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The no-boundary wave function (NBWF) specifies a measure for prediction in cosmology that selects

inflationary histories and remains well behaved for spatially large or infinite universes. This paper

explores the predictions of the NBWF for linear scalar fluctuations about homogeneous and isotropic

backgrounds in models with a single scalar field moving in a quadratic potential. We treat both the

spacetime geometry of the universe and the observers inhabiting it quantum mechanically. We evaluate

top-down probabilities for local observations that are conditioned on the NBWF and on part of our data as

observers of the universe. For models where the most probable histories do not have a regime of eternal

inflation, the NBWF predicts homogeneity on large scales, a spectrum of observable fluctuations with a

small non-Gaussian component, and a small amount of inflation in our past. By contrast, for models where

the dominant histories have a regime of eternal inflation, the NBWF predicts significant inhomogeneity on

scales much larger than the present horizon, a Gaussian spectrum of observable fluctuations, and a long

period of inflation in our past. The absence or presence of non-Gaussianity in our observable universe

therefore provides information about its global structure, assuming the NBWF.
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I. INTRODUCTION

Inflation tends to make the universe so large that we can
at best observe only a tiny part of it. Even for a closed
universe it has been argued that, when there is a regime of
eternal inflation, inhomogeneities can lead to an infinitely
large reheating surface [1]. Bubble nucleation in false
vacuum models, for instance, leads to inhomogeneous
universes that contain infinite open spatial slices of con-
stant density inside the bubbles [2]. The issues that arise for
prediction as a consequence of large or infinite sized uni-
verses are loosely referred to as the measure problem.1

This is one of a series of papers [4–6] devoted to the
measure for prediction provided by the no-boundary quan-
tum state of the universe (NBWF) [7,8]. If the universe is a
quantum mechanical system it has a quantum state. This
state predicts probabilities for alternative histories of the
universe and everything in it, including the alternative
histories of its spacetime geometry. It seems inevitable
that any discussion of prediction in fundamental cosmol-
ogy should take these probabilities into account. Indeed, it
is plausible that, except for an assumption of the typicality
of our data, no measure beyond that supplied by the NBWF
is needed for any observational prediction.

Previous papers [4–6] considered the NBWF’s predic-
tions in homogeneous, isotropic minisuperspace models.
We showed how the no-boundary measure for observations

is well defined even in the limit of very large universes
provided that the quantum nature of the observer making
the observation is taken into account. In this paper we
extend this work to consider linear fluctuations in matter
and geometry away from homogeneity and isotropy. This
enables us to consider predictions for observable quantities
such as those connected with the cosmic microwave back-
ground (CMB). We continue to model the matter by a
single scalar field moving in a quadratic potential. We
also continue with our simple model of an observer as a
physical system characterized by data D and a probability
pEðDÞ to exist in any one Hubble volume on spacelike
surfaces specified by D.
We will describe our assumptions and procedures for

calculation in Sec. II. But one crucial distinction should be
mentioned at the outset—the difference between top-down
(TD) and bottom-up (BU) probabilities [9].
By itself, the NBWF predicts the probabilities for the

alternative, four-dimensional, classical histories that the
universe may exhibit. We call these the BU probabilities
for the classical ensemble. However, we do not observe
entire histories. Instead our observations are restricted to a
light cone located somewhere in the universe and extend-
ing over roughly a Hubble volume. Predictions for obser-
vations in cosmology are necessarily conditioned on a
description of the local observational situation in addition
to the NBWF. For instance, an observation of the CMB
spectrum depends on when and where the observation is
made in the history of the universe. In general, probabil-
ities for our observations are conditioned on some part of
our data D and predict other properties of the universe.

1Although it is usually discussed in the context of inflation (see
e.g.[3] for recent work), the measure problem is not specific to
inflationary cosmology. Similar issues arise in any theory of
cosmology that predicts spatially infinite universes.
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Probabilities conditioned on some part of our data are
called TD probabilities. They can differ significantly
from the BU probabilities for the same alternatives as those
for the number of e-folds of inflation discussed in [5]. The
probabilities for perturbations that are within our current
horizon that will be calculated here provide another illus-
tration of this difference.

After a brief statement of our assumptions and proce-
dures in Sec. II the paper proceeds to derive the TD
probabilities for local observations related to fluctuations
as follows: In Secs. III and IV we calculate the classical
ensemble of four-dimensional, Lorentzian, homogeneous,
and isotropic (homo/iso) histories with linear scalar fluc-
tuations predicted by the semiclassical approximation to
the NBWF. The real part of the Euclidean action of the
complex saddle points corresponding to the different his-
tories in the ensemble provides the BU NBWF probabil-
ities of both the homo/iso backgrounds and their
perturbations viewed as global features of the universe.
From these bottom-up probabilities, one can obtain pre-
dictions for local observations such as the CMB tempera-
ture anisotropies. This is done in Sect. V where we
calculate the top-down probabilities for observing different
perturbations inside our current horizon. We find a novel
non-Gaussian component to the spectrum of perturbations
on currently observable scales in models where the most
probable histories do not have a regime of eternal inflation.
By contrast, for models where the dominant histories have
a regime of eternal inflation, we find the NBWF predicts a
Gaussian spectrum of observable fluctuations. In Sec. VI
we comment on backreaction effects in the regime of
eternal inflation, and argue that these are unlikely to
change the above results. Finally in Sec. VII we present
our conclusions.

II. FROM THE NBWF TO PROBABILITIES
FOR OUR OBSERVATIONS

This section sets out our assumptions and procedures for
calculating the probabilities for our observations from a
quantum state of the universe. These are then illustrated in
a simple model.

A. Framework

A quantum universe with a quantum state.—We assume
that the universe is a closed quantum mechanical system
with a particular quantum state. That state is taken to be the
NBWF. The state predicts probabilities for the individual
members of decoherent sets of alternative, coarse-grained,
four-dimensional histories of the universe and its contents
according to the principles of generalized quantum theory
[10]. We call these bottom-up (BU) probabilities.

Bottom-up probabilities for the classical ensemble.—In
particular, the state predicts the probabilities for the clas-
sical ensemble consisting of four-dimensional alternative
histories with high probabilities for correlations in time

governed by classical equations of motion. In [4,5,11] we
described how to calculate a semiclassical approximation
for the probabilities of these histories from the semiclassi-
cal approximation to the NBWF assuming decoherence in
an appropriate coarse graining. In this paper we restrict
attention to probabilities of alternatives that can be defined
in terms of these classical histories. Simple examples are
the probabilities for the number of inflationary e-folds or
for the size of fluctuations away from homogeneity and
isotropy.
Top-down probabilities for observations.—Probabilities

for our2 observations are not probabilities for a four-
dimensional history of the universe. Rather they are prob-
abilities for local alternatives at a particular time and place
in a classical history. They are constructed from the
BU probabilities supplied by the NBWF by conditioning
on at least that part of our data that describes what we
know of our location in spacetime. We call probabilities
conditioned on all or part of our data top-down (TD)
probabilities.
Observers as quantum systems.—As observers we are

quantum systems within the universe characterized at an
appropriate coarse-grained level by the data D that we
possess—including a physical description of ourselves.
We arose from physical processes that occurred over the
universe’s history. We are therefore not certain to exist in
the universe. Indeed, there is only a very tiny probability
pEðDÞ for an instance of the data D in any Hubble volume.
However, in a very large universe the probability becomes
significant that the data D are replicated elsewhere. All we
know for sure about the universe is that it exhibits at least
one instance of the data D—a situation we abbreviate by
D�1. TD probabilities can differ significantly from BU
probabilities for the same alternatives when these facts
about observers are taken into account as we now illustrate
in a very simple model.

B. Procedures illustrated by a simple model

Consider a toy model universe consisting of a number of
boxes—‘‘Hubble volumes.’’ We consider these at a single
moment of time. There are K physical degrees of freedom
z1; . . . ; zK each constrained to be the same in all Hubble
volumes. We denote them collectively by z � ðz1; . . . ; zKÞ.
The quantum state supplies BU probabilities3 pðzÞ for the
values of the zi. The fields zi are crudely analogous to the
fluctuations away from homogeneity and isotropy that we
will consider later. The number of Hubble volumes Nh

depends on z; NhðzÞ, as it would for a fluctuation in ge-
ometry. Observers in the Hubble volumes can measure z.

2‘‘We’’, ‘‘us’’, ‘‘our,’’ etc. refer loosely to the collection of
humans engaged in scientific research on cosmology. We will not
need a more precise definition.

3Here and throughout we do not distinguish notationally
between probabilities and probability densities.
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The probability that there is an observer with dataD in any
Hubble volume is pEðDÞ. With this simple model we will
be able to illustrate many of our procedures and results
without getting bogged down in the elegant but complex
technology of cosmological perturbation theory.

We distinguish between local and global predictions.
Local predictions are for features of the universe inside a
Hubble volume—features that we could in principle ob-
serve in ours. Examples are the CMB correlation functions.
Global predictions are for features of our universe that may
extend outside our Hubble volume or beyond the present
time. Examples are predictions of the number of e-folds of
inflation in the past or inhomogeneities outside the present
horizon.

Probabilities for the results of our observations are for
local features of the universe conditioned on what we know
about it—our data D. All we know for certain from our
data is that the universe exhibits at least one instance of it,
D�1. In the present model we can consider the probabilities
for the value of z in a Hubble volume given D�1. But we
are not just interested in these probabilities in any Hubble
volume; we are interested in them in our Hubble volume.
We discuss how to handle such first person questions
generally in Sec. II E. But in cases where there is a sym-
metry between Hubble volumes there is a shortcut to the
answer.

This simple model has such a symmetry—all the Hubble
volumes are the same. The probability for a value of z in
our Hubble volume given D�1 is therefore the same as the
probability that the universe exhibits a value of z in any
Hubble volume given D�1. Since z is constant over the
universe that is the same as the probability pðzjD�1Þ that
the universe has a value of z given D�1.

