
Suppressing lepton flavor violation in a soft-wall extra dimension

Michael Atkins* and Stephan J. Huber†

Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
(Received 30 April 2010; published 10 September 2010)

A soft-wall warped extra dimension allows one to relax the tight constraints imposed by electroweak

data in conventional Randall-Sundrum models. We investigate a setup, where the lepton flavor structure of

the standard model is realized by split fermion locations. Bulk fermions with general locations are not

analytically tractable in a soft-wall background, so we follow a numerical approach to perform the

Kaluza-Klein reduction. Lepton flavor violation is induced by the exchange of Kaluza-Klein gauge

bosons. We find that rates for processes such as muon-electron conversion are significantly reduced

compared to hard-wall models, allowing for a Kaluza-Klein scale as low as 2 TeV. Accommodating small

neutrino masses forces one to introduce a large hierarchy of scales into the model, making pressing the

question of a suitable stabilization mechanism.

DOI: 10.1103/PhysRevD.82.056007 PACS numbers: 11.10.Kk, 11.30.Hv

I. INTRODUCTION

Over the last ten years, there has been a large increase in
the study of extra dimensional models following the real-
ization that they could help explain some of the unresolved
problems in the standard model (SM). In 1999, Randall and
Sundrum showed that a warped extra dimension could
offer a geometric solution to the gauge hierarchy problem
[1]. In the original Randall-Sundrum (RS) model, the fifth
dimension consists of a slice of anti-de Sitter (AdS) space
bounded by ultraviolet (UV) and infrared (IR) branes. The
warped space produces an exponential difference in energy
scales between the two branes which solves the hierarchy
problem. Matter fields were originally confined to the IR
brane; however, it was soon realized that by allowing
fermions to propagate in the extra dimension, the SM
fermion mass hierarchy can be explained. By varying the
location of the fermion wave functions in the fifth dimen-
sion, the full scale of fermion masses from neutrinos to the
top quark can be generated using only order unity parame-
ters [2–4]. This setup also contains a built in mechanism
suppressing unobserved flavor changing processes that
result from couplings between SM fermions and excited
gauge bosons which appear in the model [3,5,6].

Further interest in warped extra dimensions was gener-
ated by the AdS/CFT conjecture, when it was realized that
the RS scenario is holographically dual to strongly coupled
four-dimensional (4D) field theories [7–9]. It was in this
context, studying AdS/QCD models, that the idea of a soft
wall was first introduced [10]. The soft wall is realized by
removing the IR brane so the extra dimension extends to
infinity, and by replacing it with a smoothly varying space-
time cutoff. The original AdS/QCDmotivation for this was
to more faithfully reproduce the linear Regge-like mass

squared spectrum of excited mesons as opposed to the
usual quadratic spectrum found in hard-wall RS models.
Inspired by the possibility of qualitatively different phe-

nomenology, the soft-wall scenario was subsequently ap-
plied to modelling electroweak physics [11,12]. These
models successfully showed that a soft-wall extra dimen-
sion is generally less constrained by electroweak precision
observables than its hard-wall counterpart, typically allow-
ing Kaluza-Klein (KK) modes with masses of a few TeV.
An important issue is related to the stability of a soft-wall
setup, which is an open question in the models discussed
in Refs. [11,12]. Such a mechanism was suggested in
Ref. [13], promising the soft-wall extra dimension to
equally well resolve the gauge hierarchy problem.
With the removal of the hard-wall brane the standard

model matter fields must necessarily propagate in the bulk.
Graviton fluctuations and gauge fields were successfully
analyzed in this background, but it was found that fermions
presented particular technical difficulties and only a sim-
plified single generational model was developed. Later
studies of fermions in a soft-wall extra dimension have
developed solutions to the fermion problem [14–16] and
have considered the experimental constraints imposed by
the electroweak observables. However, the fermion flavor
pattern of the SM has not been considered in much detail,
in particular, with respect to the generation of neutrino
masses and the experimental bounds on lepton flavor
violation.
In this paper we present a numerical solution to analyze

a single generation of fermions in the soft-wall extra
dimension. We extend this solution to three generations
by treating flavor mixings as perturbations to the original
solutions, and apply it to the lepton sector of the SM. We
construct a setup, where the lepton flavor pattern is accom-
modated by flavor dependent localizations. It is shown that
in order generate small Dirac neutrino masses by this
mechanism we need to introduce a hierarchy of scales of
order 1015 into the model, making crucial the issue of a

*m.atkins@sussex.ac.uk
†s.huber@sussex.ac.uk

PHYSICAL REVIEW D 82, 056007 (2010)

1550-7998=2010=82(5)=056007(10) 056007-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.056007


suitable stabilization mechanism. We finally carry out an
analysis of the constraints coming from various lepton
flavor violating processes, averaging over random order
unity Yukawa couplings, and find that models with only a
modest hierarchy of scales are relatively mildly con-
strained; whereas, the model with a large hierarchy allow-
ing sub-eV neutrino masses lies well within current
experimental constraints, even for a KK scale1 of 2 TeV.
In the latter, flavor violation is considerably suppressed
relative to its hard-wall counterparts, such as the ones
analyzed in [5,17], and the range of masses lies in the
reach of the LHC experiment.

