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2Clermont Université, Laboratoire de Physique Corpusculaire, BP10448, F-63000 Clermont-Ferrand, France

(Received 28 June 2010; published 23 September 2010)

Within the covariant formulation of light-front dynamics, we calculate the state vector of a physical

fermion in the Yukawa model. The state vector is decomposed in Fock sectors and we consider the first

three ones: the single constituent fermion, the constituent fermion coupled to one scalar boson, and the

constituent fermion coupled to two scalar bosons. This last three-body sector generates nontrivial and

nonperturbative contributions to the state vector, which are calculated numerically. Field-theoretical

divergences are regularized using Pauli-Villars fermion and boson fields. Physical observables can be

unambiguously deduced using a systematic renormalization scheme we have developed previously. As a

first application, we consider the anomalous magnetic moment of the physical fermion.
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I. INTRODUCTION

The understanding of hadronic systems in terms of their
elementary degrees of freedom has been, and still is, one of
the most challenging problems in particle and nuclear
physics over the last ten years. The phenomenological
properties of hadrons are now rather well understood in
terms of models, like the constituent quark model or the
bag model. The understanding of their properties from the
original Lagrangian of QCD is, however, still under active
development.

In nuclear physics, the properties of nuclear structure in
terms of the exchanges of pions are also well known. They
are described by using a phenomenological nucleon-
nucleon potential expressed in terms of the exchanges of
one pion, two correlated pions, and so on. However, their
complete description from an effective chiral Lagrangian is
still missing.

A common difficulty in both domains is the description
of relativistic bound systems. This description should be
nonperturbative from the start in order to be able to find, for
instance, the physical mass of the bound state from the pole
of the scattering amplitude. The problem is especially
acute when the interaction coupling constant is large.

One of the most relevant approaches aimed at studying
relativistic systems of interacting particles is light-front
dynamics (LFD), proposed initially by Dirac [1]. LFD is
a form of Hamiltonian dynamics which deals with the state
vector defined not at a fixed time moment, but on the light-
front plane tþ z ¼ 0, in its traditional form. The state
vector is then usually decomposed in a series of Fock
sectors, each containing a fixed number of particles.

The use of LFD to investigate relativistic bound states
has been advocated for a long time. However, while the
dynamics of few-body systems, based on a phenomeno-
logically constructed interaction, has developed rapidly,
the application of LFD to field theory beyond a perturba-

tive framework is not yet under complete theoretical con-
trol. This is due to the fact that any practical calculation
relies on taking into account only a restricted number of
Fock sectors in the state vector decomposition or, in other
words, on the Fock space truncation. This approximation
strongly complicates the renormalization procedure, in
contrast to that in standard perturbation theory. Indeed,
the full cancellation of field-theoretical divergences which
appear in a given Fock sector requires taking into account
contributions from other sectors. If even a part of the latter
is beyond our approximation, some divergences may leave
uncancelled. Mathematically, it reflects itself in a possible
dependence of approximately calculated observables on
the regularization parameters (e.g., cutoffs). This prevents
us from making any physical predictions if we cannot
control the renormalization procedure in one way or
another.
In a previous study [2] (see also references therein) we

have developed an appropriate renormalization proce-
dure—the so-called Fock sector dependent renormaliza-
tion (FSDR) scheme—in order to keep the cancellation of
field-theoretical divergences under permanent control. Our
approach is based on the covariant formulation of LFD
(CLFD), where the state vector is defined on an arbitrary
light-front plane characterized by a lightlike four-vector !
[3] and given by the equation ! � x ¼ 0. The covariant
formulation is necessary in order to control any violation of
rotational invariance, including that which is caused by the
Fock space truncation. In particular, this is important in
order to formulate, in an unambiguous way, the renormal-
ization conditions one should impose on the bare coupling
constant (BCC) to relate it to the physical one.
In Ref. [2] we calculated the fermion state vector and the

electromagnetic form factors within the Yukawa model and
QED in the lowest nontrivial approximation, when the state
vector includes only two Fock sectors given by one con-
stituent fermion and one constituent fermion coupled to
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one boson. For this two-body Fock space truncation, the
electromagnetic form factors are identical to those ob-
tained in the second order of perturbation theory, giving
rise to a Schwinger-type correction to the fermion mag-
netic moment. Note that this result is not surprising, in
spite of the fact we have not done any expansion in the
powers of the coupling constant, since no other contribu-
tions to the fermion electromagnetic vertex, apart from the
perturbative ones (resummed to all orders), are generated
in the two-body truncation.

We shall present in this work the calculation of the
fermion anomalous magnetic moment (AMM) within the
same Yukawa model, but for the three-body Fock space
truncation, when the state vector includes an additional
Fock sector containing one constituent fermion coupled to
two scalar bosons. The presence of three-body states gives
rise to nontrivial nonperturbative contributions to the
AMM, which can not be fully incorporated in perturbation
theory. Besides that, the Yukawa model is a quite nontrivial
one from the point of view of the renormalization proce-
dure, since it exhibits simultaneously, mass, vertex, and
wave function renormalization.

The plan of the article is the following. We recall in
Sec. II the main features of our nonperturbative approach
and the renormalization procedure. The eigenvalue equa-
tions are derived in the three-body truncation in Sec. III.
We calculate the fermion electromagnetic form factors in
Sec. IV and present our numerical results for the AMM in
Sec. V. Our conclusions are drawn in Sec. VI. The appen-
dices collect all necessary details to calculate the AMM.

II. BOUND STATE SYSTEMS IN LIGHT-FRONT
DYNAMICS

A. General framework

The state vector �ðpÞ describing any relativistic system
with a total four-momentum p forms a representation of
the Poincaré group. The four-momentum operator squared

P̂2 is one of the Casimir operators of this group and the
state vector satisfies the equation

P̂ 2�ðpÞ ¼ M2�ðpÞ; (1)

where M is the mass of the physical system under consid-
eration and p2 ¼ M2.

LFD serves as an effective and convenient tool to solve
this eigenvalue equation. Indeed, one of the main advan-
tages of LFD is that, due to kinematical constraints, the
vacuum state of a system of interacting particles coincides
with the free vacuum, and all intermediate states result
from fluctuations of the physical system. One can thus
construct the state vector in terms of combinations of
free fields, i.e., decompose it in a series of Fock sectors:

�ðpÞ ¼ X1
n¼1

Z
dDn�nðk1; . . . ; kn;pÞjni; (2)

where jni is the state containing n free particles with the
four-momenta k1; . . . ; kn and �n’s are relativistic n-body
wave functions, the so-called Fock components. The phase
space volume element is represented schematically by
dDn. In the following, we shall restrict our study to a
physical system composed of one fermion and n� 1 bo-
sons. In that case

jni � ayðk1Þcyðk2Þ . . . cyðknÞj0i; (3)

where ay and cy are fermion and boson creation operators,
respectively, and

�nðk1; . . . kn;pÞ ¼ �uðk1Þc nðk1; . . . kn;pÞuðpÞ; (4)

where u’s are bispinors. To completely determine the state
vector, we normalize it according to

�ðp0Þy�ðpÞ ¼ 2p0�
ð3Þðp0 � pÞ: (5)

With the decomposition (2), the normalization con-
dition (5) writes

X1
n¼1

In ¼ 1; (6)

where In is the contribution of the n-body Fock sector to
the full norm. The explicit formula for In can be found in
Ref. [2].
In the following, we shall use CLFD [3] as a general

framework. The covariance of our approach is due to the
invariance of the light-front plane equation. This implies
that ! is not the same in any reference frame, but varies
according to Lorentz transformations, like the coordinate
x. It is not the case in the standard formulation of LFD
where ! is fixed to ! ¼ ð1; 0; 0;�1Þ in any reference
frame.

The light-front momentum operator P̂� can be con-

structed from the energy-momentum tensor. It is decom-
posed according to

P̂ � ¼ P̂ð0Þ
� þ P̂int

� ; (7)

where the two terms on the right-hand side are, respec-
tively, the free (i.e. independent of the coupling constant
and counterterms) and interaction parts of the four-

momentum operator. The operator P̂int
� is related to the

interaction Hamiltonian HintðxÞ on the light front by

P̂ int
� ¼ !�

Z
HintðxÞ�ð! � xÞd4x: (8)

From the general transformation properties of the light-
front plane ! � x ¼ 0, one can derive the following con-
servation law [3] for each Fock component:

k1 þ k2 þ � � � þ kn ¼ pþ!�n; (9)
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where the quantity �n is a measure of how far the n-body
system is off the energy shell.1 It is completely determined
by the conservation law (9) and the on-mass shell condition
for each individual particle momentum:

2! � p�n ¼ ðsn �M2Þ; (10)

where sn ¼ ðk1 þ . . .þ knÞ2.
It is convenient to introduce, instead of the wave func-

tions �n, the vertex functions �n (which we will also refer
to as Fock components), defined by

�uðk1Þ�nuðpÞ ¼ ðsn �M2Þ�n � 2! � p�n�n: (11)

The vertex function �n will be represented graphically by
the diagram of Fig. 1. With the definition

G ðpÞ ¼ X1
n¼1

Z
dDn �uðk1Þ�nðk1; . . . ; kn; pÞuðpÞjni; (12)

the eigenvalue equation (1) writes [2]

G ðpÞ ¼ 1

2�

Z
½� ~Hintð!�Þ� d�

�
GðpÞ; (13)

where ~Hint is the interaction Hamiltonian in momentum
space:

~H intðpÞ ¼
Z

HintðxÞe�ip�xd4x: (14)

With the form (13), the eigenvalue equation can thus be
represented graphically, using the same rules as those
derived in Ref. [3] for the calculation of matrix elements
of the S matrix. This graph technique was developed by
Kadyshevsky [4] and transformed to the case of CLFD in
Ref. [5].

The substitution of the decomposition (12) into the
eigenvalue equation (13) results in an (infinite) system of
equations for the Fock components. In order to solve this
system in practice, we should make it finite, i.e., truncate
the decomposition (12), or equivalently (2), by retaining
only those Fock sectors where the number of particles does
not exceed some maximal value N. The finite system can
be solved numerically and nonperturbatively, that is, for
any value of the coupling constant. This approach was

developed in a series of papers [2,6–8]. In Ref. [2] it
was applied to the case of the two-body truncation, i.e.
for N ¼ 2.

