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We consider the embedding of the supersymmetric standard model with broken R-parity in the minimal

supergravity (mSUGRA) model. We restrict ourselves to the case of broken lepton number, the B3

mSUGRA model. We first study in detail how the tree-level neutrino mass depends on the mSUGRA

parameters. We find, in particular, a strong dependence on the trilinear supersymmetry breaking

A-parameter, even in the vicinity of the mSUGRA SPS1a point. We then reinvestigate the bounds on

the trilinear R-parity violating couplings at the unification scale from the low-energy neutrino masses

including dominant one-loop contributions. These bounds were previously shown to be very strict, as low

as Oð10�6Þ for SPS1a. We show that these bounds are significantly weakened when considering the full

mSUGRA parameter space. In particular the ratio between the tree-level and one-loop neutrino masses is

reduced such that it may agree with the observed neutrino mass hierarchy. We discuss in detail how and in

which parameter regions this effect arises.
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I. INTRODUCTION

The experimental observation of neutrino oscillations,
and thus of neutrino masses, is an experimental indication
that the Standard model of particle physics (SM) is incom-
plete [1–7].

Experimentally, neutrinos must be relatively light.
Direct laboratory measurements restrict their masses to
be below Oð10 MeV� 1 eVÞ [7–12], depending on the
flavor. Cosmological observations even give upper bounds
ofOð0:1 eVÞ on the sum of the neutrino masses [7,12–14].
Furthermore, the atmospheric and solar neutrino oscilla-
tion data are best fit if the squared neutrino mass differ-
ences are Oð10�3 eV2Þ and Oð10�5 eV2Þ, respectively
[7,15,16]. This allows for one massless neutrino.

In principle, it is easy to extend the SM Lagrangian by a
Dirac neutrino mass term [7]. However, right-handed neu-
trinos and new Yukawa couplings of Oð& 10�12Þ are in
this case needed. Such tiny couplings seem to be very
unnatural and might point towards a dynamical mecha-
nism, which explains the small neutrino masses.
Furthermore, the right-handed neutrinos can have an un-
specified Majorana neutrino mass.

Most prominently discussed are extensions of the SM
involving the seesaw mechanism, by introducing right-
handed neutrinos and fixing the new Majorana neutrino

mass scale to be large, cf. Refs. [7,17–22]. The seesaw
mechanism is also naturally incorporated into supersym-
metry (SUSY) [23,24].
Supersymmetry is one of the most promising extensions

of the SM. It is the unique extension of the Lorentz space-
time symmetry, when allowing for graded Lie algebras
[25,26]. Furthermore, it provides a solution to the hier-
archy problem of the SM [27–31]. More importantly here:
neutrino masses can be generated without introducing
right-handed neutrinos if the lepton number is violated,
cf. for example Refs. [32–42].
The most general gauge invariant and renormalizable

superpotential of the supersymmetric extension of the SM
with minimal particle content (SSM) possesses lepton-
number conserving (LNC) terms [43,44]

WLNC ¼ �ab½ðYEÞijLa
i H
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and also lepton-number violating (LNV) terms
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where i, j, k ¼ 1, 2, 3 are generation indices. We have
employed the standard notation of Ref. [45].
The LNV interactions violate the discrete symmetries

R-parity and proton-hexality (P6), however, they conserve
baryon triality (B3) [46–49]. Note that B3 stabilizes the
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proton because it suppresses the baryon number violating
interactions. R-parity, P6 and B3 are the only discrete
symmetries, which can be written as a remnant of a broken
anomaly free gauge symmetry [46–49]. In the following,
we assume that B3 is conserved and thus R-parity and
P6 are violated. Equations (1) and (2) constitute the
full renormalizable superpotential allowed by this sym-
metry. For reviews of such theories see, for example,
Refs. [50–52].

Besides the superpotential, also the soft-breaking
Lagrangian of the B3 conserving SSM exhibits lepton-
number violating operators [53]

�LLNV
soft ¼ �ab

�
1

2
hijk ~L

a
i
~Lb
j
~�Ek þ h0ijk ~L

a
i
~Qb
j
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�

� �ab ~Di
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b
u þ H:c:þ ðh�dÞam2

hd ~Li
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where again i, j, k ¼ 1, 2, 3 are generation indices. ~L, ~�E, ~Q

and ~�D are the scalar components of the lepton doublet,
lepton singlet, quark doublet and down-quark singlet
superfield, respectively. Furthermore, hu (hd) denotes the
up-type (down-type) scalar Higgs field. Besides the term
proportional to m2

hd ~Li
, the operators in Eq. (3) are the soft-

breaking analog of the terms in Eq. (2).
The LNV terms in Eq. (2) and (3) lead to the dynamical

generation of neutrino masses. For example, the bilinear
terms in Eq. (2) mix the Higgsinos, the supersymmetric
partners of the Higgs bosons, with the neutrino fields and
thus generate one nonvanishing neutrino mass at tree-level
[32–34,38–41].