At this stage we do not try to accommodate the flavor
structure of the quark sector, which should be possible in a
similar way. Also, we reproduce the neutrino masses and
mixings only at the qualitative level, which is sufficient to
estimate the rates of lepton flavor violation.

II. BULK FIELDS IN A SOFT-WALL
EXTRA DIMENSION

Our conventions follow most closely those laid down in
Refs. [12,16]. The five-dimensional (5D) spacetime has
metric

ds2 ¼ e�2AðyÞ�MNdx
MdxN; (1)

where y represents the extra spatial dimension and
�MN ¼ diagðþ;�;�;�;�Þ. We take a pure AdS metric,
AðyÞ ¼ logky, where k is the AdS curvature scale. There is
no IR brane, the extra dimension extends to infinity, and the
soft wall is introduced via a dilaton field � with the action
describing gauge and matter fields given by

S ¼
Z

d4x
Z 1

y0

dy
ffiffiffi
g

p
e��L: (2)

Here y0 ¼ 1=k is the location of the UV brane. The dilaton
field is taken to have the following power law behavior

�ðyÞ ¼ ð�yÞ2: (3)

The dimensionful parameter � will set the mass scale of
the lightest KK excitations. The behavior of other powers
has been discussed in detail in Ref. [14]. It is shown in
Ref. [12] that an appropriate form for the Higgs vacuum
expectation value (VEV) in such a background is given by

hðyÞ ¼ �k3=2�2y2; (4)

where � is a dimensionless Oð1Þ coefficient.

A. Massive gauge fields

In Refs. [12,16] only massless gauge fields are consid-
ered, as the gauge couplings being considered are assumed
to be between quarks and massless gluons. The flavor

changing neutral currents (FCNC) we will be considering
here are mediated by the massive Z boson, so we first
develop the solutions for such a gauge field. A massive
gauge field propagating in the bulk has the Lagrangian

L ¼ �1
4FMNF

MN þ 1
2M

2
AAMA

M:

The mass term M2
A for the weak gauge bosons arises from

spontaneous symmetry breaking and with the Higgs VEV
as given in (4), we have M2

A ¼ 1
2g

2
5hðyÞ2. Varying the

action (2), we obtain the equation of motion

1ffiffiffi
g

p @Mð ffiffiffi
g

p
gMNgRSFNSÞ � gMNgRSFNS@R��M2

AG
MNAM

¼ 0:

Imposing the gauge Ay ¼ 0, inserting the Kaluza-Klein

(KK) reduction,

A�ðx; yÞ ¼
X1
n¼0

AðnÞ
� ðxÞfðnÞA ðyÞ; (5)

and requiring the AðnÞ
� ðxÞ to be mass eigenstates, we find the

fnA have to satisfy�
@2y �

�
1

y
þ�0

�
@y � 1

ðkyÞ2 M
2
A þm2

n

�
fðnÞA ðyÞ ¼ 0 (6)

and are canonically normalized by

Z 1

y0

dye�ðAþ�ÞfðmÞ
A ðyÞfðnÞA ðyÞ ¼ �mn:

A complicated analytic solution of the above equation of
motion was developed in [14], but for our purposes, we find
it more convenient to solve the equation of motion numeri-
cally. We apply Neumann boundary conditions to the wave
functions at y0 and vary �g5 in order to find a normalizable
solution with the appropriate 4D zero mode mass of m0 ’
91 GeV for the Z boson.
It is interesting to note that unlike in hard-wall models,

the profile of a massive gauge boson is independent of the
curvature scale k. This can easily be seen by looking at the
equation of motion (6) where k only appears in the term
involving the 5D mass MA which is the term that must be
varied in order to generate the correct zero mode mass. The
profile of the first few KKmodes of the Z boson are plotted
in Fig. 1. In Fig. 1(a) the zero mode and the first two KK
modes are plotted with respect to a flat metric. Figure 1(b)
shows the profile of the zero mode in the form that it
couples to the fermions (see later). The UV behavior of
the zero mode is less flat than in hard-wall models and
could possibly lead to large violations of universality of
gauge couplings once fermions reside at different locations
in the extra dimension. Note also that as is the case for
massless gauge bosons [12,16], the higher KK modes
become more and more IR localized, a fact that will be

1When referring to the soft-wall model, we take the KK scale
to be the mass of the first KK mode of the Z boson.
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important when considering couplings between higher
gauge modes and fermions.

