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We determine the drag and the momentum diffusion coefficients of heavy fermion in dense plasma. It is

seen that in degenerate matter the drag coefficient at the leading order mediated by the transverse photon

is proportional to ðE��Þ2 while for the longitudinal exchange this goes as ðE��Þ3. We also calculate

the longitudinal diffusion coefficient to obtain the Einstein relation in a relativistic degenerate plasma.

Finally, finite temperature corrections are included both for the drag and the diffusion coefficients.
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I. INTRODUCTION

Recent years have witnessed significant progress in
understanding the properties of hot and/or dense relativis-
tic plasma [1,2]. Such studies draw their motivations both
from the theory and the experiments. In particular, the
possibility of creating high temperature quark gluon
plasma by colliding heavy ions in the laboratory mimick-
ing the conditions of the microsecond old universe has
been a matter of intense research activities in the past
decades. Further impetus to these studies comes from
astrophysics where it is important to know the properties
of such plasma at high density, which, for example, might
exist in the core of neutron stars or in white dwarfs.

One of the interesting quantities which has assumed
special interest recently is the study of partonic energy
loss in relativistic plasma. Several calculations [3–7]
have been performed over the last decades to estimate
such energy loss in a plasma. Similarly, there exists several
studies in which the momentum diffusion coefficient of
a heavy fermion has been estimated [8–11]. These two
quantities are of utmost importance to understand the
equilibration of fermions in a plasma. So far, these calcu-
lations were largely confined to the case of hot plasma with
zero chemical potential due to their relevance to the experi-
ments performed at the Relativistic Heavy Ion Collider or
the ones to be performed at the Large Hadron Collider.

There still exists another domain of the quantum chro-
modynamic (QCD) phase diagram where the chemical
potential (�) might be higher compared to the temperature
(T). This is the region of interest of the upcoming experi-
ments on compressed baryonic matter to be performed at
FAIR/GSI [12–14]. Partially motivated by these proposed
experiments and partly by another theoretical work on the
fermion damping rate [15], we calculate here the drag (�)
and the longitudinal momentum diffusion coefficient (B)
of a heavy fermion in quantum electrodynamic (QED)
plasma. It is known that the former and the latter are related
to the energy loss and the momentum relaxation of the

fermion in a plasma. Moreover, in equilibrating plasma,
these two quantities viz. � and B are related to each other
via the Einstein relation (ER) which at finite temperature
reads as B ¼ 2ET�. As indicated above, such calcula-
tions, for dense (T ¼ 0) and/or warm (T � �) plasma
are rather limited. In fact, we are aware of only one
calculation of energy loss where the effects of finite chemi-
cal potential has been considered, although the temperature
considered there is still high [16]. We, on the contrary, first
consider the extreme case of zero temperature and then
incorporate finite temperature corrections to our result
both for the drag (energy loss) and the diffusion coefficient
in the limit � � T. We also determine the relationship
between � and B, i.e., ER at zero temperature, which
shows some interesting behavior due to the finite density
plasma effect.
Before we proceed further, it would be worthwhile to

draw our attention to [15]. This is an interesting work in
many ways. First, it is known that the fermion damping rate
(�) in hot plasma is plagued with divergences which
cannot be removed by the ordinary screening effect [17].
This is because the magnetic interaction is screened only
dynamically [18] and the problem remains for the static
photons (or gluons in QCD). Therefore, to obtain a finite
result, a suitable resummation has to be performed. This
was first done in [19,20]. Reference [15] shows that at
zero temperature due to Pauli blocking, a finite result can
be obtained without performing further resummation. This
is consistent with the conclusion drawn in [21]. Second,
in the relativistic plasma � is dominated by the magnetic
exchange and is proportional to ðE��Þ, while the
electric photon exchange gives a contribution proportional
to ðE��Þ2. Here, it is important to note that the dynami-
cal screening in the transverse sector enhances the damp-
ing rate compared to its longitudinal counterpart. It might
be recalled also that for nonrelativistic Coulomb plasma
the damping rate goes as ðE��Þ2 [22]. Thus, it would be
interesting to see how do the drag and the diffusion coef-
ficient depend on ðE��Þ in degenerate plasma.
It is known that at finite temperature the calculation for

the energy loss and diffusion coefficients are plagued with
infrared divergences [17]. To deal with this problem, in hot