In this paper, we derive bounds on the trilinear LNV
couplings of the superpotential, Eq. (2), from the upper
cosmological bound on the sum of neutrino masses
[13,14], i.e.

X
m�i

< 0:40 eV; (4)

at 99.9% confidence level. The bound was determined by a
combination of the Wilkinson Microwave Anisotropy
Probe (WMAP) and Large Scale Structure (LSS) data.

In order to perform a systematic study, we restrict our-
selves to the well-motivated framework of the B3 minimal
supergravity model (mSUGRA) [53], which provides sim-
ple boundary conditions for the SSM parameters at the
grand unification scale (MGUT). We describe the model in
the next section in detail. We employ the full set of
renormalization group equations (RGEs) at one loop
[53–56] in order to obtain the B3 SSM spectrum and the
neutrino masses at the electroweak scale (MEW). We then
derive bounds on the LNV trilinear couplings at MGUT.

Bounds on trilinear LNV couplings within this model
were also derived in Refs. [53,57] from the generation of
neutrino masses at tree-level [58]. It was claimed that
neutrino masses put an upper bound of Oð10�3–10�6Þ on
most of the trilinear couplings in Eq. (2). However, it was

shown in Ref. [55] that the tree-level neutrino mass can
vanish in certain regions of the B3 mSUGRA parameter
space. In our analysis, we especially focus on these regions
of parameter space. We show that the bounds on the tri-
linear couplings can be weakened up to Oð10�1Þ, depend-
ing on the boundary conditions.
We go beyond the former work in several aspects.

Besides the tree-level neutrino mass, we also include the
dominant contributions to the neutrino mass matrix at one-
loop. These contributions were neither included in the
calculation of the bounds in Ref. [53] nor in Ref. [55].
However, as we show in Sec. IV, the loops dominate in the
regions of parameter space where the tree-level mass van-
ishes. They must thus be included when determining the
bounds.
In Ref. [55] there is only a brief explanation of the

dominant effect that leads to a vanishing tree-level mass
in B3 mSUGRA. We give for the first time a detailed and
complete explanation of how different configurations of
the B3 mSUGRA parameters at MGUT can affect the tree-
level and loop contributions to the neutrino masses atMEW.
Although we restrict ourself to the framework of B3

mSUGRA, the mechanisms described in this publication
also work in more general models. Furthermore, we cal-
culate bounds for all trilinear LNV couplings, whereas
Ref. [55] focused only on the couplings �i33 and �0

i33.

We also update the bounds given in Ref. [53] according
to the more recent and stronger bound on the sum of
neutrino masses, cf. Eq. (4).
Going beyond the work presented here, we believe our

results can help find LNV SUSY scenarios that explain the
observed neutrino masses and mixing angles. Within the
framework of B3 mSUGRA, Ref. [42] searched for a
minimal set of LNV parameters which can explain the
measured neutrino parameters. They found sets of five
parameters [two trilinear LNV couplings together with
the three mixing angles that describe the lepton Yukawa
matrix, cf. Eq. (1)] that give the right masses and mixing
angles. Reference [42] claimed that the tree-level mass is
always much larger than the loop induced masses. But we
show in the following that the loops can exceed the tree-
level masses in B3 mSUGRA. Therefore, it should be
possible to find a smaller set of LNV parameters that lies
in this region of parameter space and thus possesses much
larger LNV couplings than those found in Ref. [42].
However, an investigation of the complete neutrino sector
is beyond the scope of this paper and will be postponed to a
future publication.
Note that the generation of neutrino masses via the

bilinear terms in Eq. (2) and the corresponding collider
signatures have also been investigated; see, for example,
Refs. [59–72] and references therein.
We note that (large) trilinear LNV couplings can lead to

distinct collider signatures at the Large Hadron Collider
(LHC), e.g.
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(i) Supersymmetric particles (sparticles) can be pro-
duced singly at a collider, possibly on resonance
[52,73–80]. For example, single resonant slepton
production at the LHC via �0

ijk, Eq. (2) [73–

75,77,80]. An excess over the SM backgrounds is
visible if �0

ijk * Oð10�3Þ, depending also on the

sparticle masses [74,75,80,81].
(ii) An LNV coupling �ijk (�

0
ijk) of* Oð10�2Þ atMGUT

can significantly change the running of the sparticle
masses, such that the scalar electron or muon (sneu-
trino) is the LSP [53,82–85]. This can dramatically
change the SUSY collider signatures, because
(heavy) sparticles normally cascade decay down to
the LSP [83,86].