The KK spectrum for the Z boson for different values of
� with k ¼ 107 TeV is

� ¼ 1
2 TeV: m0 ¼ 0:091 TeV; m1 ¼ 1:3 TeV; m2 ¼ 1:8 TeV;

� ¼ 1 TeV: m0 ¼ 0:091 TeV; m1 ¼ 2:2 TeV; m2 ¼ 3:0 TeV;

� ¼ 2 TeV: m0 ¼ 0:091 TeV; m1 ¼ 4:1 TeV; m2 ¼ 5:8 TeV;

� ¼ 4 TeV: m0 ¼ 0:091 TeV; m1 ¼ 8:2 TeV; m2 ¼ 12 TeV:

Note that the mass of the first KK mode m1 � 2�, and
hence the KK scale, MKK, scales with �. Higher modes
follow a Regge-like spectrum m2

n � n.

B. Fermions

We consider 5D Dirac spinors �L and �R which are
components of doublets and singlets under SUð2ÞL, respec-
tively. Note that L and R do not denote chiralities, but are
related to the charges under SUð2ÞL. The chiral projections
of these spinors are �L� ¼ 1

2 ð1� �5Þ�L, same for �R.

The action for two free fermions in the bulk is

S ¼
Z

d4x
Z 1

y0

dy
ffiffiffi
g

p
e��

�
�
1

2
ð ��Lie

M
A �

ADM�L �DM
��Lie

M
A �

A�LÞ

�ML
��L�L þ 1

2
ð ��Rie

M
A �

ADM�R

�DM
��Rie

M
A �

A�RÞ �MR
��R�R

�
:

The fünfbein and spin connection for the metric (1) are

eMA ¼ eAðyÞ�M
A and !M ¼ ð� A0

2 ���
5; 0Þ and the covariant

derivative is then DM ¼ @M þ!M. ML;R are the 5D Dirac

masses related to �L;R.

The difficulty of placing uncoupled fermions in the
soft-wall background is well documented in Ref. [12],
all solutions suffer from divergent gauge couplings for
high enough KK modes. The underlying problems stem
from the noncompact nature of the extra dimension, and it
is shown that in order to find workable normalizable
solutions, the Yukawa couplings between fermions and
the Higgs must be taken into account. An alternative
approach to introducing Yukawa couplings was presented
in Ref. [15] where a y dependent Dirac mass term is
introduced, somewhat like the y dependent bulk mass
arising from the Higgs VEV in the case of the massive
gauge boson above. Here, however, we will stick to con-
stant Dirac mass terms ML and MR and introduce Yukawa
couplings into the following action:

SYuk ¼ �
Z

d4x
Z 1

y0

dy
ffiffiffi
g

p
e�� �5ffiffiffi

k
p ½ ��Lðx; yÞhðyÞ�Rðx; yÞ

þ ��Rðx; yÞhðyÞ�Lðx; yÞ�:
Defining �L;R ¼ e2Aþ�=2c L;R and mðyÞ ¼ �5ffiffi

k
p hðyÞ, the

equations of motion are

i��@�c L;R� � @yc L;R� � e�AML;Rc L;R�
� e�AmðyÞc R;L� ¼ 0:

FIG. 1. Z boson profiles for k ¼ 107 TeV and � ¼ 1 TeV. (a) The zero mode (solid), first (dashed), and second (dotted) KK modes
plotted with respect to a flat metric. (b) The zero mode profile as it couples to fermions.
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Using the KK reduction

c L;R�ðx; yÞ ¼
X1
n¼0

c ðnÞ
� ðxÞfðnÞL;R�ðyÞ;

and requiring the c ðnÞ
� ðxÞ to be mass eigenstates, the fðnÞs

will be given by

� @y
fðnÞL�
fðnÞR�

 !
þ e�A ML mðyÞ

mðyÞ MR

� �
fðnÞL�
fðnÞR�

 !
¼mn

fðnÞL�
fðnÞR�

 !
:

(7)

The c ðnÞ
� will be canonically normalized byZ 1

z0

dyðfðmÞ
L�f

ðnÞ
L� þ fðmÞ

R�f
ðnÞ
R�Þ ¼ �mn:

We impose Dirichlet boundary conditions at y0 for f
ðnÞ
L� and

fðnÞRþ in order to obtain a chiral 4D theory.
Analytic solutions of (7) are only possible for a small set

of Dirac mass terms, namely ML ¼ MR and ML þMR �
k ¼ 0 [16]. As in hard-wall models, the Dirac mass pa-
rameters ML;R dictate how the fermion is localized in the

extra dimension and it is convenient to parametrise these in
terms of the AdS curvature, ML;R ¼ cL;Rk. Unfortunately,
the sets of parameters for which analytic solutions are
available do not explore the full geography of possible
mass parameters and, as we shall see, may lead to situ-
ations with unacceptably large rates of flavor violation.
Ideally, we would like to solve (7) for any set of Dirac
masses and this requires a numerical approach.