B. Renormalization conditions

In order to be able to make definite predictions for
physical observables, one should also define a proper
renormalization scheme which allows us to express, like
in perturbation theory, observables through the physical
coupling constant and masses and exclude the bare ones.
The basis of the state vector decomposition, i.e. the states
jni in Eq. (3) is constructed from free physical fermion
and boson fields, with their physical masses m and �,
respectively. The interaction Hamiltonian contains the cor-
responding mass counterterms (MCs) �m and ��2 respon-
sible for the fermion and boson mass renormalization.
Since we will not consider here the fluctuations of the
boson in terms of fermion-antifermion pairs, we have to
set ��2 ¼ 0. The MC �m is determined from the eigen-
value equation (13) by demanding that the bound state
mass M is equal, for the ground state, to the physical
mass m of the constituent fermion. For this reason, we
will distinguish M and m only when it is necessary.
Otherwise, we will set M ¼ m.
Besides MCs, the interaction Hamiltonian includes also

the BCC g0. The latter is determined, as in perturbation
theory, by relating the on-energy-shell two-body vertex
function �2 to the physical coupling constant g. As
follows from Eq. (9), taking �2 on the energy shell is
equivalent to setting �2 ¼ 0. Once M is identified with
m, the latter condition reduces to s2 ¼ ðk1 þ k2Þ2 ¼ m2

[see Eq. (10)]. Below, for brevity, we will denote the on-
energy-shell two-body vertex function as �2ðs2 ¼ m2Þ to
indicate that its arguments are connected by the corre-
sponding kinematical constraint.
Being a solution of the system of eigenvalue equa-

tions (13), �2 depends on the BCC g0. Hence, relating �2

to g is equivalent to relating g0 to g, which just means
coupling constant renormalization. This can be most easily
done starting from the three point function with all un-

dressed on-mass-shell external lines, called ~�2. It is con-
nected with the physical coupling constant by the
following standard relation (see, e.g., Ref. [9]):

ffiffiffiffiffiffi
Zf

q
~�2ðs2 ¼ m2Þ

ffiffiffiffiffiffi
Zf

q ffiffiffiffiffiffi
Zb

p ¼ g; (15)

where the Z factors are the so-called field strength renor-
malization constants for the fermion (f) (both in the initial
and final state) and boson (b) lines, respectively. This
condition can also be recovered by demanding that the
residue of the fermion-boson elastic scattering amplitude
at s2 ¼ m2 equals g2. One can thus deduce the expression
for Zf in terms of the full fermion self-energy �ðp6 Þ:

FIG. 1. Vertex function of order n for the Fock space trunca-
tion of order N.

1The term ‘‘off the energy shell’’ is borrowed from the equal-
time dynamics where the spatial components of the four-
momenta are always conserved, but the energies of intermediate
states are not equal to the incoming energy.
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Zf ¼
�
1� @�ðp6 Þ

@p6
��������p6 ¼m

��1
; (16)

and similarly for Zb as a function of the full boson self-
energy.

The two-body Fock component �2 being a solution of

the eigenvalue equation (13) does not coincide with ~�2. By

definition, ~�2 has no radiative corrections to any of its three
legs, while �2, on the contrary, includes such corrections.
The relation between these two vertex functions taken off
the energy shell is rather complicated in LFD. Fortunately,
we need to know it on the energy shell only, where it
simplifies strongly, because the on-shell radiative correc-
tions mentioned above reduce to c-number factors. Indeed,
�2 is a particular case of the general vertex function shown
in Fig. 1, corresponding to n ¼ 2, i.e. two of its legs are
represented by single external lines (one for the constituent
fermion and one for the constituent boson), while the third
leg, for the physical fermion, is shown by a double line.
Radiative corrections to each of the two external single
lines are given by insertions of self-energy parts with their
subsequent summation. The latter, of course, can be done
directly within LFD by using the graph techniques rules,
but we will choose a simpler way.

Each on-energy-shell amplitude calculated in LFD must
coincide with that found in the standard four-dimensional
Feynman approach and taken on the mass shell. Hence,
�2ðs2 ¼ m2Þ coincides with its on-mass-shell Feynman
counterpart.2

The summation of radiative corrections to external lines
in the Feynman approach is technically easier than in LFD,
since it can be done for each of the two lines independently.
We allow the external particle momenta being off the mass
shell (in order to avoid intermediate singularities), then
sum up the radiative corrections, and finally perform a
limiting transition to the mass shell. Thus, summing a
chain series of self-energy blocks—together with the
mass-counterterm insertion—on the constituent fermionic
line with the four-momentum k1 brings the factor

lim
k6 1!m

�
1þ �rðk6 1Þ

k6 1 �m
þ �rðk6 1Þ

k6 1 �m
� �rðk6 1Þ

k6 1 �m
þ . . .

�

¼ lim
k6 1!m

�
k6 1 �m

k6 1 �m��rðk6 1Þ
�
¼
�
1� @�rðk6 1Þ

@k6 1
��������k6 1¼m

��1
;

(17)

where �rðk6 1Þ ¼ �ðk6 1Þ � �ðmÞ. This factor is nothing
other than Zf given by Eq. (16). The analogous procedure

for the boson line leads to the factor Zb. The total factor

which appears due to the dressing of the two constituent
lines is therefore ZfZb.

Concerning the double fermionic line in �2, its renor-
malization factor is related to the normalization condition
for the state vector. The eigenvalue equation (13) trans-
forms into a homogeneous system of linear integral equa-
tions for the vertex functions. Hence, the solution is
determined up to an arbitrary common factor. In practice,
for solving this system of equations, it is convenient to fix
the (constant) one-body Fock component �1, so that the
other components (�2, �3, etc.) become proportional to it.
Then the double line in �2 brings the factor�1 which, in its
turn, is determined by the normalization condition (5) for
the state vector. Since �2

1 is just the norm of the one-body
Fock sector, �1 is equal to

ffiffiffiffi
I1

p
, where I1 is the first term in

the sum (6).

The relation between �2 and
~�2 becomes, thereforen on

the energy shell

�2ðs2 ¼ m2Þ ¼ ffiffiffiffi
I1

p
~�2ðs2 ¼ m2ÞZfZb: (18)

Excluding ~�2ðs2 ¼ m2Þ from Eqs. (15) and (18), we find
that the renormalization condition reads

�2ðs2 ¼ m2Þ ¼ g
ffiffiffiffi
I1

p ffiffiffiffiffiffi
Zb

p
; (19)

where �2 is expressed from the eigenvalue equation (13),
through the BCC g0. A similar discussion of the renormal-
ization condition in terms of the one-body component �1

was already done in Ref. [10].
When we neglect the boson dressing by fermion-

antifermion fluctuations, as we do in this work, the condi-
tion (19) finally reduces to

�2ðs2 ¼ m2Þ ¼ g
ffiffiffiffi
I1

p
: (20)

Note that there is a simple relation between the one-body
normalization factor I1 and the field strength renormaliza-
tion factor Zf:

Zf ¼ I1; (21)

as shown in Appendix A.

C. Renormalization scheme

The above conditions imposed on the BCC and MC are
necessary in order to express physical observables, like the
electromagnetic form factors, through the measurable cou-
pling constant and masses. As a consequence, one should
expect a full cancellation of divergences.
Such a program could be realized in perturbation theory

or nonperturbatively if the Fock space is not truncated. The
latter case is hardly achieved in practice. Usually, Fock
space is truncated to a finite order N of admitted Fock
sectors, and the cancellation of divergences is not anymore
guaranteed. For instance, looking at Fig. 2 for the calcu-
lation of the fermion propagator in the second order of
perturbation theory, one immediately realizes that the can-

2A three-leg vertex which enters, as an internal sub-block, in
physically observed amplitudes is always off-shell. Taking it on-
shell, we imply its analytical continuation into a nonphysical
kinematical region
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cellation of divergences between the self-energy contribu-
tion (of order two in the Fock decomposition) and the
fermion MC (of order one) involves two different Fock
sectors [2]. This means that, as a necessary condition for
the cancellation of divergences, any MC and, more gen-
erally, any BCC should be associated with the number of
particles present (or ‘‘in flight’’) in a given Fock sector. In
other words, all MCs and BCCs must depend on the Fock
sector under consideration. The original MC, �m, and the
fermion-boson BCC, g0, should thus be extended each to a
whole series:

g0 ! g0l; (22a)

�m ! �ml; (22b)

with l ¼ 1; 2; . . .N. The quantities g0l and �ml are calcu-
lated by solving the systems of equations for the vertex
functions in the N ¼ 1, N ¼ 2, N ¼ 3; . . . approximations
successively. This FSDR scheme has been proposed ini-
tially in Ref. [11] and developed as a full renormalization
scheme in Ref. [2]. An alternative approach, also in the
Pauli-Villars (PV) regulated Yukawa model with the two-
boson truncation, but with a sector-independent renormal-
ization scheme, was developed in Ref. [12].

Note that the series (22) does not imply that we have an
infinite number of counterterms or bare parameters. We
still have the original ones g0 and �m in the Hamiltonian
we start with, but they have different values according to
the level of approximation used in the calculation. In the
limit of an infinite N, and if the Fock sector expansion
converges, g0N and �mN should turn to the true BCC and
the MC, respectively. This is completely analogous to the
case of perturbation theory where, at each order n, one

determines gðnÞ0 and �mðnÞ.
Apart from the mass and vertex radiative corrections, the

third type of divergences arises from the field renormal-
ization, i.e., from the constants Zf and Zb. The values of

these constants should also depend on the maximal number
N of particles kept in a given truncation. Consider, for
instance, the vertex function �2 represented by Fig. 1 for
n ¼ 2. The dressing of the physical fermion leg (the factorffiffiffiffi
I1

p
) should be calculated for the truncation to the N-th

order. The situation changes, however, for the constituent
(single) fermion line. The state in which the constituent
fermion is considered already contains one constituent
boson. Hence, even if the boson line is not dressed, the
dressing of the constituent fermion leg involves radiative
corrections of order ðN � 1Þ. In other words, the dressing
factor Zf for the constituent fermion leg must be calculated

for the lower, ðN � 1Þ-body truncation. Otherwise, we

would go beyond our approximation, since the effective
number of particles in which the physical fermion can
fluctuate would exceed N.
Taking this into account, the relations (15) and (18) for a

finite order truncation N (and in the absence of boson
dressing) obtain the following form:ffiffiffiffiffiffiffiffiffi

ZðNÞ
f

q
~�2ðs2 ¼ m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðN�1Þ
f

q
¼ g; (23a)

�2ðs2 ¼ m2Þ ¼
ffiffiffiffiffiffiffiffi
IðNÞ
1

q
~�2ðs2 ¼ m2ÞZðN�1Þ

f : (23b)

The superscripts ðNÞ and ðN � 1Þ here and below just
indicate the order of the Fock space truncation in which
the corresponding quantities are calculated.
It follows from Eqs. (23a) and (21) that the renormal-

ization condition (20) simply writes

�2ðs2 ¼ m2Þ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðN�1Þ
1

q
; (24)

in the absence of boson dressing.
For the simplest case of the two-body truncation,N ¼ 2,

one thus gets

�ð2Þ
2 ðs2 ¼ m2Þ ¼ g; (25)

since Ið1Þ1 ¼ 1. We recover here the condition given in

Ref. [2]. This condition is, however, valid only for N ¼ 2.

