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Recent studies suggest that the cosmological constant affects the gravitational bending of photons,

although the orbital equation for light in Schwarzschild–de Sitter space-time is free from a cosmological

constant. Here we argue that the very notion of a cosmological constant independent of the photon orbit in

the Schwarzschild–de Sitter space-time is not proper. Consequently, the cosmological constant has

some clear contributions to the deflection angle of light rays. We stress the importance of the study of

photon trajectories from the reference objects in bending calculations, particularly for asymptotically

nonflat space-time. When such an aspect is taken into consideration, the contribution of a cosmological

constant to the effective bending is found to depend on the distances of the source and the reference

objects.
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I. INTRODUCTION

A number of recent cosmological observations indicate
the presence of a cosmological constant with a value of
� ’ 10�52=;m�2 (e.g. see [1] and references therein).
Consequently, the exterior space-time due to a static
spherically symmetric mass distribution is the
Schwarzschild–de Sitter (SDS) space-time[2]. Recently,
working with the SDS geometry, Rindler and Ishak dem-
onstrated [3] that, contrary to the widely held idea [4,5],
there is a small contribution of the cosmological constant
(�) in the gravitational bending of light that diminishes the
deflection angle when � is positive, although the orbital
equation for light in SDS space-time is free from �. In a
subsequent work Ishak et al. [6] have further shown that
the contribution of � to the bending of light could be
significant (larger than the second order term) for many
lens systems, such as a cluster of galaxies.

Some later works [7–9] support the conclusion of Rinder
and Ishak. In particular, Sereno [7] showed that the de-
flection angle in SDS space-time contains a term that
describes local coupling between the lens (characterized
by mass) and �. He provided a general expression for the
bending angle and claimed that the results of Rindler and
Ishak [3] can be recovered from his expression for a
specific radial distance of the observer/source.

Some investigations [10–12], however, questioned the
findings of Rindler and Ishak. The criticisms about
the Rindler-Ishak method mainly rest on the fact that in
the SDS universe the lens, source, and observer are moving
relative to each other, which has not been incorporated by
Rindler and Ishak in their (original) analysis. Khriplovich
and Pomeransky [10] accommodated such a dynamic fea-
ture by working with Friedmann-Robertson-Walker (FRW)
coordinates, whereas Park [11] analyzed the problem by
expanding the null geodesic equations following the

McVitte metric to first order in mass in newly defined
physical spatial coordinates consistent with the expanding
universe. Both the works concluded that the cosmological
constant plays no role in gravitational lensing. In order to
avoid coordinate dependent artifacts, Simpson et al. [12]
employed the standard technique of cosmological pertur-
bations, and by working in the Newtonian gauge, they
obtained that the potential in the perturbed FRW metric
has no explicit dependence on the cosmological constant.
Thus they concluded that the� dependence of the bending
angle obtained from the Kottler metric is a gauge artifact
result. In a subsequent work Ishak et al. [13] addressed the
criticisms and stated that the conclusion of no contribution
of � to the bending angle is mainly due to the improper
dropping of relevant terms in calculating the deflection
angle, though in [12] the analytic solution for the potential
is also verified numerically with no sign of the � contri-
bution. Thus the source of the disagreement between the
results of [3,12] remains unclear. On the other hand, Sereno
[7] argued that the separate � contribution is absent in
the bending expression of [10,11] because it is included in
the angular diameter distance through which bending is
expressed in [10,11].
Here we question the very concept of the � independ-

ency of the orbital equation of light in the SDS geometry.
Our reasoning is that the first order differential equation of
the null geodesic in the SDS geometry contains a � that
drops out at the second order. So the solution of the second
order differential equation for the null geodesic must also
satisfy the parent first order differential equation, and
thereby the orbital solution should include �. When one
integrates the second order differential equation of the null
geodesic, the � should reappear in the solution through an
integration constant.
More importantly, the measurement of the bending

requires a ‘‘straight’’ reference line (except in the special
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case of the Einstein ring). Usually the path of light rays
from a reference source (or the same source but in a
different position) having an impact parameter much larger
than that for the light rays from the source is considered as
the reference line for measuring the bending. But in the
SDS geometry the light trajectory of such a reference
source cannot be treated as a straight line. This is because,
in contrast to the gravitational effect due to the mass
that falls off quickly with distance, the influence of �
increases with distance from the source. Hence it is ex-
pected that in the SDS geometry the light rays from the
reference source will also be affected, possibly to a higher
degree, by �.