This can be efficiently computed by starting from the
relation

pðzjD�1Þ ¼ pðz; D�1Þ
pðD�1Þ ¼ pðD�1jzÞpðzÞ

pðD�1Þ : (2.1)

The probability pðD�1jzÞ that there is at least one instance
of D in the universe given z is 1 minus the probability that
there are no instances in any Hubble volume. This is

pðD�1jzÞ ¼ 1� ð1� pEðDÞÞNhðzÞ: (2.2)

Combining (2.1) and (2.2) gives

pðzjD�1Þ ¼ ½1� ð1� pEðDÞÞNhðzÞ�pðzÞR
dz½1� ð1� pEðDÞÞNhðzÞ�pðzÞ : (2.3)

This is the probability for our observations of z in this very
simple model.

C. Gaussianity and non-Gaussianity

Equation (2.3) for the probability of our observations of
z simplifies in two important limits. First, it simplifies
when pEðDÞNhðzÞ � 1 for the whole range of z, that is,

in the limit in which we are rare in the universe. Then
we have

pðzjD�1Þ � NhðzÞpðzÞR
dzNhðzÞpðzÞ : (2.4)

The difficult to estimate4 probability pEðDÞ has canceled
out. NhðzÞ would also cancel were it independent of z
leaving the probability for observation of a value z equal
to the BU probability that the universe has that value.
But if NhðzÞ depends on z the probabilities for observa-

tion will differ from the bottom-up probabilities. In par-
ticular, suppose the bottom-up probabilities pðzÞ are
Gaussian, that is a product of terms of the form
expð�constz2i Þ. Then the probabilities for observing z
will not be Gaussian. The TD probabilities for values of
z that make the universe larger are enhanced over their BU
values because in a larger universe there are more places
for our data D to be.
The second limit in which pðzjD�1Þ is independent of

pEðDÞ is when pEðDÞNhðzÞ � 1 for the whole range of z.
This is the limit where our universe is so large that our data
are common. Then,

pðzjD�1Þ � pðzÞ; (2.5)

that is, TD probabilities equal BU probabilities. As a
consequence, Gaussian BU probabilities imply a
Gaussian distribution for the probabilities of observing z.
Thus, from local measurement of the zi, an observer

confident of the validity of this simple model could infer
something about the size of the universe Nh. That does not
violate causality. The data D may be assumed to be within
our past light cone. But the quantum state predicts nonlocal
correlations between the properties of different Hubble
volumes. These can be exploited to make predictions out-
side our Hubble volume from data inside it. This is not
qualitatively different from assuming that the universe is
homogeneous and then inferring the mean density outside
our Hubble volume from observations inside.
The common limit (2.5) shows that predictions for ob-

servations can be defined even when there are an infinite
number of Hubble volumes provided that the BU proba-
bilities are normalized. No ‘‘measure’’ beyond that pro-
vided by the quantum state is needed to deal with infinite
volumes in these simple models.

D. Detecting Gaussianity

Suppose that the BU probabilities for the z’s are
Gaussian. That is, suppose specifically that

pðzÞ ¼ Y
i

ð2��2Þ�1=2 expð�z2i =2�
2Þ: (2.6)

As (2.4) shows, Gaussian BU probabilities do not neces-
sarily imply Gaussian TD probabilities for observation.

4For a discussion of ways to bound pEðDÞ, see [6].
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But to understand a little more about the tests for non-
Gaussianity, let us consider the common limit (2.5) where
the TD probabilities are Gaussian.

A standard way of testing Gaussianity is to consider
functions of the zi’s whose expected value vanishes for
Gaussian distributions. An example is the correlation
function

Bkj � 1

‘

X
i

ziziþkziþj: (2.7)

A nonvanishing value of the correlation function for the
observed z’s would be evidence for non-Gaussianity.

A complete description of our universe will generally
require variables other than those we observe directly. In
the absence of observation we may only have probabilities
for these variables and the resulting TD probabilities for
observation may not have the simple Gaussian form (2.6).
But, if a Gaussian distribution is predicted for all values of
the unknown variables, standard tests for Gaussianity like
(2.7) will still be satisfied. This elementary but important
point can be illustrated with a modest extension of our
simple model.

Suppose that in addition to the z’s the widths of the
Gaussian distributions in (2.6) depend on a variable �0 so
that � ¼ �ð�0Þ. Then the TD probabilities for observation
in the common limit where pðD�1j�0Þ � 1 and (2.5) holds
will be given by

pðzjD�1Þ ¼
Z

d�0pðzj�0Þpð�0Þ; (2.8)

where pð�0Þ is the BU probability for the unobserved �0.
If the expected value of functions such as (2.7) vanishes for
each �0, it will also vanish for the sum. The point is that
our universe is characterized by some value of �0 even if
we have not determined what it is. If Gaussianity is pre-
dicted for all values of �0 we predict that standard tests
like (2.7) will still be satisfied for the observed z’s despite
our ignorance of �0’s value.

E. From 3rd person to 1st person

The derivation of the probabilities for observation in our
simple model relied on a symmetry—the equivalence of all
Hubble volumes. That symmetry allowed us to ignore all
the other instances of our dataD that a large universe might
exhibit and focus on our own. We will rely on an analogous
underlying symmetry in our discussion of the fluctuations
away from homogeneity and isotropy in Sec. V. But lest the
reader believe that a symmetry is essential to calculating
probabilities for observations, we present in this section a
derivation in the simple model that does not require a
symmetry and explicitly takes into account the instances
of D beyond our own.

To begin let us calculate the probability pðz; nÞ that the
universe has the value z and n Hubble volumes with the
data D. This evidently is

pðz;nÞ ¼ NhðzÞ
n

� �
ðpEðDÞÞnð1�pEðDÞÞNhðzÞ�npðzÞ: (2.9)

Since all the Hubble volumes are the same, the sum over
locations of the n instances has reduced to the binomial
coefficient giving the number of ways of picking n Hubble
volumes with observers out of NhðzÞ total Hubble volumes.
The probability pðz; nÞ is an example of a third person
probability—a probability for a feature the universe may
exhibit independently of any relation to us. But we are
interested in the first person probability of what value
of z we will observe. The theory, by itself, does not
predict such probabilities. We are one of the instances of
D but the theory does not say which one. Indeed, it has no
notion of ‘‘we.’’
To connect first person probabilities for what we observe

with third person probabilities of what the universe exhib-
its a further assumption is needed. This assumption—
called a xerographic distribution [12]—specifies the proba-
bility that we are any one of the instances of D. The
simplest and least informative assumption is that we
are equally likely to be any one of the instances of D that
the universe exhibits. Put differently, it is the assumption
that we are typical of those instances. This assumption is
made throughout this paper.5

First person probabilities for what we observe are nec-
essarily conditioned on the existence of at least one in-
stance of our data D in the universe—us! Thus we write

pð1pÞðzjD�1Þ for the probability that we observe z. To
calculate this, first calculate the joint probability

pð1pÞðz; D�1Þ as follows: Suppose the universe exhibits n
instances of D. Use an index A running from 1 to n to
distinguish these. Assuming typicality the xerographic dis-
tribution is �A ¼ 1=n. Multiply this by the probability (2.9)
for n instances and sum over A. Finally, sum over the
number of instances from n ¼ 1 (at least one instance) to
n ¼ NhðzÞ. The factor of n from the sum over A cancels
with the xerographic distribution to give

pð1pÞðz; D>1Þ ¼ XNhðzÞ

n¼1

NhðzÞ
n

 !
ðpEðDÞÞn

� ð1� pEðDÞÞNhðzÞ�npðzÞ; (2.10a)

¼ ½1� ð1� pEðDÞÞNhðzÞ�pðzÞ: (2.10b)

The conditional probability pð1pÞðzjD�1Þ is this joint
probability divided by the probability just for D�1:

pð1pÞðzjD�1Þ ¼ ½1� ð1� pEðDÞÞNhðzÞ�pðzÞR
dz½1� ð1� pEðDÞÞNhðzÞ�pðzÞ : (2.11)

5However sometimes assumptions of atypicality yield more
predictive theories [12,13].
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This is the probability that we observe z, and it is exactly
the same as (2.3) derived with the aid of the symmetry.

III. QUANTUM AND CLASSICAL
NBWF FLUCTUATIONS

The NBWF � is defined on the superspace of three-
geometries and spatial matter field configurations. Here,
we consider minisuperspace models defined by linearized
perturbations away from closed, homogeneous, and
isotropic three-geometries and field configurations.
Minisuperspace is spanned by the scale factor b of the
homogeneous three-geometries, the homogeneous value of
the scalar field �, and the parameters defining the modes of
perturbation. We denote the latter collectively by z ¼
ðz1; z2; . . .Þ and define these precisely in Sec. IV. Thus,
� ¼ �ðb; �; zÞ.

The NBWF is an integral of the exponential of minus
the Euclidean action I over complex four-geometries and
field configurations that are regular on a four-disk with a
three-sphere boundary on which the four-dimensional
histories take the real values ðb; �; zÞ [7,8]. Schematically
we can write

�ðb; �; zÞ ¼
Z
C
�a���� expð� I½að�Þ; �ð�Þ; �ð�Þ�=@Þ:

(3.1)

Here, að�Þ and �ð�Þ are (complex) histories of scale factor
and scalar field defining a homogeneous, isotropic back-
ground. The quantities �ð�Þ ¼ ð�1ð�Þ; �2ð�Þ; . . .Þ denote
histories of modes of fluctuation away from homogeneity
and isotropy in both metric and matter field.
I½að�Þ; �ð�Þ; �ð�Þ� is the Euclidean action. The integral is
over geometries and matter fields that are regular on a disk
with only one boundary at which að�Þ, �ð�Þ, and �ð�Þ take
the values b, �, and z. The integration is carried out along a
suitable complex contour C which ensures the convergence
of (3.1) and the reality of the result [14].

We restrict to linear fluctuations when only up to
quadratic terms in � are retained in the action in (3.1):

I ¼ Ið0Þ½að�Þ; �ð�Þ� þ Ið2Þ½að�Þ; �ð�Þ; �ð�Þ�: (3.2)

(There is no linear term for the models considered in

this paper.) Then Ið0Þ describes the homogeneous isotropic

background and Ið2Þ describes the linear and quadratic
perturbations away from that background.