The numerical solution we have developed involves a
shooting type method. In order for the solutions to be
normalizable, they must not diverge in the IR and this
only occurs for the correct choice of mn, thus generating
the KK spectrum. We choose a suitably large distance L
into the IR and solve the equations of motion subject to the
UV boundary conditions and a starting choice for mn. We
then iterate the solution using Newton’s method in order to

find a value for mn such that two of the solutions e.g. fðnÞLþ
and fðnÞR� converge to zero at y ¼ L. The equations of
motion then automatically ensure that the other two solu-
tions will also converge to zero for large y. Our solution has
the advantage that it seems to be quite capable of finding
solutions even for large values of the AdS curvature scale
k, however it is not so suited to finding solutions for
multiple generations of fermions as is done in Ref. [16].

III. LEPTONS

A. General considerations

Because of the presence of the extra KK states in extra
dimensional models, couplings between SM particles and
their KK excitations can potentially lead to conflict with
experimental observations. In the SM, a tight set of con-
straints comes from the experimental bounds on FCNC.

In the hard-wall Randall-Sundrum model these processes
have been investigated and are shown to occur at rates that
are dependent on the fermion locations. However, there are
certain choices of fermion locations which provide almost
universal gauge couplings, and these almost universal
gauge couplings are the source of the so called RS
Glashow-Iliopoulos-Maiani mechanism which suppresses
FCNC [3,5,6].
It was found in Ref. [12] that for fermions in the soft-

wall background, the analytic solution with ML ¼ MR can
produce a large hierarchy of masses but only one of the
fermion pair (cþ; c�) could reside in an area of universal
gauge couplings and it was thus assumed that dangerous
rates of FCNC would be generated in such a situation. In
fact, this is one of the main motivations for finding a
numerical solution to the fermion equations of motion, in
the hope that one would be able to find fermion locations
which can give a large mass hierarchy and yet simulta-
neously reside in an area of universal gauge couplings.
The gauge interaction between bulk gauge bosons and

fermions is given by

SGauge ¼ g5
Z

d4x
Z 1

y0

dy
ffiffiffi
g

p
e��

� ½ ��Le
M
A �

AAM�L þ ��Re
M
A �

AAM�R�:

The couplings of c ð0Þ
� to different KK gauge modes is then

gn� ¼ g5
Z 1

y0

dyfðnÞA ½ðfð0ÞL�Þ2 þ ðfð0ÞR�Þ2�: (8)

The dependence of the gauge couplings on the fermion
locations cL;R is shown in Fig. 2. It can be seen that for

cL > 1=2 the couplings become universal. In the case
where cL ¼ cR, the couplings of one of the fermions would
lie in the universal region the other would lie in the
opposite part of the plot. However, with opposite Dirac
masses, cL ¼ �cR, we are able to place both fermions in a
region of universal coupling at the same time and wewould
thus hope to suppress FCNC.
In hard-wall models the origin of the regions of universal

couplings is quite clear and derives from the profile of the
gauge field wave functions which are flat in the UV. Hence
if fermion profiles are relatively UV localized, the gauge
couplings will be universal. However, in the soft-wall
model, looking at the profile of the zero mode of the
massive gauge boson in Fig. 1(b), it is certainly not flat
and one may wonder why we still find regions of universal
gauge couplings. The explanation can be seen by consid-
ering the fermion profiles. Figure 3 shows the fermion
wave functions contributing to the gauge coupling of cþ
for cL ¼ �cR ¼ 0:7 which are locations that live in an

area of universal gauge couplings. While fð0ÞLþ is heavily

UV localized, we see that fð0ÞRþ is actually peaked into the
IR which we would expect to contribute to nonuniversal
couplings. However, when one considers the relative size
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of the contributions of each of these wave functions to
the gauge coupling as given by Eq. (8), we findRðfð0ÞRþÞ2=

Rðfð0ÞLþÞ2 � 3� 10�4 i.e. almost the entire con-

tribution to the gauge coupling comes from fð0ÞLþ which is
heavily UV localized. Although the relative dominance of

fð0ÞLþ is not that clear to see from Fig. 3, it becomes obvious
when one realizes that it has a value at �y0 of about 2000.
Also, its extreme UV localization can be seen by the fact

that 99% of the area of ðfð0ÞLþÞ2 lies in the region�y < 0:01.
Hence, the dominant contribution to the gauge coupling
comes from a region in the extreme UV where the gauge
profile is effectively given by its UV boundary value, thus
producing universal couplings for fermions.

In order to generate the fermion mass hierarchy seen in
the SM, we have to carefully choose the c parameters. The
zero mode masses for different c parameters can be seen
in Fig. 4. Unfortunately, the shape of the plot presents a
problem for simultaneously generating a large hierarchy of
masses and universal gauge couplings. While it is easy to
generate a large hierarchy of masses for the choice of
parameters cL ¼ cR, as has been stated above, this is likely
to lead to high rates of FCNC. In order to avoid these
unacceptable rates, we would like both the fermions to
reside in an area of universal gauge couplings; this corre-
sponds to the top left corner of the contour plot where we
have cL > 1=2 and cR <�1=2. In this area the zero mode
mass bottoms out at around �2=k and it is not possible to
create a large mass hierarchy. The solution to this is to
simply increase the hierarchy of scales in the model.
Keeping � ¼ 1 TeV, we can see from Fig. 5 that with
k=� ¼ 107 and cL ¼ �cR, the zero mode masses could
cover the full range of charged lepton masses while re-
maining in an area of universal gauge couplings.
The reason for the zero mode mass having a minimum