In the present work we will first compute the bending
angle in the SDS space-time, taking the proper � involved
in the solution of the light trajectory, and then we will
show that when the light path from the reference source is
taken into consideration, the resultant bending in the SDS
geometry will appear to increase rather than decrease due
to the � effect. The possibility of the detection of the �
effect from the bending angle measurement will be
discussed.

In deriving the deflection angle in the SDS geometry we
would assume, as is usually done, that the whole lensing
system, consisting of the source, the reference, the lens and
the observer, is an isolated one; light rays, while moving
from the source/reference to the observer, are not influ-
enced by any other object outside the system. We will
restrict our discussion only to the case of local (within
the galaxy) scale; we are not going to consider the situation
involving large distance scales, such as lensing due to
clusters of galaxies, etc. Since the global cosmic expansion
is not supposed to affect local structures, we consider that
the observer, the lens, and the source are static; no relative
motion exists between them. Our sole objective is to esti-
mate the bending angle correctly in the presence of the
cosmological constant and also to explore whether the �
contribution to the bending angle can be detected experi-
mentally, in principle.

The plan of the paper is the following. In the next section
we will first obtain the orbit equation for light rays in the
SDS geometry, and consequently, we will derive the
expression for the gravitational deflection angle. In
Sec. III we will estimate the expected deviation in the
image position of the source with respect to a reference
source. Finally we will conclude with our results in
Sec. IV.

II. GRAVITATIONAL DEFLECTION
IN THE SDS SPACE-TIME

For the computation of the deflection angle we will
follow the procedure described in [14]. We consider the
following geometrical configuration for the phenomenon
of gravitational bending of light. The light emitted by the
distant source (S) is deviated by the gravitational source

(lens, L), and reaches the observer (O). The angles are
measured with respect to the polar axis which is parallel to
the undeflected ray (in the absence of a massive object)
and passes through the center of the lens. Such a choice of
the polar axis has been justified in [13]. The point L is
taken as the origin of the coordinate system. Our first target
is to estimate theoretically the deflection angle and,
subsequently, the image position in the context of SDS
geometry.
The metric for the SDS or Kottler space-time is given by

(we are using units such that G ¼ c ¼ 1)

ds2 ¼ �f�ðrÞdt2 þ dr2

f�ðrÞ þ r2ðd�2 þ sin2�d�2Þ; (1)

where

f�ðrÞ ¼
�
1� 2m

r
��r2

3

�
; (2)

with m being the mass of the lens object. For this space-
time the null geodesic equation involving r and � is given
by (see [14])

1

r4

�
dr

d�

�
2 þ f�

r2
� 1

b2
¼ 0; (3)

where b � r2d�=dp is the first integral of motion that
behaves as the impact parameter at large distances, and
p is an affine parameter along the null geodesic. Writing
u ¼ 1=r and differentiating the above equation with
respect to �, one gets the second order differential equa-
tion for the null geodesic, which does not contain �, as
given hereunder,

d2u

d�2
þ u ¼ 3mu2; (4)

which is the same as that for the Schwarzschild space-time.
The general solution of the above path equation up to first
order accuracy in m reads as

u ¼ sin�

R
þ 3m

2R2

�
1þ 1

3
cos2�

�
: (5)

The above solution must be a solution of Eq. (3) also,
which implies

1

R
� m

R2
¼

�
1

b2
þ�

3

�
1=2

: (6)

Equation (5), together with the above relation, implies
that the orbit equation of light rays in the SDS geometry
does contain �.
The coordinate angular velocity is given by

dr

d�
¼ � r2

R
cos�

�
1� 2m

R
sin�

�
; (7)
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which vanishes at the coordinate distance of closest
approach (ro) that occurs when � ¼ �=2. The parameter
R is thus related with ro through the following relation:

1

ro
¼ 1

R
þ m

R2
: (8)

Note that R is an integration constant which is related to
b and � via Eq. (6). Since the parameters b and � are
involved in the parent geodesic equation [Eq. (3)], one
must express the solution in terms of these parameters
rather than R. It may be convenient to express the orbit
of the photon in terms of R [as in Eq. (5)] but one has to
note that this parameter (R) has no independent locus
standi. Hence the coordinate distance of closest approach
[Eq. (8)] also depends on � through Eq. (6).