This paper is organized as follows. In Sec. II, we review
the parts of the B3 mSUGRA model that are relevant for
this work. Section III then shows the different contribu-
tions to the neutrino mass matrix that we employ to derive
the bounds. We explain the main mechanism leading to a
vanishing tree-level neutrino mass in B3 mSUGRA in
Sec. IV and derive the bounds on the LNV trilinear cou-
plings in Sec. V. These sections are the central part of our
paper. We conclude in Sec. VI.

Appendix A explains the additional subleading depen-
dence of the neutrino masses on the B3 mSUGRA parame-
ter not described in Sec. IV.

II. THE B3 MSUGRA MODEL

The general B3 SSM has more than 200 free parameters
[87]. This large number is intractable for detailed phe-
nomenological studies. For that purpose the simplifying
B3 mSUGRA model was proposed in Ref. [53], which we
now discuss.

A. Free parameters

In the B3 mSUGRA model the boundary conditions at
MGUT are described by the six parameters

M0; M1=2; A0; tan�; sgnð�Þ; �; (5)

with

� 2 f�ijk; �
0
ijkg: (6)

Here M0, M1=2 and A0 are the universal scalar mass, the

universal gaugino mass and the universal trilinear scalar
coupling at the grand unification scale (MGUT), respec-
tively. tan� denotes the ratio of the Higgs vacuum expec-
tation values (vevs) vu and vd, and sgnð�Þ fixes the sign of
the bilinear Higgs mixing parameter �. The magnitude of
� is determined dynamically by radiative electroweak
symmetry breaking (REWSB) [88]. These five parameters
are the conventional free parameters of the R-parity or
proton-hexality conserving mSUGRA model [89].

In order to incorporate the effects of the LNVinteractions
in Eqs. (2) and (3) exactly one additional nonvanishing
trilinear coupling � 2 f�ijk; �

0
ijkg is assumed at MGUT.

Further LNV couplings are generated via the RGEs at the
lower scale. Note, that the bilinear couplings �i and ~Di are
both set to zero at MGUT via a basis transformation of the
lepton and Higgs superfields [32]. (For the most general
case of a complex rotation see Ref. [90].) This is natural for
universal SUSY breaking [53]. However, at lower scales �i

and ~Di are generated via the RGEs [38]; see Sec. II C.
The complete low-energy spectrum is obtained by run-

ning the RGEs down fromMGUT toMEW. For that purpose
we employ the program SOFTSUSY�3:0:12 [91,92]. We
calculate the neutrino masses with our own program. Note
that we work in the CP-conserving limit throughout this
paper.

B. Benchmark scenarios for parameter scans

We center our analysis around the following B3

mSUGRA parameter points

Point I: M1=2¼500GeV, M0 ¼ 100 GeV, tan� ¼ 20,
sgnð�Þ ¼ þ1, A0 ¼ 900 GeV, � ¼ �0

233

Point II: M1=2¼500GeV,M0 ¼ 100 GeV, tan� ¼ 20,
sgnð�Þ ¼ þ1, A0 ¼ 200 GeV, � ¼ �233

Point II differs from Point I only by the choice of the
LNV coupling and the size of A0. We have chosen these
points as examples because the tree-level contribution to
the neutrino mass is small around Point I and II and there-
fore one-loop contributions are important. Both points lead
to squark masses of Oð1 TeVÞ and slepton masses of
around 300 GeV, with a scalar tau (stau) as the LSP.
Note that in the LNV SSM a stau LSP is as well

motivated as a neutralino LSP [53,75,82,93–95]. Either
will decay via the LNV interactions and cosmological
constraints do not apply [96].
In addition, we ensured that both points lie in regions of

parameter space where various other experimental con-
straints are fulfilled, such as the lower bound on the lightest
Higgs mass from LEP2 [97,98] and constraints from
the anomalous magnetic moment of the muon [99], from
b ! s� [100], and from Bs ! �þ�� [100]; see Sec. V for
details.

C. Renormalization group equations and radiative
electroweak symmetry breaking

An important feature of the B3 mSUGRA model is that
lepton-number violation leads to mixing between the lep-
ton superfields Li and the Higgs superfield Hd.
Furthermore, sneutrinos, the superpartners of the neutri-
nos, can acquire vevs vi (i ¼ 1, 2, 3). Note that it is
possible to rotate away the �i terms in the superpotential
at any given energy scale by an orthogonal rotation of the
fields L� � ðHd; LiÞ [32,53,90].
The corresponding bilinear soft-breaking terms propor-

tional to ~Di, Eq. (3), can be rotated away in conjunction
with �i if ~Di and �i are aligned. This condition is fulfilled
at MGUT in the B3 mSUGRA model if the underlying
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supergravity superpotential satisfies the quite natural
condition [53]

fðzi; y�Þ ¼ f1ðziÞ þ f2ðy�Þ; (7)

where the superfields zi belong to the observable sector and
the superfields y� to the hidden sector.