Suppose that in some region of superspace the integral in
(3.1) over að�Þ and �ð�Þ defining the homogeneous back-
ground can be approximated by the method of steepest
descents. Then the wave function� will be a sum of terms
of the form

�ðb; �; zÞ � expf½�Ið0ÞR ðb; �Þ þ iSð0Þðb; �Þ�=@gc ðb; �; zÞ;
(3.3)

one such term for each history ðað�Þ; �ð�ÞÞ that extremizes

the action Ið0Þ, matches ðb; �Þ at the boundary of the disk,

and is regular elsewhere. For each contribution Ið0ÞR ðb; �Þ is
the real part of the action Ið0Þ½að�Þ; �ð�Þ� evaluated at the

extremizing history and �Sð0Þðb; �Þ is the imaginary part.
The wave function c is defined by the remaining integral
over �:

c ðb; �; zÞ �
Z
C
�� expð� Ið2Þ½að�Þ; �ð�Þ; �ð�Þ�=@Þ:

(3.4)

As we showed6 in [5], classical Lorentzian histories are

predicted in regions of superspace where Sð0Þðb; �Þ varies
rapidly when compared with Ið0Þðb; �Þ. Specifically, then�
predicts an ensemble of suitably coarse-grained Lorentzian
histories ðbðtÞ; �ðtÞÞ that with high probability lie along the
integral curves of Sð0Þðb; �Þ. Their relative probabilities are
given by exp½�2IRðb; �Þ�, which is preserved along each
history [5].
When evaluated on one of these classical histories the

wave function (3.4) becomes a function of time,

c ðz; tÞ � c ðbðtÞ; �ðtÞ; zÞ: (3.5)

As shown in a variety of ways [15], the Wheeler-DeWitt
equation implies a Schrödinger equation for c ðz; tÞ:

i@dc ðz; tÞ=dt ¼ HðtÞc ðz; tÞ: (3.6)

The time-dependent Hamiltonian describes the evolution
of the state of the fluctuations in the background
ðbðtÞ; �ðtÞÞ. An inner product is induced from the general-
ized quantum mechanics on the full superspace [10].
Equation and product define the quantum mechanics of
the fluctuation field z in the homogeneous, isotropic
background.
In this way, the fluctuation fields can be thought of as

quantum fields on the possible background classical space-
times. The state of the fields is determined by the NBWF
through (3.4). There is no independent assumption of a
‘‘vacuum’’ state. However, the Euclidean integral defining
the NBWF is analogous to the Euclidean integral defining
the ground state. It is therefore reasonable to expect the
NBWF to imply that fluctuations are in something like a
quantum field theory ground state early in the universe.
This was shown explicitly in [16] and we will show it
explicitly for our model in the next section.7 Hence, the
NBWF provides a unified treatment of both classical
homogeneous and isotropic backgrounds and the quantum
fluctuations away from them.
The integral defining the wave function in (3.4) may

itself be approximated by the method of steepest descents.

6We intend to show this in more detail in [11].
7This also opens the possibility that the NBWF can predict

corrections to popular assumptions about the vacuum of the
fluctuation fields.
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Indeed, since the action is quadratic in � , we expect that it
can be evaluated exactly when the measure is suitable.
Either way, the result for a particular extremum

að�Þ; �ð�Þ of Ið0Þ is
c ðb; �; zÞ ¼ Að2Þðb; �Þ expf½�Ið2ÞR ðb; �; zÞ

þ iSð2Þðb; �; zÞ�=@g: (3.7)

The extremizing history �ð�Þ is regular on the manifold of

integration and matches z at its one boundary. Ið2ÞR ðb; �; zÞ
and �Sð2Þðb; �; zÞ are the real and imaginary parts of the

action Ið2Þ evaluated on this history and Að2Þ is a prefactor.
This fully quantum mechanical theory of fluctuations

around a classical background universe will predict
their classical behavior in regions of superspace where

Sð2ÞðbðtÞ; �ðtÞ; zÞ varies rapidly in z compared to

Ið2ÞðbðtÞ; �ðtÞ; zÞ. The detailed conditions for this are called
the ‘‘classicality conditions’’ [5]. Specifically when they
are satisfied the wave function (3.7) predicts an ensemble
of suitably coarse-grained, classical, Lorentzian histories
zðtÞ that with high probability lie along the integral curves

of Sð2ÞðbðtÞ; �ðtÞ; zÞ. The probabilities of the classical fluc-
tuations in a given homo/iso background are then propor-

tional to exp½�2Ið2Þ½bðtÞ; �ðtÞ; zðtÞ�. In general we can
expect the regions of superspace where perturbation modes
behave classically to be different for different modes8 and
we will see this in detail in what follows.

With these techniques we will be able to treat both the
quantum mechanics of fluctuations of the universe and
their classical approximation.

IV. BOTTOM-UP PROBABILITIES
FOR PERTURBATIONS

In this section we describe the calculation of the bottom-
up probabilities for alternative four-dimensional classical
histories of the universe that include linear fluctuations
away from homogeneity and isotropy. These are the prob-
abilities for classical behavior conditioned on the NBWF
alone. They are the input to the calculation of top-down
probabilities for observation described in the next section.

A. Homogeneous isotropic histories

We first review the bottom-up probabilities of the homo-
geneous isotropic histories predicted by the semiclassical

NBWF (3.3). These were calculated in [4,5], in a simple
model consisting of a single scalar field moving in a
quadratic potential. It was found that there is a one-
parameter family of extremizing complex histories—fuzzy
instantons—which obey the classicality conditions at the
boundary where one evaluates the wave function and there-
fore predict a Lorentzian history. The different histories
can be labeled by the magnitude of the complex scalar field
�0 � j�ð0Þj at the ‘‘South Pole’’ (SP) of the correspond-
ing fuzzy instanton. It was found [4] that the classicality
conditions require�0 � �c

0 � 1. The relative probabilities
of the different histories are given by exp½�2IRð�0Þ�,
where IRð�0Þ is the real part of the Euclidean action of
the fuzzy instanton.
A striking feature of the ensemble of classical histories

in this model is the close connection it reveals between
classicality and inflation [5]. Specifically the histories have
values ofH � ðdb=dtÞ=b and �, which all lie within a very
narrow band around H ¼ m� characteristic of Lorentzian
slow-roll inflationary solutions. It follows that a classical,
homogeneous, and isotropic universe must have an early
inflationary state if the universe is in the no-boundary state.
For sufficiently large �0, there is an approximate

analytic solution [17] for the fuzzy instanton,

�ð�Þ � �ð0Þ þ i
m�

3
;

að�Þ � i

2m�ð0Þ e
�im�ð0Þ�þm2�2=6:

(4.1)

These solutions are the complex analogs of the standard
‘‘slow-roll’’ inflationary solutions. They are valid in the
region of the complex � ¼ xþ it plane, where t is not so
large that the slow-roll assumption breaks down, and where
jað�Þj � 1 so that the spatial curvature is exponentially
negligible.9 By tuning the phase of �0 at the SP so that
Im½�ð0Þ� ¼ ��=6Re½�ð0Þ� vertical lines given by � ¼
�=2mRe½�ð0Þ� þ it are obtained along which both a and
� are approximately real and describe Lorentzian inflating
universes with the scalar field approximately equal to�0 at
the start of inflation.
The real part of the action of the fuzzy instantons in this

approximation is

IRð�0Þ � � �

2ðm�0Þ2
� � 2�

ð3m2Nð�0ÞÞ
; (4.2)

where Nð�0Þ � 3�2
0=2 is the number of inflationary

e-folds in the classical history labeled �0. Hence, the
bottom-up probabilities conditioned only on the NBWF
are largest for classical histories with a small amount of
inflation.

8In inflationary cosmology it is sometimes said that the modes
‘‘become classical’’ at a certain time as though there were a
transition between quantum and classical physics. This is in-
correct. Classical physics is not an alternative to quantum theory;
it is an approximation to it. The modes are always quantum
mechanical but a classical approximation only holds in certain
regimes. It would be better to say that the modes enter a region
where a classical approximation holds with a suitable coarse
graining. But we will use the less accurate terminology with this
understanding.

9The constant multiplicative normalization of the scale factor
is determined by matching these solutions to the ‘‘no-roll’’
solutions �ð�Þ � �ð0Þ; að�Þ � sin½m�ð0Þ��=m�ð0Þ that are
regular at the origin.
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B. Semiclassical wave function for
quantum fluctuations

Following the analysis of [16,18], we now calculate the
wave function (3.4) for linear scalar fluctuations around the
homogeneous isotropic histories predicted by the NBWF.
We restrict attention to scalar perturbations, since these
turn out to matter most for the top-down effects we are
interested in here. We write the perturbed metric as

ds2 ¼ ð1þ 2’Þd�2 þ 2að�ÞBjidxid�þ a2ð�Þ½ð1
� 2c Þ	ij þ 2Ejij�dxidxj; (4.3)

where 	ij is the metric of the unit radius three-sphere,

xi are the coordinates on the three-sphere, and a vertical
bar denotes covariant differentiation with respect to 	ij.

Expanding the perturbations in the standard, normalized
scalar harmonics Qn

lmðxiÞ on S3 gives the definitions

’¼ 1ffiffiffi
6

p X
nlm

gnlmQ
n
lm; c ¼�1ffiffiffi

6
p X

nlm

ðanlmþbnlmÞQn
lm; (4.4)

B ¼ 1ffiffiffi
6

p X
nlm

knlmQ
n
lm

ðn2 � 1Þ ; E ¼ 1ffiffiffi
6

p X
nlm

3bnlmQ
n
lm

ðn2 � 1Þ (4.5)

and the scalar field perturbation

��ð�; xÞ ¼ 1ffiffiffi
6

p X
nlm

fnlmQ
n
lm: (4.6)

From here onwards we denote the labels n, l, m collec-
tively by ðnÞ. The expansion coefficients aðnÞ, bðnÞ, fðnÞ,
gðnÞ, kðnÞ are functions of time only.