*sreemoyee.sarkar@saha.ac.in
†abhee.dm@saha.ac.in

PHYSICAL REVIEW D 82, 056003 (2010)

1550-7998=2010=82(5)=056003(7) 056003-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.056003


plasma one separates the integration into two domains:
one involving the exchange of hard photons (or gluons),
i.e., the momentum transfer (q)�T and the other involving
soft photons (or gluons) when q� eT (e � 1). In the case
of the former, one uses a bare propagator and introduces
an arbitrary cutoff (q�) [23] parameter to regularize
the integration. For the latter, on the other hand, one uses
the hard thermal loop (HTL) corrected propagator. These
two parts, upon addition, yield results independent of this
intermediate scale. In the case of degenerate plasma, one
also encounters similar infrared divergences and following
Ref. [15] one can proceed along the same way as finite
temperature [using the hard dense loop (HDL) corrected
propagator] and show that both for the drag and diffusion
coefficient the final result becomes independent of the
intermediate cutoff parameter. This, however, as we shall
see, is not required in the case of dense plasma. Here, the
dominant or the leading order contribution comes entirely
from the soft sector and the hard photon exchange con-
tributes only to the higher order. It might be mentioned
here that although we calculate these quantities for QED,
with appropriate color factors the results can easily be
extended to the case of QCD with the addition of one
more diagram involving a triple gluon vertex [4].
Furthermore, it might be noted that the quark energy
loss calculations in general should also include a
Bremsstrahlung radiation of the gluons. However, in the
present context we are concerned with only the two body
scatterings and therefore restrict ourselves to the colli-
sional energy loss alone.

Furthermore, expressions derived for the degenerate
plasma, wherever possible, have been directly compared
with their finite temperature counterparts (with zero
chemical potential). This brings the similarities and the
differences of these two extreme scenarios into clearer
relief.

The plan of the paper is as follows. First in Sec. II we
calculate drag and diffusion coefficients in degenerate
plasma and discuss Einstein relation. In Sec. III, the finite
temperature corrections have been incorporated both for
� and B. The results are then summarized in Sec. IV.
An Appendix has also been added to understand the origin
of difference in ER in a cold medium than from that of a
hot plasma.

II. HEAVY FERMION AT ZERO TEMPERATURE

A. Drag coefficient

In this section we first calculate the drag coefficient of a
heavy fermion in a degenerate QED plasma. For this we
consider the scattering of a heavy fermion having energy
(E) (which we assume to be hard), with the constituents
of the plasma viz. the electrons. Incidentally, this drag
coefficient (�) is related to the to the energy loss by the
following equation:

� ¼ 1

Evi

�
� dE

dx

�
; (1)

where, vi ¼ p
E is the velocity of the incident fermion,

ðdE=dxÞ is the energy loss, and p is the three momentum
of the incident fermion. Thus, the calculation of the drag
coefficient boils down to the calculation of collisional
energy loss in a plasma [3–7]. Now the energy loss
ðdE=dxÞ can be obtained by averaging over the interaction
rate times the energy transfer per scattering! and dividing
by the velocity of the incoming particle [3],

dE

dx
¼ 1

vi

Z
d�!: (2)

This expression is quite general and valid for both
the finite temperature and/or density where only the phase
space will be different due to the modifications of the
distribution functions depending upon the values of �
and T.
The scattering rate, which is essential for the calculation

of � as evident from Eqs. (1) and (2), is related to the
imaginary part of the fermion self-energy (�) by the
following equation [24]:

�ðEÞ ¼ � 1

2E
Tr½Im�ðp0 þ i�;pÞðPþmÞ�jp0¼E: (3)

In the last equation, m is the mass of the incoming heavy
fermion. The full fermion self-energy represented in Fig. 1
can be written explicitly as

�ðPÞ ¼ e2T
X
s

Z d3q

ð2�Þ3 ��

� Sfðið!n �!sÞ;p� qÞ�����ði!s;qÞ; (4)

where, p0 ¼ i!n þ�, q0 ¼ i!s. !n ¼ �ð2nþ 1ÞT, and
!s ¼ 2�sT are the Matsubara frequencies for fermion
and boson, respectively, with integers n and s. After
performing the sum over the Matsubara frequency in
Eq. (4), i!n þ� is analytically continued to the
Minkowski space i!n þ� ! p0 þ i�, with � ! 0. The
blob in Fig. 1 here represents the HTL/HDL corrected
photon propagator which is in the Coulomb gauge is given
by [1]