III. YUKAWA MODEL IN THREE-BODY
TRUNCATED FOCK SPACE

A. Eigenvalue equations

We consider in this study the Yukawa model: a spin-1=2
fermion interacting with massive spinless bosons. The
regularization is provided by the PV method. In addition
to physical particles, we introduce therefore one PV fer-
mion and one PV boson with (large) masses m1 and �1,
respectively. This amounts to extend the physical Fock
space to embrace negatively normalized PV particles [2].
The interaction Hamiltonian in Eq. (13) is given by

Hint ¼ �g0 �c
0c 0’0 � �m �c 0c 0;

with

c 0 ¼ c þ c PV; ’0 ¼ ’þ ’PV; (26)

where c and ’ are the free physical fermion and boson
field operators, while c PV and ’PV are their PV partners,
with a negative norm. The bosons are supposed to be
neutral.
In the three-body truncation, the system of coupled

equations for the vertex functions, derived from the eigen-
value equation (13), is shown graphically in Fig. 3. On the
right-hand side of the last equation, the sum of the dia-
grams with permutated boson legs appears, reflecting the
symmetrization of the amplitude due to the identity of
bosons. Expressing �3 through �2 by means of this equa-
tion, and substituting the result into the second equation,

FIG. 2. Renormalization of the fermion propagator in the
second order of perturbation theory.
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we can exclude the highest order vertex function �3 from
the full system of equations. We thus obtain a reduced
equation for the two-body vertex function. Together with
the first equation in Fig. 3, it forms a system of equations
involving the vertex functions �1 and �2 only, as shown in
Fig. 4. Analytically, these equations read

�uðp1iÞ�i
1uðpÞ ¼ �uðp1iÞðV1 þ V2ÞuðpÞ; (27a)

�uðk1iÞ�ij
2 uðpÞ ¼ �uðk1iÞðV3 þ V45 þ V6ÞuðpÞ; (27b)

where the indices i and j refer to whether the line of a
constituent fermion (i) or a constituent boson (j) corre-
sponds to a physical particle (i, j ¼ 0) or to a PV one (i,
j ¼ 1). The term V45 means the sum of V4 and V5. The
explicit expressions for V1�6 are given in Appendix C.
Note that the first equation in Fig. 3 is just a constraint
which determines �m3. The contribution V5 on the right-

hand side of Fig. 4 involves the two-body self-energy
depending, due to the departure off the energy shell, on a
four-momentum k with k2 � m2. This self-energy is de-
composed, in CLFD, according to [8]:

�ðk6 Þ ¼ g202

�
Aðk2Þ þBðk2Þ k6

m
þ Cðk2Þ m!6

! � k
�
; (28)

where the factors m are here for convenience only. The
coefficients A, B, and C are calculated in Appendix B.
In contrast to the two-body case, the system of equations

for the three-body truncation is rather nontrivial. For ex-
ample, its iteration generates all the graphs for the self-
energy which contain one fermion and two bosons, includ-
ing overlapping self-energy type diagrams. The number of
such irreducible graphs is infinite. Some of them are shown
in Fig. 5. The solution of the system of coupled equations
incorporates the sum of these contributions to all orders.
Note that due to the covariance of our approach, we can

identify the contribution �!6 to the self-energy which
explicitly depends on the light-front plane orientation. If
not regularized, the coefficient Cðk2Þ is quadratically diver-
gent and needs a priori both PV fermion and boson regu-
larization. After this regularization however, Cðk2Þ � 0 for
any values of the PV fermion and boson masses. This
makes the two-body self-energy identical to the result
obtained in perturbation theory in the Feynman approach
[7]. The contributions A and B do respect chiral symme-
try in the sense that they are equal to zero when the
constituent massm, as well as the physical massM (which,
in our case, coincides with m), goes to zero, without the
need of an extra PV boson. This is at variance with the
standard formulation of LFD where it is claimed that an
additional PV boson is needed, if the PV fermion mass is
kept finite [13].
The parameters g02 and �m2 are taken from the N ¼ 2

calculation [2]. They are given by

g202 ¼
g2

1� g2J2
; (29a)

�m2 ¼ g2½Aðm2Þ þBðm2Þ�; (29b)

where

J2 ¼ �Bðm2Þ
m

� z0; (30)

FIG. 3. System of equations for the vertex functions in the case
of three-body Fock space truncation.

FIG. 5. Radiative corrections to the self-energy.

FIG. 4. Reduced equation for the two-body vertex function,
obtained from that shown in Fig. 3 after the exclusion of the
three-body component.
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with z0 ¼ 2m½A0ðm2Þ þB0ðm2Þ�. The norms of the one-
and two-body Fock sectors, entering the normalization
condition (6), are

Ið2Þ1 ¼ 1� g2J2; (31a)

Ið2Þ2 ¼ g2J2: (31b)

In the two-body approximation mentioned above and
discussed in detail in Ref. [2], the two-body vertex function
is automatically independent of ! since Cðk2Þ � 0.
Moreover, it is a constant (i.e. it does not depend on the
momenta of the constituent). Because of all these, the
renormalization condition (25) directly leads to the rela-
tion (29a) between the bare and physical coupling con-
stants. In principle, nothing prevents �2 from being !
dependent, since it is an off-shell object, but this depen-
dence must completely disappear on the energy shell, i.e.,
for s2 ¼ m2. It would be indeed so if no Fock space
truncation occurs. The latter, in approximations higher
than the two-body one (i.e. for N ¼ 3; 4; . . . ), may cause
some ! dependence of �2 even on the energy shell,
which immediately makes the general renormalization
condition (19) ambiguous. If so, one has to insert into the
light-front interaction Hamiltonian new counterterms
which explicitly depend on ! and cancels the ! depen-
dence of �2ðs2 ¼ m2Þ. Its explicit form will be given in the
next subsection. Note that the explicit covariance of CLFD
allows us to separate the terms which depend on the light-
front plane orientation (i.e. on !) from other contributions
and establish the structure of these counterterms. This is
not possible in ordinary LFD.

B. Calculation of the two-body fock component

The method of solution is similar to that used in the
calculation [2] for N ¼ 2. We first decompose the vertex
functions in invariant amplitudes. The vertex functions on
the left-hand sides of Eqs. (27), being matrices in the spin
indices, can be decomposed in a full set of spin matrices.
This decomposition is very simple in CLFD and takes the
form

�uðp1iÞ�i
1uðpÞ ¼ ðm2

i �M2Þc i
1 �uðp1iÞuðpÞ;

�uðk1iÞ�ij
2 uðpÞ ¼ �uðk1iÞ

�
bij1 þ bij2

m!6
! � p

�
uðpÞ;

(32)

where c i
1 is a constant, and bij1;2 are invariant functions of

particle momenta, with m0 � m and �0 � �. We denote
temporarily, in the first of the above equations, the physical
fermion mass byM in order to avoid singularities, since the
equations contain the combination �i

1=ðm2
i �M2Þ which

becomes indeterminate for i ¼ 0 atM ¼ m. UsingM � m
allows us to take a smooth limit limM!m½�i

1=ðm2
i �

M2Þ� ¼ c i
1; after that one may set M ¼ m.

Each of the functions bij1;2 depends on two invariant

kinematical variables. As usual, we define a pair of varia-
bles, consisting of the longitudinal and transverse (with
respect to the three-vector !) momenta:

x ¼ ! � k2
! � p ; R? ¼ k2? � xp?; (33)

where k2 is the boson four-momentum. Then bij1;2 are

functions of x and R2
?.

The renormalization condition (24), for N ¼ 3, implies
two conditions

b001 ðs2 ¼ m2Þ ¼ g
ffiffiffiffiffiffiffi
Ið2Þ1

q
; (34a)

b002 ðs2 ¼ m2Þ ¼ 0; (34b)

for the spin components of �2 at s2 ¼ m2, where the two-
body invariant energy squared s2 is expressed through R?
and x as follows:

s2 ¼
R2
? þ�2

x
þ R2

? þm2

1� x
: (35)

One should emphasize that the renormalization conditions
are imposed on the two-body vertex function �00

2 corre-
sponding to both physical constituents. The condition (34a)
defines unambiguously g03. The condition (34b) is not
verified automatically if the Fock space is truncated for
N � 3, unlike the caseN ¼ 2. We should thus enforce it by
introducing an appropriate counterterm, as explained
above (see also Ref. [2]). It corresponds to the following
additional structure in the interaction Hamiltonian:

�H int
! ¼ �Z!

�c 0 m!6
i! � @ c 0’0; (36)

where Z! is a constant adjusted to make Eq. (34b) true.
The operator !6 =ði! � @Þ, in momentum space, leads to the
appearance of a new three-leg vertex !6 =ð! � kÞ on each
fermion-boson vertex with total incoming momentum k. In
principle, a similar new !-dependent counterterm should
be also added to the Hamiltonian in order to cancel the !
dependence of �m3, in full analogy with the cancellation of
b002 ðs2 ¼ m2Þ [7]. However, as we will see below, �m3 is
needed only for a calculation in the four-body Fock space
truncation. For this reason, working within the three-body
truncation only, we may not bother about additional coun-
terterms excepting that given by Eq. (36).
To solve the system of equations. (27), we substitute the

decompositions (32) into the expressions for V1�6 given in
Appendix C, then multiply Eqs. (27a) and (27b) by uðp1iÞ
and uðk1iÞ, respectively, to the left and each of them by
�uðpÞ to the right, and sum over spin projections. We thus
get
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ðm2
i �m2Þðp6 1i þmiÞc i

1ðp6 þmÞ ¼ ðp6 1i þmiÞðV1 þ V2Þðp6 þmÞ; (37a)

ðk6 1i þmiÞ
�
bij1 þ bij2

m!6
! � p

�
ðp6 þmÞ ¼ ðk6 1i þmiÞðV3 þ V45 þ V6Þðp6 þmÞ: (37b)

The system of matrix equations (37a) and (37b) can be
transformed into a homogeneous system of ten linear in-
tegral equations for ten unknown functions (two c i

1, four
bij1 , and four bij2 ). These equations are obtained by taking
the trace of Eqs. (37a) and (37b) (six equations), and by
taking the trace of Eq. (37b) after the multiplication of its
both sides by !6 (four equations).

