II. QUANTUM EQUILIBRIUM AND QUANTUM
NONEQUILIBRIUM

The notion of quantum nonequilibrium was first dis-
cussed in detail in terms of de Broglie-Bohm theory [13–
15], and was later generalized to include all (deterministic)
hidden-variables theories [18,19,21,24].

Consider, for example, the very simple case of
de Broglie-Bohm theory applied to a single nonrelativistic
particle with mass m and no spin. The wave function c ¼
jc jeiS (with units @ ¼ 1) acts as a ‘‘pilot wave’’ that

determines the velocity of the particle according to
de Broglie’s guidance equation dx=dt ¼ ð1=mÞrS [or
dx=dt ¼ ð1=mÞImðrc =c Þ]—an equation that determines
the trajectory xðtÞ of the particle, given the initial position
xð0Þ [assuming that c ¼ c ðx; tÞ is known for all x and t,
by solving the Schrödinger equation with a given initial
wave function c ðx; 0Þ]. Let c propagate in free space, then
strike a screen with two slits, and finally strike a backstop
where the particle is detected. The pilot wave undergoes
interference upon traversing the screen. The location xðtÞ
of the particle at any time t is determined (in principle) by
the initial value xð0Þ; in particular, where the particle lands
on the backstop is determined by xð0Þ. Because the veloc-
ity field ð1=mÞrS is equal to the usual quantum probability
current j divided by the usual quantum probability density
jc j2, it follows trivially that an initial ensemble of particles
guided by the same pilot wave c and with positions xð0Þ
distributed according to the equilibrium rule �ðx; 0Þ ¼
jc ðx; 0Þj2 will evolve into an equilibrium distribution
�ðx; tÞ ¼ jc ðx; tÞj2 at later times, resulting in the usual
quantum distribution of particles at the backstop (showing
the usual interference pattern). On the other hand, it is easy
to see that, in general, an initial ‘‘nonequilibrium’’ en-
semble with distribution �ðx; 0Þ � jc ðx; 0Þj2 results in a
nonquantum distribution �ðx; tÞ � jc ðx; tÞj2 at the back-
stop. [For example, in the absence of a rapid divergence of
neighboring trajectories, if �ðx; 0Þ is concentrated around a
single initial point xð0Þ, then �ðx; tÞ will be concentrated
around a single trajectory xðtÞ, and the usual interference
pattern will be replaced by a single localized spot.]
The pilot-wave theory of a many-body system was first

proposed by de Broglie at the 1927 Solvay conference [26–
28]. For a system of n (nonrelativistic) particles with
positions xiðtÞ and masses mi, de Broglie’s law of motion
takes the form

dxi

dt
¼ 1

mi

Im
ric

c
¼ riS

mi

; (1)

where c ¼ c ðx1; . . . ;xn; tÞ is the many-body wave func-
tion. De Broglie regarded (1) as expressing a unification of
the principles of Maupertuis and Fermat, resulting in a new
form of dynamics based on velocities [28].
Writing the total configuration as q ¼ ðx1;x2; . . . ;xnÞ, it

is again readily shown that for an ensemble of systems
guided by the same wave c and with configurations dis-
tributed according to �ðq; 0Þ ¼ jc ðq; 0Þj2, the distribution
of configurations at later times will be �ðq; tÞ ¼ jc ðq; tÞj2.
As shown in detail by Bohm in 1952 [29], the above

‘‘de Broglian’’ dynamics may be applied to the process of
quantum measurement itself, by treating the system being
measured together with the measuring apparatus as a single
many-body system of n particles. The total configuration
q ¼ ðx1;x2; . . . ;xnÞ then defines the ‘‘pointer position’’ of
the apparatus, as well as defining the configuration of the
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measured system. For each run of a quantum experiment,
the evolution is deterministic: the initial conditions qð0Þ,
c ðq; 0Þ determine the final conditions qðtÞ, c ðq; tÞ. Over
an ensemble of initial configurations qð0Þ guided by the
same wave function c , if we assume the initial quantum
equilibrium condition �ðq; 0Þ ¼ jc ðq; 0Þj2, then the statis-
tical distribution of pointer positions at later times will
agree with the predictions of quantum theory.

Schematically, during a standard quantummeasurement,
the initial packet c ðq; 0Þ on configuration space evolves
into a superposition c ðq; tÞ ¼ P

ncnc nðq; tÞ of terms
c nðq; tÞ that separate with respect to the pointer degrees
of freedom [that is, distinct c nðq; tÞ have negligible over-
lap with respect to the pointer degrees of freedom]. The
final configuration qðtÞ can then be in (the support of) only
one ‘‘branch’’ of the superposition, say c iðq; tÞ. For an
initial equilibrium ensemble, it is readily shown that this
occurs with probability jcij2, in accordance with the Born
rule. Further, inspection of de Broglie’s velocity law (1)
shows that the motion of qðtÞ will then be affected by
c iðq; tÞ alone, resulting in an effective ‘‘reduction’’ of
the wave function.

As in the simple example of a single particle undergoing
interference, for a general quantum measurement the dis-
tribution of outcomes depends crucially on the assumed
initial distribution �ðq; 0Þ of initial configurations qð0Þ. For
a nonequilibrium ensemble, �ðq; 0Þ � jc ðq; 0Þj2, the dis-
tribution of quantum measurement outcomes will gener-
ally disagree with the predictions of quantum theory
(assuming that relaxation to equilibrium has not taken
place in the meantime—see below).

De Broglie’s dynamics may be readily applied to fields,
where (say for a scalar field �) the motion of the field
configuration qðtÞ ¼ �ðx; tÞ is determined by the
Schrödinger wave functional �½�ðxÞ; t�. Indeed, for any
system with configuration q and Hamiltonian Ĥ, as long as

the Schrödinger equation i@c =@t ¼ Ĥc for c ðq; tÞ has an
associated current j ¼ j½c � ¼ jðq; tÞ in configuration
space, obeying a continuity equation

@jc j2
@t

þr � j ¼ 0

(with r � @=@q), one may define a de Broglian or pilot-
wave dynamics for the system, by introducing the
configuration-space velocity field

dq

dt
¼ j

jc j2 : (2)

Such a velocity field exists, in fact, whenever Ĥ is given by
a differential operator [32]. (In this dynamics, c is viewed
as a physical field or pilot wave in configuration space,
guiding the motion of an individual system. Note that c
has no a priori connection with probabilities. Furthermore,
because c is not an ordinary field in spacetime, it does not
itself carry an energy or momentum density.)

For an ensemble of systems, each with the same wave
function c ðq; tÞ, we may consider an arbitrary initial
distribution �ðq; 0Þ � jc ðq; 0Þj2, whose time evolution
�ðq; tÞ is determined by the de Broglian velocity field _q
in accordance with the continuity equation

@�

@t
þr � ð� _qÞ ¼ 0:

Because jc j2 obeys the same equation, an initial distribu-
tion �ðq; 0Þ ¼ jc ðq; 0Þj2 evolves into �ðq; tÞ ¼ jc ðq; tÞj2.
This is the state of quantum equilibrium, but the theory
clearly allows one (in principle) to consider any initial
distribution—just as classical mechanics allows one to
consider any initial distribution departing from thermal
equilibrium.
It is worth emphasizing that pilot-wave theory is a

radically new form of dynamics, very different from clas-
sical (Newtonian or Hamiltonian) mechanics. This was in
fact de Broglie’s original point of view, but it was unfortu-
nately obscured by Bohm’s pseudo-Newtonian reformula-
tion of the theory in terms of a law for acceleration
(involving a ‘‘quantum potential’’) [28].
Pilot-wave dynamics is grounded in configuration space,

where c propagates. While the dynamics is local in con-
figuration space, it is highly nonlocal when projected down
to 3-space (as required by Bell’s theorem). For example, if
a particle with position x1 is entangled with a particle with
position x2, then the velocity _x1 depends instantaneously
on x2 (no matter how remote x2 may be from x1), and
changing the local Hamiltonian at x2 is found to have an
instantaneous effect on the distant velocity _x1. Such non-
local effects are erased upon averaging over an equilibrium
ensemble � ¼ jc j2; but in nonequilibrium, � � jc j2,
there are (in general) nonlocal signals at the statistical level
[14,15], suggesting the existence of an underlying pre-
ferred foliation of spacetime [33].
Pilot-wave dynamics—as originally formulated by

de Broglie—is also first order in time in configuration
space (rather than in phase space): the fundamental law
of motion determines velocities, not accelerations. This
last feature has important implications for the associated
kinematics: for particles, the natural state of motion is rest
(instead of uniform motion in a straight line), and there is
indeed a natural preferred foliation of spacetime with a
fundamental time parameter t (consistent with the funda-
mental nonlocality of the theory) [34].
Quantum nonequilibriummay be considered, not only in

pilot-wave theory, but also in any deterministic hidden-
variables theory [18,19,21,24]. For any such theory, given
macroscopic experimental settings M, there is a mapping
! ¼ !ðM;�Þ from initial hidden variables � to final out-
comes ! of quantum measurements. There is also a quan-
tum equilibrium probability measure �QTð�Þ, defined on

the set of hidden variables, that yields quantum probabil-
ities PQTð!Þ for the outcomes. [In the case of pilot-wave
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theory, �QTð�Þ is given by � ¼ jc j2.] Once such a theory

has been constructed, one may consider arbitrary ‘‘non-
equilibrium’’ probability measures �ð�Þ � �QTð�Þ, result-
ing in outcome probabilities Pð!Þ � PQTð!Þ that depart
from the predictions of quantum theory.

In this paper we shall be studying quantum nonequilib-
rium in the context of inflationary cosmology, using the
pilot-wave theory of fields as a concrete example.
However, we emphasize that similar studies could be
made in any deterministic hidden-variables theory, simply
by making the replacement �QTð�Þ ! �ð�Þ.

At present, pilot-wave theory is the only deterministic
hidden-variables theory of broad scope that we possess,
though some attempts have been made to construct alter-
native theories. For example, in the 1980s, Smolin at-
tempted to construct a deterministic hidden-variables
theory of an N-body system, based on the classical
Hamiltonian dynamics of a certain N � N matrix MijðtÞ,
whose eigenvalues correspond to particle positions and
whose off-diagonal elements correspond to nonlocal hid-
den variables associated with pairs of particles [35].
Adopting a classical action principle for the (deterministic)
dynamics of the matrix, Smolin made a number of assump-
tions, including a statistical assumption to the effect that
the coarse-grained evolution of the off-diagonal terms
amounts to a Brownian motion. In the limit of a large
number N of particles with masses mi, it was shown
from these assumptions that the particle positions also
undergo a Brownian motion, that the ith particle current
velocity vi (the average of the mean forward and backward
velocities) is given by a gradient, vi ¼ riS=mi, where S is
a function on configuration space, and that the complex
function c � ffiffiffiffi

�
p

eiS (where � is the particle probability

distribution on configuration space) satisfies the
Schrödinger equation for a many-body nonrelativistic sys-
tem. Smolin’s strategy was to show that his assumptions
led, in the limit of large N, to the basic postulates of
Nelson’s stochastic mechanics [36]. As was already
known, in Nelson’s theory—which is based on a form of
Brownian motion subject to special conditions, including
the condition that vi ¼ riS=mi for some function S—the
derived quantity c � ffiffiffiffi