FIG. 1. Fermion self-energy with resummed photon propagator.
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���ðQÞ ¼ ��0��0�lðQÞ þ Pt
���tðQÞ; (5)

with Pt
ij ¼ ð�ij � q̂iq̂jÞ, q̂i ¼ qi=jqj, Pt

i0 ¼ Pt
0i ¼

Pt
00 ¼ 0, and �l, �t are given by [1]

�lðq0; qÞ ¼ �1

q2 þ�l

; (6)

�tðq0; qÞ ¼ �1

q20 � q2 ��t

: (7)

For subsequent calculations it is convenient here to intro-
duce the spectral functions �l;t [1]:

�l;tðq0;qÞ ¼ 2 Im�l;tðq0 þ i�;qÞ: (8)

At the leading order these are derived from the one-loop
photon self-energy where the loop momenta are assumed
to be hard in comparison to the photon momentum [25,26].
In the literature the formalism is known as the HTL/HDL
approximation as discussed in [1],

�lðq0;qÞ¼ 2�m2
Dx�ð1�x2Þ

2½q2þm2
Dð1� x

2 lnjxþ1
x�1jÞ�2þm4

D�
2x2

2

;

�tðq0;qÞ¼
2�m2

Dv
2
fxð1�x2Þ�ð1�x2Þ

½2q2ðx2v2
f�1Þ�m2

Dx
2v2

fð1þð1�x2Þ
2x lnjxþ1

x�1jÞ�2þ
m4

Dv
4
f
�2x2ð1�x2Þ2

4

; (9)

where vf is the Fermi velocity and x ¼ q0
qvf

. For a ultra-
relativistic plasma (vf ! 1) the Debye mass ism2

D ¼ e2

�2 �
ð�2 þ �2T2

3 Þ.
In Eq. (4), the fermion propagator has the following

spectral representation with the notation k ¼ ðp� qÞ [1]:

Sfði!n;kÞ ¼
Z 1

�1
dk0
2�

ðK þmÞ�fðKÞ
k0 � i!n ��

: (10)

Hence, for �fðKÞ we use the free spectral density given by

�fðKÞ ¼ �

Ek

½�ðk0 � EkÞ � �ðk0 þ EkÞ�: (11)

One can take the imaginary part of Eq. (4) to calculate
the scattering rate with the help of Eq. (3). For the calcu-
lation of the drag coefficient, one then inserts the energy
exchange ! in the expression of � and calculates dE=dx
from Eq. (2) to obtain

�dE

dx
¼ �e2

Evi

Z d3q

ð2�Þ3
Z 1

�1
dk0
2�

�fðk0Þ

�
Z 1

�1
dq0
2�

q0ð1þ nðq0Þ � �nðk0ÞÞ�ðE� k0 � q0Þ
� ½p0k0 þ p � kþm2��lðq0; qÞ
þ 2½p0k0 � ðp � q̂Þðk � q̂Þ �m2��tðq0; qÞ: (12)

It is to be mentioned here that the scattering process
involves space-like photons. Hence, here only the cut of
the spectral function contributes. In the above equation n
and �n are the Bose-Einstein and the Fermi-Dirac distribu-
tion functions:

nðq0Þ ¼ 1

e�q0 � 1
; �nðk0Þ ¼ 1

e�ðk0��Þ þ 1
: (13)

From now onwards in this section, we exclusively focus
on the ultradegenerate plasma. The finite temperature

corrections which might be important for dense and
warm plasma will be incorporated in the next section.
For the T ¼ 0, � � 0 limit, ð1þ nðq0ÞÞ ¼ �ðq0Þ and
�nðk0Þ ¼ �ð�� Eþ q0Þ, where � represents the step
function. These functions, as we shall see, restrict the
phase space of the q0 integration severely. The zero tem-
perature spectral functions �l;t now involve the Debye

mass m2
D ¼ e2vf�

2=�2.

Note that, the delta function in Eq. (12) sets q0 ¼
qv cos	 and the theta functions impose further restrictions
on q0. We consider quasiparticles, with a velocity close to
the Fermi velocity, which undergoes collisions with the
particles near the Fermi surface. Hence, we can make an
approximation here as v 	 vf.