In order to achieve the limit m1 ! 1, it is convenient to

replace the functions c i
1 and bij1;2 by the new functions �i,

hji , and Hj
i according to

c i
1 ¼

m

miðmþmiÞ�i; bij1 ¼ mi

m
hji ;

bij2 ¼ mi

m

Hj
i � ð1� xþ mi

m Þhji
2ð1� xÞ :

(38)

A careful analysis shows that in this limit the PV mass m1

disappears from the equations written in terms of �i, h
j
i ,

and Hj
i . These functions have therefore a finite limit.

Below we will imply that the limit m1 ! 1 is taken and

�i, h
j
i , and Hj

i denote the limiting values.
For further simplification of the equations, it is conve-

nient to introduce new functions ~hj0;1 and
~Hj
0;1 by means of

the relation

hj0;1
Hj

0;1

 !
¼ �0�

~hj0;1
~Hj
0;1

 !
; (39)

with

� ¼ g03
1� g2J2
1þ g2z0

: (40)

Using the substitution (39) and denoting

Z0
! ¼ 2Z!

g03
� �1

�0

; (41)

the initial system of ten equations splits into two subsys-
tems. The first one contains two equations involving the
ratio �1=�0. The value of �m3 just ensures that both
equations define the same quantity �1=�0. It is not inter-
esting for our study in the three-body approximation, since
�1, as will be seen below, drops out from the observables
we calculate here, while �0 is uniquely determined by the
normalization condition for the state vector. As already
mentioned, we also do not need to calculate �m3 itself. It is
used as an input in the calculation at the next, N ¼ 4,
truncation.

The second subsystem of eight equations involves the

eight functions ~hji and ~Hj
i only, since the ratio �1=�0 is

absorbed into the definition of Z0
! in Eq. (41). We thus get

~hj0 ¼ 1þ g02ðKj
1h

j
0 þ Kj

2
~hj1Þ þ g02ij0;

~hj1 ¼ g02ð�Kj
3
~hj0 þ Kj

4
~hj1Þ þ g02ij1;

~Hj
0 ¼ Z0

!ð1� xÞ þ 2� xþ g02ðKj
1
~Hj
0 þ Kj

2
~Hj
1Þ þ g02Ij0;

~Hj
1 ¼ 1þ g02ð�Kj

3
~Hj
0 þ Kj

4
~Hj
1Þ þ g02Ij1; (42)

where

g02 ¼ g2

ð1þ g2z0Þ
; (43)

and

Kj
1 ¼

1

m

�
Brðs1Þ � 2½Arðs1Þ þBrðs1Þ�m2

m2 � s1

�
;

Kj
2 ¼

Arðs1Þ þBrðs1Þ
m

;

Kj
3 ¼

½Arðs1Þ þBrðs1Þ�m
m2 � s1

;

Kj
4 ¼

Brðs1Þ
m

:

The substracted self-energy contributions Arðs1Þ and
Brðs1Þ, are given by

Arðs1Þ ¼ Aðs1Þ �Aðm2Þ;
Brðs1Þ ¼ Bðs1Þ �Bðm2Þ;

with

s1 ¼ �R2
?
x

þ ð1� xÞm2 � 1� x

x
�2

j : (44)

The functionsA andB are given in Appendix B, while the

integral terms ij0;1 and Ij0;1 are given in Appendix D.

The limit of infinite PV mass �1 is not easy to perform
analytically, as it was done for m1. Setting �1 ! 1 di-
rectly in Eqs. (42) makes some integration kernels singular
(they decrease too slowly at R? ! 1). The dependence of
physical observables, like the AMM, on �1 will therefore
be studied numerically.
Note that although g202 in Eq. (29a) can become infinite

(for J2 ¼ 1=g2) and changes sign from positive to negative
at sufficiently large values of the PV boson mass �1, the
eigenvalue equations (42) do not show any singularity
when g202 goes to infinity. Indeed, g202 does not appear in

Eqs. (42). These equations depend only on g02, given by
Eq. (43), with z0 strictly positive. Therefore, g02 is strictly
positive and finite. We shall come back in Sec. V to the
interpretation of the limit of large �1, when both g202 and

the norm of the one-body sector Ið2Þ1 are negative, while
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the norm of the two-body sector Ið2Þ2 is larger than 1, from

Eqs. (31).
The constant Z0

! entering the system of equations (42) is
determined from the renormalization condition (34b),
while g03, needed to calculate the renormalized vertex
functions in Eqs. (39), is determined from the renormal-
ization condition (34a).

The components b001;2ðs2 ¼ m2Þ entering these renormal-

ization conditions are expressed through the solution of the
system of equations (42) by means of Eqs. (38) and (39).
The kinematical point s2 ¼ m2 belongs to a nonphysical
region, but there is no need to make an analytical continu-

ation to this region of the solution ~hji and ~Hj
i found nu-

merically. Indeed, the integral terms in Eqs. (42) involve
integrations within the physical domain only. One can
simply set j ¼ 0, R? ¼ R�

?, x ¼ x�, where R�
? and x�

are determined by the condition s2 ¼ m2, and calculate
the integral terms by substituting there the previously

found solution ~hji ðR?; xÞ and ~Hj
i ðR?; xÞ for physical values

R? and x. After that, Eqs. (42) reduces to a system of four

ordinary linear inhomogeneous equations for ~h0i ðR�
?; x

�Þ
and ~H0

i ðR�
?; x

�Þ. Finally, relating the calculated quantities
~h00ðR�

?; x
�Þ and ~H0

0ðR�
?; x

�Þ to b001;2ðs2 ¼ m2Þ we get g03
from Eq. (34a)3 and Z0

! from Eq. (34b).
The condition s2 ¼ m2, however, does not determine R�

?
and x� simultaneously. It is convenient to fix x� somehow
and then find R�

? from Eq. (35):

R�2
? ¼ �½x�2m2 þ ð1� x�Þ�2�: (45)

Since the two-body vertex function (32) on the energy shell
must turn into a constant, the functions b001;2ðs2 ¼ m2Þ also
must be constants. In other words, if one relates the argu-
ments of these functions by Eq. (45), their values are
independent of the choice of x�. It would be so in exact
calculations, i.e., if Fock space was not truncated. A finite
order truncation makes the Fock components, even at s2 ¼
m2, x� dependent. As advocated in Ref. [2], we choose
x� ¼ �

mþ� . We shall investigate in Sec. V how b001;2ðs2 ¼
m2Þ depends on the choice of x�.

C. Representation of the three-body component

We can find the three-body component by calculating
the amplitude corresponding to the right-hand side of the
equation shown by the last line in Fig. 3.

The general form of the relativistic vertex function of a
system composed from one constituent fermion and two
spinless bosons with total spin 1=2 reads

�u �
	1
ðk1Þ��
ð1; 2; 3Þu
	ðpÞ; (46)

where ��
ð1; 2; 3Þ is a 4� 4 matrix in the indices �, 
.

The arguments of �3, denoted symbolically by numbers,
mean three pairs of the standard variables

R l? ¼ kl? � xlp?; xl ¼ ! � kl
! � p ;

with l ¼ 1 corresponding to the fermion and l ¼ 2, 3 to
bosons. Here �u�	1

ðk1Þ is the bispinor of the constituent

fermion, u
	ðpÞ is the bispinor of the physical fermion (of
the composite system), 	1, 	 are their spin projections in
the corresponding rest frame. Since 	1 ¼ 	1=2 and 	 ¼
	1=2, we have in general 2� 2 ¼ 4 matrix elements.
Usually, parity conservation reduces this number by a
factor of 2. However, this is not the case in relativistic
calculations, for a n-body wave function with n � 3 [14].
This wave function is determined by four independent
matrix elements or, equivalently, by four scalar functions
g1�4 like

�uðk1Þ�3ð1; 2; 3ÞuðpÞ
¼ �uðk1Þðg1S1 þ g2S2 þ g3S3 þ g4S4ÞuðpÞ:

For simplicity, we omitted the bispinor indices and the
indices marking the particle type (either physical or PV
one). It is convenient to construct the four basis spin
structures as follows:

S1 ¼ 2x1 � ðmi þ x1mÞ !6
! � p ;

S2 ¼ m
!6

! � p ;

S3 ¼ iCps

�
2x1 � ðmi � x1mÞ !6

! � p
�
�5;

S4 ¼ imCps

!6
! � p�5;

(47)

with x1 ¼ !�k1
!�p , and mi being the internal fermion mass

(either the physical or PVone, depending on which type of
fermion the momentum k1 corresponds to), while Cps is the

following pseudoscalar:

Cps ¼ 1

m2! � pe����k2�k3�p�!�: (48)

The function Cps can only be constructed with four inde-

pendent four-vectors. This is the case in LFD for n � 3. In
the nonrelativistic limit, one would need n � 4. We can
then construct two additional spin structures S3 and S4 of
the same parity as S1 and S2 by combining Cps with parity

negative matrices constructed from S1, S2, and �5 matrices.
Instead of k2�k3� one could have taken any pair of mo-

menta (k1�k3� or k1�k2�). We take the boson momenta for

symmetry. With this definition

C2
ps ¼ 1

m4
½R2

2?R
2
3? � ðR2? �R3?Þ2�: (49)

3More precisely, we get not g03 alone but the product g03�0.
The quantity �0 is found from the normalization condition for
the state vector. This procedure requires knowing the three-body
normalization integral which is calculated in the next section.
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The three-body vertex function �3ð1; 2; 3Þ is completely
determined by the four scalar functions g1�4ð1; 2; 3Þ in
Eq. (47). They depend onR1�3;? in the form of their scalar

products among themselves and on x1�3. Since

R 1? þR2? þR3? ¼ 0; x1 þ x2 þ x3 ¼ 1; (50)

we can exclude, for instance, R1? and x1. The functions
g1;2 are symmetric relative to the permutation 2 $ 3,
whereas g3;4 are antisymmetric:

g1;2ð1; 2; 3Þ ¼ g1;2ð1; 3; 2Þ;
g3;4ð1; 2; 3Þ ¼ �g3;4ð1; 3; 2Þ;

so that the product Cpsg3;4ð1; 2; 3Þ which appears in S3g3
and S4g4 is symmetric.