However, when evolving the parameters down to the
weak scale, �i, ~Di � 0 are generated via the RGEs. The
leading terms for � 2 f�0

ijkg are given by [53]

16	2 d�i

dt
¼ �3�i

�
g21
5
þ g22 � ðYUÞ233 �

ðYEÞ233
3


3i

�

� 3��0
ijkðYDÞjk þ . . . (8)

and

16	2 d
~Di

dt
¼ �3 ~Di

�
g21
5
þ g22 � ðYUÞ233 �

ðYEÞ233
3


3i

�

þ 6�i

�
g21
5
M1 þ g22M2

�

þ 6�i

�
ðYUÞ33ðhUÞ33 þ ðYEÞ33

3
ðhEÞ33
3i

�

� 3ðYDÞjkð2�h0ijk þ ~B�0
ijkÞ þ . . . : (9)

Here t � lnðQ=�0Þ with Q the renormalization scale and
�0 an arbitrary reference scale. h0ijk � A0 � �0

ijk at MGUT,

cf. Eq. (3). ~B is the soft supersymmetry breaking analog of
the Higgs mixing parameter � and ðhUÞ33 ½ðhEÞ33� is the
soft-breaking analog of the Yukawa coupling ðYUÞ33
½ðYEÞ33� [53]. g1 and g2 (M1 and M2) are the Uð1ÞY and
SU(2) gauge couplings (gaugino masses), respectively. We
see in Eqs. (8) and (9) that the RGEs differ, and therefore �i

and ~Di will no longer be aligned at the weak scale [38]. The
case � 2 f�ijkg is analogous up to the color factor 3.

The sneutrino vevs vi, the bilinear Higgs parameter j�j
and the corresponding soft-breaking term ~B are determined
by REWSB, which has been discussed in detail in Ref. [53]
for the LNV case.

Neglecting higher order corrections [101–103], which
are not important for the following qualitative discussion
[104], the sneutrino vevs can be written as [53]

ðM2
~�Þijvj ¼ �½m2

hd ~Li
þ��i�vd þ ~Divu; (10)

with

ðM2
~�Þij ¼ ðm~L

2Þij þ �i�j þ 1

2
M2

Z cos2�
ij

þ ðg2 þ g22Þ
2

sin2�
X
l

v2
l 
ij; (11)

where ðm~L
2Þ is the squared soft-breaking lepton doublet

mass matrix and g ¼ ffiffiffiffiffiffiffiffi
3=5

p
g1. m

2
hd ~Li

originates from the

LNV soft-breaking Lagrangian, Eq. (3). It mixes the down-
type Higgs fields, hd, with the lepton doublet scalars, ~Li,

and is zero at MGUT. That is, because we take within

mSUGRA the mass matrix of the fields ~L� ¼ ðhd; ~LiÞ to
be diagonal and proportional to M0 at MGUT. However,
m2

hd ~Li
� 0 is subsequently generated via the RGEs, cf.

Eq. (33).
As we will see in Sec. III A, sneutrino vevs and nonzero

bilinears �i lead to neutrino masses at tree-level because
they mix neutrinos and neutralinos.

D. Quark mixing

The RGE evolution of the parameters in the B3

mSUGRA model from MGUT to MEW depends on the
Higgs-Yukawa coupling matrices YE, YD and YU, cf.
Eqs. (8) and (9). In particular, the RGEs of the LNV
violating parameters are coupled via the nondiagonal ma-
trix elements of the Higgs-Yukawa couplings. Therefore a
knowledge of the latter is crucial for the analysis of bounds
on the LNV parameters.
The initial parameter set of the B3 mSUGRA model at

MGUT is given in the electroweak basis so that for the RGE
evolution the Higgs-Yukawa couplings (or the quark- and
lepton-mass matrices) are also needed in the electroweak
basis. However, from experiment we only know the masses
and the Cabibbo-Kobayashi-Maskawa (CKM) matrix

V CKM ¼ Uy
LDL (12)

at MEW. Here U
y
L (Dy

L) rotate the left-handed up- (down-)
quark fields from the mass eigenstate basis to the electro-
weak basis. For simplicity, we take YD and YU to be real
and symmetric and thus the rotation matrices for the right-
handed quark fields are identical to the ones for left-handed
quark fields, UR ¼ UL and DR ¼ DL. Because of the
uncertainty about the neutrino masses and mixings we
will assume a diagonal YE in the weak basis.
When determining the neutrino masses, we will consider

two limiting cases at MEW, following Refs. [53,75,105]:
(i) ‘‘up-type mixing’’ the quark mixing is only in the up-

quark sector,

UL;R ¼ VCKM; DL;R ¼ 1;