value for cL ¼ �cR can be seen by considering the two
different ways small masses are generated in such models.
The zero mode masses are generated via Yukawa couplings
which involve the overlap between �L, �R and the Higgs
VEV. In the case where cL ¼ cR, the wave functions of
the zero mode fermions become oppositely localized and
can be arranged to have an arbitrarily small overlap with
each other thus creating arbitrarily small masses, this is the
mechanism used in the ‘‘split fermion’’ model [18].
However, when we take cL ¼ �cR the fermions com-
pletely overlap each other and the zero mode mass is
then entirely determined by their overlap with the Higgs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
y

0.02

0.04

0.06

0.08

0.10

fL,R
0

FIG. 3. Fermion zero modes with cL ¼ �cR ¼ 0:7 for k ¼
107 TeV and � ¼ 1 TeV. fð0ÞLþ solid, fð0ÞRþ dashed. Note that fð0ÞLþ
takes a value of around 2000 at y0.

FIG. 2 (color online). Gauge couplings of the Z boson (a) and its first two KK states (b) as a function of the fermion location,
normalized so that the coupling to the zero mode is unity for large cL. k ¼ 107 TeV, � ¼ 1 TeV, and cL ¼ �cR.
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In RS models where the Higgs resides on the IR brane, this
overlap can be made arbitrarily small by heavily localizing
both the fermions at the UV brane. However, in the soft-
wall model where the Higgs must necessarily propagate in
the bulk and has a nonzero value at the UV brane, the
fermion wave functions will always have a minimum over-
lap with the Higgs at y0 ¼ 1=k however much they are UV
localized.

B. Neutrino masses

We can generate small Dirac neutrino masses by intro-
ducing right-handed neutrinos and allowing Yukawa cou-

plings between them, the Higgs and the left-handed
neutrinos. A similar approach has been taken in the hard-
wall case in Refs. [2,19]. The left-handed neutrinos will
share the same cL parameters as the corresponding left-
handed charged leptons since they are part of the same
doublet under SUð2ÞL. We are then free to place the right-
handed neutrinos in a suitable location in order to generate
sub-eV masses. However, since we still require cL > 1=2,
we again find that we are unable to generate such small
masses without vastly increasing the overall hierarchy in
the model. It seems necessary therefore to work with a
hierarchy similar to that proposed in the original Randall-
Sundrum model. The issue of stabilizing such a large
hierarchy is an important question, and it would be very
interesting to redo our analysis in context of the stabilized
model proposed in Ref. [13]. With this in mind, we choose
k=� ¼ 1015 and are able to produce neutrino masses of
order 0.1 eV by choosing cL ¼ 0:6 and cR ¼ �1:3.

C. Three generations

When incorporating all three generations of leptons into
our model, the Dirac mass terms ML and MR and the
Yukawa coupling constants are promoted to 3� 3matrices
mixing the different generations. We assume that the basis
of states in which the ML and MR are diagonal does not
correspond to one in which the Yukawa couplings are
diagonal. Rather than finding exact solutions for all three
generations in such a scenario, our approach to this prob-
lem follows closely the method used in Ref. [5] for the
Randall-Sundrummodel. We solve the equations of motion
individually for each generation with a Yukawa coupling
�5 ¼ 1, excluding fermion mixing, and use these solutions
as basis from which we treat the full matrix of Yukawa
couplings including mixings between the generations as
perturbations. We specifically choose a large number of
random Yukawa couplings, taking 1

2 < j�5ijj< 2 with ran-

dom sign,2 and require that the average zero mode masses
reproduce the observed lepton masses. We also choose to
locate the left-handed fields of each generation close to
each other in order to generate large neutrino mixings, in
the spirit of Ref. [19]. However, we do not aim at repro-
ducing the neutrino masses and mixings precisely. All
we arrange for is an overall neutrino mass scale of
order 0.1 eV. Using our tools, a full model of neutrino
masses could be constructed. However, for the following
estimate of lepton flavor violation, these details are not
needed. Also, we use the fact that neutrino mixings are
order unity.
In the case where we are not interested in generating

neutrino masses via locations, we take only a moderate
hierarchy of scales, k=� ¼ 107. In this regime we choose
the following three scenarios:

6

6

5

5

4

4

3

3

2
1

0

3 2 1 0 1 2

2

1

0

1

2

3

cR

cL

FIG. 4 (color online). Contour plot of log10ðm0=�Þ for the zero
mode masses of fermions with � ¼ 1 TeV and k ¼ 103 TeV.