Each component gn is represented as a sum or a differ-
ence of two terms:

g1;2ð1; 2; 3Þ ¼ �g1;2ð1; 2; 3Þ þ �g1;2ð1; 3; 2Þ;
g3;4ð1; 2; 3Þ ¼ �g3;4ð1; 2; 3Þ � �g3;4ð1; 3; 2Þ;

(51)

where the permutation 2 $ 3 means

R 2? $ R3?; x2 $ x3; �j2 $ �j3 :

In their turn, �gnð1; 2; 3Þ, according to the last line in Fig. 3,
are linearly expressed through the functions ~hj20;1 and

~Hj2
0;1

which form a solution of the equations (42):

�gnð1; 2; 3Þ ¼ �0�g02½an0ð1; 2; 3Þ~hj20 ð2Þ þ an1ð1; 2; 3Þ~hj21 ð2Þ
þ An0ð1; 2; 3Þ ~Hj2

0 ð2Þ þ An1ð1; 2; 3Þ ~Hj2
1 ð2Þ�:

(52)

The coefficients a and A in this formula are given in
Appendix E.

We can finally calculate the three-body normalization
integral. It is given by

I3 ¼ 1

2

X1
j2;j3¼0

ð�1Þj2þj3
Z n

j2j3
3

ðs3 �m2Þ2 dD3; (53)

with

nj2j33 ¼ 1
2 Tr½ ��3ðk6 1 þmÞ�3ðp6 þmÞ�

¼ 4x1½R2
1?g

2
1 þm2g22 þ C2

psðR2
1?g

2
3 þm2g24Þ�;

and, as usual, �� ¼ �0�y�0. The factor 1
2 in Eq. (54) results

from averaging over initial state spin projections, while the
factor 1

2 in Eq. (53) is the combinatorial factor 1
ðn�1Þ! orig-

inating from the identity of the two bosons. The contribu-
tion of PV fermion is omitted since it disappears in the
limit m1 ! 1. The phase space volume element has the
form [see Eq. (3.23) from Ref. [3] ]:

dD3 ¼ 2ð2�Þ3�ð2ÞðR1? þR2? þR3?Þ

� �ðx1 þ x2 þ x3 � 1ÞY3
l¼1

d2Rl?dxl
ð2�Þ32xl

:

IV. ELECTROMAGNETIC FORM FACTORS

A. Electromagnetic vertex in CLFD

The electromagnetic vertex contains contributions of
one-, two-, and three-body Fock sectors, as shown in
Fig. 6. They are expressed, in our FSDR scheme, in terms
of the external electromagnetic BCC �e0l, as explained in
Ref. [2]. These coupling constants are all identical to the
physical fermion charge, i.e., �e0l ¼ e for all l’s. Note that
this important property of QED is not preserved in general
if FSDR is not used.
The decomposition of the spin-1=2 electromagnetic ver-

tex in CLFD is given by [8,15]

�uðp0ÞG�uðpÞ ¼ e �uðp0Þ
�
F1�

� þ iF2

2m
	��q�

þ B1

�
!6

! � pP� � 2��

�
þ B2

m!�

! � p
þ B3

m2!6 !�

ð! � pÞ2
�
uðpÞ; (54)

with P ¼ pþ p0, and q ¼ p0 � p. F1 and F2 are the
physical form factors, while B1;2;3 are spurious (nonphys-

ical) contributions which appear if rotational invariance is
broken, e.g., by Fock space truncation. The decomposition
(54) enables us to separate unambiguously the physical
form factors from the nonphysical ones. Under the condi-
tion ! � q ¼ 0, all F1;2, B1�3 depend on Q2 � �q2 only.
We shall represent q ¼ ðq0;�; qkÞ, where qk and � are,

respectively, the longitudinal and transverse components of
the momentum transfer with respect to the three-vector !.
Since ! � q ¼ !0ðq0 � qkÞ ¼ 0, we have Q2 ¼ �2.

After construction of the matrix

O� ¼ 1

4m2
ðp6 0 þmÞG�ðp6 þmÞ; (55)

and calculation of the traces

c4 ¼ Tr½O�!
��m=! � p;

c5 ¼ Tr½O�!
�!6 �m2=ð! � pÞ2; (56)

the electromagnetic form factors write [7]

FIG. 6. One-, two-, and three-body contributions to the elec-
tromagnetic vertex.
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F1 ¼ 1

2
c5; F2 ¼ 2m2

Q2
ðc5 � c4Þ: (57)

The value F1ðQ2 ¼ 0Þ equals one, since it coincides with
the norm of the state vector. The value F2ðQ2 ¼ 0Þ is just
the AMM.

B. One-body contribution

The one-body contribution to the form factor F1 is given
by the first diagram in Fig. 6. It does not depend onQ2 and
coincides with the norm of the one-body sector:

F1;1b ¼ �2
0 � I1: (58)

There is no one-body contribution to the form factor F2:

F2;1b ¼ 0: (59)

C. Two-body contribution

The two-body contribution to the electromagnetic ver-
tex, as given by the second diagram in Fig. 6, writes

�uðp0ÞG�
2buðpÞ ¼

1

ð2�Þ3
X1

i;i0;j¼0

ð�1Þiþi0þj
Z

d2R?
Z 1

0

dx

2xð1� xÞ2
�uðp0Þ ��0i0j

2 ðk6 01i0 þmi0 Þ��ðk6 1i þmiÞ�ij
2 uðpÞ

ðs0i0j2 �m2
i0 Þðsij2 �m2

i Þ
;

where �ij
2 is given by Eq. (32) with bij1;2 ¼ bij1;2ðR2

?; xÞ, k1i (k01i0) is the momentum of the constituent fermion incoming to

(outgoing from) the elementary electromagnetic vertex, sij2 ¼ ðk1i þ k2jÞ2, s0i
0j

2 ¼ ðk01i0 þ k2jÞ2, and k2j is the constituent

boson momentum. �0i0j
2 has the same decomposition as �ij

2 , with the replacement bij1;2ðR2
?; xÞ ! bi

0j
1;2ðR02

?; xÞ with R0
? ¼

R? � x�.
Using the relations (38) and (39), we can calculate the two-body contribution to the electromagnetic form factors in

terms of the solutions ~hji , ~Hj
i of the system of eigenvalue equations (42). After taking the limit m1 ! 1 the result is as

follows:

F1;2b ¼ �2
0�

2

16�3

X1
j¼0

ð�1Þj
Z

d2R?
Z 1

0
dx

x½ðR? �R0
?Þ~hj0 ~h0j0 þm2 ~Hj

0
~H0j
0 �

½R2
? þ x2m2 þ ð1� xÞ�2

j �½R02
? þ x2m2 þ ð1� xÞ�2

j �
; (60)

F2;2b ¼ �2
0�

2m2

4�3�2

X1
j¼0

ð�1Þj
Z

d2R?
Z 1

0
dx

xðR? ��Þ~hj0 ~H0j
0

½R2
? þ x2m2 þ ð1� xÞ�2

j �½R02
? þ x2m2 þ ð1� xÞ�2

j �
: (61)

Functions with primes depend on R02
? and x. The value

F1;2bðQ2 ¼ 0Þ coincides with the two-body contribution to
the normalization integral,

I2 ¼ �2
0�

2

16�3

X1
j¼0

ð�1Þj
Z 1

0
d2R?

Z 1

0
dxx

� R2
?ð~hj0Þ2 þm2ð ~Hj

0Þ2
½R2

? þ x2m2 þ ð1� xÞ�2
j �2

: (62)

To calculate the two-body contribution to the AMM,
which is given by the value F2;2bðQ2 ¼ 0Þ, one should go

over to the limit � ! 0 in Eq. (61). The corresponding
analytic formula includes derivatives over R? from the
Fock components. For numerical calculations it is however
more convenient to find F2;2b at small but finite Q2 and

then, decreasing the latter, to reach desired accuracy. The
result of this numerical limiting procedure is very stable.

D. Three-body contribution

The three-body contribution to the electromagnetic ver-
tex reads

�uðp0ÞG�
3buðpÞ ¼

1

2

X1
j2;j3¼0

ð�1Þj2þj3
Z �uðp0Þ ��0

3ðk6 01 þmÞ��ðk6 1 þmÞ�3uðpÞ
4x21x2x3ðs3 �m2Þðs03 �m2Þ dD3;

where dD3 is defined by Eq. (54) and

s3 ¼
R2
1? þm2

x1
þ R2

2? þ�2
j2

x2
þ R2

3? þ�2
j3

x3
: (63)

s03 differs from s3 by the following shift of the arguments:

R1? ! R0
1? ¼ R1? þ ð1� x1Þ�;

R2? ! R0
2? ¼ R2? � x2�;

R3? ! R0
3? ¼ R3? � x3�:

(64)
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��0
3 is obtained from �3 by the same shift of arguments.

From the decomposition (47), we can calculate G�, and
construct the matrix O� by means of Eq. (55). The form
factors are thus given by Eqs. (57) and read

F1;3b ¼
Z
ðCð1Þ

11g1g
0
1 þ Cð1Þ

22g2g
0
2 þ Cð1Þ

33 g3g
0
3

þ Cð1Þ
44g4g

0
4 þ 2Cð1Þ

31g3g
0
1Þ
dD3

d1
; (65a)

F2;3b ¼ 2
Z
ðCð2Þ

12g1g
0
2 þ Cð2Þ

41 g4g
0
1 þ Cð2Þ

32 g3g
0
2

þ Cð2Þ
34g3g

0
4Þ
dD3

d2
; (65b)

where

d1 ¼ m4x2x3ðm2 � s3Þðm2 � s03Þ; d2 ¼ 2�2

m2
d1:

g0n differs from gn by the shift of the arguments (64). The
coefficients Cð1;2Þ

nk in Eqs. (65a) and (65b) are given in
Appendix F.