YD � vd ¼ diagðmd;ms;mbÞ;
YU � vu ¼ VCKM � diagðmu;mc;mtÞ � VT

CKM:

(13)

(ii) ‘‘down-type mixing’’ the mixing is only in the down-
quark sector,

DL;R ¼ VCKM; UL;R ¼ 1;

YD � vd ¼ VCKM � diagðmd;ms;mbÞ � VT
CKM;

YU � vu ¼ diagðmu;mc;mtÞ:
(14)

Here md, ms, mb ðmu;mc;mtÞ denote the masses of the
down-type (up-type) quarks.
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The choice between up- and down-type mixing has a
strong effect on the final results for the LNV couplings
� 2 f�0

ijkg with j � k, as we will show in Sec. V (see

Table I). The reason is that the generated tree-level neu-
trino mass is proportional to the off-diagonal matrix ele-
ment ðYDÞ2jk, cf. the discussion in Secs. III and IV. Our

results (for the tree-level neutrino mass) in Sec. V can be
easily translated to scenarios which lie between the limit-
ing cases of Eqs. (13) and (14). One only needs to know the
respective Yukawa matrix elements ðYDÞjk.

III. NEUTRINO MASSES

In this paper, we investigate bounds on lepton-number
violating couplings at MGUT within the B3 mSUGRA
model, which arise from the generation of too large neu-
trino masses at MEW. We therefore need to identify the
dominant contributions to the neutrino masses.

It was stated in Ref. [53] that the main contribution
stems from mixing between neutralinos and neutrinos,
which leads to one nonvanishing neutrino mass at tree-
level, cf. Sec. III A. However, as we will show in the next
two sections, this is only true in parts of the B3 mSUGRA
parameter space. It is possible that the different terms in the
tree-level mass formula cancel each other. We then need to
identify the dominant contributions, which arise at one-
loop.

A complete list of all one-loop contributions is given in
Ref. [39], where they are formulated in a basis-independent
manner. Most of the one-loop contributions are propor-
tional to the mass insertions that mix the neutrinos with the
neutralinos. They thus also vanish when the tree-level
neutrino mass vanishes and are negligible in the region
we are interested in.

The remaining dominant one-loop contributions are on
the one hand due to loops involving two R-parity violating
vertices and are thus either proportional to �2 or to �02, cf.
Fig. 1 [107]. We will review these contributions in
Sec. III B. On the other hand, loops with virtual neutral
scalars (i.e. Higgses and sneutrinos) and neutralinos, which
are shown in Fig. 2, can also give large contributions to
neutrino masses. These loops are proportional to the mass
difference between CP-even and CP-odd sneutrinos, cf.
Sec. IIII C.

According to Ref. [39], there is in principle also a
contribution which is proportional to �� ~Di. However,
this contribution is suppressed by two or more orders of
magnitude in the regions of parameter space where the
loops dominate over the tree-level mass. Note that ~Di

vanishes near the tree-level mass minimum as we will
show in Sec. IV. We therefore neglect it in the following.

Further one-loop contributions are only present in a
lepton- and Higgs-superfield basis with nonvanishing sneu-
trino vevs. This is the case in the B3 mSUGRA model.
However, we have checked that in our parameter scans,
these contributions are at least 1 order of magnitude

smaller than the dominant one and thus negligible for
calculating the bounds. Note, that they are also aligned
with the tree-level mass, because the sneutrino vevs vanish
near the tree-level mass minimum, cf. Sec. IVA.
In the case that both tree-level and one-loop contribu-

tions are strongly suppressed, we need to consider the
possibility that two-loop contributions to the neutrino
masses might become relevant [107,108].
In Ref. [107], two-loop contributions to neutrino masses

in the absence of tree-level and one-loop contributions
were calculated. We have checked that for any choice of
the trilinear LNV coupling, the two-loop induced neutrino
mass lies several orders of magnitudes below the neutrino

FIG. 1. Loop contributions to the neutrino mass matrix via a
nonvanishing product of B3 couplings �ikn � �jnk (upper figure)

and �0
ikn � �0

jnk (lower figure). See Sec. III B for more details.