2 1 1 2 3 4
cR

7

6

5

4

3

2

1

log10 m0

FIG. 5 (color online). Fermion zero mode masses with cL ¼
�cR, � ¼ 1 TeV and k ¼ 107 TeV. 2We do not consider CP violation, i.e. we take �5ij to be real.
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ðAÞ: cL1 ¼ 0:700; cL2 ¼ 0:700; cL3 ¼ 0:700;

cR1 ¼�1:376; cR2 ¼�0:903; cR3 ¼�0:703;

ðBÞ: cL1 ¼ 0:720; cL2 ¼ 0:700; cL3 ¼ 0:680;

cR1 ¼�1:373; cR2 ¼�0:903; cR3 ¼�0:704;

ðCÞ: cL1 ¼ 0:600; cL2 ¼ 0:600; cL3 ¼ 0:600;

cR1 ¼�1:430; cR2 ¼�0:980; cR3 ¼�0:790

In the regime where we can also generate neutrino masses,
k=� ¼ 1015, we choose

ðDÞ: cL1 ¼ 0:60; cL2 ¼ 0:60; cL3 ¼ 0:60;

cR1 ¼ �0:82; cR2 ¼ �0:64; cR3 ¼ �0:55:

Our choices for the different scenarios (A), (B), and (C)
are to demonstrate the effects of degenerate cL localization
(A), small separation in the cL to introduce some nonun-
iversality in the left-handed sector (B), and placing the left-
handed fermions closer to the IR brane (C). We expect the
behavior to be quite general and thus only choose one
scenario with a larger hierarchy. The mass of the first
fermion KK states is about 1.5 TeV.

IV. FLAVOR VIOLATION

With a full three generations of leptons implemented as
above, the transformation to fermion mass eigenstates will
induce flavor violating couplings to gauge fields, in par-
ticular, the Z boson and its KK excitations3 We define the
neutral current gauge couplings in the basis of mass eigen-
states as

B ðnÞ
� ¼ U�G

ðnÞ
� Uy

�;

where the unitary matrices U� diagonalize the full fer-

mion mass matrices and GðnÞ
� are diagonal matrices that

contain the couplings of the nth KK state of the Z boson to
each fermion state as derived from Eq. (8) and normalized
to the coupling of the muon (see also Ref. [5]). Flavor
violation induced by these couplings is dependent on the

nonuniversality in the couplings of different flavor states
and the mixing between the states. Different fermion loca-
tions increase the nonuniversality but at the same time lead
to small mixing angles. Conversely, similar fermion loca-
tions produce large mixing but this is compensated by
universal couplings.
As done in Ref. [5], we calculate the rates of the various

flavor violating processes using the techniques developed
for family nonuniversal Z’ bosons [20]. The main differ-
ence being that there is no mixing between the different
KK states of the Z boson, while the zero mode also has
flavor violating couplings.
The first process we consider is the tree level exchange

of a Z boson and its KK states mediating the process lj !
lili �li. The rate for this process is given by [20]

�ðlj ! lili �liÞ¼
G2

Fm
5
lj

48�3
ð2jCþ

ij j2þ2jC�
ij j2þjDþ

ij j2þjD�
ij j2Þ;

where

C�
ij ¼

X
n

M2
0

M2
n

ðBðnÞ
� ÞijðBðnÞ

� Þii;

D�
ij ¼

X
n

M2
0

M2
n

ðBðnÞ
� ÞijðBðnÞ

� Þii;

where we take the sum over the Z boson zero mode and the
first two KK modes.Mn is the mass of the nth KK mode of
the Z boson. Because of the Regge type behavior of the KK
spectrum, it is not clear that the above series should con-
verge. However, as noted in Ref. [16], due to the increasing
IR localization of higher gauge boson KK modes, the
couplings rapidly decrease and the series converges after
only a few terms. In the fermion sector we take into
account only the zero modes. Mixing with KK fermions
is small, leading to negligible effects at the current
precision.
The branching ratios for the above processes in the

different scenarios we consider are then found to be

ðAÞ ðBÞ ðCÞ ðDÞ
Brð� ! ee �eÞ : 2:7� 10�14 5:1� 10�12 4:6� 10�12 2:5� 10�15

Brð� ! �� ��Þ : 2:4� 10�14 1:8� 10�12 7:0� 10�13 2:7� 10�12

Brð� ! ee �eÞ : 2:6� 10�15 1:5� 10�12 6:6� 10�13 2:8� 10�16

These numbers are obtained for a KK scale of 2 TeV.
They are the result of averaging over random Yukawa
couplings in the range stated above. The experimental

bound Brð� ! ee �eÞ< 1:0� 10�12 [21] is satisfied in
case (A) and case (D). However, it appears that the cou-
plings are not universal enough to allow for much separa-
tion between the left-handed states (B), and placing
the fermions too close to the IR brane (C) also exceeds
the experimental bound. However, like in the hard-wall
case, the rate for this process depends on the KK scale as
1=M4

KK. Thus with a KK scale of twice as big (i.e. take
� ¼ 2 TeV while keeping k ¼ 107 TeV), scenario (B)