For asymptotically flat space-times such as the
Schwarzschild space-time, the direction of asymptotic
light rays is usually evaluated by applying the limit r !
1 in the orbit equation, and the angle between the two
asymptotic directions gives the total deflection angle.

However, r � ffiffiffiffiffiffiffiffiffi
3=�

p
gives the de Sitter horizon. Hence

r ! 1 does not make any sense in SDS space-time. This
was one of the main objections raised by Rindler and Ishak
[3] against the conventional treatment of calculating bend-
ing in SDS space-time. As a solution they proposed to
consider the angle that the tangent to the light trajectory
made with a coordinate direction at a given point which for
the general metric (1) is given by

tanðc Þ ¼ rfðrÞ1=2jd�=drj: (9)

For the null geodesic the above equation reduces to [14]

tanðc Þ ¼
�
fðroÞ
fðrÞ

r2

r2o
� 1

��1=2
; (10)

which to the leading order in m and � gives

tanðc Þ ¼ ro
r
þm

r
�mro

r2
��ror

6
þ�r3o

6r
: (11)

When r � ro the angles � and c will be small, and
consequently, one may take sinð�Þ ! � and tanðc Þ ! c .
Using Eq. (5) we get the angle between the tangent to the
light trajectory at point ðr; �Þ and the polar axis to the
leading order in m, �, and ro=r,

j�j ¼ jc ��j ¼ 2m

ro
�mro

r2
��ror

6
þ�r3o

6r
: (12)

At this juncture an important question is, at what coor-
dinate point(s) is the angle c to be determined? It appears
that the selection of the points on the orbit at which the
tangents are to be drawn for estimation of angles remains
somewhat arbitrary in the literature. For instance, in their
basic work, while obtaining the bending angle for the SDS
metric, Rindler and Ishak [3] used the point � ¼ 0 (the
corresponding r follows from the orbit equation) purely on

the basis of convention, whereas in a subsequent work [6]
the angle was determined at the boundary of the SDS
vacuole. While the former choice is not a proper one [the
angular position of the observer cannot be taken as zero in
the coordinate system considered here; if it is taken force-
fully the observer distance will become fixed by the dis-
tance of closest approach, as may be seen from Eq. (5) and
(8)], the latter choice has limited applicability. Thus a
straightforward approach should be to calculate the angles
directly at the location of the observer and the source.
The angle of transmission �s and reception �o with

respect to the polar axis can be straightway computed
from Eq. (12) at the location of the source ðdLS; �sÞ and
the observer ðdOL; �oÞ, respectively, and the total deflec-
tion angle thus reads

j�j ¼ 4m

ro
� 2mro

�
1

d2LS
þ 1

d2OL

�
��ro

6
ðdOL þ dLSÞ

þ�r3o
6

�
1

dOL
þ 1

dLS

�
: (13)

The distance of closest approach is a coordinate depen-
dent variable; it is not a measurable one. Identifying the
measured radius of an object with coordinate distance of
closest approach works tolerably well only up to the first
order level for a standard or an isotropic coordinate system,
but such an approximation does not work at second or
higher order in m [15]. It is proper to express the bending
angle in terms of a coordinate independent quantity such as
the apparent impact parameter b.
The relation between b and rmin may be obtained from

Eq. (3),

1

ro
� m

r2o
¼ 1

b
��b

6
: (14)

Exploiting the above relation, one finally gets, to the
leading order inm and�, the total deflection angle in terms
of the impact parameter,

j�j ¼ 4m

b
� 2mb

�
1

d2LS
þ 1

d2OL

�
þ 2m�b

3

��b

6
ðdOL þ dLSÞ þ�b3

6

�
1

dOL
þ 1

dLS

�
: (15)

The fourth term on the right-hand side of the above
equation [or the third term in Eq. (13)] may appear to be
unphysical, as it rapidly increases with lens-source dis-
tance, but it just reflects the gravitational potential in the
presence of �. Basically this term arises due to the asymp-
totically nonflat nature of the SDS geometry. Both the
source and the observer are located at the nonflat region
of space-time produced by the lens, and hence it is natural
that the final expression of the bending angle will contain
terms relating to the gravitational potential at the location
of the source and the observer. Also note that the source-
lens distance cannot exceed the de Sitter horizon radius in
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any case. An analogous term in the expression of the
bending angle was obtained by Ishak et al. [6] for
Schwarzschild–de Sitter geometry in the framework of
the Einstein-Strauss vacuole model [16].