From the above expansions we see there are five scalar
degrees of freedom. However, the functions gðnÞ and kðnÞ
appear as Lagrange multipliers in the action. Variations of
the action with respect to gðnÞ and kðnÞ result in the linear

Hamiltonian and momentum constraints. In quantum cos-
mology the NBWF satisfies the operator forms of these
constraints [19]. The wave function therefore depends only
on the background variables b and � and on a single linear
combination of the (boundary values of the) perturbation
variables aðnÞ, bðnÞ, fðnÞ—the three functions that describe

the perturbed three geometry. One can take this linear
combination to be the following (Appendix ):

�ðnÞ ¼ aðnÞ þ bðnÞ �HE

_�
fðnÞ; (4.7)

where HE � _a=a and the subscript E refers to quantities
constructed with Euclidean time. Hence, one has
c ðb; �; zÞ, where z � ðzð1Þ; zð2Þ; . . .Þ are the real values of

� ¼ ð�ð1Þ; �ð2Þ; . . .Þ at the boundary. The variables z are

invariant under linear gauge transformations and approxi-
mately conserved outside the horizon [20,21].

The wave function c ðb; �; zÞ can be found explicitly in
the semiclassical approximation. To first order in perturba-
tion theory (3.7) takes the form

c ðb; �; zÞ ¼Y
ðnÞ

c ðnÞðb; �; zðnÞÞ: (4.8)

The action Ið2ÞðnÞ½b; �; zðnÞ� of each mode is generally a

positive quadratic function of zðnÞ. Thus, in a regime where

the perturbations are small and behave classically, the
bottom-up probabilities from (3.7) will favor vanishing
perturbations and homogeneous classical histories.
An analytic approximation to the wave function (4.8)

was obtained in [18], by solving the complex perturbation
equations in the slow-roll backgrounds (4.1). In Appendix ,
we summarize this calculation and verify its accuracy by
numerically calculating the perturbations around several
representative members of the ensemble of exact complex
extremizing geometries found in [4,5]. We concentrate on
perturbation modes that leave the Hubble radius during
inflation. As we will see, these are the modes that are
amplified by the time-dependent background, become
classical, and, ultimately, lead to the large-scale structures
we observe today.
The no-boundary condition of regularity at the SP

requires fðnÞ and aðnÞ to vanish there. If � ! 0 labels the

SP then the field equations imply that to leading order in �
one has �ðnÞ ¼ �ðnÞð0Þ�n, where �ðnÞð0Þ � j�ðnÞð0Þjei
 �
�ðnÞ0ei
 is a complex constant. Its phase 
 should be fine-

tuned such that �ðnÞ is real at the boundary, and its ampli-

tude �ðnÞ0 is determined by the value of the boundary

perturbation zðnÞ.
At small � the modulus of the complex ‘‘wavelength’’

a=n of a perturbation mode will be shorter than the horizon
size since jaHEj ! 1 when � ! 0. In this regime we find
the complex solution for �ðnÞ oscillates and is independent

of the nature of the potential. On the other hand, we show
in Appendix that at larger �, when n � jaHEj, the general
perturbation solution is a combination of a constant and a
decaying mode. Hence, one expects the wave function
c ðnÞðb; �; zðnÞÞ depends only on the behavior of the poten-

tial for values of� near the value taken by�ð�Þ at the time
the perturbation leaves the horizon. At horizon crossing the
perturbation �ðnÞ generally has an imaginary component.

The requirement that �ðnÞ be real at the boundary therefore

means that the phase 
 of �ðnÞð0Þ at the SP should be tuned

such that the imaginary component of the subhorizon mode
function matches onto the decaying mode when the per-
turbation leaves the horizon. It turns out that this implies
that a perturbation mode will become classical when its
physical wavelength becomes much larger than the Hubble
radius, as is evident from Fig 4 in Appendix .
As a consequence of the decay of the imaginary compo-

nent of the perturbation, the real part of the Euclidean

action Ið2ÞðnÞðb; �; zðnÞÞ tends to a constant when the mode

leaves the horizon. This determines the bottom-up proba-
bilities of the different classical perturbed histories
predicted by the NBWF. Substituting the perturbation
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solutions (A5) in the action (A6) and normalizing one
obtains, for all wave numbers n < expð3�2

0=2Þ,

pðzðnÞj�0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�	n3

2�H2	

s
exp

�
� �	
H2	

n3z2ðnÞ

�
; (4.9)

where � � _�2=H2 is the usual slow-roll parameter. The
subscript 	 on a quantity in (4.9) means it is evaluated at
horizon crossing during inflation. Equation (4.9) specifies
the bottom-up probabilities of linear, classical perturba-
tions around the homogeneous isotropic histories predicted
by the NBWF. One sees the probabilities of zðnÞn3 are

Gaussian, with variance H2	=�	 characteristic of inflation-
ary perturbations.

Although (4.9) was derived using the slow-roll approxi-
mation for the fuzzy instantons, we have numerically
verified (Appendix ) that this result is accurate over most
of the range of �0 except near its lower bound �c

0, and for

all modes that become classical except those that leave the
horizon towards the very end of inflation.10

C. Perturbed classical histories

The evolution of perturbations in a classical background
universe ðbðtÞ; �ðtÞÞ is in general given by a Schrödinger
equation (3.6). However, in regions of superspace

where Sð2ÞðbðtÞ; �ðtÞ; zÞ varies rapidly in z compared to

Ið2ÞðbðtÞ; �ðtÞ; zÞ, the semiclassical wave function (4.8) pre-
dicts an ensemble of suitably coarse-grained, classical,
Lorentzian histories zðtÞ that with high probability lie

along the integral curves of Sð2ÞðbðtÞ; �ðtÞ; zÞ. Their relative
probabilities are given by (4.9), which is preserved along
each history [5].

We have seen that, in inflationary histories, perturbation
modes behave classically when their physical wavelength
is larger than the Hubble radius. Since the modes that left
the horizon during inflation are responsible for the large-
scale structure we observe today, it is appropriate to evalu-
ate the wave function of perturbations on a surface towards
the end of inflation and to coarse grain over modes that are
inside the horizon at that time.11 The values of the pertur-
bation modes at the boundary, together with their deriva-
tives, provide Cauchy data for their future classical
evolution.12 The members of the classical ensemble of
perturbation histories obtained in this way can be labeled
by ð�0; �0Þ.

Just after inflation ends the general solution for classical,
long-wavelength (n � bH) perturbations (see e.g. [21])
implies the scalar metric perturbations remain essentially
constant, with a small oscillatory component due to the
oscillations of the background scalar field. The matter
perturbation starts oscillating again when the Hubble ra-
dius becomes larger than the scalar field Compton wave-
length
1=mb. This behavior can also be seen in Fig. 3 (for
m2 ¼ 0:05), where inflation ends around y
Oð60Þ. In
realistic models the energy of the inflaton is then converted
in ordinary matter and radiation, reheating the universe.
Hence, the solutions for the scalar matter and metric per-
turbations are not directly related to observations of the
present universe. Fortunately, reheating occurs when the
perturbation modes that are relevant for current observa-
tions are well outside the horizon, so that the variable zðnÞ is
conserved. Hence, the wave function c ðz; tÞ provides ini-
tial conditions for the classical evolution of perturbation
modes after they reenter the horizon at late times.
To first approximation reheating takes place at a definite

value of �. Hence, one expects surfaces of constant scalar
field during inflation to evolve to surfaces of constant
temperature after reheating. The surface of last scattering
will be such a surface. Variations in the observed tempera-
ture of the CMB arise, e.g., from variations in the gravita-
tional redshift of the surface of last scattering in different
directions of observation, which are themselves deter-
mined by the perturbation zðtÞ. Quantities of particular
interest in cosmology are averages over a particular pattern
of perturbations at the surface of last scattering. The sim-
plest examples are the multipole coefficients Cl that char-
acterize the average of a product of two temperature
fluctuations in two different directions. Expressed in terms
of zðnÞ, the Cl’s involve a sum over the wave number n.
However, for l � 1 the dominant contribution to this sum
comes from perturbations with wave number �n � l=rL,
where rL is the radial distance from us to the surface of
last scattering in the Robertson-Walker geometry (see e.g.
[21]). This means there is a direct relation between the Cl’s
and the variance of the probability distributions (4.9). In
particular, CMB correlations on a certain angular scale at
the present time provide information about the inflaton
potential at the time of horizon exit of the relevant modes
during inflation. For 10 � l � 50 the CMB anisotropies
are dominated by the Sachs-Wolfe effect. In this range the
Cl’s are to a good approximation given by [21]

Cl � hz2ðnÞin3 ¼
8�2T2

0H
2	

9�	lðlþ 1Þ ; (4.10)

where T2
0 is the present mean value of the temperature of

the CMB. In the model we have considered H2	=�	 �
m2�4	. Since galactic scales correspond to �2	 
Oð50Þ
and since observations require the gravitational potential
to be 
10�5 on these scales, the mass of the scalar field
should be about
10�6 in Planck units. Larger scales leave

10These corrections to (4.9) can in principle be calculated
systematically, opening up the way to study the small deviations
from the Bunch-Davis vacuum implied by the NBWF as dis-
cussed in Sec. III.
11The histories obtained by evolving forward Cauchy data
taken at an earlier time, involving fewer modes, can be viewed
as a coarse graining of these.
12The evolution of perturbations backwards in time, towards
the initial singularity or the bounce [5], is generally not classical
everywhere and can be obtained using (3.6). This will be
discussed elsewhere.

JAMES HARTLE, S.W. HAWKING, AND THOMAS HERTOG PHYSICAL REVIEW D 82, 063510 (2010)

063510-8



the horizon earlier during inflation. During inflation, one
has �	 
 lnðbe=b	Þ 
 lnð�phðnÞH	Þ, where be is the scale
factor at the end of inflation and �ph ¼ b=n. Since H is

approximately constant during inflation this leads to a
slightly red spectrum. Whereas this is a small effect on
the range of currently observable scales, this has significant
consequences on very large scales as we discuss below.