�
p

eiS indeed satisfies the

Schrödinger equation.
More recently, a model similar to the above (though

based on the bosonic part of the classical matrix models
used in string and M theory) was again investigated by
Smolin, with similar assumptions and results [37]. In
Ref. [35], it had also been suggested that one might con-
sider a model in which the off-diagonal matrix elements of
MijðtÞ are constant, with fluctuations in a local system

arising from the nonlocal transmission of fluctuations
from other particles in remote regions of space. This last
model has recently been recast in terms of the dynamics of
a graph with N nodes [38]: assuming that the edges of the
graph do not evolve in time, the corresponding adjacency

matrix is constant, and is taken to be the off-diagonal part
of matrices MijðtÞ. Again, as in Smolin’s original model,

assumptions are made so as to arrive at Nelson’s stochastic
mechanics in some approximation.
However, while it is often claimed that Nelson’s theory

is empirically equivalent to quantum theory, unfortunately,
as shown byWallstrom [39], the two theories are in fact not
equivalent, because Nelson’s function S does not have the
specific multivalued structure required for the phase of a
single-valued (and continuous) complex field c . The
Schrödinger equation is indeed derived, but only for the
exceptional set of wave functions with no nodes, for which
the circulation of riS around all closed curves vanishes.
Since almost all wave functions have nodal points (where
c ¼ 0), quantum theory cannot be derived from Nelson’s
theory, or from any model that leads to Nelson’s theory.
(Note that there is no such problem in pilot-wave theory,
where c is regarded as a basic entity.)
Thus, as they stand, the deterministic models of

Refs. [35,37,38] seem to yield derivations of Nelsonian
mechanics, but not of quantum mechanics. Some basic
element is missing. One must somehow ensure that the
circulation of riS around nodes of � can be nonzero but
always restricted to integer multiples of 2�. (And if one
wishes to derive the wave function, then of course one
cannot simply assume at the outset that S is the phase of a
complex-valued field.) Still, if some way were found to
solve Wallstrom’s phase problem, then such derivations of
Nelsonian mechanics as an average over a certain statisti-
cal state could again be generalized to arbitrary statistical
states, yielding nonequilibrium departures from quantum
theory in the sense considered here.2

As another example, Adler [42] has constructed what
appears to be a deterministic hidden-variables theory, in
which the parameters � are matrices with Grassmann (even
and odd) valued elements, obeying a generalized form of
classical Hamiltonian dynamics. The state of thermal equi-
librium, defined in the usual way on phase space, is argued
to lead (after some approximations) to a quantum-like
phenomenology with a dynamical wave function collapse.
The precise nature of Adler’s theory seems to require
further elucidation; but if it is indeed a hidden-variables
theory in the sense meant here, then thermal nonequilib-
rium in Adler’s theory should again correspond to quantum
nonequilibrium.

2Smolin [40] has attempted to solve Wallstrom’s phase prob-
lem by allowing discontinuous wave functions. However (even
leaving aside the resulting divergences for expectation values of
quantum observables such as kinetic energy), Smolin applies his
prescription only to the case of a particle moving on a circle,
which is too simple to capture the nature of the problem raised
by Wallstrom. In higher dimensions—for example, even in two
dimensions, and with just one node—allowing discontinuous
wave functions results in an ill-defined (one-to-many) mapping
from Nelsonian states to quantum states. For a full discussion,
see Ref. [41].
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In the author’s view, because Hamiltonian dynamics is
of second order in configuration space, it is not a natural
framework for nonlocal theories with a preferred state of
rest or preferred slicing of spacetime—unlike pilot-wave
dynamics, which is first order in configuration space, and
which therefore (as we have mentioned) provides a natural
setting for such theories [34]. But even so, the above
alternative theories based on Hamiltonian dynamics do
illustrate that the idea of quantum nonequilibrium is a
general one.

For the purposes of this paper, it suffices that there exists
at least one model of quantum nonequilibrium, based on
pilot-wave dynamics, that may serve as a foil against which
to test quantum theory. To be able to provide quantitative
bounds on violations of quantum theory in the early
Universe is motivation enough to consider models with
quantum nonequilibrium. Even so, before proceeding, let
us briefly provide some further motivation for why quan-
tum nonequilibrium might exist at very early times.

First, it has been shown that in pilot-wave theory the
equilibrium state � ¼ jc j2 may be understood as arising
from a process of relaxation that is analogous to classical
thermal relaxation, where the former is defined on configu-
ration space rather than on phase space. The difference
between � and jc j2 may be quantified by the H-function

H ¼
Z

dq� lnð�=jc j2Þ (3)

(equal to minus the relative entropy of � with respect to
jc j2), which obeys a coarse-graining H-theorem analo-
gous to the classical one, and where the minimum H ¼ 0
corresponds to � ¼ jc j2 [13,15,17]. Further, numerical
simulations for simple two-dimensional systems [23,43]
show a remarkably efficient approach to equilibrium, with
an approximately exponential decay of the coarse-grained
H-function, �HðtÞ ! 0, and a corresponding coarse-grained

relaxation �� ! jc j2 (assuming appropriate initial condi-
tions for � and c ).3 Because all the systems we have
access to (such as hydrogen atoms in the laboratory)
have a long and violent astrophysical history, we would
then expect to see quantum equilibrium in these systems.
While it is logically possible, of course, that the Universe
was simply born in a state of quantum equilibrium, it seems
more natural to consider that the equilibrium we see today
arose from relaxation processes in the remote past [16,17],
in which case the very early Universe is the natural place to
look for nonequilibrium phenomena.

Second, an appealing feature of this picture concerns the
status of locality in physics. It may be shown that quantum
nonequilibrium for entangled systems leads to nonlocal
signals at the statistical level, in pilot-wave theory (as

already mentioned) and indeed in any deterministic
hidden-variables theory; while in equilibrium, the under-
lying nonlocal effects cancel out at the statistical level
[14,15,18,19,26]. Locality is therefore a contingency (or
emergent feature) of the equilibrium state. Similarly, stan-
dard uncertainty-principle limitations on measurements
are also contingencies of equilibrium [14,15,20,24].
These results provide an explanation for the otherwise
mysterious ‘‘conspiracy’’ in the foundations of current
physics, according to which (roughly speaking) quantum
noise and the uncertainty principle prevent us from using
quantum nonlocality for practical nonlocal signaling. From
the above perspective, this ‘‘conspiracy’’ is not part of the
laws of physics, but merely a contingent feature of the
equilibrium state (much as the inability to convert heat into
work, in a state of global thermal equilibrium, is not a law
of physics but a contingency of the state). On this view,
quantum physics is merely the effective description of a
particular state—just as, for example, the standard model
of particle physics is merely the effective description of
(perturbations around) a particular vacuum state (arising
from spontaneous symmetry breaking). If one takes this
view seriously, it suggests that nonequilibrium phenomena
should exist somewhere (or some time) in our Universe.
And again, the early Universe seems the natural place to
look.
Quantum nonequilibrium at very early times may also

be motivated by the cosmological horizon problem, which
may be avoided by the explicit nonlocality associated with
nonequilibrium [14–16,19]—see Sec. IVA.
Finally, if one takes de Broglie-Bohm theory seriously,

one should take the possibility of nonequilibrium seriously
as well, since it is only in nonequilibrium that the under-
lying details of the theory become visible (via measure-
ments more accurate than those allowed by quantum theory
[20,24]). If instead the Universe is always and everywhere
in quantum equilibrium, the details of de Broglie-Bohm
trajectories will be forever shielded from experimental
tests, and de Broglie-Bohm theory itself would be unac-
ceptable as a scientific theory.
For the above reasons, then, we are led to consider the

hypothesis of quantum nonequilibrium at or close to the
big bang [13–17,25,26]. It is the purpose of this paper to
show that inflationary cosmology provides a means of
testing this hypothesis, through precision measurements
of the cosmic microwave background.

III. PILOT-WAVE FIELD THEORYONEXPANDING
SPACE

For simplicity we restrict ourselves to a flat metric,

d�2 ¼ dt2 � a2dx2; (4)

where again aðtÞ is the scale factor, with Hubble parameter
H � _a=a. As is customary, we take a0 ¼ 1 today (at time

3The understanding of relaxation in pilot-wave theory is sub-
ject to the usual caveats—familiar from classical statistical
mechanics—associated with initial conditions and time reversal.
For detailed discussions of this point, see Refs. [15–17,23].
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t0), so that jdxj is a comoving distance (or proper distance
today).

A free (minimally coupled) massless scalar field� has a

Lagrangian density L ¼ 1
2g

1=2@��@�� or

L ¼ 1
2a

3 _�2 � 1
2aðr�Þ2; (5)

with an action
R
dt

R
d3xL (where x are comoving coor-

dinates). This implies a canonical momentum density � ¼
@L=@ _� ¼ a3 _� and a Hamiltonian density

H ¼ 1

2

�2

a3
þ 1

2
aðr�Þ2: (6)

The equations of motion _� ¼ �H=��, _� ¼ ��H=��
(with H ¼ R

d3xH ) lead to the classical wave equation

€�þ 3 _a

a
_�� 1

a2
r2� ¼ 0: (7)

Pilot-wave field theory is defined in terms of the func-
tional Schrödinger picture, with a preferred foliation of
spacetime [15,16,29,44–49]. For an expanding universe
with metric (4), containing a scalar field � with
Hamiltonian density (6), a general wave functional
�½�; t� ¼ h�ðxÞj�ðtÞi [where j�ðxÞi is a field eigenstate]
satisfies the functional Schrödinger equation4

i
@�

@t
¼

Z
d3x

�
� 1

2a3
�2

��2
þ 1

2
aðr�Þ2

�
� (8)

(with the usual realizations �̂ ! �, �̂ ! �i�=��). This
implies the continuity equation

@j�j2
@t

þ
Z

d3x
�

��

�
j�j2 1

a3
�S

��

�
¼ 0 (9)

(where � ¼ j�jeiS), from which one may identify the
de Broglie velocity

@�

@t
¼ 1

a3
�S

��
(10)

for an individual field configuration. Here, again, � is
interpreted as a physical field in configuration space, guid-
ing the evolution of an individual field �ðx; tÞ in 3-space.
[Note that S is defined only locally, as S ¼ Im ln�. One

may equally write (10) as @�
@t ¼ 1

a3
Im 1

�
��
�� , without men-

tioning S.)
A similar construction may be given in any globally

hyperbolic spacetime, by choosing a preferred foliation
[22]. Thus there is no need for spatial homogeneity.

Over an ensemble of field configurations guided by the
same pilot wave �, there will be some (in principle,
arbitrary) initial distribution P½�; ti�, whose time evolution
P½�; t� will be determined by

@P

@t
þ

Z
d3x

�

��

�
P

1

a3
�S

��

�
¼ 0: (11)

If P½�; ti� ¼ j�½�; ti�j2, then P½�; t� ¼ j�½�; t�j2 for all
t, and empirical agreement is obtained with standard quan-
tum field theory [29,45–49]. On the other hand, for an
initial nonequilibrium distribution P½�; ti� � j�½�; ti�j2,
for as long as P remains in nonequilibrium, the predicted
statistics will generally differ from those of quantum field
theory. In any case, whatever formPmay take (equilibrium
or nonequilibrium), its time evolution will be given by
(11).
It will prove convenient to rewrite the dynamics in

Fourier space. Expressing �ðxÞ in terms of its Fourier
components

�k ¼ 1

ð2�Þ3=2
Z

d3x�ðxÞe�ik�x;

and writing

�k ¼
ffiffiffiffi
V

p

ð2�Þ3=2 ðqk1 þ iqk2Þ

for real qkr (r ¼ 1, 2), where V is a box normalization
volume, the Lagrangian L ¼ R

d3xL becomes

L ¼ X
kr

1

2
ða3 _q2kr � ak2q2krÞ:

[For V ! 1, 1
V

P
k ! 1

ð2�Þ3
R
d3k and V�kk0 !