FIG. 2. Loop contributions to the neutrino mass matrix via a
nonexact cancellation of loops with CP-even and CP-odd neu-
tral scalars. Note, that there is a relative minus sign between the
two diagrams. See Sec. IIII C for more details.
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mass bound Eq. (4). This is because all two-loop contri-
butions in Ref. [107] have an additional factor g2=ð16	2Þ
and additional off-diagonal CKM matrix elements com-
pared to the one-loop diagrams, Eq. (18). Furthermore,
most diagrams in Ref. [107] also involve mixing between
different squark generations, which are known to be very
small in mSUGRA.

An exception to this would be if the one-loop masses
vanish due to vanishing left-right mixing between the
SUSY particles that enter the loop. This case was consid-
ered in Ref. [108], where bounds on the couplings �0

i33,

�0
i22, �

0
i11 and �i33, �i22, �i11 were derived from one-loop

and two-loop contributions to the neutrino mass matrix. In
addition, bounds on the respective soft-breaking trilinear
couplings were calculated. These bounds are important in
our approach if left-right mixing and the tree-level neutrino
mass vanish at the same time. However, we have checked
in our parameter scans that this is never the case. We also
note, that we always fulfill the bounds from Ref. [108] on
the soft-breaking trilinear couplings, because they are
small near the tree-level mass minimum; cf. Sec. IVA.

We conclude, that the contributions to the neutrino
masses, which we review in the following, are sufficient
to calculate the correct bounds on the LNV couplings �
and �0. However, in order to calculate the correct neutrino
mass spectrum and mixing angles, all one-loop contribu-
tions given in Ref. [39] must be taken into account. This
lies beyond the scope of this paper.

A. Tree-level contributions

In the context of the B3 mSUGRA model, neutrino
masses are generated at tree-level through mixing between
neutrinos and neutralinos. Analogously to the standard
seesaw mechanism [7,17–22] (with the neutralinos taking
over the role of the right-handed neutrinos), an effective
3� 3 neutrino mass matrix is generated [33,34],

M �
eff ¼

�ðM1g
2
2 þM2g

2Þ
2vuvdðM1g

2
2 þM2g

2Þ � 2�M1M2

�
�1�1 �1�2 �1�3

�2�1 �2�2 �2�3

�3�1 �3�2 �3�3

0
@

1
A; (15)

where M1 (M2) is the bino (wino) soft-breaking mass and

�i � vi � vd

�i

�
; i ¼ 1; 2; 3: (16)

This matrix has one nonzero eigenvalue which can atMEW

be simplified to [53]

mtree
� � � 16	�GUT

5

P
3
i¼1 �

2
i

M1=2

; (17)

if we take into account the gaugino universality assumption

at MGUT, leading to M2 ¼ 3
5

�2
2

�2
1

M1 ¼ �2
2

�2
GUT

M1=2 at MEW

[53]. Here �GUT ¼ g2GUT=4	 � 0:041 is the grand unified

gauge coupling constant [53].

B. Contributions from ��- and �0�0-loops
In the region of parameter space where the tree-level

neutrino mass, Eq. (17), vanishes, loop induced neutrino
masses give the dominant contributions. As we will show
in Sec. V, the most important loops are those proportional
to the product of two LNV trilinear couplings. The corre-
sponding squark-quark and slepton-lepton loops are shown
in Fig. 1. The resulting neutrino mass contributions
are [36]

ðm��
� Þij ¼ 1

32	2

X
k;n

�ikn�jnkm‘k sin2
~�‘
n ln

0
@m2

~‘1n

m2
~‘2n

1
A

þ 3

32	2

X
k;n

�0
ikn�

0
jnkmdk sin2

~�d
n ln

0
@m2

~d1n

m2
~d2n

1
A; (18)

where m‘k (mdk) are the lepton (down-quark) masses of

generation k, and ~�‘
n ( ~�

d
n) the mixing angles that describe

the rotation of the left- and right-handed slepton (down-
squark) current eigenstates of generation n to the two mass
eigenstates, m~‘1n

and m~‘2n
(m~d1n

and m~d2n
), respectively.

Note that the squared sfermion masses are linear functions
of the mSUGRA parameters M2

0 and M2
1=2, see, for ex-

ample, Ref. [109]. For the calculation of Eq. (18) and all
following calculations, we have used the two-component
spinor formalism as described in Ref. [110].
For the first two sfermion generations, the sfermion

mixing angles are small and we approximate Eq. (18) by
using the mass insertion approximation (MIA) as described
in Ref. [42]. The slepton (and down-squark) mass eigen-
states are replaced by the respective left- and right-handed
eigenstates with massm~‘Ln

andm~‘Rn
. The mixing angle can

be approximated by

sin2 ~�‘
n ¼ 2ðMLR

~‘
Þ2n

m2
~‘Ln

�m2
~‘Rn

; (19)

where

ðMLR
~‘
Þ2n ¼ m‘n

�ðhEÞnn
ðYEÞnn �� tan�

�
(20)

denotes the left-right mixing matrix element of the
charged sleptons of generation n. ðhEÞnn is the trilinear
soft-breaking analog of the lepton Yukawa matrix element
ðYEÞnn [53].