V. TOP-DOWN PROBABILITIES FOR
PERTURBATIONS

In this section we calculate the top-down probabilities
pðzðnÞjD�1Þ for perturbation modes zðnÞ that are relevant for
observation of the CMB. The Gaussian bottom-up proba-
bilities (4.9) are an input to this calculation.

Our particular aim is to determine in what models and
under what conditions the top-down corrections modify the
bottom-up spectrum. We will find that top-down effects
give rise to a small non-Gaussian component to the spec-
trum when the potential is such as to not allow a regime of
eternal inflation. The top-down weighting can therefore be
a source of non-Gaussianity in addition to the non-
Gaussian corrections arising from the extension of pertur-
bation theory to second order (see e.g. [22]). The latter will
in fact turn out to be comparable in magnitude, for certain
observables, in the models discussed here.

We begin by reviewing the connection between bottom-
up and top-down probabilities. This is the same as the
connection derived in Sec. II but written out here with
the full machinery necessary to describe perturbations.

A. Top-down from bottom-up

From the bottom-up probabilities (4.9), we seek to con-
struct the (top-down) probabilities pðzjDÞ for the present
amplitudes of fluctuation observables z ¼ ðz1; z2; . . .Þ con-
ditioned on a subsetD of our total data. Suppose thatD can
be divided into two parts: First, a part Ds consisting of
large-scale observations that place the data D on one or
more surfaces of homogeneity tiðDs;�0Þ in each classical
spacetime. Observations of the present Hubble constant
H0 and local average energy density are an example.

For simplicity, we restrict attention to a single surface
that we denote by t. The generalization to more is
straightforward.
The second part, Dh, consists of local observations

that are largely independent of the large-scale features
of the spacetimes. Thus,D ¼ ðDs;DhÞ. For each�0 divide
the surface labeled by Ds into Hubble volumes and denote
their total number by NhðDs;�0; �0Þ. Finally, denote by
pEðDÞ the probability that the data D occur in any one of
the Hubble volumes on the surface t and assume that the
probability of more than one occurrence in any one volume
is negligible. We can now follow the model in Sec. II to
derive the TD probabilities for our observations of
fluctuations.
All we know from our local observations is that there is

at least one occurrence of Dh (abbreviated D�1
h ) in one of

the Hubble volumes (ours). The probability that there is at
least one instance of Dh in the classical spacetime labeled
by ð�0; �0Þ is [cf. (2.2)]

pðD�1
h jDs;�0; �0Þ ¼ 1� ½1� pEðDÞ�Nhðt;�0;�0Þ: (5.1)

Neither �0 nor �0 is directly observable. But in each
classical spacetime we can determine the values of z on the
surfaces specified by Ds: z ¼ zðDs; t; �0; �0Þ. Conversely,
given z and �0 we can determine13 the amplitude of the
fluctuations at the South Pole �sðzÞ � �0ðz;Ds;�0Þ neces-
sary to produce z on the surface t. Thus we can write for the
(top-down) probabilities pðzjD�1Þ

pðzjD�1Þ ¼
Z

d�0pð�0; �sðzÞÞjD�1Þ: (5.2)

This can be cast into a more usable form by using the joint
probability [cf (2.1)]

pð�0;�0;D
>1
h jDsÞ¼pðD>1

h jDs;�0;�0Þpð�0;�0; jDsÞ (5.3a)
¼pðD�1

h jDs;�0;�0Þpð�0jDs;�0Þ
�pð�0jDsÞ: (5.3b)

Combining (5.2), (5.3), and (5.1) we find the following
formula for the top-down probabilities for fluctuations
given at least one instance of the data D [cf (2.3)]:

pðzjD�1Þ �
R
d�0pð�sðzÞjDs;�0Þf1� ½1� pEðDÞ�NhðDs;�0;�sðzÞÞgpð�0jDsÞR
d�0d�0pð�0jDs;�0Þf1� ½1� pEðDÞ�NhðDs;�0;�0Þgpð�0jDsÞ

: (5.4)

In (5.4) we expect the dependence of the probabilities
pð�0jDs;�0Þ and pð�0jDsÞ on Ds to be weak. They will
be approximately proportional to pð�0j�0Þ and pð�0Þ,
respectively, except when the spacetime specified by �0

does not contain a surface with data Ds. Then they are
proportional to zero.

The probabilities pðzjD�1Þ are for the values of the
fluctuations the universe may exhibit given D�1. (In the
language of Sec. II E they are third person probabilities.)

But we are interested in the (first person) probabilities for
fluctuations in a particular history and inside our Hubble
volume, where our specific instance of D is located. For
each �0, the underlying homogeneity is a symmetry that
means that all predictions for observation will be the same
in all Hubble volumes. The probability for any quantities

13To compress the notation we will not always write out the
dependence of �sðzÞ on Ds and �0.
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derived from the z’s in our Hubble volume is the same as
that derived from pðzjD�1Þ for any Hubble volume.

B. Non-Gaussianity from volume weighting

We now evaluate the TD probabilities pðzð �nÞjD�1Þ for
different values of perturbation modes zð �nÞ in the classical

ensemble of homo/iso histories with linearized perturba-
tions. We are interested, in particular, in the modes that
contribute to the CMB. As reviewed at the end of the last
section, these are modes with approximately the same
wave number that left the horizon the same number of
e-folds before the end of inflation in all members of the
ensemble. We denote the value of the relevant wave num-
ber in each history by �n. This depends on the duration of
inflation and therefore on �0. In terms of the angular scale
this is given by �n � l=rL, where rL is the radial distance to
the surface of last scattering in the Robertson-Walker
geometry (see e.g. [21]). To calculate the top-down proba-
bility pðzð �nÞjD�1Þ for the CMB relevant modes requires

summing (coarse graining) (5.4) over all other modes.
As before we assume part of our data locate us on a

surface of constant density in each member of the classical
ensemble. The top-down probabilities (5.4) then involve
the volume Nh of this surface. This is most easily calcu-
lated in the fðnÞ ¼ bðnÞ ¼ 0 gauge, where surfaces of

constant density are constant time surfaces with volume
[cf. (4.3)]:

V ¼ V0 þ �V ¼ b3
Z

d3x
ffiffiffiffi
	

p ð1� 2c Þ3=2: (5.5)

The leading correction to V0 averages to zero over the
surface, but the second order term leads to a change in
volume. In terms of the gauge-invariant variable zð �nÞ, one
has �V=V0 ¼ P

ðnÞz2ðnÞ=8�
2. Hence, the number of present

Hubble volumes in the different histories of the ensemble is
given by

NhðDs;�0; zÞ ¼ N0
hðDs;�0Þ

�
1þX

ðnÞ

z2ðnÞ
8�2

�
exp

�
9

2
�2

0

�
;

(5.6)

where N0
hðDs;�0Þ varies slowly with �0 and depends on

the present Hubble constant, the details of reheating etc.
The range of n in the sum encompasses all modes that left
the horizon during inflation and are therefore classical. Its
upper limit nm therefore depends on �0 and is approxi-
mately given by nm � expð3�2

0=2Þ. Using the BU distri-

bution (4.9) of zn, the expected value of the sum in (5.6) can
be bounded by the variance of the longest wavelength
perturbations in each history—with n ¼ nm—yielding
hPðnÞz2ðnÞi � m2�4

0.

The TD distribution is of the form (5.4). Using the
analytic approximations (4.2) and (4.9) of the BU proba-
bilities of homo/iso histories with linearized perturbations,

one finds for the top-down probability of the CMB relevant
modes14

pðzð �nÞjD�1Þ /
Z

d�0

� Y
ðnÞ�ð �nÞ

d�ðnÞ0 exp
�
� z2ðnÞ
2�2

n

��

� ½1� ð1� pEÞNh� exp
�
� z2ð �nÞ
2�2

�n

�

� exp

�
4�

3m2N

�
: (5.7)

Here�2
nð�0Þ � H2	=2�	n3 and the product is taken over all

wave numbers n up to nm. The integrals over �ðnÞ0 can be

evaluated analytically without further approximations.
This yields

pðzð �nÞjD�1Þ /
Z

d�0

2
4 Y

ðnÞ�ð �nÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

q
�ð1�pEÞ �Nh

� Y
ðnÞ�ð �nÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�2

n=4�
2ÞN0

he
3N logð1�pEÞ

q
3
5

� exp

�
� z2ð �nÞ
2�2

�n

�
exp

�
4�

3m2N

�
; (5.8)

where �Nh � N0
hðNÞð1þ z2ð �nÞ=8�

2Þ expð3NÞ. In [4,6] we

have argued that for realistic values15 of pE, volume
weighting applies in the ensemble of homogeneous iso-
tropic histories even in models where the potential admits
inflationary solutions all the way up to the Planck scale,

corresponding to values �pl
0 
 1=m. This is because one

can easily find data D for which pE � 1=Npl
h , where

logðNpl
h Þ � 3Nð�pl

0 Þ ¼ 9=2m2 � 1012. In this regime the

top-down factor reduces to pENh and the probability pE

cancels out, as discussed in Sec. II. A single perturbation
mode on currently observable scales hardly changes the

volume Nh. Hence, the factor ð1� pEÞ �Nh in (5.8) is ap-
proximately given by 1� �NhpE for realistic values of pE.
The product in the second, non-Gaussian term in (5.8)

further simplifies in histories where

pE <

��X
ðnÞ
�2

n=4�
2

�
N0

he
9�2

0=2

��1
: (5.9)

When �0 < 1=
ffiffiffiffi
m

p
this condition automatically holds

when the data are rare in the background history because
the sum over �n is smaller than 1. In contrast, in eternally