3Note that we work in a gauge field basis, where the Z
boson zero mode is massive. Its properly weighted wave func-
tion is not flat, resulting in nonuniversal couplings to fermions.
Alternatively, one could work in a basis, where the zero mode is
massless. Then, only the KK states would couple nonuniversally.
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and scenario (C) would also acquire an acceptable rate.
The experimental bounds for the other two processes
Brð� ! �� ��Þ< 2:1� 10�8 and Brð� ! ee �eÞ< 2:7�
10�8 [22] are well satisfied in all the scenarios. Note
that in Ref. [5] in a case similar to (A), (C), and (D), a
branching ratio Brð� ! ee �eÞ ¼ 5� 10�14 has been found
for a KK scale of 10 TeV, translating into Brð� ! ee �eÞ ¼
3� 10�11 for a KK scale of 2 TeV. This demonstrates that
lepton flavor violation is suppressed by up to four addi-
tional orders of magnitude in the soft-wall case.

We are also able to calculate the expected rate of � ! e
conversion in a muonic atom. The most stringent bound
comes from the Sindrum-II Collaboration [23] in 48

22Ti
where Brð��N ! e�NÞ< 6:1� 10�13. We can calculate
the branching ratio for this process by [20]

Br ð��N! e�NÞ ¼ G2
F�

3m5
�

2�2�CAPT

Z4
eff

Z
jFPj2ðjB�j2þjBþj2Þ;

where

B� ¼X
n

M2
0

M2
n

ðBðnÞ
� Þ12½ð2Zþ NÞðBðnÞ

uL þ BðnÞ
uR Þ

þ ðZþ 2NÞðBðnÞ
dL

þ BðnÞ
dR
Þ�2;

and we take

Bð0Þ
c L;R

¼gc L;R
; Bð1Þ

c L;R
¼0:19gc L;R

; and Bð2Þ
c L;R

¼0:14gc L;R
:

Here, gc L;R
are the usual standard model quark couplings

and we have taken the approximate values of the quark
couplings to the higher KK gauge modes from the values
derived in Ref. [16]. We also take Zeff ¼ 17:6, FP ¼ 0:54
and �CAPT ¼ 2:59� 106 s�1 [24], where Zeff is an effec-
tive atomic charge, FP is a nuclear matrix element and
�CAPT is the muon capture rate.
We find branching ratios for the different scenarios of

ðAÞ ðBÞ ðCÞ ðDÞ
Brð��N ! e�NÞ : 1:6� 10�13 3:3� 10�11 2:7� 10�11 1:4� 10�14

Again, we find scenario (A) and scenario (D) lie within the
experimental bounds but separating the states (B) or plac-
ing them too close to the IR brane (C) produces an unac-
ceptable rate. Again, we find flavor violation suppressed
with respect to the hard-wall case [5], making a KK scale
of 2 TeV consistent with observations. However, next-
generation experiments, such as PRISM at JPARC with
a reach of Brð��N ! e�NÞ � 10�16–10�18 could probe a
KK scale of 6–20 TeV, i.e. the interesting parameter range
of the present model.

A third set of processes considered in Ref. [20] are one-
loop radiative lepton decays. Here the decay width is

�ðlj ! li�Þ ¼
�G2

Fm
3
lj

8�4
ðj	ij

þj2 þ j	ij�j2Þ;

where the dipole moment couplings of an on-shell photon
to the chiral lepton currents are given by

	ij
� ¼ X

n

M2
0

M2
n

ðBðnÞ
� mlB

ðnÞ
� Þij;

whereml is the charged lepton mass matrix. Using this, we
obtain the following rates for radiative decays

ðAÞ ðBÞ ðCÞ ðDÞ
Brð� ! e�Þ : 2:0� 10�17 3:7� 10�15 3:4� 10�15 1:2� 10�18

Brð� ! ��Þ : 5:2� 10�16 1:9� 10�14 9:4� 10�15 4:1� 10�14

Brð� ! e�Þ : 3:7� 10�17 1:5� 10�14 9:2� 10�15 2:6� 10�18

All of these branching ratios lie well within the experi-
mental bounds Brð� ! e�Þ ¼ 1:2� 10�11 [25], Brð� !
��Þ ¼ 4:4� 10�8, and Brð� ! e�Þ ¼ 3:3� 10�8 [26].
Again these rates are suppressed relative to their hard-
wall counterparts.

In scenario (D), processes such as � ! e� can also be
mediated by the KK states of the sterile neutrinos. This
process was investigated for the Randall-Sundrum model
in Ref. [27]. We use the formalism developed there and we
find that in our model the branching ratio for this process is
given by the relative coupling strength of the muon, the W
and the KKmuon neutrino to the zero mode muon neutrino
times a loop factor. Because of the large mass differences

of the sterile KK neutrinos, the Glashow-Iliopoulos-Maiani
mechanism breaks down. We assume that the neutrino
mixing angles are large, not leading to any suppression
of the rate. Given a relative coupling of 0.0057, we find
Brð� ! e�Þ ¼ 1:5� 10�13 which again lies within the
experimental bounds for a KK scale of 2 TeV.
There are also contributions to � ! e� related to the

exchange of KK fermions [28,29], which were neither
included in our estimate above nor in Ref. [27]. These
contributions dominate the rate of radiative lepton decays
in hard-wall models. A similar behavior is likely in the
soft-wall model. However, given the suppressed rates for
flavor violation in the latter, we expect that even including
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these extra contributions, the rate for � ! e� and a KK
scale of 2 TeV should not exceed the experimental bound.