The value F1;3bðQ2 ¼ 0Þ coincides with the norm, I3, of
the three-body sector given by Eq. (53). The quantity �0

which has been unknown up to now, is determined from the
normalization condition for the state vector:

�2
0 þ I2 þ I3 ¼ 1: (66)

Since both I2 and I3 are proportional to �2
0, then, denoting

I2;3 � �2
0�

2~I2;3, where � is defined by Eq. (40), we imme-

diately get

�2
0 ¼

1

1þ �2ð~I2 þ ~I3Þ
: (67)

V. NUMERICAL RESULTS

The solution of Eqs. (42) is found by a matrix inversion
after the discretization of the integrals, using the Gaussian
method. All integrals are finite at finite PV boson mass�1.

As already mentioned, the limit of infinite PV fermion
mass m1 has been done analytically, while the Fock com-

ponents ~hji , ~Hj
i , and, hence, b

ij
1;2 in Eq. (32) do depend on

the PV boson mass �1. The numerical calculations have
been performed on an ordinary modern laptop.
The AMM is calculated for a typical set of physical

parameters m ¼ 0:938 GeV, � ¼ 0:138 GeV, and two

values of the coupling constant � � g2

4� ¼ 0:2 and 0.5.

This mimics, to some extent, a physical nucleon coupled
to scalar ‘‘pions.’’ The typical pion-nucleon coupling con-
stant is given by g ¼ gA

2F�
hki where hki is a typical momen-

tum scale, and gA and F� are the axial coupling constant
and the pion decay constant, respectively. For hki ¼
0:2 GeV we just get � ’ 0:2.

We plot in Fig. 7 the AMM as a function of log½�2
1

�2�, for
the two different values of � pointed out above. We show
also on each of these plots the value of the AMM calculated
for the N ¼ 2 truncation, which coincides with the AMM
obtained in the second order of perturbation theory. The
results for � ¼ 0:2 show rather good convergence as�1 !
1. The contribution of the three-body Fock sector to the
AMM is sizeable but small, indicating that the Fock de-
composition (2) converges rapidly. This may show that
once higher Fock components are small, we can achieve
a practically converging calculation of the AMM. Note that
this value of � is not particularly small: it is about 30 times
the electromagnetic coupling, and is about the size of the
typical pion-nucleon coupling in a nucleus.
When � increases, we see that the contribution of the

three-body sector considerably increases. For � ¼ 0:5 the
three-body contribution to the AMM starts to dominate at
large values of�1. The dependence of the AMM on the PV
boson mass �1 becomes more appreciable, although it
keeps rather small.
In order to have a more physical insight into the relative

importance of different Fock sectors in the decomposition
(2) for the state vector, we plot in Fig. 8 the contributions of
the one-, two-, and three-body Fock sectors to the norm of
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FIG. 7. The anomalous magnetic moment in the Yukawa model as a function of the PV mass �1, for two different values of the
coupling constant, � ¼ 0:2 (left plot) and 0.5 (right plot). The dashed and dotted lines are, respectively, the two- and three-body
contributions, while the solid line is the total result. The AMM value calculated in the N ¼ 2 approximation is shown by the thin line
on the right axis.
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the state vector for the two values of the coupling constant,
considered in this work. We see again that at � ¼ 0:2 the
three-body contribution to the norm is small, while it is not
negligible, and increases with �1, when � ¼ 0:5.

At very large values of �1, and for large �, I1 becomes
negative. As already mentioned, we still get a well-defined
solution of Eqs. (42), and there is no discontinuity what-
soever in the value of the AMM. As shown in Fig. 7, the
convergence of the AMM as a function of the PV boson
mass is expected in any case to settle much before we enter
into this regime. According to renormalization theory, the
mass of the PV boson should be much larger than any

intrinsic momentum scale present in the calculation of
physical observables. With this limitation, physical observ-
ables should be independent of any variation of the PV
boson mass, within an accuracy which can be increased at
will. This is what we found in our numerical calculation for
small enough values of �.
In order to understand the possible origin of the residual

dependence of the AMM on �1, we plot in Figs. 9 and 10
the two-body spin components b001 and b002 calculated at

s2 ¼ m2, as a function of x. As we already mentioned in
Sec. III, b001 ðs2 ¼ m2Þ and b002 ðs2 ¼ m2Þ should be inde-

pendent of x in an exact calculation. Moreover, b002 should
be zero. It is here fixed to zero at a given value of x ¼ x� �
�

mþ� , by the adjustment of the constant Z0
! in the system of

equations (42). We clearly see in these figures that b001 is

not a constant, although its dependence on x is always
weak, while b002 is not identically zero, although its value

is relatively smaller than that of b001 for � ¼ 0:2, and starts
to be not negligible for � ¼ 0:5.
We plot in Figs. 11 and 12 the two physical components

h00 and H0
0 as a function of R?, at x ¼ �

mþ� . As expected

from the system of eigenvalue equations (42), the functions
~h00 and ~H0

0 tend to constants at large R?. Hence, the

functions h00 and H0
0 related to them by Eq. (39) tend to

constants too. Note that the two-body wave function �2
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FIG. 8. Individual contributions of the one- (dashed line), two- (dotted line), and three-body (solid line) Fock sectors to the norm of
the state vector as a function of the PV boson mass �1, for � ¼ 0:2 (left plot) and � ¼ 0:5 (right plot).
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FIG. 10. The same as in Fig. 9, but for the spin component b002 .
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FIG. 9. The spin component b001 of the two-body vertex func-
tion (32) calculated at s2 ¼ m2, as a function of x, for � ¼ 0:2
(dashed line) and � ¼ 0:5 (solid line), for a typical value of
�1 ¼ 100 GeV.
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� ¼ 0:2 (dashed line) and � ¼ 0:5 (solid line).
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related to �2 by Eq. (11) goes to zero at large momenta due
to the rapidly decreasing kinematical factor ðs2 �m2Þ�1.

For completness, we plot in Figs. 13 and 14 the two
physical components h00 and H0

0 as a function of x, at
R? ¼ 0.

VI. CONCLUSION

We calculated the anomalous magnetic moment of a
fermion in the Yukawa model, in the first nontrivial ap-
proximation, incorporating a constituent fermion coupled
to zero, one, and two scalar bosons, i.e., within the three-
body Fock state truncation. We applied a general formal-
ism based on the covariant formulation of light-front dy-
namics and an appropriate Fock sector dependent

renormalization scheme which enables us to control un-
cancelled divergences when Fock space is truncated. We
paid particular attention to the renormalization conditions
necessary to relate the bare coupling constant to the physi-
cal one. To do this, we need to identify all spurious con-
tributions originating from the violation of rotational
invariance, coming from the Fock space truncation. This
is possible in our covariant formulation.
The anomalous magnetic moment shows a very nice

convergence as a function of the regularization scale (the
Pauli-Villars boson mass �1), for the coupling constant
value � ¼ 0:2 which mimics a nucleon coupled to a scalar
‘‘pion.’’ For this value of �, the two-body component gives
a dominant contribution to the anomalous magnetic mo-
ment. As � increases, we see the onset of higher Fock
components.
This shows up in the large contribution of the three-body

component, and in the dependence of the anomalous mag-
netic moment as a function of the regularization scale. We
believe that this latter dependence should be largely, if not
completely, removed by incorporating the relevant
fermion-antifermion contributions to the three-body Fock
components. We are currently investigating these contri-
butions [16].
As we have seen in our study, the calculation of non-

perturbative properties of bound state systems demand that
we control all approximations in a quantitative way, in
order to be able to make physical predictions order by
order in the Fock space truncation. We think that the
combination of the covariant formulation of light-front
dynamics with an appropriate Fock sector dependent re-
normalization scheme is a quite promising method to in-
vestigate these properties in a very elegant way, with a
minimum of Fock components and computational time.
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APPENDIX A: RELATION BETWEEN THE FOCK
COMPONENT NORMALIZATION AND THE
FIELD STRENGTH RENORMALIZATION

FACTORS

We shall prove here the relation (21) in the general case,
i.e., without Fock space truncation. We omit for a moment
antifermion contributions generated by the process b !
f �f. They will be incorporated below. The fermion self-
energy is given by a sum of irreducible graphs with all
possible intermediate states:

�ðp6 Þ ¼ X1
n¼1

�nðp6 Þ: (A1)
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FIG. 13. The component h00 defined by Eq. (39), as a function
of x at R? ¼ 0, for a typical value of �1 ¼ 100 GeV and for
� ¼ 0:2 (dashed line) and � ¼ 0:5 (solid line).
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Here �nðp6 Þ is the contribution from a graph with n inter-
mediate states. For example, the first graph in Fig. 5 for the
self-energy contains one intermediate state, the second one
contains three intermediate states, while the third one
contains 11 intermediate states.

For the calculations we will use the 3D light-front graph
techniques exposed in Ref. [3]. It can be represented in
different equivalent forms. We use the form in which an
amplitude is represented as a product of energy denomi-
nators (one denominator for each intermediate state) multi-
plied by appropriate spin matrices. The amplitude (with a
conventional minus sign for the self-energy) corresponding
to a graph with n intermediate states has the following
form:

�nðp6 Þ ¼ �gnþ1
0

Z
dD

Yn
i¼1

k6 i þmi

si � p2
: (A2)

Since we do not truncate Fock space, we use the same BCC
in all vertices. si is the square of the invariant energy of the
i-th intermediate state. The product

Q
n
i¼1 runs through all n

intermediate states. The integration in Eq. (A2) is per-
formed over all independent variables.