ð2�Þ3�3ðk� k0Þ. The reality of � requires �	
k ¼ ��k or

qk1 ¼ q�k1, qk2 ¼ �q�k2, so that a sum over physical
degrees of freedom should be restricted to half the values of
k.] Introducing the canonical momenta

�kr � @L

@ _qkr
¼ a3 _qkr;

the Hamiltonian becomes

H ¼ X
kr

�
1

2a3
�2

kr þ
1

2
ak2q2kr

�
:

The Schrödinger equation for � ¼ �½qkr; t� is then

i
@�

@t
¼ X

kr

�
� 1

2a3
@2

@q2kr
þ 1

2
ak2q2kr

�
�; (12)

which implies the continuity equation

@j�j2
@t

þX
kr

@

@qkr

�
j�j2 1

a3
@S

@qkr

�
¼ 0 (13)

and the de Broglie velocities

dqkr
dt

¼ 1

a3
@S

@qkr
(14)

(again with � ¼ j�jeiS). The time evolution of an arbi-
trary distribution P½qkr; t� will then be given by

4As usual in this context, some sort of regularization is
implicitly assumed.
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@P

@t
þX

kr

@

@qkr

�
P

1

a3
@S

@qkr

�
¼ 0: (15)

For product states

�½qkr; t� ¼
Y
kr

c krðqkr; tÞ (16)

(such as the Bunch-Davies vacuum during inflation), the
wave function c kr for a single mode kr satisfies

i
@c kr

@t
¼

�
� 1

2a3
@2

@q2kr
þ 1

2
ak2q2kr

�
c kr: (17)

Writing c kr ¼ jc krjeiskr (where S ¼ P
krskr), the

de Broglie velocity for qkr is then

dqkr
dt

¼ 1

a3
@skr
@qkr

: (18)

If the initial distribution P½qkr; ti� also takes the product
form

P½qkr; ti� ¼
Y
kr

�krðqkr; tiÞ; (19)

then the time evolution of �krðqkr; tÞ will be given by

@�kr

@t
þ @

@qkr

�
�kr

1

a3
@skr
@qkr

�
¼ 0: (20)

Note that the factorizability condition (19) for the proba-
bility distribution P is logically independent of the factor-
izability condition (16) for the pilot wave�. Thus, even for
a vacuum state, in nonequilibrium it is still possible to have
intermode correlations. For simplicity, in Sec. VI, we shall
restrict ourselves to the case of uncorrelated nonequilib-
rium modes. The correlated case is discussed in Sec. XI.

IV. QUANTUM NONEQUILIBRIUM IN THE VERY
EARLY UNIVERSE

In this paper, the focus is on setting experimental bounds
on possible violations of quantum theory during inflation.
Before proceeding with this, however, let us indicate how
one might (in future work) be able to predict details of such
violations. The scenarios sketched in this section also serve
to give a preliminary idea of the kinds of violations one
might expect to find.

A. Relic nonequilibrium from a preinflationary era

One reason to expect early nonequilibrium to exist is
that, as sketched in Sec. II, according to de Broglie-Bohm
theory ordinary matter corresponds to a ‘‘quantum equi-
librium phase,’’ and it is natural to suppose that this equi-
librium state emerged from the violence of the big bang.

Another reason is that nonequilibrium at very early
times would unleash the nonlocality inherent in all
hidden-variables theories, thereby evading the horizon
problem associated with an early Friedmann expansion

(if there was one). For a / t1=2 the horizon distance is
(with c ¼ 1)

lhðtÞ ¼ aðtÞ
Z t

0

dt0

aðt0Þ ¼ 2t;

and for any two comoving points separated by a coordinate
distance j�xj, we have lhðtÞ � aðtÞj�xj for sufficiently
small t. On this basis it has been widely argued that early
homogeneity—over seemingly causally disconnected do-
mains—is unnatural and puzzling.5 As we have mentioned,
the hypothesis of quantum nonequilibrium at the big bang
was originally introduced partly to solve this problem [14–
16,19]. For the above scalar field, for example, a generic
wave functional � will be entangled across space, so that
the field velocity

@�ðx; tÞ
@t

¼ 1

a3
�S½�; t�
��ðxÞ

at a point xwill depend on instantaneous values of the field
at remote points x0 � x, and in nonequilibrium this non-
local dependence will not be hidden by statistical noise (as
it is in quantum theory). Of course the horizon problem
was also one of the historical motivations for introducing
inflation: the period of exponential expansion ensures that
our observable region originates from within a single
causal patch [50]. However, even in an inflationary context,
it appears that some models require homogeneity as an
initial condition in order for inflation to begin [51].
Therefore, it is possible that consideration of a preinfla-
tionary era will revive the horizon problem, and that some
form of early nonlocality may provide a resolution. The
nonlocality could be generated by quantum nonequilib-
rium, or perhaps by some other means (other proposals
include topological fluctuations [52] and an increased
speed of light at early times [53]).
If we then assume—for whatever reason—that the pre-

inflationary Universe was in a state of quantum nonequi-
librium, the question is how the nonequilibrium will evolve
in time, and, in particular, whether any of it will survive
until entry into the inflationary era. To address this ques-
tion, let us first summarize what is known so far about
relaxation in pilot-wave theory.
As already mentioned, numerical simulations for simple

two-dimensional systems show an efficient relaxation,
with an approximately exponential decay of the coarse-
grained H-function �HðtÞ [23,43]. Specifically, for an en-
semble of nonrelativistic particles in a two-dimensional
box (on a static spacetime background), with a wave
function consisting of a superposition of the first 16 modes,

it was found that �HðtÞ � �H0e
�t=tc where, as discussed in

Ref. [23], the time scale tc coincides approximately with a

5Note, however, that the existence of the puzzle depends on
assuming a classical Friedmann expansion a / t1=2 all the way
back to t ¼ 0.
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theoretical relaxation time scale � defined by 1=�2 �
�ð1= �HÞd2 �H=dt2 [15], which under certain conditions
may be roughly estimated as [17,23,54]

���t � 1=�E;

where�E is the quantum energy spread and�t is the usual
quantum time scale over which the wave function evolves.

Similar results have been obtained for nonrelativistic
particles in a two-dimensional harmonic oscillator poten-
tial [43], a case that has immediate implications for the
field theory of a single decoupled mode k.

Writing� ¼ c kðqk1; qk2; tÞß, where ß depends only on
degrees of freedom for modes k0 � k, Eqs. (12) and (14)
imply that the wave function c k satisfies

i
@c k

@t
¼ � 1

2a3

�
@2

@q2k1
þ @2

@q2k2

�
c k þ 1

2
ak2ðq2k1 þ q2k2Þc k;

(21)

while the de Broglie velocities for ðqk1; qk2Þ are

_q k1 ¼ 1

a3
@sk
@qk1

; _qk2 ¼ 1

a3
@sk
@qk2

(22)

(with c k ¼ jc kjeisk). The marginal distribution
�kðqk1; qk2; tÞ will evolve according to

@�k

@t
þ X

r¼1;2

@

@qkr

�
�k

1

a3
@sk
@qkr

�
¼ 0: (23)

As discussed elsewhere [25,54], these are identical to the
equations of pilot-wave dynamics for an ensemble of non-
relativistic particles with time-dependent ‘‘mass’’ m ¼ a3,
moving in the two-dimensional qk1 � qk2 plane, in a
harmonic oscillator potential of time-dependent angular
frequency ! ¼ k=a. In the short-wavelength limit,
�phys � �nk �H�1 (where nk ¼ nk1 þ nk2 is the sum of

the occupation numbers for modes k1 and k2), and over
time scales �t � 1=�Ek � H�1 (for which a is approxi-
mately constant), the above equations reduce to those for a
decoupled mode k on Minkowski spacetime [54]. These
limiting equations are in turn just those of pilot-wave
dynamics for an ensemble of nonrelativistic particles of
constant mass m ¼ a3 in a two-dimensional harmonic
oscillator potential of constant angular frequency ! ¼
k=a. The numerical results for this last case [43] show
that, in the Minkowski limit, for a decoupled mode k in a
superposition of many different states of definite occupa-
tion number, one will obtain relaxation �kðqk1; qk2; tÞ !
jc kðqk1; qk2; tÞj2 (on a coarse-grained level, assuming
appropriate initial conditions), on a time scale �k of order

�k � 1

�Ek

:

If, in the Minkowski limit, relaxation occurs so effi-
ciently for a single decoupled mode, then we may reason-
ably expect that for a realistic entangled quantum state—in

some preinflationary era—relaxation will occur at least as
efficiently. One might then conclude that, even if there is
initial nonequilibrium, it will have relaxed away by the
time inflation begins. However, before drawing definite
conclusions, one must first consider the possible effect of
spatial expansion on the relaxation process. One finds, in
particular, that the character of the evolution can be very
different in the long-wavelength limit.
In the case of a decoupled mode on expanding space,

described by Eqs. (21)–(23), it is found [54] that in the
long-wavelength limit, �phys 
 �nk �H�1, the wave

function c k is approximately static—or ‘‘frozen’’—over
time scales �H�1. Furthermore, one expects that the tra-
jectories ðqk1ðtÞ; qk2ðtÞÞ will be frozen over time scales
�H�1, in which case an arbitrary nonequilibrium distri-
bution �k � jc kj2 will also be frozen over time scales
�H�1. (This is of course reminiscent of the freezing of
super-Hubble modes in the theory of cosmological pertur-
bations [1,2].) It then begins to appear possible that the
normal process of relaxation to quantum equilibrium could
be suppressed for long-wavelength modes in a preinfla-
tionary era, and that remnants of initial nonequilibrium
could survive up to the beginning of inflation.
That this is indeed possible has been shown [54] by

deriving a general and rigorous condition for the freezing
of quantum nonequilibrium, a condition applicable to an
arbitrary time interval ½ti; tf� and to any (generally en-

tangled) quantum state of a scalar field. (The condition
may also be applied to mixed states and to interacting
fields.) The condition is obtained by considering the dis-
placements of the de Broglie-Bohm trajectories over the
time interval ½ti; tf�. It is found that, for a pure subensemble

with (time-dependent) mean occupation numbers hn̂kri,
nonequilibrium will be frozen (or at least partially frozen)
for modes with wave number k if the time evolution of
hn̂kri satisfies the ‘‘freezing inequality’’ [54]

1

k
> 4af

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn̂krif þ 1=2

q Z tf

ti

dt
1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn̂kri þ 1=2

q
: (24)

For a radiation-dominated expansion on ½ti; tf�, with

aðtÞ ¼ afðt=tfÞ1=2, this inequality implies that (using

hn̂kri � 0)

�physðtfÞ> 2�H�1
f lnðtf=tiÞ; (25)

where H�1
f ¼ 2tf and the right-hand side is larger than

H�1
f if tf * ð1:17Þti. Thus, in a radiation-dominated ex-

pansion, if the freezing inequality (24) is satisfied, the
corresponding modes must be super-Hubble [54].
We are now in a position to begin to address the question

of whether or not very early nonequilibrium in a preinfla-
tionary era could survive until the onset of inflation itself.
The above considerations show that, for short-wavelength
modes, any initial quantum nonequilibrium is likely to be
rapidly destroyed during a preinflationary phase. On the
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other hand, relaxation can be suppressed for long-
wavelength modes—if the freezing inequality (24) is sat-
isfied—and it is then possible that these modes (for what-
ever fields may be present) will still be in nonequilibrium at
the onset of inflation.

Denoting, for a moment, the (approximately) constant
Hubble radius during inflation by H�1

inf , relevant cosmo-

logical fluctuations originate from insideH�1
inf . For some of

these modes to be out of equilibrium, they must have
evolved from modes that were outside the Hubble radius
in the (presumably radiation-dominated) preinflationary
phase. Therefore, for this scenario to work, some preinfla-
tionary nonequilibrium modes must enter the Hubble ra-
dius during the transition to the inflationary phase, and they
must avoid complete relaxation to equilibrium by the time
inflation begins. (As we shall see in Sec. VI, relaxation
does not occur during inflation itself.) Now, modes of
physical wavelength �phys ¼ a� can enter the Hubble

radius H�1 ¼ a= _a only if �phys increases more slowly

than does H�1, that is, only if the comoving Hubble radius
H�1=a ¼ 1= _a increases—as occurs for a decelerating uni-
verse, €a < 0 [which, from the Friedmann equation €a=a ¼
�ð4�G=3Þð�þ 3pÞ, requires that the energy density � and
pressure p satisfy �þ 3p > 0].