14In (5.7) we have not taken in account the Jacobian that arises
when one changes the integration measure from d�ðnÞ0 to dzn,
because this is polynomial in �0 (see Appendix and also [18])
and therefore hardly affects the TD probabilities.
15That is, assuming we are a typical instance of D and con-
ditioning on our actual observational situation. Top-down prob-
abilities conditioned on fewer or altogether different data can be
calculated as well and may be of interest. When pE > 1=Nh, the
first term in (5.8) provides the dominant contribution to such TD
probabilities which are therefore Gaussian.
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inflating histories this is a stronger condition than the
requirement used above that the data be rare in the
homo/iso background. Indeed, in histories with a regime
of eternal inflation and hence �0 > 1=

ffiffiffiffi
m

p
, one finds

ðPðnÞ�2
n=8�

2Þ � m2�4
0 � 1, due to long-wavelength per-

turbations that leave the horizon when �ðtÞ> 1=
ffiffiffiffi
m

p
. This

reflects the fact that, in eternal inflation, perturbations can
significantly change the volume of surfaces of constant
scalar field and therefore the possible locations where our
data can be. However, based on the arguments in [6] it
appears plausible that the condition (5.9) holds with real-
istic values of pEðDÞ even in eternally inflating histories.
Hence, the TD probabilities pðzð �nÞjD�1Þ are approximately

given by

pðzð �nÞjD�1Þ /
Z
d�0

� Y
ðnÞ�ð �nÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

q �

�
2
641� 1�pE

�Nhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þpEð

P
ðnÞ�ð �nÞ�2

n=4�
2ÞN0

he
3N

q
3
75

� exp

�
� z2ð �nÞ
2�2

�n

�
exp

�
4�

3m2N

�
: (5.10)

Expanding the square root and including the normalization
factor in (5.4) yields

pðzð �nÞjD�1Þ ¼
R
d�0ð

Q ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p ÞN0
hð1þ

P �2
n

8�2 þ z2ð �nÞ
8�2Þ exp½� z2ð �nÞ

2�2
�n
� exp½3N þ 4�

3m2N
�R

d�0

Q
ðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p
N0

hð1þ
P

ðnÞ�2
n=8�

2Þ exp½3N þ 4�
3m2N

�
; (5.11)

where the product and sum in the numerator are taken over
all classical modes except the mode labeled by ð �nÞ. The
probability pE has canceled out. In models with a regime of
eternal inflation, the volume weighting expð3NÞ implies
that the dominant contribution to the integrals in (5.11)
comes from histories with the largest values16 of �0 and
hence a long period of inflation. In histories of this kindP

ðnÞ�2
n=8�

2 � 1. Hence, the normalizing factor in the
denominator makes the non-Gaussian TD corrections in
zð �nÞ extremely small, yielding

pðzð �nÞjD�1Þ � pðzð �nÞjD�1; �pl
o Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

n

p exp

�
� �	
H2	

�n3z2ð �nÞ

�
: (5.12)

Even in the context of quadratic potentials it is possible
to construct models without a regime of eternal inflation,
for instance by restricting the physically allowed range of
�. In such models, where all histories have �0 < 1=

ffiffiffiffi
m

p
,

the integral over the other perturbation modes has little
effect and the non-Gaussian TD corrections in zð �nÞ remain

relevant in contrast to the result above.17 The TD distribu-
tion (5.11) in a noneternally inflating background is
approximately given by

pðzð �nÞjD�1Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

�n

q 1þ z2ð �nÞ=8�
2

1þ �2
�n=8�

2
exp

�
� �	
H2	

�n3z2ð �nÞ

�
:

(5.13)

Hence, in models without a regime of eternal inflation the
NBWF predicts we should observe a slightly non-Gaussian
spectrum of perturbations even though their BU distribu-
tion is Gaussian. In particular, the distribution (5.13) pre-
dicts the amplitude of the reduced four point function is of
order H2=�.
It is possible to calculate the BU probabilities for the

fluctuations pertaining to the CMB by focusing only on the
relevant modes and ignoring all others in a restricted
minisuperspace model. At the BU level all modes are
independent in the linear approximation. However, we
have seen here that this is not possible for the TD proba-
bilities for CMB observations. The observations may only
probe the wavelengths characteristic of only a few modes,
but the top-down weighting depends on all of them. In a
minisuperspace approximation consisting of homo/iso his-
tories with a single perturbation mode zð �nÞ, we would have

predicted non-Gaussianity even in models of eternal infla-
tion. When we include all modes in our analysis the answer
is qualitatively different. Quantum mechanics then in-
structs us to coarse grain over perturbations we do not
observe. In eternally inflating histories this reduces the
non-Gaussianity as in Eq. (5.11).
As discussed earlier, CMB temperature correlations on a

given angular scale provide an excellent probe of the TD
distribution for z �n especially at large l, where cosmic
variance is limited and where the dominant contribution
comes from modes with a particular wave number n.
Hence, the prediction of non-Gaussianity with a specific

16What these are depends on the model, i.e. where V becomes
too steep for inflation to occur. Below we assume for simplicity
this only happens at the Planck scale, corresponding to
�pl

0 � 1=m.
17On the other hand, in this case the volume weighting does not
significantly change the BU distribution of histories with differ-
ent �0 [6]. Hence, the integral over �0 remains dominated by
histories with the smallest amount of inflation compatible with
the dataD. This means the NBWF does not provide a convincing
explanation for the observed background in models of this kind.

NO-BOUNDARY MEASURE IN THE REGIME OF ETERNAL . . . PHYSICAL REVIEW D 82, 063510 (2010)

063510-11



shape in models without eternal inflation leads to the
possibility of determining whether or not eternal inflation
took place. The fact that we can learn something about the
global structure of the universe from local observations
conditioned on local data D can be traced to the quantum
state which predicts nonlocal correlations. In the models
discussed here, the predicted level of non-Gaussianity
when there is no regime of eternal inflation is too small
to be detectable by CMB experiments. However, even a
small departure from a Gaussian spectrum might be de-
tectable with future observations. We will therefore return
in the future work to a more detailed analysis of top-down
corrections in the CMB anisotropies.

VI. BACKREACTION IN THE REGIME OF
ETERNAL INFLATION

The expected amplitude of long-wavelength perturba-
tions that leave the horizon in the regime of eternal in-
flation is large. Indeed, it follows from (4.9) that H2	 � �	
when �	 �

ffiffiffiffi
m

p
and, hence, hz2ðnÞin3 > 1. Since in models

of eternal inflation histories with�0 > 1=
ffiffiffiffi
m

p
dominate the

TD probabilities [4,6], this means there is a significant
probability for our universe to be strongly inhomogeneous
on the largest scales in models of this kind.

This inhomogeneity has important implications for the
possible locations of our data, because these typically
confine us to one or several surfaces of constant density.
A calculation in perturbation theory of the expected
fractional change in the volume VðtÞ of a surface of
constant scalar field, due to the combined effect of all
fluctuations outside the horizon yields, from (5.5) and
using (4.10),

�
�V

V0

ðtÞ
�
¼ 1

8�2

Z nmðtÞ
d3nhz2ni � 1

8�2

H2ðtÞ
�ðtÞ ; (6.1)

where nmðtÞ ¼ HbðtÞ and V0ðtÞ ¼ 2�2b3ðtÞ is the volume
of a surface which is at time t in the unperturbed geometry.
Hence, for instance, the expected volume of the reheating
surface in perturbed histories with �0 > 1=

ffiffiffiffi
m

p
can differ

significantly from the reheating volume in the homogene-
ous isotropic background. This indicates perturbation the-
ory may be inadequate to calculate the precise shape of the
reheating surface in eternally inflating histories. In fact, it
has been argued (see e.g. [1,23,24])—albeit in part based
on perturbation theory—that starting with a finite infla-
tionary volume in the regime of eternal inflation, back-
reaction effects give rise to a significant probability for
developing constant scalar field surfaces of arbitrarily large
or even infinite volume.18

This implies that in models of eternal inflation it may not
be correct to assume that our data is rare in every history of
the ensemble.19 Instead in a subset of histories the more
general weighting (5.4), or even its common limit, may
apply in the calculation of TD probabilities rather than
volume weighting.
However, this more general weighting is unlikely to

change our results for the TD probabilities pðzð �nÞjD�1Þ
obtained in Sec. VB, as we now explain. Let us assume,
as before, that the data are rare in all background histories,

i.e. pE � 1=Npl
h . The top-down weighting then implies

that eternally inflating histories with large �0 provide the
dominant contribution to the TD distribution [4]. Volume
weighting will apply in approximately homogeneous and
isotropic histories of this kind, yielding the Gaussian con-
tribution to the TD distribution given in (5.12). However, if
backreaction leads to a significant probability for the re-
heating surface to be infinite, then the main contribution to
the TD distribution will come from significantly perturbed
histories where our data are common becauseNh is large or
infinite. But in such histories the TD weighting in (5.7)
equals one. Hence, predictions for observations are given
by the bottom-up probabilities. One expects BU probabil-
ities of observable fluctuations not to be affected by back-
reaction effects, since perturbation modes on currently
observable scales leave the horizon well outside the regime
of eternal inflation where these effects are negligible.
Hence, we expect the result (5.12) remains unchanged
when backreaction is taken in account.
Roughly speaking, one could say that in these models,

by selecting histories with a large number of e-folds, the
top-down weighting also makes it likely for there to be a
Hubble volume with any given local perturbation on sur-
faces of constant density. Indeed in a sufficiently large
universe anything will happen somewhere. Hence, the
probability that a typical observer sees a particular fluctua-
tion is determined by the relative frequency with which
different fluctuations occur. But this is precisely what is
given by the BU probabilities. This is an example where
the quantum state specifies a measure for local prediction
in cosmology that is well behaved for spatially large or
infinite universes.

VII. CONCLUSION

The approach of this paper to cosmology in the regime
of eternal inflation is significantly different from many
others [3]. We have started from the fundamental assump-
tion that the universe, including all its contents, is a closed
quantum mechanical system. We have explored the

18Numerical simulations of perturbed classical universes in this
regime using stochastic techniques [25–28] provide some sup-
port for this.