Now, consider the case of the hard photon exchange
where the medium effects on the photon propagator can
be ignored. In this case using the bare propagator we get

�
�dE

dx

�
’ e2m2

D

8�vf

Z
dq

Z E��

0
dq0

�
q20

v2
fq

4
þ v2

fq
2
0

2q4

�

’ e2ðE��Þ3m2
D

24�vf

�
1

v2
f

þ v2
f

2

�Z dq

q4
: (14)

This actually is the leading hard contribution that
comes from the diagram, when, the blob of Fig. 1 is
replaced with one fermion loop. Evidently, the above in-
tegral is infrared divergent and unlike the finite tempera-
ture here, higher powers of q appear in the denominator.
We shall remark on this later once we have expressions
both for � and B.
To deal with this infrared divergence in the soft domain,

one uses the HDL corrected photon propagator [25,26]
given by Eq. (7), with the Debye mass m2

D ¼ e2vf�
2=�2

as mentioned earlier, to obtain
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�
�dE

dx

���������soft
ðEÞ ’ e2

2vf

Z d3q

ð2�Þ3 qvf cos	ð�ðq0Þ

��ð�� Eþ q0ÞÞ�ðq� � qÞf�lðq0; qÞ
þ v2

fð1� cos2	Þ�tðq0; qÞg

’ e2

8�2vf

Z
D
dqq

Z
dq0q0

�
�
�lðq0; qÞ þ

�
v2
f �

q20
q2

�
�tðq0; qÞ

�
:

(15)

The integration domain (D) above is limited by the �
functions,

D: 0 
 q0 
 E��; q0 
 q 
 q�: (16)

With these we get

�
�dE

dx

���������soft
ðEÞ ’ e2m2

D

4�vf

Z
D
dq0dq

�
�

q20

v2
ff2½q2 þm2

DQlðq0q Þ�2 þ
m4

D�
2q2

0

2q2
g

þ v2
fq

2
0

½2q2 þm2
Dv

2
fQtðq0q Þ�2 þ

m4
Dv

4
f
�2q20

4q2

�
;

(17)

where

QlðxÞ ¼ 1� x

2
ln
1þ x

1� x
; QtðxÞ ¼ �QlðxÞ þ 1

1� x2
:

(18)

We are mainly interested in the energy loss of a quasipar-
ticle which is currently close to the Fermi surface, hence,
ðE��Þ � mD is the physically interesting region where
the quasiparticle concept is meaningful. The denominator
of Eq. (17) can now be expanded in powers of q0.
We replace s� ¼ ðq�=mDÞ2 and compute separately the
electric (l) and the magnetic part (t),

�
�dE

dx

���������
l

soft
’ e2ðE��Þ3

48�mDv
3
f

Z s�

0

dsffiffiffi
s

p ðsþ 1Þ2 ; (19)

�
� dE

dx

���������
t

soft
’ e2m2

Dv
2
f

4�vf

Z
D
dq0dq

q20

4q4 þ �2m4
Dv

4
f
q20

4q2

: (20)

After explicit calculation, the electric and magnetic con-
tributions to the expression of energy loss take the follow-
ing form:

�
�dE

dx

���������
l

soft
’ e2ðE��Þ3

96v3
fmD

� e2ðE��Þ3m2
D

72�v3
fq

�3 ; (21)

�
�dE

dx

���������
t

soft
’ e2ðE��Þ2

48�vf

� e2ðE��Þ3vfm
2
D

144�q�3
: (22)

It is worthwhile to note here that the leading order terms
in the last two equations are finite and independent of the
cutoff parameter. Here the q� dependent term appears only
at Oðe4Þ. Therefore, we write

�
� dE

dx

���������
l

soft
’ e2ðE��Þ3

96v3
fmD

þOðe4Þ; (23)

�
� dE

dx

���������
t

soft
’ e2ðE��Þ2

48�vf

þOðe4Þ: (24)

So far we have discussed about the soft part and have
seen that in the limit q� ! 1 the cutoff parameter depen-
dent term trivially vanishes. Similarly, if we recall the
expression for the hard part, i.e., Eq. (14), after performing
the integration in the limit ½q�; �� we get
�
�dE

dx

���������hard
’ e2ðE��Þ3m2

D

72�vf

�
1

v2
f

þ v2
f

2

��
1

q�3
� 1

�3

�

’ Oðe4Þ: (25)