During a decelerating preinflationary phase, then, any
frozen nonequilibrium modes at super-Hubble radii can
enter the Hubble radius. Once they do so, they are likely
to begin to relax to equilibrium. For all modes that are
inside H�1

inf at the onset of inflation, some time will neces-

sarily have been spent in what might be crudely termed the
‘‘relaxation zone,’’ with �phys & H�1, during the preinfla-

tionary phase. For example, for a radiation-dominated
preinflationary phase (starting at some initial time ti) that
makes an abrupt transition to an inflationary phase at t ¼
tf, we have a ¼ afðt=tfÞ1=2 and H�1 ¼ 2t (on ½ti; tf�), and
a mode of comoving wavelength � enters the Hubble
radius (a��H�1) at a time tenterð�Þ � a2f�

2=tf, so that

the time spent in the relaxation zone is

�trelaxð�Þ ¼ ðtf � tenterÞ � tfð1� a2f�
2=t2fÞ:

There can be significant residual nonequilibrium at the
beginning of inflation, provided the ‘‘no relaxation’’ con-
dition

�trelaxð�Þ & �ð�Þ (26)

is satisfied, where �ð�Þ is again a relaxation time scale as
defined above [and where �ð�Þ may be evaluated at the
intermediate time tenter þ 1

2 ðtf � tenterÞ]. Because �ð�Þ will
depend on the wave functional, a proper calculation of �ð�Þ
requires a specific model of the preinflationary phase.

Given a specific form for the function �ð�Þ, the con-
dition (26) will determine a range of wavelengths � for
which residual nonequilibrium may reasonably be ex-
pected to have survived from the preinflationary era.

Because preinflationary modes with larger values of �
enter the Hubble radius later and so spend less time in
the relaxation zone, the condition (26) will presumably
imply that residual nonequilibrium will be possible for �
larger than some infrared cutoff �c. [The scenario might be
improved if, during the transition from a preinflationary to
an inflationary phase, the Hubble radius was a rapidly
increasing function of the scale factor (dH�1=da 

H�1=a). For then super-Hubble nonequilibrium modes
could be pushed far inside the Hubble radius in a short
time.]
We hope that future work, based on a specific preinfla-

tionary model, will yield a prediction for the infrared cutoff
�c. It is of course possible that �c will turn out to be so
much larger than today’s Hubble radius that it yields a
negligible effect on CMB predictions [as could occur if the
relaxation time scale �ð�Þ is too short, or if the number of
inflationary e-folds is too large]. This remains to be seen.
In this paper, the focus is on ‘‘phenomenology’’: we

simply assume that some modes could be in quantum
nonequilibrium at the beginning of the inflationary phase,
and we show how CMB data may be used to set experi-
mental bounds on such nonequilibrium. Still, the above
preliminary reasoning already suggests that if there is
residual nonequilibrium from a preinflationary phase,
then we should expect to find it at large wavelengths,
beyond some cutoff �c.

B. Possible production of nonequilibrium
at the Planck scale

We have discussed whether nonequilibrium might have
survived into the inflationary phase, on the assumption that
there was nonequilibrium in some preinflationary era.
Another question is whether nonequilibrium might be
generated during (or indeed even before) the inflationary
era.
The creation of quantum nonequilibrium from a prior

equilibrium state is impossible in standard de Broglie-
Bohm theory (leaving aside extremely rare fluctuations
[15]), though it might occur in alternative hidden-variables
models—for example, in models that deviate from quan-
tum theory for processes taking place over very short time
scales [55]. But even in de Broglie-Bohm theory, it does
not seem entirely clear if we know how to incorporate
gravitation [41] (see, however, Ref. [56]). It is therefore
conceivable that effects involving gravity are able to upset
the equilibrium state. In particular, as has been discussed at
length elsewhere, it is not unreasonable to propose that
quantum nonequilibrium can be generated by the forma-
tion and evaporation of a black hole [22,25].
This proposal is motivated by the (controversial) ques-

tion of information loss in black holes. In the standard
picture of black-hole formation and evaporation, it appears
that a closed system can evolve from an initial pure state to
a final mixed state, thereby violating ordinary quantum
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theory [57]. Further, because the final state describes ther-
mal radiation that depends on the initial mass of the hole
but not on the details of the initial state, it is impossible
even in principle to retrodict the initial state from the final
state. While Hawking’s original argument for information
loss remains controversial, a new approach to avoiding
information loss invokes the possible existence of quantum
nonequilibrium in the outgoing radiation, which could then
carry more information than ordinary radiation can in a
conventional (mixed) quantum state. A mechanism for the
creation of such nonequilibrium has been outlined [22],
involving an assumed nonequilibrium behind the horizon
(presumably near the singularity) that is transferred to the
exterior region by the entanglement between the ingoing
and outgoing modes of the Hawking radiation. A simple
rule has been suggested, whereby the decreased ‘‘hidden-
variable entropy’’ Shv [equal to minus the subquantum
H-function (3)] of the outgoing nonequilibrium radiation
balances the increase in von Neumann entropy Svon N ¼
�Trð�̂ ln�̂Þ generated by the pure-to-mixed transition:

�ðShv þ Svon NÞ ¼ 0: (27)

Possible experimental tests of this proposal are discussed
in Refs. [22,25].

It is sometimes suggested that, at the Planck scale,
processes will occur involving the formation and evapora-
tion of microscopic black holes. If one takes this (rather
heuristic) picture seriously and combines it with the above
proposal, one is led to the conclusion that quantum non-
equilibrium will be generated at the Planck scale. During
the inflationary phase, such processes might have an effec-
tive description in terms of nonequilibrium modes of the
inflaton field at Planckian or trans-Planckian (physical)
frequencies. One might reason as follows. If a mode of
comoving wavelength � once had a physical wavelength
�phys ¼ a� & lP near the beginning of inflation, one could

assume that upon exiting the Planckian regime (that is,
once �phys becomes bigger than lP) the mode will be out of

equilibrium, having encountered some gravitational pro-
cess that generates nonequilibrium while �phys � lP,

whereas modes that were never smaller than lP will not
encounter any such process. Roughly, one could model this
by introducing a cutoff �0

c such that nonequilibrium exists
only for comoving wavelengths � & �0

c (below the critical
value �0

c, in contrast with the scenario in the preceding
section). In addition to providing an estimate for �0

c, one
also needs to estimate the degree of nonequilibrium, which
for a given mode kr may be quantified by the relative (or
hidden-variable) entropy

ShvðkÞ � �
Z

dqkr�kr lnð�kr=jc krj2Þ: (28)

An estimate for ShvðkÞ might arise from an application of
(27) in some form, though this remains to be studied.

It is to be hoped that further development of this idea
will lead to a detailed prediction for the form and magni-
tude of nonequilibrium for modes emerging from the
Planckian regime. Pending such development, again, in
this paper we restrict ourselves to using current data to
set limits on any hypothetical quantum nonequilibrium that
may be present during the inflationary phase.

V. MEASURING PRIMORDIAL QUANTUM
FLUCTUATIONS

The above considerations suggest that, during inflation,
some field modes may exhibit nonequilibrium fluctuations
that violate quantum theory. Our aim in this paper is to
show how to use CMB data to set bounds on such
violations.
We shall first recall how measurements of the CMB

today allow us to infer statistical properties of inflaton
fluctuations during the inflationary era. This involves
working backwards from the CMB data, first to classical
curvature perturbations in the early Universe, and from
these, backwards even further to inflaton fluctuations dur-
ing the inflationary phase. After having highlighted the key
assumptions that are made in the standard treatment, we
will be in a position to understand exactly how corrections
to quantum theory during inflation are able to have an
effect on the CMB.

A. CMB observations and primordial curvature
perturbations

Employing angular coordinates ð	;�Þ on the sky, CMB
measurements provide us with a temperature function
Tð	;�Þ. Writing �Tð	;�Þ � Tð	;�Þ � �T, where �T is
the average temperature over the sky, the temperature
anisotropy may be decomposed into spherical harmonics,

�Tð	;�Þ
�T

¼ X1
l¼2

Xþl

m¼�l

almYlmð	;�Þ (29)

(where as usual we omit the dipole term). A mode l
corresponds to an angular scale � 60�=l.
A complete measurement of the microwave sky provides

us with one function Tð	;�Þ, or equivalently with one set
falmg of coefficients. In order to carry out a statistical
analysis of falmg, it is usually assumed (if only implicitly)
that the observed Tð	;�Þ is a single realization of a sto-
chastic process, whose probability distribution P½Tð	;�Þ�
(which may be thought of as representing a theoretical
‘‘ensemble of skies’’) satisfies the condition of statistical
isotropy:

P½Tð	� �	;�� ��Þ� ¼ P½Tð	;�Þ� (30)

for arbitrary angular displacements �	, ��. This condition
implies that, for a given l, each alm has the same (marginal)
probability distribution plðalmÞ, with variance
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Cl � hjalmj2i (31)

(the angular power spectrum, where h. . .i denotes an aver-
age over the theoretical ensemble).

Thus, given the assumption (30), it follows that for each
l we have what are, in effect, 2lþ 1 independent realiza-
tions of the same random variable (with the same proba-
bility distribution). The observed quantity

C
sky
l � 1

2lþ 1

Xþl

m¼�l

jalmj2

(constructed from measurements made on a single sky)
then provides an unbiased estimate of the angular power

spectrum Cl (that is, hCsky
l i ¼ Cl), with a ‘‘cosmic vari-

ance’’ given by

�Csky
l

Cl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

s
: (32)

For large values of l, the quantity Csky
l is an accurate

estimate of Cl (that is, we expect to find Csky
l � Cl). For

small values of l, however, Csky
l is an inaccurate estimate of

Cl.
The observed CMB anisotropy is caused by classical

inhomogeneities on the last scattering surface, when the
CMB photons decoupled (together with effects taking
place afterwards as the CMB photons propagate through
space towards us). These inhomogeneities in turn originate
from classical perturbations that were present at much
earlier times. In the long ‘‘primordial’’ period between
texitðkÞ and tenterðkÞ (during which k � Ha, or �phys 

H�1), the classical curvature perturbation

R k � 1

4

�
a

k

�
2ð3ÞRk (33)

is time independent. (Here, ð3ÞRk is the Fourier component
of the spatial curvature scalar on comoving hypersurfaces,
that is, on hypersurfaces with zero momentum density.) To
a good first approximation, we may ignore gravitational
waves, in which caseRk is the only independent degree of
freedom for the classical primordial perturbations. In terms
of Rk, the alm may be expressed as [58]

alm ¼ il

2�2

Z
d3kT ðk; lÞRkYlmðk̂Þ; (34)

where the transfer function T ðk; lÞ encodes the astrophys-
ical processes that generate the temperature anisotropy.

A given primordial curvature perturbationRk (for all k)
generates one set falmg of temperature-anisotropy coeffi-
cients. A probability distribution P½Rk� for Rk will
generate a probability distribution P½falmg� for falmg. If
we make the assumption of statistical homogeneity, that
P½Rk� is translationally invariant—that is, in position
space, P½Rðx� dÞ� ¼ P½RðxÞ� for arbitrary displace-

ments d—it follows that hRkRk0 ie�iðkþk0Þ�d ¼
hRkRk0 i and so

hRkR	
k0 i ¼ �kk0 hjRkj2i: (35)

From (34) and (35), the angular power spectrum (31)
may be written as

Cl ¼ 1

2�2

Z 1

0

dk

k
T 2ðk; lÞPRðkÞ; (36)

where

P RðkÞ � 4�k3

V
hjRkj2i (37)

is the primordial power spectrum. We shall assume, as is
usually done, that hjRkj2i is a function of k only.
Current measurements of the CMB show that PRðkÞ �

const (an approximately flat or scale-free spectrum) [59].