19We note however that the connection between the volume of
the reheating surface and that of the surface of constant present
matter density is rather complicated, since large-scale perturba-
tions are large. This is a caveat in the analysis of top-down
probabilities in this model.
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consequences of this for prediction in the regime of eternal
inflation in simplified models in the context of the low-
energy approximate quantum theory of gravity.

Like any other closed quantum system the universe has a
quantum state. The NBWF is the model for this state used
here. Bottom-up probabilities for the different, coarse-
grained histories of the universe and its contents follow
from this state and not from a further posited measure.
Classical behavior of spacetime geometry is not assumed.
Rather the ensemble of possible classical histories of the
universe is derived from its quantum state.

Observers are not assumed to necessarily exist, nor to be
unique, nor to be essentially classical systems outside the
reach of quantum mechanics. Rather they are quantum
subsystems of the universe described by certain data with
a probability to exist in any Hubble volume and a proba-
bility to be exactly replicated elsewhere in the universe.

Probabilities relevant for observations are top-down
probabilities that take into account the observing system
as a quantum subsystem of the universe. The starting point
for the calculation of top-down probabilities are the
bottom-up probabilities for four-dimensional histories con-
ditioned on just the NBWF—the universe sub specie
aeternitatis.

The NBWF predicts a particular ensemble of classical,
inflationary histories with a characteristic set of perturba-
tions that emerge from quantum fluctuations. The bottom-
up probabilities favor histories with a small number of
e-folds [4]. The perturbations are Gaussian with variance
Vð�Þ=� evaluated at horizon crossing, where � is the slow-
roll parameter [Eq. (4.9)]. Therefore in histories with a
regime where Vð�Þ> �, significant probabilities are pre-
dicted for large fluctuations that left the horizon while this
condition holds. This is called the regime eternal inflation.
The NBWF thus predicts that histories of this kind are
inhomogeneous on the large scales that left the horizon
during such a regime. In particular, it predicts that any
constant � surface, such as the reheating surface, can differ
significantly from the same surface in the homo/iso back-
ground. This result resonates well with other discussions of
eternal inflation as well as numerical simulations using
stochastic techniques [25–28].

Top-down probabilities are constructed from bottom-up
probabilities by further conditioning on some part of our
data that includes a description of the observational situ-
ation within the universe. If one conditions on data D that
localize the observer on one or several surfaces in each
history, then the general weighting (5.4) connects top-down
probabilities to bottom-up ones. This weighting is not a
choice, or a postulate, or a proposal. Instead it arises
necessarily from four considerations: (1) Our data D occur
within a given Hubble volume only with some quantum
probability pE; (2) in a large universe our data may occur
elsewhere with significant probability; (3) all we know
about the universe is that our history exhibits at least one

instance of it; (4) an assumption that we are equally
likely to be any of the instances of D that our universe
exhibits.
Volume weighting arises as an approximation to

(5.4) only when our data are rare in all histories in the
ensemble that are predicted with any significant probabil-
ity. For realistic values of pE [6], we find this implies that
top-down probabilities favor histories with a large number
of e-folds in models that have a parameter regime where
V > �, with � the slow-roll parameter [4,5]. Unlike this
approximation, the general weighting (5.4) is well behaved
even when spatial volumes become infinite. In fact for very
large volumes, the quantum nature of the observational
situation implies that the top-down probabilities for
observations converge to the bottom-up probabilities.20

This is an important difference with other discussions of
eternal inflation, usually not based on quantum cosmology.
There the infinite volume limit instead leads to ambigu-
ities. In those cases, to predict the outcome of our obser-
vations unambiguously, a measure must be introduced that
regularizes the infinitely large spatial volumes that arise in
the regime of eternal inflation. By contrast, in quantum
cosmology the wave function provides the only measure
needed for unambiguous prediction.21 Furthermore,
it does this as part of a unified framework that also
explains the origin of inflation and of classical spacetime
itself.
In this paper we have calculated the top-down probabil-

ities for different fluctuations in models with a single scalar
field � with a quadratic potential m2�2. We find that the
NBWF predicts a significantly inhomogeneous universe on
very large scales and a Gaussian spectrum of small pertur-
bations on currently observable scales when there is a
regime of eternal inflation, i.e. �> 1=

ffiffiffiffi
m

p
in the early

universe. The inclusion of backreaction effects of pertur-
bations may give rise to histories with a truly infinite
reheating surface, but we have no indications this leads
to a breakdown of the calculational framework nor do we
expect this to change this specific result.
By contrast, in models where the scalar field takes values

only in a restricted range22 that does not include a regime
where V > �, we find the top-down probabilities predict
large-scale homogeneity and a slightly non-Gaussian spec-
trum of observable fluctuations, for realistic values of pE.

20This resonates with [29] where it is argued that the total
number of locally distinguishable Friedman-Robertson-Walker
(FRW) universes generated by eternal inflation is finite. Here we
have seen that the top-down probabilities for different values of
local perturbations become indistinguishable in very large
universes.
21It would be of interest to compare top-down probabilities
calculated from the NBWF with the predictions of other mea-
sures employed in the study of eternal inflation.
22This includes models where quantum corrections render the
potential too steep so that the regime of eternal inflation sets in
only at the Planck scale.

NO-BOUNDARY MEASURE IN THE REGIME OF ETERNAL . . . PHYSICAL REVIEW D 82, 063510 (2010)

063510-13



The predicted level of non-Gaussianity is exceedingly
small on observable scales but potentially detectable with
future experiments. More generally, we expect it to be true
that the top-down weighting leads to some non-Gaussianity
only in models without eternal inflation, and therefore to
the possibility to test whether our universe exhibits a
regime of eternal inflation.

The differences between the TD and BU probabilities
are striking. Bottom-up probabilities favor past inflation
but only in small amounts. In contrast, top-down proba-
bilities favor a large number of e-folds of past inflation.
Bottom-up probabilities favor a homogeneous universe.
Top-down probabilities predict a universe that is signifi-
cantly inhomogeneous on scales much larger than the
present horizon in models with eternal inflation.

The top-down probabilities for prediction exemplified
by (5.4) depend only on data D within our past light cone.
(In the present models this data is approximated by data on
a spacelike surface in our Hubble volume.) But they also
depend on the implications of the theory for the structure of
the universe on scales much larger than the present hori-
zon. That is because top-down probabilities depend not
only on what the data are on our past light cone, but also on
where light cones with that data may be located in space-
time. This is determined in part by the quantum state,
which predicts nonlocal correlations and, in particular,
specifies what the allowed classical spacetimes are.

Turning this connection around, we see that from local
observations we may draw inferences about the structure of
our universe outside the present horizon, assuming of
course that the theoretical framework behind these predic-
tions is secure. The TD predictions for the spectrum of
primordial perturbations provide a striking example
of this. These predict a specific form of non-Gaussianity,
but only in histories where we are rare. Any observation of
this non-Gaussianity would therefore provide valuable in-
formation about the possible locations of our data and
place an upper bound on the size of our universe. If by
contrast this non-Gaussianity turns out to be absent in the
perturbation spectrum, this would be evidence for a much
larger, eternally inflating, and therefore possibly infinite
universe.

Thus, if the values of the top-down probabilities depend
on the large-scale structure of the universe, then the results
of the observations they predict offer the opportunity to
probe this structure. This striking connection between
global structure and local observation is ultimately trace-
able to the NBWFwhich, like any quantum state, is defined
globally not locally.

The underlying homo/iso symmetry has of course
greatly simplified the calculation of TD probabilities in
this paper. The symmetry means all Hubble volumes on
the surface where the data D occur are equivalent,
which essentially allows one to ignore all other instances
of our data and focus on our own. In particular, the

probabilities for different values of a perturbation mode
zðnÞ in our own Hubble volume given D�1 are the same as

the probabilities that the universe exhibits different values
of perturbations zðnÞ in any Hubble volume given D�1. The

symmetry therefore automatically ‘‘organizes’’ the differ-
ent Hubble volumes, even when D occurs on infinitely
large surfaces.
To apply the top-down approach to string theory

which, it has been argued, at low energies predicts a
potential landscape with finitely many vacua with different
physics, one must generalize the calculations in this paper
to models where the possible locations of D are not all
connected by symmetry.23 In models of this kind, one
expects the NBWF to select inflating histories that roll
down from flat patches in the landscape where the slow-
roll conditions hold. However, it appears plausible that,
besides histories where the background is homogeneous
and isotropic, the ensemble also includes histories where
our data occur on homogeneous surfaces in open FRW
universes that are bubbles inside de Sitter space. This is
because one can get histories of this kind from complex
Coleman-De Luccia instantons that obey the no-boundary
condition of regularity [2]. If one neglects collisions be-
tween bubbles, then all locations inside bubbles of the
same type are equivalent, and only one ‘‘representative’’
location enters in the calculation of TD probabilities. By
contrast, the relative probability of finding our data in
bubbles of different types (or in histories without bubbles)
is important. In the NBWF this is given by the ratio of
the real part of the actions of the corresponding instantons,
yielding a well-defined prediction. Thus, at the present
moment, we see no obstacle of theory or practice to
extending the results of this paper to more general
and realistic models of the implications of a quantum
universe.
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APPENDIX A: SEMICLASSICALWAVE FUNCTION
OF LINEAR PERTURBATIONS

In this Appendix we calculate the wave function of
linearized perturbations around the homogeneous isotropic
saddle point histories discussed in Sec. IVA.

23The range of possible locations depends on the set of histories
involved and therefore on the coarse graining. The latter is in
turn determined by the question one asks.
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As discussed in Sec. IVB, the wave function of linear
perturbations depends on the background variables b and
�, and on a single linear combination of the perturbation
variables aðnÞ, bðnÞ, and fðnÞ that describe the perturbed

complex extremizing four geometry. We work with the
following gauge-invariant linear combination (see also
[18,30]):

~� ðnÞ ¼ a3½ _�ðaðnÞ þ bðnÞÞ �HEfðnÞ�; (A1)

where ~� tends to a real value ~z at the boundary. To calculate
�ðb; �; ~zÞ it is convenient to return to the original
perturbation variables (4.3) and to choose a particular
gauge to find the solutions that extremize the action. One
can then rewrite the result in terms of ~zn and therefore
express the wave function in a gauge-invariant way. [In
Sec. IV we have written the wave function in terms of

z ¼ ~z=a3 _�, which is conserved outside the horizon and
therefore closely related to physical (observable)
quantities.]