Clearly it fails to contribute at the leading order where the
entire contribution comes from the soft sector. This is a
distinctive feature of degenerate plasma not encountered
at finite temperature (� ¼ 0). There both the hard and the
soft part contribute to the leading order in e2 and the
divergence is only logarithmic. To deal with such diver-
gences in hot plasma one invokes Braaten and Yuan’s
prescription [23] where an intermediate cutoff is intro-
duced to separate the hard and the soft domains. It is
seen that such an intermediate cutoff parameter disappears
from the final expressions when both the contributions
are added. At zero temperature, a similar approach was
adopted for the calculation of fermion damping rate [15]
where it was shown that such cancellation takes place also
in degenerate plasma. It is obvious from Eqs. (21), (22),
and (25) that same thing happens for � also.
From Eq. (25) it is clear that the result obtained from

the hard region is suppressed with respect to the soft one
[Eq. (21) and (22)]. Hence, the whole contribution to
leading order comes from the soft sector alone. The final
expression for the drag coefficient at zero temperature
becomes

� ’ e2ðE��Þ3
96mDv

4
fE

þ e2ðE��Þ2
48�v2

fE
þOðe4Þ: (26)

The first term above corresponds to the electric photon
and the latter to the magnetic one, i.e., l or t mode behaves
differently. The dominant contribution to� comes from the
magnetic sector in the ultrarelativistic case vf ! 1 and the

electric sector when vf � 1. Results for the light fermion
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can be obtained from Eq. (26) with the substitution
of vf ! 1.

B. Diffusion coefficient

Apart from�, the quantity which could be of importance
in the study of heavy fermion propagating in the plasma is
the momentum diffusion coefficient (Bij) [8–11]. In fact,

we know for Coulomb plasma � and the longitudinal
momentum diffusion coefficient (B) are related via ER.
The momentum diffusion coefficient Bij can be defined as

follows [8,10]:

Bij ¼
Z

d�qiqj: (27)

Decomposing Bij into longitudinal (Bl) and transverse

components (Bt) we get the following expression:

Bij ¼ Bt

�
�ij �

pipj

p2

�
þ Bl

pipj

p2
: (28)

These coefficients Bl;t are the longitudinal, transverse

squared momentum acquired by the particle through col-
lision with the plasma. Using the above definition, like the
energy loss [Eq. (12)], the longitudinal momentum diffu-
sion coefficient (Bl ¼ B, suppressing the index l) can be
written as follows:

B ¼ �e2

E

Z d3q

ð2�Þ3
Z 1

�1
dk0
2�

�fðk0Þ

�
Z 1

�1
dq0
2�

q2jjð1þ nðq0Þ � �nðk0ÞÞ�ðE� k0 � q0Þ
� ½p0k0 þ p � kþm2��lðq0; qÞ
þ 2½p0k0 � ðp � q̂Þðk � q̂Þ �m2��tðq0; qÞ: (29)

Here, qjj ¼ q cos	. For the exchange of hard photons using
the bare propagator we obtain

B ’ e2m2
D

8�v2
f

�
1

v2
f

þ v2
f

2

�Z
dq

Z E��

0
dq0

q30
q4

;

’ e2m2
DðE��Þ4
32�v2

f

�
1

v2
f

þ v2
f

2

�Z dq

q4
: (30)

Comparing Eq. (14) with (30) it is seen that like �, B is
also infrared divergent involving the fourth power of q in
the denominator. At the finite T case, both the quantities
are proportional to dq=q at the leading order [10]. To
understand the origin of this difference, we focus on the
q0 integration. It is shown in the Appendix that in the
medium at finite T, there involves a quadratic power of
q0 in both cases with the limits�vq toþvq giving rise to a
term proportional to q3 in the numerator. This cancels with
some of the powers of q coming from the propagator.
Whereas in cold matter, from Eqs. (14) and (30) we find
that the same integrations appear with q20 and q30 in the

numerator while the limits are independent of q, forbidding
the cancellation with q’s coming from the propagator as
before. We note here that the drag and diffusion coeffi-

cients are related through B ¼ 3EðE��Þ
4 � when we deal

with the bare propagator. We shall see in the next para-
graph that the same powers of q0 appear in the numerator
when one takes the plasma effects into account but such
common scaling behavior is lost.
The infrared divergence of Eq. (30) can be removed by

using the dressed photon propagator [25,26] and providing
the upper cutoff as in the case of �. With the HDL
corrected propagator one gets