B. Inflationary slow-roll predictions

Standard inflation predicts an approximately flat primor-
dial power spectrum PRðkÞ. Let us briefly review how this
comes about.
An approximately homogeneous inflaton field �0ðtÞ þ

�ðx; tÞ (where � is a small perturbation), with a potential

V, has an energy density � � 1
2
_�2
0 þ Vð�0Þ. In the slow-

roll approximation, � � Vð�0Þ is approximately constant
in time. The Friedmann equation ð _a=aÞ2 ¼ ð8�G=3Þ� then
implies an approximate de Sitter expansion, a / eHt,

where H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8�G=3ÞVð�0Þ
p

. The time evolution of �0

is given by

3
_a

a
_�0 þ dV

d�0

¼ 0

(where in the slow-roll approximation we may neglect the

term €�0). The flatness conditions for V are " � 1, j
j �
1, where

" � 1

16�G

�
1

V

dV

d�0

�
2
; 
 � 1

8�G

1

V

d2V

d�2
0

: (38)

The primordial perturbations are generated by quantum
fluctuations during the slow roll. As a first approximation,
the quantum fluctuations may be calculated for an eternal
de Sitter expansion, and in this approximation one obtains
an exactly scale-free primordial power spectrum.
Corrections to this approximation yield small corrections
to the scale-free result.
The quantum theory of primordial perturbations has

been developed in great detail [1,58,60]. In the slow-roll
limit ( _H ! 0), with V satisfying the flatness conditions, the
inflaton perturbation � ¼ �ðx; tÞ evolves like a free mass-
less field [until at least a few e-folds after texitðkÞ for the
mode k]. The quantized field �̂ is usually assumed to be in
the vacuum state. One may then use standard quantum field
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theory to calculate the probability distribution for the in-
flaton perturbation �.

It is usually assumed that, a few Hubble times or e-folds
after texitðkÞ (that is, in the ‘‘late-time limit’’), the resulting
quantum probability distribution for � may be regarded as
a classical probability distribution over classical perturba-
tions �. This assumption has been justified by WKB-type
classicality at late times [61], by squeezing of the infla-
tionary vacuum state [62,63], and by environmental deco-
herence [64,65]. The latter, in particular, seems to
distinguish the field configuration basis (that is, the basis

of eigenstates of the field operator �̂) as a robust pointer
basis, where the relevant interactions are local in field
space [64,65]. The resulting distribution of field configu-
rations is then, for practical purposes, indistinguishable
from a classical distribution. Recent studies seem to con-
firm these conclusions: the pointer states consist (more
precisely) of narrow Gaussians that approximate eigen-

states of �̂ [66], and the locality of interactions in field
space ensures that at late times the density matrix becomes
essentially diagonal in the field configuration basis [67].
(See also Ref. [68] for further discussion of WKB classi-
cality in the late-time limit.)

Given a classical inflaton perturbation �, the corre-
sponding curvature perturbation is given by [1]

R k ¼ �
�
H
_�0

�k

�
t¼t	ðkÞ

; (39)

where t	ðkÞ is a time a few e-folds after texitðkÞ. The
perturbation Rk is time independent between t	ðkÞ and
the approach to tenterðkÞ (long after inflation ends), and is
believed to seed what eventually grow into the dominant
perturbations in the CMB.

Note that the inflaton perturbation � is defined on a
spatially flat slicing. (The inhomogeneous field � neces-
sarily vanishes on comoving slices, since the momentum

density � _�r� is by definition zero on such slices.) Then,
in the slow-roll limit _H ! 0, the backreaction of metric
perturbations on � can be ignored [1]. The curvature
perturbation R is defined on the comoving slicing. Thus,
(39) relates quantities defined on different slicings.

The predicted (quantum-theoretical) primordial power
spectrum, for Rk at t ¼ t	, is then given by

P QT
R ðkÞ ¼

�
H2

_�2
0

PQT
� ðkÞ

�
t	ðkÞ

; (40)

where

P QT
� ðkÞ � 4�k3

V
hj�kj2iQT (41)

is the power spectrum of the inflaton fluctuations.
As we have said, to a first approximation the inflaton

fluctuations are usually taken to be quantum vacuum fluc-
tuations in de Sitter spacetime. From the standard field
operator expansion

�̂ðx; tÞ ¼ X
k

�ðk=aþ iHÞ
k

ffiffiffiffiffiffiffiffiffi
2Vk

p âke
iðk�xþk=HaÞ

þ ðk=a� iHÞ
k

ffiffiffiffiffiffiffiffiffi
2Vk

p âyke
�iðk�xþk=HaÞ

�
(42)

in terms of mode functions

�þðx; tÞ /
�
k

a
þ iH

�
eiðk�xþk=HaÞ (43)

[solutions of (7) reducing to positive-frequencyMinkowski
modes in the short-wavelength limit k=a 
 H], the
Bunch-Davies vacuum is defined by âkj0i ¼ 0 (for all
k). In this quantum state, the two-point (equal-time) cor-
relation function is

h0j�̂ðx; tÞ�̂ðx0; tÞj0i ¼ X
k

ðk=aÞ2 þH2

2Vk3
eik�ðx�x0Þ (44)

(where the first term in the numerator gives a Minkowskian
contribution 1=4�2a2jx� x0j2). The quantum variance of
each mode is given by the Fourier transform of the quan-
tum two-point function,

hj�kj2iQT ¼ V

ð2�Þ3
Z

d3xe�ik�xh0j�̂ðxþ yÞ�̂ðyÞj0i;

yielding

hj�kj2iQT ¼ V

2ð2�Þ3
H2

k3

�
1þ k2

H2a2

�
: (45)

The width decreases with time, tending to a finite constant.
The power spectrum is

P QT
� ðkÞ ¼ k2

4�2a2
þ H2

4�2
: (46)

In the long-wavelength limit k=a � H (�phys 
 H�1),

where the mode is well outside the Hubble radius, we have

P QT
� ðkÞ ¼ H2

4�2
: (47)

[If instead we set k ¼ Ha, then PQT
� ðkÞ ¼ H2=2�2.]

To a lowest-order approximation, then, the quantum
fluctuations of the inflaton field generate a scale-free spec-
trum of primordial curvature perturbations:

P QT
R ðkÞ ¼ 1

4�2

�
H4

_�2
0

�
t	ðkÞ

: (48)

These perturbations Rk / �k remain frozen outside the
Hubble radius until the time tenterðkÞ is approached.
BecauseH and _�0 are in fact slowly changing during the

inflationary phase, higher-order corrections lead to a small

dependence of PQT
R ðkÞ on k.
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VI. TIME EVOLUTION OF NONEQUILIBRIUM
VACUA

We now turn to the effect of quantum nonequilibrium on
the predictions of inflationary cosmology. (A brief, pre-
liminary account was given in Ref. [25].) Our strategy is to
consider nonequilibrium corrections to the lowest-order
(scale-free) quantum spectrum, and then to compare these
effects with the higher-order quantum corrections.

In the Bunch-Davies vacuum, a mode kr has wave
function c kr ¼ c krðqkr; tÞ ¼ jc krjeiskr with a Gaussian
amplitude

jc krj2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

k

q e�q2
kr
=2�2

k (49)

of width

�2
k ¼

H2

2k3

�
1þ k2

H2a2

�
(50)

(contracting in time, and independent of r and of the
direction of k) and with a phase

skr ¼ � ak2q2kr
2Hð1þ k2=H2a2Þ þ hðtÞ; (51)

where

hðtÞ ¼ 1

2

�
k

Ha
� tan�1

�
k

Ha

��

is independent of qkr. [It is readily verified that the
above wave function c krðqkr; tÞ satisfies the Schrödinger
equation (17) for a mode kr, and that in the limit H ! 0,

a ! 1 one recovers the wave function c krðqkr; tÞ /
e�kq2

kre�ið1=2Þkt for the Minkowski vacuum.]
In the quantum vacuum, the qkr are independent random

variables, each with a Gaussian distribution of zero mean.
The width of each Gaussian decreases with time, approach-

ing the asymptotic value H=
ffiffiffiffiffiffiffiffi
2k3

p
(in the long-wavelength

limit k=a � H). In the nonequilibrium (de Broglie-Bohm)
vacuum, in contrast, each qkr evolves deterministically in
time, and the probability distribution for each qkr depends
on what the probability distribution was at some ‘‘initial’’
time.

The phase (51) implies a de Broglie velocity field

dqkr
dt

¼ 1

a3
@skr
@qkr

¼ � k2Hqkr
k2 þH2a2

: (52)

To solve (52) for the trajectories qkrðtÞ, it is convenient
to introduce the conformal time 
, defined by d
 ¼ dt=a.
(For a / eHt we have 
 ¼ �1=Ha; as t runs from �1 to
þ1, 
 runs from �1 to 0.) In terms of 
, the equation of
motion for qkr reads

dqkr
d


¼ k2
qkr
1þ k2
2

; (53)

which has the solution

qkrð
Þ ¼ qkrð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

q
: (54)

The width of the packet is given by

�2
k ¼

H2

2k3
ð1þ k2
2Þ: (55)

An arbitrary distribution �krðqkr; 
Þ [generally �
jc krðqkr; 
Þj2] necessarily satisfies the continuity equa-
tion

@�kr

@

þ @

@qkr

�
�kr

dqkr
d


�
¼ 0;

which for the velocity field (53) has the solution

�krðqkr; 
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

p �krðqkr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

q
; 0Þ (56)

for any given �krðqkr; 0Þ.
The time evolution amounts to a simple (homogeneous)

contraction of both jc krj2 and �kr. At times 
< 0, jc krj2
is a contracting Gaussian packet of width �kð
Þ ¼
�kð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

p
, and in the late-time limit 
 ! 0,

jc krj2 approaches a static Gaussian of width �kð0Þ ¼
H=

ffiffiffiffiffiffiffiffi
2k3

p
. At times 
< 0, �kr is a contracting arbitrary

distribution of width Dkrð
Þ ¼ Dkrð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

p
[with

arbitrary Dkrð0Þ], and in the late-time limit 
 ! 0, �kr

approaches a static packet of width Dkrð0Þ [where the
asymptotic packet differs from the earlier packet by a
homogeneous rescaling of qkr, as in (56)].
For simplicity, we assume that (like �k) the nonequilib-

rium width Dkr is independent of r and of the direction of
k, so that Dkr ¼ DkðtÞ. We then have the result

DkðtÞ
�kðtÞ

¼ ðconst in timeÞ �
ffiffiffiffiffiffiffiffiffi
�ðkÞ

p
: (57)

Note that, for each mode, the ‘‘nonequilibrium factor’’
�ðkÞ may be defined at any convenient fiducial time (in
particular, not necessarily at the same time for every k). At
least in this lowest-order approximation for the quantum
state �, it makes no difference whether we set the initial
conditions for nonequilibrium at the same time for all
values of k, or at different times for different values of k
[for example, at tðkÞ such that �physðkÞ exceeds some

critical value].