We have shown that lepton flavor violation can be sup-
pressed in the soft-wall model and the amount of suppres-
sion depends on the fermion locations and the hierarchy of
scales, k=�. The reason for this suppression comes from
the ability to place the fermions in regions of universal
gauge couplings i.e. heavily UV localized as explained in
Sec. III A. When the hierarchy of scales in the model is
increased by fixing � and increasing k the gauge boson
profiles remain unchanged while the fermion profiles be-
come even more UV localized thus providing an even
greater suppression of flavor violation.

V. CONCLUSIONS

In this paper we have studied the lepton sector of the SM
in a soft-wall extra dimension, applying flavor dependent
fermion locations to accommodate the observed lepton
flavor structure. The Higgs is a bulk field, with a VEV
that increases near the soft wall. We have, in particular,
considered the inclusion of small Dirac neutrino masses
and investigated the constraints on the model from lepton
flavor violation mediated by the Z boson and its KK states.
In order to do so, we first developed solutions for a massive
gauge boson in the soft-wall background and found the
profile is independent of the AdS curvature scale. In order
to generate the masses of the charged leptons while keeping
the fermions located in an area of almost universal gauge
couplings, we find that we need to increase the hierarchy
of scales in the model to around k=� ¼ 107. When incor-
porating sub-eV neutrino masses we need a much larger
hierarchy, and we choose k=� ¼ 1015, similar to the hier-
archy between the Planck and the electroweak scales.

To incorporate three generations of leptons into our
model, we solve the fermion equations of motion numeri-
cally, including an order one flavor diagonal Yukawa cou-
pling and use these solutions as a basis of states from which
we treat off-diagonal Yukawa couplings, connecting differ-
ent generations, as perturbations. The mass term related to
the diagonal Yukawa coupling is necessary to generate a
normalizable wave function and cannot be treated as a
perturbation. We can construct the full lepton mass matri-
ces, including KK states and diagonalize them to find the
fermion masses and mixings. However, to our level of
precision, we can neglect the fermionic KK states. The
locations of the left-handed fermions are dictated by the
fact that we require large mixings in the neutrino sector.
We take a large number of random Yukawa couplings and
choose the locations of the right-handed fermions so that
the averaged zero mode masses reproduce the SM charged
lepton masses.

With the inclusion of off-diagonal Yukawa couplings, the
transformation to mass eigenstates produces flavor violat-
ing couplings. We calculated the expected rates for various
flavor changing processes for a number of different scenar-
ios. We found that the soft-wall model is in fact mildly
constrained when we consider a scenario with a low hier-
archy of scales such as k=� ¼ 107. The most stringent
constraint comes from � ! e conversion in a muonic
atom where we find that only the scenario where all the
left-handed leptons have degenerate locations well toward
the UV brane would occur at acceptable rates with a KK
scale of 2 TeV. This is a considerable suppression of lepton
flavor violation compared to hard-wall models, such as the
one studied in Ref. [5]. Including a larger hierarchy of
scales (k=� ¼ 1015), it is also possible to generate sub-
eV Dirac neutrino masses. In this case the model is even
less constrained and most of the FCNC processes would
occur at rates well below the experimental bounds. The
most stringent bounds are coming from radiative decays,
such as � ! e�. Again, a KK scale of 2 TeV seems
sufficient to keep the rate below the experimental bound.
Our estimate for this rate does not include contributions
from KK gauge bosons, and it would be interesting to
include these in a more detailed analysis. Another obvious
direction of research would be to extend the present setup to
the quark sector, similar to an analysis that was performed
recently in much detail for the hard-wall model in Ref. [30].
The soft-wall extra dimension continues to offer a valid

model for electroweak physics, with constraints from pre-
cision data relaxed compared to the hard-wall model.
Having said this, we have found that with a (gauge boson)
KK scale of 2 TeV the complete lepton flavor structure can
be accommodated while keeping rare processes below
experimental bounds. In our setup the KK states of fermi-
ons have masses around 1.5 TeV, within reach of the LHC
experiment. Thus the soft-wall framework seems to offer
an alternative when it comes to suppressing flavor violation
to models relying on flavor symmetries [29,31,32], a bulk
Higgs [33], or to utilizing nonminimal representations
under the SUð2ÞR bulk gauge symmetry [34].
The parameter range with a large hierarchy k=� ¼ 1015

is both attractive to further suppress flavor violation and
necessary to accommodate neutrino masses. This rises the
important question whether such a hierarchy can be stabi-
lized, like in the way proposed in Ref. [13]. It would be
very interesting to extend our analysis to such a
framework.
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