BjsoftðEÞ ’ e2

2v2
f

Z d3q

ð2�Þ3 q
2
0ð�ðq0Þ

��ð�� Eþ q0ÞÞ�ðq� � qÞf�lðq0; qÞ
þ v2

fð1� cos2	Þ�tðq0; qÞg

’ e2

8�2v2
f

Z
D
dqq

Z
dq0q

2
0

�
�
�lðq0; qÞ þ

�
v2
f �

q20
q2

�
�tðq0; qÞ

�
: (31)

Here the integration domain (D) is the same as before. So,

BjsoftðEÞ ’ e2m2
D

4�v4
f

Z
D
dq0dq

�
�

q30

f2½q2 þm2
DQlðq0q Þ�2 þ

m4
D�

2q20
2q2

g

þ v4
fq

3
0

½2q2 þm2
Dv

2
fQtðq0q Þ�2 þ

m4
Dv

4
f
�2q2

0

4q2

�
: (32)

Since, we know from energy loss that the dominant con-
tribution to the expression comes from the soft region
alone we write the expression for B as follows:

B ’ e2ðE��Þ4
128mDv

4
f

þ e2ðE��Þ3
72�v2

f

þOðe4Þ; (33)

which is finite. Now from Eqs. (26) and (33) it can be seen
that there is no common scaling factor between � and B.
But as ER is formulated in the region where vf � 1, in

this nonrelativistic region the exchange of the magnetic
photons are suppressed in comparison with the electric
one. Hence, considering only the electric part we get the

same ER, B ¼ 3EðE��Þ
4 �, as in the case of bare perturba-

tion theory.

III. FINITE TEMPERATURE CORRECTION

The results of the previous section can easily be ex-
tended to the case of a hot and dense (T � �) plasma. This
could be relevant for heavy ion collision to be performed at
GSI where the chemical potential is expected to be much
higher than the temperature. Now, while calculating the
soft part we replace the zero temperature distribution
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functions with the finite temperature one in Eq. (15)
and write

�
�dE

dx

���������soft
ðEÞ ’ e2

2vf

Z d3q

ð2�Þ3 qvf cos	ð1þ nðq0Þ

� �nðE� q0ÞÞ�ðq� � qÞf�lðq0; qÞ
þ v2

fð1� cos2	Þ�tðq0; qÞg: (34)

With small T and large �, the above equation can be
calculated according to Ref. [27]. In this approach we can
write any function gð"Þ along with the fermion distribution
function as follows:

Z 1

0

gð"Þ
e�ð"��Þ þ 1

d" ¼
Z �

0
gð"Þd"þ �2T2

6
g0ð�Þ: (35)

The contributions coming from soft region (l and t)
using Eqs. (34), (35), and (9) are found to be given by

�
�dE

dx

���������
l

soft
’ e2ðE��Þ3

96v3
fmD

� e2ðE��Þ3m2
D

72�q�3v3
f

� e2ðE��ÞT2�2

96v3
fmD

þ e2ðE��ÞT2m2
D�

72q�3v3
f

;

(36)

�
�dE

dx

���������
t

soft
’ e2ðE��Þ2

48�vf

� e2ðE��Þ3vfm
2
D

144�q�3

� e2�T2

72vf

þ e2ðE��Þm2
DvfT

2�

144q�3
: (37)

We see from the above two equations that the terms
containing the separation scale are subleading in compari-
son with the others, the same behavior also obtained in the
zero temperature case. The term with the bare propagator
comes as

�
�dE

dx

���������hard
’ e2ðE��Þ3m2

D

72�vf

�
1

v2
f

þ v2
f

2

��
1

q�3
� 1

�3

�

� e2ðE��Þm2
D�T

2

72vf

�
1

v2
f

þ v2
f

2

�

�
�
1

q�3
� 1

�3

�
: (38)

The above expression is also suppressed in contrast to
the soft one. Hence, with finite temperature correction,
drag and diffusion coefficients become

� ’ e2ðE��Þ3
96mDv

4
fE

þ e2ðE��Þ2
48�v2

fE
� e2�2T2ðE��Þ

96mDv
4
fE

� e2�T2

72v2
fE

þOðe4Þ; (39)

B ’ e2ðE��Þ4
128mDv

4
f

þ e2ðE��Þ3
72�v2

f

� e2ðE��Þ2�2T2

64mDv
4
f

� e2�T2ðE��Þ
48v2

f

þOðe4Þ: (40)

One notes here with the thermal correction the ER cannot
be established even for the electric sector alone.