VII. NONEQUILIBRIUM POWER SPECTRUM

The above result for the nonequilibrium Bunch-Davies
vacuum may be written as

hj�kj2i ¼ hj�kj2iQT�ðkÞ: (58)

This implies that the nonequilibrium power spectrum for
the inflaton fluctuations takes the form
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P �ðkÞ ¼ PQT
� ðkÞ�ðkÞ; (59)

which for k=a � H reads

P �ðkÞ ¼ H2

4�2
�ðkÞ: (60)

The primordial power spectrum for the curvature per-
turbations is then

P RðkÞ ¼ PQT
R ðkÞ�ðkÞ;

where PQT
R ðkÞ is given by (48). Thus we have

P RðkÞ ¼ �ðkÞ
4�2

�
H4

_�2
0

�
t	ðkÞ

: (61)

In general, �ðkÞ � 1 and scale invariance is broken. In
future work, along the lines outlined in Sec. IV, we hope to
be able to predict features of the function �ðkÞ. For the
purposes of this paper, �ðkÞ is (in principle) an arbitrary
function to be constrained by observation.

VIII. GENERAL REMARKS

Before considering how CMB data may be used to
constrain the nonequilibrium function �ðkÞ, we make
some general remarks on the above scenario.

A. Transfer of microscopic nonequilibrium to
cosmological scales

We saw in Sec. VI that, for each mode k during the
inflationary phase, the respective widthsDkðtÞ and �kðtÞ of
the nonequilibrium and equilibrium distributions remain in

a fixed ratio DkðtÞ=�kðtÞ ¼
ffiffiffiffiffiffiffiffiffi
�ðkÞp

over time. This holds in
the approximation where the inflationary phase is treated
as an exact de Sitter expansion. At least to a first approxi-
mation, then, we may conclude that quantum nonequilib-
rium (if it exists) will not relax during the inflationary
phase, but is instead preserved over time.

Furthermore, because of the exponential expansion of
physical wavelengths �phys during inflation, nonequilib-

rium (if there is any to start with) will not only be preserved
but will also be transferred from microscopic to macro-
scopic scales. This ‘‘magnification’’ of the nonequilibrium
length scale is particularly striking in the late-time or large-
wavelength limit �phys 
 H�1, where the de Broglie ve-

locity field tends to zero for each mode, _qkr ! 0. In this
limit, which takes effect a few e-foldings after the mode
exits the Hubble radius, both �kr and jc krj2 become
frozen. Once this happens, any difference between �kr

and jc krj2 is preserved, and is transferred to larger and
larger length scales as the physical wavelength �phys ¼
aðtÞð2�=kÞ / eHt of the mode gets larger and larger. The
frozen nonequilibrium then exists at a physical length scale
that grows exponentially with time, from microscopic to
macroscopic scales.

Once inflation has ended, there will be a frozen non-
equilibrium distribution of curvature perturbations Rk at
macroscopic length scales. These perturbations are then
transferred to cosmological length scales by the subsequent
(post-inflationary) Friedmann expansion.

B. Quantum measurement of the inflaton field

As we saw in Sec. VB, in the standard quantum theory
of inflationary cosmology it is usual to assume that, during
inflation, when the physical wavelength of a mode signifi-
cantly exceeds the Hubble radius, the corresponding in-
flaton perturbation effectively ‘‘becomes classical’’—in
the sense that the final quantum probability distribution
for inflaton (and hence curvature) perturbations behaves, to
a good approximation, like a classical probability distribu-
tion. As mentioned in Sec. VB, various studies seem to
confirm the validity of this assumption [61–68]. In particu-

lar, the basis of eigenstates of the field operator �̂ (suitably
smeared with narrow Gaussians) seems to act as a robust
pointer basis, so that the quantum distribution of field
configurations is, for practical purposes, indistinguishable
from a classical distribution [64–66].
In the pilot-wave formulation of inflationary cosmology,

there is a well-defined inflaton configuration or ‘‘beable’’
(in Bell’s terminology [69]) at all times, even before
Hubble exit. In writing the formulas (60) and (61), we
have tacitly identified the inflaton beable after Hubble
exit with the ‘‘classical’’ inflaton field after Hubble
exit—where the latter generates the primordial curvature
perturbation via Eq. (39). This identification merits some
comment.
Generally speaking, in pilot-wave theory, it is the precise

value of the total beable configuration that (together with
the wave function) determines the outcome of a subsequent
quantum measurement. However, as a rule, one must be
cautious about identifying beable values with quantum
measurement values: their relationship must be established
on a case-by-case basis, through analysis of the particular
measurement process that is taking place. As is well known
[29,69], there are circumstances where a quantum mea-
surement outcome does not provide a faithful record of the
actual prior value of the beable (in which case the so-called
quantum ‘‘measurement’’ is in fact not a true measure-
ment). For instance, in the pilot-wave theory of nonrela-
tivistic particles, while the outcome of a quantum position
measurement usually has the same value as the actual
particle position prior to the measurement, for a quantum
momentum measurement the outcome usually does not
simply coincide with the prior particle momentum given
by de Broglie’s velocity formula. Instead, the quantum
momentum outcome depends on the initial particle posi-
tion in a way that depends on the details of the measure-
ment process. Thus, while quantum position measurements
are usually ‘‘faithful,’’ quantum momentum measurements
are usually not.
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Similarly, we expect that in the pilot-wave theory of
fields, a quantum measurement of the field configuration
will (usually) provide a faithful record of the value of the
actual field beable appearing in the de Broglie-Bohm dy-
namics. For other measurements, however, this simple
identification will not hold: instead, the outcomes will
depend on the initial field beable in a way that depends
on the details of the ‘‘measurement’’ process.

Now, in the case at hand, conventional analysis of the
quantum-to-classical transition during inflation indicates
that the environment effects a quantummeasurement of the
inflaton field in the basis of field configurations [64–67]. If
this is correct, then we are indeed justified in our above
identification of the de Broglie-Bohm inflaton field after
Hubble exit with the classical inflaton field after Hubble
exit.

Should the conventional analysis (for some reason) turn
out to be incorrect—in particular, if the quantum-to-
classical transition involves effective quantum measure-
ments of the inflaton field in a basis different from the field
configuration basis—then there will be a more complicated
relationship between the de Broglie-Bohm inflaton field
and the emergent classical inflaton field, a relationship that
will depend on the details of the effective measurement
process. There would then also be a more complicated
relationship between the nonequilibrium distribution for
the inflaton beable and the nonequilibrium distribution for
the primordial curvature perturbations.

C. Weak dependence on pilot-wave dynamics

It is worth noting that the above results for the time
evolution of nonequilibrium vacua are only weakly depen-
dent on the details of the de Broglie-Bohm dynamics. The
results are in fact determined by just two features: (a) there
is a field beable�ðx; tÞwhose time evolution is continuous
and differentiable, and (b) the dynamics is ‘‘separable,’’ in
the sense that for a product quantum state �½�; t� ¼Q

krc krðqkr; tÞ the velocity of each component qkr is
independent of the other qkr’s.

To see this, note that from (b) the evolution reduces to
that of a collection of independent one-dimensional sys-
tems. Then, in each one-dimensional configuration space
with coordinate qkr, the local conservation of quantum
equilibrium

@jc krj2
@t

þ @ðjc krj2vkrÞ
@qkr

¼ 0; (62)

for some velocity field vkr ¼ vkrðqkr; tÞ, uniquely fixes
vkr as

vkrðqkr; tÞ ¼ 1

jc krðqkr; tÞj2
Z 1

qkr

dq0kr
@jc krðq0kr; tÞj2

@t

(assuming that jc krj2vkr vanishes at infinity), as follows
immediately by integrating (62) with respect to the coor-
dinate qkr, from some fixed value qkr to 1.

Thus, for the case at hand, the assumption of a differ-
entiable and separable evolution fixes the de Broglie-Bohm
velocity field uniquely. Note that this uniqueness arises
only because the system reduces to a collection of inde-
pendent one-dimensional systems. It is only in one dimen-
sion that the local conservation of quantum equilibrium
fixes the velocity field. In two or more dimensions, other
velocity fields are possible, distinct from that of de Broglie
and Bohm [70].
The conditions (a) and (b) could certainly be violated in

other hidden-variables theories. There might, for example,
be no field beable�ðx; tÞ at all. Also, it is possible to have a
pilot-wave-type theory with a nonseparable dynamics [71].
Still, property (a) might well emerge in some limit from a
deeper hidden-variables theory. And property (b) seems
desirable, even if not strictly necessary. In any case, our
point here is to emphasize that (a) and (b) are the only
features of pilot-wave dynamics that really enter into our
considerations.

IX. BOUND ON PRIMORDIAL QUANTUM
NONEQUILIBRIUM

Let us now illustrate how the available data may be used
to constrain the nonequilibrium function �ðkÞ appearing in
the result (61) for the primordial power spectrum, where

the observed spectrum PRðkÞ ¼ PQT
R ðkÞ�ðkÞ consists of

the usual quantum contributions together with possible
nonequilibrium corrections (� � 1).
It is currently a very active field of research to determine

the k dependence of the observed spectrum PRðkÞ, and to
compare the results with the k dependence of the quantum-

theoretical prediction PQT
R ðkÞ. It is straightforward to rein-

terpret these studies as effectively providing constraints on
the nonequilibrium function �ðkÞ.
The observed spectrum PRðkÞ is usually parametrized

in terms of the spectral index nðkÞ, defined by

nðkÞ � 1 � d lnPR

d lnk
; (63)

and the running of the spectral index, n0ðkÞ � dn=d lnk.
For nðkÞ approximately constant, it is convenient to write
the power spectrum in the form

P RðkÞ ¼ PRðk0Þ
�
k

k0

�
nðkÞ�1

; (64)

where k0 is some chosen reference or pivot point. [Note
that the definitions (63) and (64) of nðkÞ generally agree at
k ¼ k0 only, and they agree for all k if dnðkÞ=dk ¼ 0.] The
index nðkÞ may be written as a Taylor expansion

nðkÞ ¼ n0 þ 1

2
ln

�
k

k0

�
n00 þ . . . ;

where n0 � nðk0Þ is the spectral index at k ¼ k0, and n
0
0 �

ðdn=d lnkÞ0 is the running of the spectral index at k ¼ k0.
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The observed values of nðkÞ, n0ðkÞ may be used to set
bounds on early quantum nonequilibrium. To illustrate
this, we shall consider a best-fit value of n0,

n0 ¼ 0:960þ0:014
�0:013 (65)

at k0 ¼ 0:002 Mpc�1 [59]. [Adding nonequilibrium pa-
rameters would of course affect the best-fitting procedure,
but the value (65) suffices here for illustration. A best
fitting of nonequilibrium inflationary models to CMB
data is outside the scope of this paper.]

We have PRðkÞ ¼ PQT
R ðkÞ�ðkÞ, where PQT

R ðkÞ is pre-

dicted by standard inflationary theory. One may adopt the
following parametrization:

P QT
R ðkÞ ¼ PQT

R ðk0Þ
�
k

k0

�
nQTðkÞ�1

; (66)

where nQTðkÞ is the usual (quantum-theoretical) spectral
index, and

�ðkÞ ¼ �ðk0Þ
�
k

k0

�
�ðkÞ�1

; (67)

where �ðkÞ is the ‘‘nonequilibrium spectral index.’’ The
observed index (minus 1) is then a sum

ðn� 1Þ ¼ ðnQT � 1Þ þ ð�� 1Þ (68)

of contributions from quantum theory and from nonequi-
librium corrections.

In the exact limit _H ! 0, we have nQT � 1 ¼ 0; and in

exact quantum equilibrium, we have �� 1 ¼ 0. Slow-roll
inflation predicts a small tilt [1,58]

nQTðkÞ � 1 ¼ �6"þ 2
 (69)

where, in the definitions (38) of " and 
, the quantities V
and dV=d�0 are evaluated at texitðkÞ (for which k ¼ aH).

Defining �0 � �ðk0Þ and nQT0 � nQTðk0Þ, we obtain a

bound for j�0 � 1j on the assumption that jnQT0 � 1j is
indeed significantly less than 1 (as predicted by inflation).