A similar formula is obtained for sin2 ~�d
n. One only

needs to replace in Eqs. (19) and (20) ‘ $ d, ~‘ $ ~d,
ðYEÞnn $ ðYDÞnn and ðhEÞnn $ ðhDÞnn, where ðhDÞnn is
the soft-breaking analog of the down-quark Yukawa matrix
element ðYDÞnn.
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C. Contributions from neutral scalar-neutralino-loops

As the final source of neutrino masses, we consider
contributions arising from loops with neutral scalars and
neutralinos, cf. Refs. [35–37]. Most important is the con-
tribution from sneutrino-antisneutrino mixing, as we will
see in Eq. (26).

If CP is conserved, sneutrinos ~�i and antisneutrinos ~��
i

mix to form CP-invariant mass eigenstates

~�þ
i � 1ffiffiffi

2
p ð~�i þ ~��

i Þ; (21)

~��
i � 1

i
ffiffiffi
2

p ð~�i � ~��
i Þ: (22)

If lepton number is conserved, the ~��
i masses are

degenerate and the CP-even (CPE) and CP-odd (CPO)
contributions to the neutrino mass from neutral scalar-
neutralino-loops cancel, cf. Fig. 2.

In contrast, if lepton number is violated, the ~��
i masses

are in general different, so the cancellation is no longer
exact. This is due to the fact that the CPE and CPO
neutrinos mix differently with the CPE and CPO Higgs
fields, respectively. The size of this contribution to the
neutrino masses is roughly proportional to the mass split-
ting �m2

~�i
¼ m2

~�þ
i
�m2

~��
i
, cf. Eq. (26) and Refs. [35–37].

The neutral scalar-neutralino-loops, shown in Fig. 2,
lead to the following contributions to the neutrino mass
matrix [42]

ðm~� ~�
� Þij ¼ 1

32	2

X4
k¼1

X5
L¼1

m~�0
k
ðgN1k � g2N2kÞ2

�½Zþ
ð2þiÞLZ

þ
ð2þjÞLB0ð0; m2

H0
L

; m2
~�0
k

Þ
� Z�

ð2þiÞLZ
�
ð2þjÞLB0ð0; m2

A0
L

; m2
~�0
k

Þ�; (23)

where m~�0
k
(k ¼ 1 . . . 4) are the neutralino masses and N is

the 4� 4 neutralino mixing matrix in the bino, wino,
Higgsino basis [111]. The two-point Passarino-Veltman
function is conventionally denoted B0 [112]. mH0

L
(mA0

L
)

with L ¼ 1; . . . ; 5 are the mass eigenvalues of the CPE
(CPO) neutral Higgs bosons and CPE (CPO) sneutrino
fields. They can be obtained with the help of the unitary
matrix Zþ (Z�), which diagonalizes the mass matrices of
the CPE (CPO) neutral scalars, i.e.

ðZþÞTMCPEZ
þ ¼ diagðm2

h0
; m2

H0 ; m
2
~�þ
1

; m2
~�þ
2

; m2
~�þ
3

Þ
� diagðm2

H0
L

Þ (24)

and

ðZ�ÞTMCPOZ
� ¼ diagðm2

G0 ; m
2
A0 ; m

2
~��
1
; m2

~��
2
; m2

~��
3
Þ

� diagðm2
A0
L

Þ; (25)

see Ref. [42] for additional details.

In order to analyze the dependence of this contribution
on the mSUGRA parameters, we make use of the fact that
in the B3 mSUGRA model, Eq. (23) can be approximated
by [40]

ðm~� ~�
� Þij � 1

32	2

X4
k¼1

m3
~�0
k

ðgN1k � g2N2kÞ2
�m2

~�i

ðm2
~�i
�m2

~�0
k

Þ2

� ln

0
@m

2
~�0
k

m2
~�i

1
A
ij (26)

by expanding around m2
H0

L>2

and m2
A0
L>2

. The mass splitting,

�m2
~�i
, in Eq. (26) between CPE and CPO sneutrinos of

generation i is then given by [37]

�m2
~�i
¼ �4 ~B2M2

Zm
2
~�i
sin2�

ðm2
H0 �m2

~�i
Þðm2

h0
�m2

~�i
Þðm2

A0 �m2
~�i
Þ

� ð ~Bvi � ~DivdÞ2
ðv2

d þ v2
i Þð ~B2 þ ~D2

i Þ
: (27)