IV. SUMMARY

In this work we calculate the energy loss and momentum
diffusion of the heavy fermion in dense and warm QED
matter and highlight some of the differences that exist
between the hot (� ¼ 0) and the cold (T ¼ 0) plasma.
Unlike finite temperature, where one encounters logarith-
mic divergences in calculating � or B, here we come
across nonlogarithmic divergences. Furthermore, we see
that at the leading order in coupling, the entire contribution
comes from the soft sector and this is finite, i.e,. the physics
here is dominated by the excitations near the Fermi sur-
face. The exchange of hard photons on the other hand
contribute only at Oðe4Þ. It is to be noted that in a thermal
medium with vanishing chemical potential both the soft
and hard photons or gluons for QCD matter contribute at
the same order. Moreover, for ultrarelativistic particles
both � and B receive dominant contributions from the
magnetic sector while the electric parts are found to be
subleading in ðE��Þ. This is consistent with the fermion
damping rate calculation [15,21,25] in degenerate plasma.
Quantitatively, we find that for the transverse or magnetic
interaction � is proportional to ðE��Þ2 while for the
electric interaction, it goes as ðE��Þ3. Similar differ-
ences for B are also seen where one more extra power of
ðE��Þ is involved in each case. The other important
finding of the present investigation is the ER for the drag
and diffusion coefficient. In hot plasma, it is known that

B ¼ 2TE� [9–11]. At zero temperature, we find B ¼
3EðE��Þ

4 � by considering only the bare propagator, i.e.,

when we do not take the plasma effects into account.
However, we see that this common scale behavior is lost
for soft photon exchange where the plasma effects are
included and both the magnetic and electric contributions
are retained. However, by retaining only the electric con-
tribution for the cold plasma, one arrives at the same
relations as obtained by using the bare propagator. For
T � � again we see that, with plasma effects incorpo-
rated, � and B fail to show such common scale behavior
even when the magnetic interaction is ignored.
As a last remark, we note that here the entire calculation

has been done for QED plasma. This can easily be ex-
tended to QCD matter with appropriate modifications like
the inclusion of diagrams involving three gluon interaction
and proper vertex factors coming from the QCD color
algebra. Such studies are in progress and shall be reported
in the future.
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APPENDIX

To understand the difference of the results between the
cold and hot plasma, we first recall the expression for the
drag coefficient (�):

� ¼ 1

Evi

�
�dE

dx

�
:

The above relation with Eqs. (10)–(12) can be further
simplified to yield

�’ e2

8�2v2E

Z
dqq

Z vq

�vq
dq0q0ð1þnðq0Þ� �nðk0ÞÞ�ðq��qÞ

�
�
�lðq0;qÞþ

�
v2�q20

q2

�
�tðq0;qÞ

�
: (A1)

The corresponding expression for the diffusion coeffi-
cient from Eq. (29) is

B’ e2

8�2v2

Z
dqq

Z vq

�vq
dq0q

2
0ð1þnðq0Þ� �nðk0ÞÞ�ðq��qÞ

�
�
�lðq0;qÞþ

�
v2�q20

q2

�
�tðq0;qÞ

�
: (A2)

In the high temperature limit, ð1þ nðq0Þ�
�nðE� q0ÞÞ ’ T

q0
þ 1

2 . It is to be noted that the above inte-

gration limits are symmetric in q0. Hence, for the drag, the
factor of 1

2 and for the diffusion T
q0

contribute. Inserting

these in Eqs. (A1) and (A2) we get

� ’ e2

16�2v2E

Z
dqq

Z vq

�vq
dq0q0�ðq� � qÞ

�
�
�lðq0; qÞ þ

�
v2 � q20

q2

�
�tðq0; qÞ

�
; (A3)

and

B ’ e2T

8�2v2

Z
dqq

Z vq

�vq
dq0q0�ðq� � qÞ

�
�
�lðq0; qÞ þ

�
v2 � q20

q2

�
�tðq0; qÞ

�
: (A4)

In the case of bare interaction, one can show that both �
and B are proportional to dq=q [10] and even without
performing the integration B ¼ 2TE�. If we compare
Eqs. (A3) and (A4) with Eqs. (15) and (31) we find that
the q0 integration for cold matter is not symmetric, and the
limits are independent of q. Here lies the difference of cold
and hot plasma.
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