Otherwise, in principle, both nQT0 � 1 and �0 � 1 could be

large—with comparable magnitudes and opposite signs—
and the observed small value of their sum n0 � 1 ¼
�0:04þ0:014

�0:013 could be an accident. We assume here that

the observed small value jn0 � 1j & 0:1 is not due to such
a ‘‘conspiratorial’’ cancellation. Then, roughly, we may
write (again at k0 ¼ 0:002 Mpc�1)

jnQT0 � 1j & 0:1; j�0 � 1j & 0:1: (70)

The bound j�0 � 1j & 0:1 on the nonequilibrium index
may be converted into a bound on the hidden-variable
entropy ShvðkÞ—defined by (28)—for modes with k close
to k0 ¼ 0:002 Mpc�1. [As we have seen, ShvðkÞ is the
relative entropy of �kr with respect to jc krj2, and is a
natural measure of the difference between �kr and jc krj2.]
We have �ðkÞ � D2

k=�
2
k, whereDk and�k are the widths of

�kr and jc krj2, respectively. We know that jc krj2 is a

Gaussian packet, and that in the late-time limit �2
k ¼

H2=2k3. For the purposes of illustration, let us model �kr

as a Gaussian (of width Dk). We then have

ShvðkÞ ¼ 1
2ð1� �ðkÞ þ ln�ðkÞÞ; (71)

with �ðkÞ parametrized by (67). If �ðkÞ varies slowly, then
close to k0 we may write �ðkÞ � �0. Taking �ðk0Þ ¼ 1 and
assuming that j�0 � 1j is small, we have

ShvðkÞ � �1
4ð�0 � 1Þ2ln2ðk=k0Þ:

Restricting ourselves to a range of k close to k0, such that
j lnðk=k0Þj & Oð1Þ, we then have

jShvðkÞj & 1
4ð�0 � 1Þ2 & 10�2: (72)

Note that approximate equilibrium in this region (close
to k0) does not preclude large departures from equilibrium
at much smaller or at much larger values of k.

X. POSSIBLE LOW-POWER ANOMALY
AT SMALL l

In the low-l region (say l & 20), the angular power
spectrum is dominated by the Sachs-Wolfe effect (resulting
from nonuniformities in the local gravitational potential on
the last scattering surface).
In this region, T 2ðk; lÞ ¼ �H4

0j
2
l ð2k=H0Þ [1], where H0

is the Hubble constant today, so that [using (36)]

Cl ¼ H4
0

2�

Z 1

0

dk

k
j2l ð2k=H0ÞPRðkÞ:

For PRðkÞ ¼ const we then have

Cl /
Z 1

0

dk

k
j2l ðkÞ ¼

1

2lðlþ 1Þ ;

so that lðlþ 1ÞCl ¼ const at low l—the Sachs-Wolfe pla-
teau —as seems to be approximately observed. (The inte-
grated Sachs-Wolfe effect, taking place along the line of
sight, adds a small ‘‘rise’’ at very small l.)
It has been suggested that the data contain anomalously

low power at small l, though this is controversial. If there is
such low power, it could of course be due to some inade-
quate processing of the data (such as in the modeling of
foregrounds) or to some local astrophysical effect.
Otherwise, the signal could be primordial in origin, reflect-
ing an anomaly in the underlying spectrum PRðkÞ of
curvature perturbations. In the latter case, the explanation
might lie in some modification of the standard inflationary
scenario, or in new physics.
If there is a low-power signal at small l requiring new

physics, then quantum nonequilibrium provides a possible

candidate. Taking PRðkÞ ¼ PQT
R ðkÞ�ðkÞ, and assuming (to

a first approximation) that PQT
R ðkÞ ¼ const, we may write

Cl

CQT
l

¼ 2lðlþ 1Þ
Z 1

0

dk

k
j2l ð2k=H0Þ�ðkÞ: (73)
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If �ðkÞ ¼ 1 everywhere, then Cl=C
QT
l ¼ 1. A low-power

anomaly, Cl < CQT
l , could be explained by having �ðkÞ<

1 in some suitable region of k space. Because the integral is
dominated by the scale k � lH0=2, a significant drop in Cl

requires �ðkÞ< 1 for k in this region, that is, �ðkÞ< 1 for
wavelengths � � ð4�=lÞH�1

0 (comparable to today’s

Hubble radius).
To have �ðkÞ< 1 for a primordial perturbation mode k

means that the widthDk of the nonequilibrium distribution
for the corresponding inflaton mode is less than the quan-
tum equilibrium width �k. It is reasonable to expect this, if
one accepts the scenario of Sec. II, according to which
quantum noise arises from statistical relaxation processes
(presumably taking place in the very early Universe). On
this view, it is natural to assume that early nonequilibrium
would have a less-than-quantum dispersion, or �ðkÞ< 1—
as opposed to an early larger-than-quantum dispersion
[�ðkÞ> 1] which, while possible in principle, seems less
natural. Furthermore, we saw in Sec. IVA that, in a sup-
posed preinflationary era, relaxation to quantum equilib-
rium can be suppressed on large spatial scales, and one
expects that at the onset of inflation nonequilibrium is most
likely to have survived at wavelengths � * �c, where the
value of �c remains to be estimated (pending the develop-
ment of an appropriate preinflationary model). Therefore,
it appears that a dip �ðkÞ< 1 in the power spectrum below
some critical wave number kc ¼ 2�=�c could be naturally
explained in terms of early quantum nonequilibrium sur-
viving from a very early preinflationary era, though this
possibility remains to be developed in detail.

As for the possible production of nonequilibrium in the
Planckian regime (Sec. IVB), in the absence of a more
detailed model we are unable to give any strong argument
for �ðkÞ< 1, as opposed to �ðkÞ> 1, for modes with � &
�0
c (where �0

c remains to be estimated; see Sec. IVB).
Again modeling �kr as a Gaussian, the hidden-variable
entropy ShvðkÞ for a single mode is given in terms of �ðkÞ
by (71). For a given value of ShvðkÞ—perhaps set by some
application of (27)—Eq. (71) possesses two solutions for
�ðkÞ, one with � < 1 and one with � > 1. That is, the same
nonequilibrium entropy can be achieved by both a less-
than-quantum and a larger-than-quantum dispersion. On
the other hand, from the behavior of the function 1� �þ
ln�, one sees that the solution with � < 1 always has a
smaller value of j�� 1j than does the solution with � > 1;
that is, the solution with � < 1 has a dispersion that is
closer to the quantum value. On this (weak) basis, one
might suggest that � < 1 will be preferred. A stronger
argument for � < 1 might come from a detailed under-
standing of the preservation of information by means of
nonequilibrium noise suppression in the outgoing quantum
state of an evaporating black hole.

In any case, focusing here on the comparison with ob-
servation, let us consider the effect at low l of some simple
examples of functions �ðkÞ.

As a first example, motivated by a possible long-
wavelength suppression of relaxation at very early (prein-
flationary) times, we take �ðkÞ ¼ 0 for k < kc and �ðkÞ ¼
1 for k > kc, where the simple cutoff is used to model a
suppression of quantum noise at wavelengths � > �c ¼
2�=kc. We then have

Cl � CQT
l

CQT
l

¼ �2lðlþ 1Þ
Z kc

0

dk

k
j2l ð2k=H0Þ: (74)

Again, the dominant scale is k � lH0=2, and the correction
to Cl will be significant only if the range of integration
ð0; kcÞ overlaps substantially with this scale—that is, kc
cannot be much smaller than lH0=2.
Note that if, instead, we did take kc � lH0=2, the cor-

rection to Cl would not only be small, it would be unob-
servable even in principle, because it would be smaller than
the cosmic variance (32). For k � lH0=2we have approxi-
mately j2l ð2k=H0Þ � ð2ll!=ð2lþ 1Þ!Þ2ð2k=H0Þ2l, so that

Cl � CQT
l

CQT
l

� �ðlþ 1Þ
�

2ll!

ð2lþ 1Þ!
�
2
�
2kc
H0

�
2l
:

This correction falls off rapidly with increasing l, and is
very small even for the lowest values of l: for example,

even taking 2kc=H0 � 1, we find ðC4 � CQT
4 Þ=CQT

4 �
�6� 10�6. Because such corrections are much smaller

than the cosmic variance �Csky
l =Cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ 1Þp

, they

cannot be measured meaningfully, even in principle. To
obtain a measurable effect, the cutoff kc in (74) must not be
small compared to lH0=2.
A second example is motivated by the possibility of

gravitationally induced nonequilibrium at small scales, at
wavelengths � & �0

c. If we assume that the nonequilibrium
takes the form of noise suppression (� < 1), one might
model this again with a simple cutoff, taking �ðkÞ ¼ 1 for
k < k0c and �ðkÞ ¼ 0 for k > k0c, where k0c ¼ 2�=�0

c. We
then have

Cl � CQT
l

CQT
l

¼ �2lðlþ 1Þ
Z 1

k0c

dk

k
j2l ð2k=H0Þ: (75)

For a significant effect, the range of integration ðk0c;1Þ
must again overlap substantially with the dominant region
k � lH0=2—which now implies that k0c cannot be much
larger than lH0=2.
As a third example, we consider a power law

�ðkÞ ¼ �ðk0Þ
�
k

k0

�
�0�1

(76)

(with constant index �0). From (73) we then have

Cl

CQT
l

¼ 2lðlþ 1Þ�ðk0Þ
�
H0

2k0

�
�0�1 Z 1

0
dxj2l ðxÞx�0�2; (77)

where
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Z 1

0
dxj2l ðxÞx�0�2 ¼

ffiffiffiffi
�

p
4

�½ð3� �0Þ=2��½lþ ð�0 � 1Þ=2�
�½ð4� �0Þ=2��½lþ ð5� �0Þ=2� :

Should the existence of a low-power anomaly be con-
firmed, one might try to match the anomaly with one of the
above nonequilibrium spectra (74), (75), or (77).

According to the analysis in Ref. [72], cutting off the
power below a wave number kc � 3� 10�4 Mpc�1 (com-
parable to the inverse Hubble scale H0 ¼ 2:4�
10�4 Mpc�1) slightly improves the fit to the three-year
Wilkinson Microwave Anisotropy Probe data, but the im-
provement does not seem large enough to justify any
conclusion that such a cutoff really exists. Still, the possi-
bility of reduced power at large scales is worth exploring,
since it could originate from an early nonequilibrium sup-
pression of quantum noise (as discussed in Sec. IVA).

XI. NONRANDOM PHASES AND INTERMODE
CORRELATIONS

So far, we have considered only the angular power
spectrum Cl of the microwave sky, and how this could be
affected by nonequilibrium corrections to the primordial
(scalar) power spectrum PRðkÞ. Here, we consider how
primordial non-Gaussianity could arise from early quan-
tum nonequilibrium.

The primordial curvature perturbations Rk are usually
assumed to constitute a Gaussian random field, for which
the power spectrum provides a complete characterization
of the statistical properties. The phases of Gaussian per-
turbations are randomly distributed, and there are no inter-
mode correlations.

In standard inflationary scenarios, the Gaussianity of
Rk arises directly from the Gaussianity of the quantum
vacuum fluctuations of the inflaton perturbation �k. (The
Gaussianity of Rk is not, as is sometimes claimed, a mere
consequence of the central limit theorem.) In the quantum
Bunch-Davies vacuum, the inflaton probability distribution
at conformal time 
 is given by

PQT½�;
� ¼ j�½�;
�j2 ¼ Y
kr

jc krðqkr; 
Þj2;

where, as we saw in Sec. VI, each jc krj2 is a Gaussian of
zero mean and width �2

k ¼ ðH2=2k3Þð1þ k2
2Þ. The two-
point function h0j�̂ðx; 
Þ�̂ðx0; 
Þj0i is given by (44). The

three-point function h0j�̂ðx; 
Þ�̂ðx0; 
Þ�̂ðx00; 
Þj0i van-
ishes, as do all odd-point functions. Higher n-point func-
tions (for n even) reduce to sums of products of the two-
point function, as expected for a Gaussian random field. In
quantum equilibrium, then, the generation of primordial
curvature perturbationsRk / �k by inflaton perturbations
is a Gaussian random process.