A general linear scalar gauge transformation allows one
to set E ¼ B ¼ 0 in (4.3), or bðnÞ ¼ kðnÞ ¼ 0 in terms of

perturbation modes. This is the Newtonian gauge in which
gðnÞ ¼ �aðnÞ, and the equations that govern the fluctuations
read [18]

€aðnÞ þ 4HE _aðnÞ � ð3m2�2 � 2=a2ÞaðnÞ
¼ �3 _� _fðnÞ � 3m2�fðnÞ (A2a)

€fðnÞ þ 3HE
_fðnÞ � ðm2 þ ðn2 � 1Þ=a2ÞfðnÞ

¼ �4 _� _aðnÞ � 2m2�aðnÞ (A2b)

_aðnÞ þHEaðnÞ ¼ �3 _�fðnÞ: (A2c)

We consider a coarse graining in which we concentrate on
perturbation modes that leave the Hubble radius during
inflation. These are the modes that get amplified by the
time-dependent background and, ultimately, lead to the
large-scale structures we observe today.

The no-boundary condition selects solutions of (A2) that
are regular at the SP. This means fðnÞ and aðnÞ must vanish

as � ! 0. From Eqs. (A2) and regularity of the back-
ground, it follows that near the SP, the leading order term
in � is given by

fðnÞ ¼ �ðnÞð0Þ�n�1; aðnÞ ¼ � 3m2�ð0Þ
4ðnþ 2Þ �ðnÞð0Þ�

nþ1;

(A3)

where �ðnÞð0Þ � j�ðnÞð0Þjei
 � �ðnÞ0ei
 is a complex con-

stant. The phase 
 should be fine-tuned such that �ðnÞ is
real at the end point . The amplitude �ðnÞ0 in turn is

determined by zðnÞ. At the SP �ðnÞ0 is thus a free parameter

which can be used to label the different histories.

The ensemble of perturbed histories can therefore be
labeled by ð�0; �0Þ.
At early times, when the physical wavelength a=n of the

perturbation mode is smaller than the Hubble radius H�1
E ,

the metric perturbation aðnÞ does not significantly affect the
evolution of the matter perturbation fðnÞ. Specifically the

terms on the right-hand side in (A2b) are negligible in
slow-roll backgrounds (4.1) when n � jHEaj, so that for
n � 1 the matter perturbation equation reduces to

f00ðnÞ þ 2H Ef
0
ðnÞ � ðn2 � 1ÞfðnÞ ¼ 0: (A4)

Here prime denotes the derivative with respect to confor-
mal Euclidean time �E andH E � a0=a. In this regime the
solutions that are regular at the SP take the approximate
analytic form

fðnÞ ¼
�ðnÞð0Þ
a

en�E ; aðnÞ ¼ � 3�0�ðnÞð0Þ
na

en�E; (A5)

where the constraint (A2c) was used to find the metric
perturbation. These solutions are valid in the complex �
plane in the regime n � Ha. From (A1) it follows that in

this regime, ~� ðnÞ � �Ha3fðnÞ.
One can verify whether the analytic approximations

(A5) are accurate by solving numerically for the perturba-
tions simultaneously with the complex background. This
can be done, e.g., by integrating the field equations along a
broken contour CBðXÞ in the complex � plane that runs
along the real axis to a point X, and then up the imaginary y
axis. When�0 � �c

0, one can adjust both the turning point

X and the phase angle 	 of�ð0Þ so that a and� tend to real
functions bðyÞ and�ðyÞ along the vertical line given by � ¼
Xþ iy in the complex � plane [5]. These are the scale
factor and scalar field of a classical Lorentzian solution.
An example of an exact complex background that tends to
a classical history is shown in Fig. 1, for �0 ¼ 4 and
m2 ¼ 0:05.
In Fig. 2 (left panel) we plot the evolution of the n ¼ 20

matter perturbation along the vertical part of the contour in
this background. The range of y shown here corresponds to
the regime where the mode is inside the horizon. One sees
it oscillates rapidly with decreasing amplitude / a�1, in
good agreement with the analytic approximation (A5). The
Euclidean action of a solution to Eqs. (A2) is just a
boundary term [18],

IðnÞ ¼ M~zðnÞ~z0ðnÞ � N~z2ðnÞ; (A6)

where

M � ðn2 � 4Þ
2½ðn2 � 4Þa02 þ 3a2�02� (A7)
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FIG. 1. The real part of the scale factor (left) and the scalar field (right) of the complex homogeneous isotropic slow-roll solution
labeled by �0 ¼ 4, with m2 ¼ 0:05. This is shown here along the vertical part of a contour in the complex � plane that first runs from
the origin to X � �=2m�Rð0Þ and then upward along the y axis. The turning point X and the phase of �ð0Þ have been fine-tuned so
that a and � tend to real functions along the vertical part of the contour. This happens very rapidly, so that the solution behaves
classically already at y � Oð1Þ.
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FIG. 2. Left panel: When the perturbation mode is inside the horizon the complex scalar field fluctuation oscillates with amplitude
/ a�1, as illustrated here for the real part of the n ¼ 20 mode in the background of Fig. 1. Right panel: As a consequence of this, the
Euclidean action of a perturbation mode that is inside the horizon oscillates with an approximately constant amplitude.
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FIG. 3. Numerical solution of the perturbation modes aðnÞ and fðnÞ for n ¼ 20 in the exact complex �0 ¼ 4 background shown in
Fig. 1. The modes are complex and oscillate when the absolute value of their wavelength is smaller than the Hubble radius, or n >
jaHEj. When the wavelength crosses the Hubble radius around y
 5 both the matter and metric perturbation start slowly growing until
the end of inflation around y
 60. The imaginary part of the gauge-invariant combination �ðnÞ decays away in this regime. After

inflation ends the metric perturbation is essentially real and constant, with small oscillations due to the oscillating background scalar
field. These primordial metric perturbations provide the seeds for structure formation in the corresponding Lorentzian cosmology.
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and

N � 1

4MUa3

�
Kn

�
2a4 � 3a6m2�2 þ 3

n2 � 1

n2 � 4
a4�02

�

þ a12m4�2 þ 3a9��0a0
�

(A8)

with U ¼ Knaa
0 þ a8m2��0 and Kn � 1

3 ½ðn2 � 4Þa02 �
ðn2 þ 5Þa4�02 � ðn2 � 4Þa6m2�2�. All quantities here
are evaluated on the boundary surface where one calculates
the wave function. In the complex � plane, this surface is
given by a certain value �f ¼ Xþ iyf, where the variables

take real values að�fÞ ¼ b, �ð�fÞ ¼ �, and ~�ð�fÞ ¼ ~z.

When the absolute value of the wavelength a=n of a
complex perturbation mode becomes larger than the
Hubble radius, both the scalar field and metric perturba-
tions stop oscillating and start slowly growing. This tran-
sition can be clearly seen in the numerical solutions shown
in Fig. 3. It can also be understood analytically: Outside the
horizon the gradient term is unimportant in the equations
of motion (A2), which therefore admit growing and decay-
ing solutions for aðnÞ and fðnÞ. The growing solutions are

given by

fgðnÞ 

1

�
; aðnÞ ¼ 1

�
fgðnÞ (A9)

and the decaying modes are

fdðnÞ 

1

a3
; aðnÞ ¼ � m

2H
fdðnÞ: (A10)

The general solution for ~� ðnÞ in this regime is a combina-

tion of a growing and decaying mode. The (complex)
proportionality constants multiplying each term can be
approximately determined in terms of �ðnÞð0Þ by matching

the solution on subhorizon scales at horizon crossing
n ¼ a	H	. Here the subscript star means the quantity is
to be evaluated at the time of horizon crossing of modes

with wave number n. At horizon crossing ~� ðnÞ generally has
an imaginary component, since the scalar field and metric
perturbation are not simultaneously real. The requirement

that ~� ðnÞ be real at the boundary essentially means that the

phase 
 of �ðnÞð0Þ at the SP should be tuned so that the

imaginary component of the subhorizon mode function
matches onto the decaying mode when the perturbation
leaves the horizon.
This also means perturbations behave classically when

their wavelength exceeds the Hubble radius, since the
information on their phase decays away. We illustrate
this in Fig. 4, where 
 is fine-tuned so that the numerical

solution ~� ðnÞ, for n ¼ 20, tends to a real function zðnÞ along
the vertical part of the broken contour CBðXÞ in the�0 ¼ 4
background and with m2 ¼ 0:05. One sees the ratio of the
gradients of the real part of the Euclidean action to the
imaginary part tends to zero.
The real part of the action (A6) tends to a constant,24

which is approximately given by its value when the mode
leaves the horizon. Hence, for the approximate analytic
solutions (A5) we obtain

IðnÞR ! n~z2ðnÞðy	Þ
2b4	H2	

: (A11)
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FIG. 4. Left panel: The phase of the perturbation mode at the SP should be tuned so that zn is real at the boundary. This is illustrated
here for the numerical perturbation solution z20 along the vertical part of a contour in the complex � plane, in the complex �0 ¼ 4
background. Right panel: The ratio of the gradients of the real part of the Euclidean action to the imaginary part tends to zero when the
wavelength of a perturbation mode becomes larger than the Hubble radius.

24The asymptotic value of IR can also be obtained from the
approximate analytic form of the superhorizon solutions (A9)
and (A10). Indeed, while the growing term in ~� ðnÞ must be tuned
to be real outside the horizon, the derivative z0ðnÞ contains an
imaginary component of order a2	�ðnÞ0aH2 that arises from taking
the derivative of the decaying mode. This is a subleading
contribution to the total action, but it gives rise to a real part
IR of the correct magnitude.
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