One may note that the � contribution part in the above
expression is not the same as the one obtained in [3]. This
is mainly due to the use of the modified (proper) orbit
equation. Moreover, in [3] the angle c has been deter-
mined at a different (improper) coordinate point. If we
forcefully take � ¼ 0 in Eq. (5), then 1=r ¼ 2m=R2. On
substitution of this r, the third term on the right-hand side
of Eq. (12) becomes �R3=ð12mÞ, which is what Rindler
and Ishak found in their work [3]. The third term on the
right-hand side of Eq. (15) is the one that Sereno qualified
as local [7] since it containsm and � but not the positional
coordinates of the source/observer.

It appears from the above expression that, even in a Solar
System observation, the � contribution to the bending can
be considerable if the source is a large distance away from
us. For instance, in the case of a light ray grazing the limb
of the Sun (so that b ’ R�) and if the source distance is
10 kpc, which is roughly equal to the distance of the
Sun from the Galactic center, the ratio of the � con-
tribution to the main general relativistic contribution is

’ �b2dLS
24m , which is about 4� 10�19. Note that in the

Solar System the influence of the cosmological constant
is known to be maximum in the case of the perihelion shift
of the mercury orbit, where the � contribution is about
10�15 of the total shift.

III. DEVIATIONOF IMAGE POSITIONS BETWEEN
THE SOURCE AND THE REFERENCE OBJECT

The gravitational bending of light trajectories has
been measured experimentally with high precision. At
the early stages the bending was measured in Solar
System experiments by comparing the apparent positions
of stars when light trajectories from the stars came close to
the solar disc but remained visible (normally during a solar
eclipse), with their positions half a year earlier when the
stars were on the opposite side of the Earth from the Sun.
Thereby, light rays from these sources did not come too
close to the Sun on their way to the Earth. In modern high
precision measurements of gravitational deflection using
the interferometric technique, angular positions of stars are
measured as a function of time with respect to other
sources having larger impact parameters, treating the latter
objects as references. For instance, in an effort to test the
gravitational theories, the change in angle between the
quasar 3C279, which is occulted by the Sun each
October, and the quasar 3C273 from their angular separa-
tion of about 9.5� has been measured just before and after
occultation, and the results are found to be in accordance
with the prediction of general relativity to first order accu-
racy in M�=R�.

The deviation of the image position (�) of the source
from its actual (which would have been seen by the ob-
server in the absence of the lens) position (�) can be
obtained from the lens equation, which is given by [17]

tan� ¼ dOL
dOS

sin�

cosð�� �Þ �
dOS � dOL

dOS
tanð�� �Þ; (16)

where the angles are with respect to the optic axis (the line
joining the observer and the lens) and dOS= cos� is the
distance between the observer and the source. Hence in this
scenario � ¼ c . For small angles, i.e. when �, �, � � 1,
the lens equation reduces to

� ’ �� dLS
dOS

�: (17)

As mentioned already, experimentally the effect of the
lens on the photon trajectory is obtained by measuring the
bending with respect to the photon trajectory from a second
source that may be called the reference source. The dis-
tance of closest approach for the light path from the
reference has to be much larger than that for the photon
trajectory from the source.
Thus when angles are small, the angular difference

between the images of the source and the reference, as to
be revealed to the observer, is

�R � �S ¼ �R � �S þ
�
dLR�

R

dOR
� dLS�

S

dOS

�
; (18)

where the superscripts R and S denote the reference and the
source, respectively, and dOR= cos�

R is the distance be-
tween the observer and the reference object. As the ob-
server changes his/her position, both � and � of the source
as well as of the reference will change. The difference
between the impact parameter or the closest approach of
the light path as the observer changes his/her position from
one point to the other is expected to be the same for both
the source and the reference. In other words, bS2 � bS1 ,
where the subscripts 1 and 2 refer to parameter b at
positions 1 and 2 of the observer, respectively, which
should be the same as bR2 � bR1 , particularly when the
source and the reference are a large distance away from
the lens. To the leading order the difference in angle as the
observer changes position is finally

�� ¼ �R2 � �S2 � ð�R1 � �S1Þ

’ �4m

�
dLR

dORb
R
1

� dLS
dOSb

S
1

�
� 2m�b

3

�
dLR
dOR

� dLS
dOS

�

þ��bdOL
6

�
dLR
dOR

� dLS
dOS

�
þ��bdOL

6

�
d2LR
dOR

� d2LS
dOS

�
;