However, as a general matter of principle, the primordial
perturbations could be non-Gaussian. And if one considers
quantum nonequilibrium for the inflaton field, there is no

particular reason why the nonequilibrium inflaton fluctua-
tions should be Gaussian.
We have already seen that, in quantum nonequilibrium,

the probability distribution �krðqkr; 
Þ for a single mode
of the inflaton field need not take the quantum Gaussian
form (49). Simple forms of non-Gaussianity include a
nonzero skewness or kurtosis of �krðqkr; 
Þ [where the
marginal �krðqkr; 
Þ for qkr may, in general, be obtained
from a correlated joint distribution P½qkr; 
�, as discussed
further below]. But non-Gaussianity can take on a wide
variety of forms, and various measures of it have been
proposed. Some workers have reported significant primor-
dial non-Gaussianity in the CMB data [73], while others
maintain that the data are consistent with primordial
Gaussianity [59].
Let us show how quantum nonequilibrium can result in

nonrandom phases and intermode correlations for the pri-
mordial perturbations.
The coefficients alm ¼ jalmjei’lm in the spherical har-

monic expansion (29) are of course generally complex
numbers, and their phases ’lm contain a lot of information
about the morphology of the temperature anisotropy
�Tð	;�Þ (see, for example, Ref. [74]). Assuming again
that the underlying ‘‘ensemble of skies’’ is statistically
rotationally invariant, the probability distribution for each
’lm must be independent of m. For a fixed value of l, we
then have 2lþ 1 phases ’lm with the same probability
distribution plð’lmÞ, and for large l we may use the mea-
sured values of the ’lm to probe plð’lmÞ. At least to a first
approximation, current data are consistent with plð’lmÞ
being uniform on the unit circle. According to the basic
formula (34), each alm is a linear combination of all the
curvature perturbation components Rk. And according to
the inflationary result (39), each Rk is proportional to the
late-time inflaton perturbation �k. Thus, the phase ’lm of
each alm is ultimately determined by the phases 	k of all
the inflaton perturbation components �k ¼ j�kjei	k .
In quantum equilibrium, the inflaton phases 	k have a

time-independent distribution �QT
k ð	kÞ that is uniform on

the unit circle:

�QT
k ð	kÞ ¼ 1

2�
:

This follows immediately from (49): the real and imagi-

nary parts of �k ¼
ffiffiffi
V

p
ð2�Þ3=2 ðqk1 þ iqk2Þ have a joint

Gaussian distribution / e�ðq2
k1
þq2

k2
Þ=2�2

k that is always con-
stant on circles centered on the origin in the complex �k

plane.
In quantum nonequilibrium, the inflaton phases can at

some initial (conformal) time 
i have an arbitrary distri-
bution �kð	k; 
iÞ. Will the subsequent time evolution gen-
erate a late-time distribution that tends towards uniformity
on the unit circle? Not in the approximation considered

here. The trajectories qkrð
Þ ¼ qkrð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
2

p
obtained

in Sec. VI imply that
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	kð
Þ ¼ tan�1ðqk2ð
Þ=qk1ð
ÞÞ ¼ tan�1ðqk2ð0Þ=qk1ð0ÞÞ:
Thus, during inflation, the phase 	k of each inflaton mode
is static, so that any initial nonequilibrium distribution
(with nonrandom phases) will remain unchanged over
time, �kð	k; 
Þ ¼ �kð	k; 
iÞ for all values of conformal
time 
. [In the complex�k plane, the evolution of the joint
probability distribution for qk1, qk2 amounts to a purely
radial contraction with time, so that the distribution
�kð	k; 
Þ of phases is time independent.]

We conclude that the time evolution during the infla-
tionary era does not scramble the phases of the inflaton
perturbations. Any initial nonuniformity (or nonrandom-
ness) in the phase distribution will remain frozen, all the
way to the late-time limit
 ! 0. It would be interesting, in
future work, to explore how this could affect the phases
’lm of the measured coefficients alm in the temperature
anisotropy.

We now consider nonequilibrium intermode correla-
tions. In Sec. VI we assumed, for simplicity, that the
nonequilibrium distribution satisfied the factorizability
condition (19), so that the modes were uncorrelated even
in nonequilibrium. However, in principle, correlations
among modes are possible: in quantum nonequilibrium,
the inflaton modes can be correlated even though j�j2 (for
the Bunch-Davies vacuum) is a product.

In terms of conformal time 
, an arbitrary correlated
joint distribution P½qkr; 
� will evolve according to the
continuity equation

@P

@

þX

kr

@

@qkr

�
P
dqkr
d


�
¼ 0: (78)

Because the wave functional is still that of the Bunch-
Davies vacuum, the velocity field dqkr=d
 is still given by
(53) and the trajectories in configuration space are still
given (mode by mode) by the result (54). Given the tra-
jectories, the general solution of (78) may be constructed
using the property that P=j�j2 is constant along trajecto-
ries (where this follows from the fact that P and j�j2 obey
the same continuity equation). Replacing the labels kr by a
single index n, we may equate

Pðq1ð0Þ; q2ð0Þ; . . . ; qnð0Þ; . . . ; 0Þ
jc 1ðq1ð0Þ; 0Þj2jc 2ðq2ð0Þ; 0Þj2 . . . jc nðqnð0Þ; 0Þj2 . . .

with

Pðq1ð
Þ; q2ð
Þ; . . . ; qnð
Þ; . . . ; 
Þ
jc 1ðq1ð
Þ; 
Þj2jc 2ðq2ð
Þ; 
Þj2 . . . jc nðqnð
Þ; 
Þj2 . . .

:

Using the trajectories qnð
Þ ¼ qnð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2n


2
p

and

jc nðqn; 
Þj2
jc nðqn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2n


2
p

; 0Þj2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2n


2
p ¼ �nð0Þ

�nð
Þ
[where the width �nð
Þ is given by (55)], we deduce that

Pðq1; q2; . . . ; qn; . . . ; 
Þ

¼ P

�
�1ð0Þ
�1ð
Þq1;

�2ð0Þ
�2ð
Þ q2; . . . ;

�nð0Þ
�nð
Þqn; . . . ; 0

�Y
n

�nð0Þ
�nð
Þ :

This is an exact solution for the evolution of an arbitrary
distribution, expressed in terms of the distribution
Pðq1; q2; . . . ; qn; . . . ; 0Þ at conformal time 
 ¼ 0.
The possibility of nonequilibrium allows the distribution

P½qkr; 
i� at some initial time 
i to be, in principle, any-
thing at all. To narrow down the range of possibilities, one
might impose the requirement of statistical homogeneity,
P½�ðx� dÞ; 
i� ¼ P½�ðxÞ; 
i� (for arbitrary spatial dis-
placements d).
Clearly, allowing nonrandom phases and intermode cor-

relations in the inflationary vacuum opens up a number of
novel possibilities. Indeed, the subject of non-Gaussianity
for quantum nonequilibrium states deserves to be devel-
oped in more detail.

XII. CONCLUSION

We have shown how inflationary cosmology (assuming
it to be essentially correct) may be used to test the validity
of quantum theory at very short distances and at very early
times. In particular, we have considered the possible effects
of quantum nonequilibrium, as described by the hidden-
variables theory of de Broglie and Bohm, during the infla-
tionary phase. We have shown, by means of simple ex-
amples, how CMB data may be used to set bounds on
nonequilibrium deviations from quantum theory.
As for the possible origin of such deviations, we have

outlined a scenario where quantum nonequilibrium during
the inflationary phase arises from relaxation suppression
(for long-wavelength modes) in a preinflationary era. This
scenario suggests that primordial nonequilibrium could set
in above some infrared cutoff �c (though the value of �c

remains to be estimated). We have also considered the
more speculative possibility that nonequilibrium could be
generated during the inflationary era, by novel gravita-
tional effects at the Planck scale.
We have, for the most part, discussed quantum nonequi-

librium corrections to the primordial (scalar) power spec-
trum PRðkÞ. A preliminary discussion was also given
showing how primordial non-Gaussianity (in particular,
nonrandom phases and intermode correlations) could also
arise from early quantum nonequilibrium.
In this paper we have, for simplicity, considered only the

(dominant) scalar part of the primordial perturbations. The
standard quantum theory of perturbations around a classi-
cal background includes tensor contributions (transverse-
traceless metric perturbations, or gravitational waves), as
well as the scalar part considered here [1,58,60]. It would
be straightforward to extend the present treatment to in-
clude tensor perturbations. The standard formalism may be
written in the functional Schrödinger picture and converted
into a de Broglie-Bohm theory in the usual way, by re-
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interpreting the quantum probability current in configura-
tion space in terms of an equilibrium ensemble of trajecto-
ries. [As mentioned in Sec. II, a de Broglie-Bohm velocity
field (2) may be defined by this means for any system with
a Hamiltonian given by a differential operator on configu-
ration space [32].] Once the velocity field for the trajecto-
ries has been identified, one can consider the evolution of
an arbitrary nonequilibrium ensemble. The extended con-
figuration would now include the transverse-traceless met-
ric perturbations (with two independent components,
corresponding to the two possible states of polarization,
each with approximately the same action as a free massless
scalar field). A de Broglie-Bohm velocity field would be
defined for these degrees of freedom as well.

An important topic that should be examined is how
quantum nonequilibrium would affect the consistency re-
lation between the power spectra for the scalar and tensor
perturbations. This relation is especially interesting be-
cause it relates fluctuations for distinct degrees of freedom,
and because it is independent of the form of the inflaton
potential. Presumably, quantum nonequilibrium would, in
general, have different effects on different degrees of free-
dom, resulting in a violation of the consistency relation.

If standard inflationary cosmology is essentially correct,
then observations of the CMB have already confirmed—to
a first approximation—the validity of the quantum (Born-
rule) prediction for the inflaton power spectrum during the
inflationary phase. More accurate measurements of the
primordial power spectrum will enable us to set unprece-
dented bounds on violations of quantum theory, at very
short distances and at very early times. And close scrutiny
of other possible features, such as various forms of non-
Gaussianity, will provide further tests of basic quantum
predictions.

Should inflation be very firmly established, and should it
be found that the predictions of quantum theory continue to

hold well at all accessible length scales during the infla-
tionary era, then this would constitute considerable evi-
dence against the hypothesis of quantum nonequilibrium at
the big bang (though, of course, nonequilibrium from an
earlier era might simply have not survived into the infla-
tionary phase). Furthermore, it would rather undermine the
view that quantum theory is merely an effective description
of an equilibrium state. In principle, one could still believe
that hidden variables exist, and that the hidden-variables
distribution is restricted to quantum equilibrium even at the
shortest distances and earliest times. But in the complete
absence of nonequilibrium, the detailed behavior of the
hidden variables (such as the precise form of the trajecto-
ries in de Broglie-Bohm theory) would be forever untest-
able. While exact equilibrium always and everywhere may
constitute a logically possible world, from a general sci-
entific point of view it seems unacceptable, and the com-
plete ruling out of quantum nonequilibrium by experiment
would suggest that hidden-variables theories should be
abandoned.
On the other hand, a positive detection of quantum

nonequilibrium phenomena in the early Universe (or in-
deed elsewhere [25]) would be of fundamental interest,
opening up a new and deeper level of nature to experimen-
tal investigation.
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