The decomposition of �ðp6 Þ is similar to that given by
Eq. (28):

�ðp6 Þ ¼ Aðp2Þ þBðp2Þ p6
m
þ Cðp2Þ m!6

! � pþ C1ðp2Þ	;
(A3)

where

	 ¼ 1

4! � p ðp6 !6 �!6 p6 Þ:

Equation (A3) is the most general form of the fermion self-
energy in CLFD. The term with the function C1ðp2Þ does
not appear for the two-body (N ¼ 2) Fock space trunca-
tion, but it may appear for N � 3. We give here the
coefficient C which will be used below:

C ¼ 1

4m
Tr

��
p6 �!6 p2

! � p
�
�ðp6 Þ

�
: (A4)

To find @�ðp6 Þ
@p6 jp6 ¼M, we first replace in Eq. (A3) p

2 byM2,

p6 by M (that is, replace �� by p�=M), and then calculate
the derivative overM. It is convenient to make this replace-
ment by using the formula

�ðMÞ ¼ 1

4M
Tr½ðp6 þMÞ�ðp6 Þ�p2¼M2 :

We get

@�ðp6 Þ
@p6

��������p6 ¼M
¼ @

@M

�
1

4M
Tr½ðp6 þMÞ�ðp6 Þ�p2¼M2

�
: (A5)

We substitute here �ðp6 Þ from Eqs. (A1) and (A2).
The contribution of the derivative from the j-th factor
1

sj�M2 of the denominator, called �den
nj , which results from

Eq. (A2), reads

@�den
nj ðp6 Þ
@p6

��������p6 ¼M
¼ �gnþ1

0 2M
Z

dDTr

�
1

4M
ðp6 þMÞ

�Yj�1

i1¼1

ðk6 i1 þmi1Þ
ðsi1 �M2Þ

� ðk6 j þmjÞ
ðsj �M2Þ2

� Yn
i2¼jþ1

ðk6 i2 þmi2Þ
ðsi2 �M2Þ

��
: (A6)

The factor

�j ¼ gj0

Z
dD0 Yj�1

i1¼1

ðk6 i1 þmi1Þ
ðsi1 �M2Þ (A7)

is a contribution of the graph with j� 1 intermediate states
into the vertex function, and similarly for the second
product. In contrast to Eq. (A6), where the integration
dD runs over the phase volumes of all the intermediate
states, the integration dD0 in Eq. (A7) runs over the phase
volumes of the intermediate states i1 ¼ 1; . . . ; j� 1 only.

Since all the four-momenta are on the corresponding
mass shells k2j ¼ m2

j , we have

ðk6 j þmjÞ ¼
X

	¼	1=2

u	ðkjÞ �u	ðkjÞ;

1

2
Tr½ðp6 þMÞO� ¼ 1

2

X
¼	1=2

�uðpÞOuðpÞ;

for an arbitrary matrixO. The factor 12 in the last equation is

introduced for averaging over initial spin projections.

We therefore get

@�den
nj ðp6 Þ
@p6

��������p6 ¼M
¼ � 1

2

X
;	

Z
dDj

�uðpÞ�ju	ðkjÞ
ðsj �M2Þ

� ½ �uðpÞ�ju	ðkjÞ�y
ðsj �M2Þ

¼ � 1

2

X
;	

Z
dDj�


j;	ðpÞ�y

j;	ðpÞ: (A8)

Here the integration dDj runs over the phase volume of the

j-th intermediate state not included in the integral for �j.

The vertex function �j may correspond to any fixed num-

ber of particles in the state j allowed by a given graph. We
took into account that the factor 1=ðsj �M2Þ turns each �

into � according to Eq. (11). Taking the sum over all the
graphs and over all the intermediate states j, we recover in
Eq. (A8) the contribution to the normalization integral
IN�2 from all the N-body states with N � 2 (each inter-
mediate state in irreducibles graphs for � contains at least
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two particles). Since the rules of the graph techniques used
to calculate � imply that the one-body states are normal-
ized to 1, this means that IN�2 corresponds to a state vector
normalized by the condition I1 ¼ 1. If I1 � 1, then
Eq. (A6) determines the ratio �IN�2=I1. That is

@�denðp6 Þ
@p6

��������p6 ¼M
¼ � IN�2

I1
: (A9)

The contribution of the derivative of other factors in
Eq. (A5), except for

Q
i

1
si�M2 , which is called �num, reads

@�numðp6 Þ
@p6

��������p6 ¼M
¼ �gnþ1

0

Z
dD

@
@M f 1

4M Tr½ðp6 þMÞQn
i¼1ðk6 i þmiÞ�p2¼M2gQ

n
i¼1ðsi �M2Þ : (A10)

Consider first the case when the products in Eq. (A10) contain only one factor with a fixed i. Then� corresponds to the first
graph in Fig. 5. We calculate the trace in Eq. (A10), using the following explicit expression for the scalar product:

ki � p ¼ 1

2xi
ðR2

i? þm2
i þ x2i M

2Þ;

where the variables Ri? and xi are constructed according to Eq. (33). Calculating then the derivative over M, we find

@�numðp6 Þ
@p6

��������p6 ¼M
¼ �g20

Z
dD2

@
@M f 1

4M Tr½ðp6 þMÞðk6 i þmiÞ�g
ðsi �M2Þ ¼ �g20

Z
dD2

1
2xiM

2 ðR2
i? þm2

i � x2i M
2Þ

ðsi �M2Þ ; (A11)

where dD2 ¼ d2Ri?dxi
ð2�Þ32xið1�xiÞ is the two-body phase space

volume element.
Let us calculate now the value of the coefficient C in

Eq. (A3). It is given by Eq. (A4). We still consider a
particular case and keep one factor only with fixed i.
Then C obtains the form

C ¼ �g20

Z
dD2

1
4m Tr½ðp6 �!6 p2

!�pÞðk6 i þmiÞ�
ðsi �M2Þ

¼ �g20

Z
dD2

ð�M2

m Þ 1
2xiM

2 ðR2
i? þm2

i � x2i M
2Þ

ðsi �M2Þ :

(A12)

Comparing Eq. (A11) with Eq. (A12), we find the relation

@�numðp6 Þ
@p6

��������p6 ¼M
¼ � m

M2
C: (A13)

It turns out that Eq. (A13) is valid in the most general
case. In the latter case, but still without antifermions, we
get in the numerator in Eqs. (A11) and (A12) a product of
the matrices

Q
n
i¼1ðk6 i þmiÞ, instead of the single term

ðk6 i þmiÞ. This product can be decomposed in the full set
of the 4� 4 matrices as follows:

Yn
i¼1

ðk6 i þmiÞ ¼ G0 þ
X
i

Gi
1k6 i þ

X
i1;i2

Gi1i2
2 	ðki1 ; ki2Þ

þG3�5 þ
X
i

Gi
4�5k6 i; (A14)

where 	ðki1 ; ki2Þ ¼ i
2 ðk6 i1k6 i2 � k6 i2k6 i1Þ. The coefficients

G1�3 depend on the scalar products of the four-momenta
k1; . . . kn:

ki � kj ¼ 1

2xixj
½x2i m2

j þ ðxjRi? � xiRj?Þ2 þ x2jm
2
i �:

It is important that these scalar products and, hence, the
functions G1�3 do not depend on M. Therefore, G1�3 can
be extracted from the operator @

@M . We replace ðk6 i þmiÞ in
Eqs. (A11) and (A12) by the product

Q
n
i¼1ðk6 i þmiÞ rep-

resented in the form (A14) (and take the product of the
denominators). The matrices �5 and �5k6 i give zero con-
tributions to both Eqs. (A11) and (A12), whereas with
the matrices 1, k6 i, and 	ðki1 ; ki2Þ we reproduce the relation
(A13).
The incorporation of antifermions (say, the ff �f inter-

mediate state, in addition to bosons) does not change the
form of the denominator (though the energies si incorpo-
rate now the antifermion momenta). That results in
Eq. (A9). The corresponding numerator contains now the
spin matrices of all the fermions þ antifermions [we get
one factor 1=ðsi � p2Þ and a product of three matrices
ð	k6 i þmiÞ for the ff �f state; the signs plus and minus
stand for fermions and antifermions, respectively]. We still
can decompose the full numerator according to Eq. (A14)
and again reproduce the formula (A13).
In this way, taking the sum of Eqs. (A9) and (A13), we

finally find

@�ðp6 Þ
@p6

��������p6 ¼M
¼ � IN�2

I1
� m

M2
C: (A15)

If rotational invariance is preserved (it can be violated for
instance by omitting some time-ordered graphs or by using
rotationally noninvariant cutoffs), C is zero. It is indeed
zero, for example, in the two-body approximation with the
PV regularization [see Eq. (B6) in Appendix B]. If C ¼ 0,
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substituting Eq. (A15) into Eq. (16) and taking into account
that I1 þ IN�2 ¼ 1, we prove the relation (21).

APPENDIX B: SELF-ENERGY COEFFICIENTS

We give here explicit formulas for the coefficients
Aðk2Þ, Bðk2Þ, and Cðk2Þ entering Eq. (28) for the two-
body self-energy in the Yukawa model. If �ðk6 Þ is known,
these coefficients can be found as follows:

g202Aðk2Þ ¼ 1
4 Tr½�ðk6 Þ�; (B1)

g202Bðk2Þ ¼ m

4! � k Tr½�ðk6 Þ!6 �; (B2)

g202Cðk2Þ ¼
1

4m
Tr

�
�ðk6 Þ

�
k6 �!6 k2

! � k
��

: (B3)

In the Yukawa model, the self-energy regularized by one
PV boson and one PV fermion reads, in CLFD,

�ðk6 Þ ¼ � g202
ð2�Þ3

Z
d2R?

Z 1

0

dx

2xð1� xÞ

� X1
i;j¼0

ð�1Þiþj ðk6 1 þmiÞ
ðsij � k2Þ ; (B4)

where k1 is the internal fermion four-momentum. The
light-front variables are, as usual, R? ¼ k2? � xk?, x ¼
! � k2=! � k (k2 is the boson four-momentum), and

sij ¼
R2
? þ�2

j

x
þ R2

? þm2
i

1� x
: (B5)

The coefficients A and B converge without the PV
fermion (i.e., they have finite limit when m1 ! 1).
Substituting Eq. (B4) into Eqs. (B1) and (B2), integrating
over d2R?, and omitting the PV fermion, we get

Aðk2Þ ¼ m

16�2

Z 1

0
log

�
xm2 � xð1� xÞk2 þ ð1� xÞ�2

xm2 � xð1� xÞk2 þ ð1� xÞ�2
1

�
dx;

Bðk2Þ ¼ m

16�2

Z 1

0
ð1� xÞ log

�
xm2 � xð1� xÞk2 þ ð1� xÞ�2

xm2 � xð1� xÞk2 þ ð1� xÞ�2
1

�
dx:

Notice that in the limit �1 ! 1 and for fixed k2 the values ofArðk2Þ ¼ Aðk2Þ �Aðm2Þ andBrðk2Þ ¼ Bðk2Þ �Bðm2Þ
are finite.