(19)

where�b � bi2 � bi1, and i stands for the source/reference.
Here we assume that the impact parameter (or the distance
of closest approach) for both the source and the reference is
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smaller at position 1 than at position 2. When both the
reference object and the source are far away from the lens
in comparison to the lens-observer distance, one may take
dLR=dOR ’ dLS=dOS ’ 1. In such a case the relative deflec-
tion angle becomes

�� ’ 4m

bS1
���b

6
ðdLR � dLSÞ: (20)

So the deflection angle up to the accuracy we considered
here still contains a cosmological constant involved term
unless dLR ¼ dLS.

Referring back to the example cited in the previous
section, if dLR � dLS 	 10 kpc and �b simR�, the contri-
bution of the bending angle due to � will be about 4�
10�19 of the total bending angle. The expected angular
precision of the planned astrometric missions using optical
interferometry is at the level of microarcseconds, at least
12 orders lower than the � contribution on the bending
angle when the lens system is within the galaxy.

So the natural temptation will be to consider the
extragalactic sources and/or lenses for which dOL and
dLS will be much higher. But in that case the expression
for the bending angle has to be obtained in the frame of a
comoving observer. Note that the cosmological expansion
is unlikely to affect local structures—local overdensities
in the matter distribution to inhibit space from expanding
[18]. Accordingly, in this work the whole lensing
system, consisting of the source, reference, lens, and
observer, is considered as static. This is the usual practice
of estimating bending angles for a local lens system in
the framework of general relativity without �, though
cosmic expansion is also a generic feature of Friedmann
cosmology without �.

In the frame of the comoving observer the photon path
may get distorted due to the (apparent) relative motion
between the source, the lens, and the observer [12].
Consequently, the aberration effect will come into play
[12]. One should also note that the cosmological expansion
cannot be described equivalently by the relative motion of
the observer and the source (cosmological redshift and
Doppler redshift are not the same). Hence for the bending
angle expression in the case of the extragalactic lens sys-
tem, further investigation is required. Besides, one also has
to consider that in such a situation the effect of � due to
cosmological expansion may dominate over the geometric
term [19].

IV. CONCLUSION

We conclude the following.
(1) The field equations of general relativity are modified

when� is introduced in the theory. Consequently,�
starts affecting not only the cosmological dynamics
of the Universe, but also the local gravitational
phenomena. The present investigation ascertains
the recent claim that the cosmological constant

does affect the gravitational deflection phenomenon
like many other local gravitational phenomena, such
as gravitational time delay, perihelion shift of the
orbit of the planets, etc. [4]. For galactic sources and
lenses, the contribution of� to the bending angle is,
however, quite small, not detectable by a near future
experiment.

(2) To the leading order there are two terms involving
the cosmological constant in the expression of bend-
ing; one of them is purely local in the sense that it
does not contain any information about the location
of the observer/source. Instead, this term describes
the coupling between the lens and the cosmological
constant, as first pointed out by Sereno [7].
Interestingly, this term has the same signature as
that of the classical expression of general relativistic
bending (4m=b); i.e. this term will cause an increase
of the bending angle. The other term, which is the
dominating one, involves the radial distances of the
source and the observer, and it bears the repulsive
characteristics of the positive cosmological
constant.
While studying gravitational bending in
Schwarzschild–de Sitter geometry or in any asymp-
totic nonflat space-time, it is also important to study
the photon trajectories from reference objects with
respect to which the bending will be measured.
When such an aspect is taken into consideration,
the � contribution to the effective bending is found
to depend on the distances of the source and the
reference objects [Eq. (19) or Eq. (20)]. In principle,
the � effect can be detected from the bending angle
measurement by choosing suitable source and
reference objects.
In the instance of the formation of the Einstein ring,
however, no reference object is needed. In that
particular case the ring radius will be smaller than
that of the Schwarzschild geometry due to the �
contribution, as noted in [7,20].
The effect of � is likely to be prominent for
sources of large distances, particularly for an extra-
galactic lens system. However, to address such a
situation one has to work in the frame of a coming
observer [12]. Moreover, in such situations the
effect of � due to cosmological expansion may
dominate over the geometric term [19]. More inves-
tigation is needed in this respect for a definite
conclusion. It is also interesting to examine the
influence of other matters of the Universe on
the system. An investigation has been undertaken
in this direction.
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