A similar calculation of Cðk2Þ requires, for convergence, not only one PV boson, but also one PV fermion. We thus find

C ðk2Þ ¼ � 1

32m�2

Z 1

0

dx

1� x

Z 1

0
dR2

?
X1
i;j¼0

ð�1Þiþj
R2
? � ð1� xÞ2k2 þm2

i

R2
? � xð1� xÞk2 þ ð1� xÞ�2

j þ xm2
i

� 0: (B6)

APPENDIX C: RIGHT-HAND SIDES OF THE EIGENVALUE EQUATIONS (27)

The system of equations (27) determines the one- and two-body Fock components �i
1, �

ij
2 . The right-hand sides of these

equations are denoted by �uðp1iÞðV1 þ V2ÞuðpÞ and �uðk1iÞðV3 þ V45 þ V6ÞuðpÞ, respectively. The explicit form of V1�6 is
the following:

V1 ¼ �m3

X
i0
ð�1Þi0 ðp6 i0 þmi0 Þ

m2
i0 �M2

�i0
1 ; (C1a)

V2 ¼ g003
X
i0;j0

ð�1Þi0þj0
Z d2R0

?
ð2�Þ3

Z 1

0

dx0

2x0
ðk6 01i0 þmi0 Þ
2ð! � pÞ�i0j0 �

i0j0
2 ; (C1b)

V3 ¼ g003
X
i0
ð�1Þi0 ðp6 i0 þmi0 Þ

m2
i0 �M2

�i0
1 ; (C1c)

V45 ¼ ½��ðp6 � k6 2jÞ þ �m2�
X
i0
ð�1Þi0 ðk6 01i0 þmi0 Þ

2ð! � pÞð1� xÞ�i0j �
i0j
2 ; (C1d)

V6 ¼ g202
X
i0;j0;i00

ð�1Þi0þj0þi00
Z d2R0

?
ð2�Þ3

Z 1�x

0

dx0

2x0
ðk6 001i00 þmi00 Þðk6 01i0 þmi0 Þ

4ð! � pÞ2ð1� x0Þð1� x� x0Þ�i0j0�i00jj0
�i0j0
2 ; (C1e)

NONPERTURBATIVE CALCULATION OF THE ANOMALOUS . . . PHYSICAL REVIEW D 82, 056010 (2010)

056010-17



with g003 ¼ g03 þ Z!
m!6
!�p and obvious notations for the

momenta of the particles in the intermediate states. The
term V45 stands for the sum of the contributions of the
graphs V4 and V5 in Fig. 5. The two-body vertex functions
�2 inside the integrands depend on R0

? and x0, while those
which are not integrated depend on R? and x. After
calculating the traces taken from Eqs. (37a) and (37b),
we obtain scalar products which are expressed through
the variables R?; x and R0

?; x
0. Examples are given in

Appendix C of Ref. [2].
The values of �’s, which appear in the above formulas,

are related to the invariant energies in the corresponding
intermediate states. For example, �i00jj0 in Eq. (C1d) for V6

has the form

�i00jj0 ¼
si00jj0 �m2

2! � p ;

where

si00jj0 ¼ ðk1i00 þ k2j þ k02j0 Þ2:
k1i00 , k2j, and k

0
2j0 are the four-momenta in the intermediate

states while s, for any intermediate state, is expressed
through the light-front variables as follows:

s ¼
�X

i

ki

�
2 ¼ X

i

R2
i? þm2

i

xi
;

where Ri? and xi are constructed according to Eq. (33).
They satisfy the conservation laws similar to Eq. (50).

APPENDIX D: THE INTEGRAL TERMS IN THE
EQUATIONS (42)

The numerators and denominators of the kernels in the
integrals in Eqs. (42) are linear functions of the scalar
products R? �R0? ¼ R?R0

? cos�0, where R0? is the in-

tegration variable. We can therefore analytically integrate
over d�0, using the formulas

J0 ¼
Z 2�

0

d�0

2�DðAþ B cos�0Þ ¼
signðAÞ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p ;

J1 ¼
Z 2�

0

cos�0d�0

2�DðAþ B cos�0Þ ¼
1

DB
� A

B
J0:

One should substitute here

A ¼ R02
?ð1� xÞxþ x0½xðxþ x0Þm2 þ R2

?ð1� x0Þ�
� ðxþ x0 � 1Þðx0�2

j þ x�2
j0 Þ;

B ¼ 2R0
?R?x0x;

D ¼ �8�2ð1� x0Þ:
With

�1 ¼ m2x02 þ ð1� x0Þ�2
j0 þ R02

?;

the integral terms obtain the form

ijn ¼
Z 1

0
R0
?dR

0
?
Z 1�x

0
dx0

X1
i;j0¼0

ð�1Þj0 ðcni ~hj
0
i þ Cni

~Hj0
i Þ;

(D1)

Ijn ¼
Z 1

0
R0
?dR

0
?
Z 1�x

0
dx0

X1
i;j0¼0

ð�1Þj0 ðc0ni ~hj
0
i þ C0

ni
~Hj0
i Þ;

(D2)

for n ¼ 0, 1. These integrals converge due to the PV
regularization (the sum over j0). The 16 coefficients c, C,
c0, and C0 depend on j0. They are given below.

c00 ¼
R0
?

R?�1

fR0
?R?xx0J0 þ J1½�R02

?ðx� 1Þx
þ x0½xð�xðx0 � 3Þ þ 3x0 � 4Þm2 þ R2

?ð1� x0Þ�
þ ðx� 1Þðx0 � 1Þðx0�2

j þ x�2
j0 Þ�g;

c01 ¼ �R0
?

R?
xð2xþ x0 � 2ÞJ1;

C00 ¼ m2

R?�1

xx0½J0R?ð3x0 � 2Þ þ R0
?ð2� 3xÞJ1�;

C01 ¼ x

R?
½R0

?ðx� 1ÞJ1 � R?x0J0�;

c10 ¼
R0
?m

2

R?�1

xx0ðxþ 2x0 � 2ÞJ1;

c11 ¼ �R0
?

R?
xðxþ x0 � 1ÞJ1;

C10 ¼ � m2

R?�1

xx0½R?ð1� x0ÞJ0 þ R0
?xJ1�;

C11 ¼ 0;

c000 ¼
R0
?

�1

xx0½R0
?ð3x� 2ÞJ0 þ R?ð2� 3x0ÞJ1�;

c001 ¼ �R0
?

m2
x½R0

?ðx� 1ÞJ0 � R?x0J1�;

C0
00 ¼ � 1

�1

fR02
?ðx� 1ÞxJ0 � R0

?R?xx0J1

þ ½xðxðx0 � 3Þ � 3x0 þ 4Þm2 þ R2
?ðx0 � 1Þ�x0J0

� ðx� 1Þðx0 � 1Þðx0�2
j þ x�2

j0 ÞJ0g;
C0
01 ¼ �xð2xþ x0 � 2ÞJ0;

c010 ¼
R0
?

�1

xx0½R0
?xJ0 � R?ðx0 � 1ÞJ1�;

c011 ¼ 0;

C0
10 ¼

m2

�1

xx0ðxþ 2x0 � 2ÞJ0;
C0
11 ¼ �xðxþ x0 � 1ÞJ0:
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APPENDIX E: COEFFICIENTS IN THE
EQUATIONS (52)

The three-body Fock component (one fermion þ two
bosons) is decomposed in four spin structures by Eq. (47)
with the coefficients g1�4 being scalar functions. These

coefficients are linear combinations (52) of the functions ~h
and ~H which are the solution of the equations (42). The
coefficients of these linear combinations are given below.

With the notation

�2 ¼ m2x22 þ ð1� x2Þ�2
j2
þ R2

2?;

we have

a10 ¼ �mðR1? �R2?Þx2ð1þ x1 � x2Þ
2R2

1?x1ð1� x2Þ�2

;

a11 ¼ ðR1? �R2?Þ
2mR2

1?ð1� x2Þ
;

A10 ¼
mx2½R2

1?ð1� x2Þ þ ðR1? �R2?Þx1�
2R2

1?x1ð1� x2Þ�2

;

a20 ¼
x2½ð1� x2ÞðR1? �R2?Þ þ R2

2?x1�
2mx1ð1� x2Þ�2

;

A20 ¼ mx2ð1þ x1 � x2Þ
2x1ð1� x2Þ�2

;

A21 ¼ � 1

2mð1� x2Þ ;

a30 ¼ �m3x2ð1þ x1 � x2Þ
2R2

1?x1ð1� x2Þ�2

;

a31 ¼ m

2R2
1?ð1� x2Þ

;

A30 ¼ m3x2
2R2

1?ð1� x2Þ�2

;

a40 ¼ mx2
2x1�2

;

A11 ¼ a21 ¼ A31 ¼ a41 ¼ A40 ¼ A41 ¼ 0:

APPENDIX F: COEFFICIENTS ENTERING EQ. (65)

The three-body contributions to the form factors F1 and
F2 are integrals from bi-linear combinations of the four
spin components g1�4. The coefficients determining the
three-body contribution to the form factor F1, Eq. (65a),
have the form

Cð1Þ
11 ¼ m4½R2

1? þ ðR1? � �Þð1� x1Þ�;
Cð1Þ
22 ¼ m6;

Cð1Þ
44 ¼ �m2fðR1? �R2?Þ2 þ ½ð1� x1ÞðR2? ��Þ

� x2ðR1? ��Þ�ðR1? �R2?Þ
þ ðR1? ��ÞR2

2?ðx1 � 1Þ
þ R2

1?½ðR2? ��Þx2 � R2
2?�g;

Cð1Þ
33 ¼ 1

m6
Cð1Þ
11C

ð1Þ
44 ;

Cð1Þ
31 ¼ m2½ðR1? ��ÞðR1? �R2?Þ � R2

1?ðR2? ��Þ�
� ðx1 � 1Þ:

The coefficients determining the three-body contribu-
tion to the form factor F2, Eq. (65b), have the form

Cð2Þ
12 ¼ �4m4ðR1? � �Þ;

Cð2Þ
41 ¼ �4m2½ðR1? ��ÞðR1? �R2?Þ � R2

1?ðR2? ��Þ�;
Cð2Þ
32 ¼ �Cð2Þ

41 ;

Cð2Þ
34 ¼ 4

m2
ðR1? ��ÞCð1Þ

44 :

We recall that Q2 ¼ �2.
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