D. Numerical implementation

The numerical calculation of the neutrino mass matrix
was done in the following way. We first employed
SOFTSUSY�3:0:12 [91,92] to obtain the low-energy
mass spectrum [113]. We then used our own program to
calculate the neutrino mass matrix. The tree-level contri-
bution was derived from Eq. (15). For the ��- and
�0�0-loops, we employed Eq. (18), if third-generation
sfermions were involved. However, for sfermions of the
first two generations we used the MIA as given in Eqs. (19)
and (20).
For the neutral scalar-neutralino-loops, we in principle

employed Eq. (23). However, instead of performing the
large numerical cancellation between CPE and CPO neu-
tral scalars directly [square bracket in Eq. (23)], we used an
MIA to calculate the deviation from exact cancellation in
the R-parity conserving (RPC) limit, following Ref. [42].
The resulting formula is quite lengthy and we refer the
interested reader to Ref. [42] for details. We have cross
checked our programwith the help of Eq. (26) and Eq. (27).
All our calculations are performed in the CP-conserving
limit.

IV. �-MASSES: DEPENDENCE ON
MSUGRA PARAMETERS

In the literature it has frequently been assumed that the
tree-level contribution to the neutrino mass, Eq. (17), in the
B3 mSUGRA model dominates over the loop contribu-
tions, cf. for example Refs. [42,53]. However, as has
been noted in Ref. [55], in certain regions of B3

mSUGRA parameter space, the tree-level neutrino mass
vanishes even when �i � 0.

BOUNDS ON R-PARITY VIOLATING COUPLINGS AT . . . PHYSICAL REVIEW D 82, 055027 (2010)

055027-7



We demonstrate this effect in Fig. 3, where we display
the tree-level neutrino mass (solid red line) as a function of
A0. The other B3 mSUGRA parameters are given by Point I
with �0

233jGUT ¼ 10�5, cf. Sec. II B. We see that the tree-

level mass, mtree
� , vanishes around A0 � 910 GeV. In the

vicinity of this minimum, mtree
� drops by several orders of

magnitude over a wide range of A0, and it is therefore not a
(large) fine-tuning effect. In this case the loop contributions
will dominate the neutrino mass matrix, resulting in much
weaker bounds on the involved � coupling, cf. Sec. V.
Thus the bound crucially depends on the choice of A0.

We emphasize that the range of A0 for which weaker
bounds may be obtained is quite large. In an interval of
�A0 � 100 GeV around the minimum, we obtain bounds
on �0

233 that are at least 1 order of magnitude smaller than

the bound derived at for example A0 ¼ 0 GeV. Much
weaker bounds can therefore be obtained without a lot of
fine-tuning.

In this section, we aim to explain in detail the origin of
this cancellation, considering as an explicit example the
case � 2 f�0

ijkg. We focus on the dependence of mtree
� on

the mSUGRA parameter A0, because it is always possible
to find a value of A0 [for a given set of parameters tan�,
M1=2, M0, and sgnð�Þ] such that the tree-level neutrino

mass vanishes. All arguments can analogously be applied
to a �ijk coupling, as discussed in Appendix A 5. Note for

the further discussion that we can always obtain a positive
� by absorbing a possible sign of � via a redefinition
L ! �L and E ! �E of the lepton doublet and lepton
singlet superfields, respectively. We also note that the

generated neutrino masses scale roughly with �2, cf. the
following discussion.

A. A0 Dependence of the tree-level neutrino mass

We now discuss the dependence of the tree-level neu-
trino mass atMEW as a function of A0 atMGUT. Recall from
Sec. III A that

mtree
� / �2

i ¼
�
vi � vd

�i

�

�
2
: (28)

From the RGE of �i, Eq. (8), we obtain as the dominant
contribution

�i / ��0
ijkðYDÞjk � ��0

ijk

ðmdÞjk
vd

(29)

at all energy scales, where ðmdÞjk denotes a matrix element

of the down-quark mass matrix. Therefore,

vd

�i

�
/ �0

ijk � ðmdÞjk; (30)

without further dependence on mSUGRA parameters.
Thus, the dependence of the tree-level neutrino mass,

Eq. (28), on the mSUGRA parameters is solely through the
sneutrino vev vi [114]. In Fig. 3, the dashed green line
explicitly shows the dependence of jvij, i ¼ 2 on A0. It
possesses a clear minimum which is close to the minimum
of mtree

� .
This behavior can be understood by taking a look at the

(tree-level) formula for the vev vi, Eq. (10). For� 2 f�0
ijkg

it can be written as

vi ¼ 1

ðM2
~�Þii

½ ~Divu � ðm2
hd ~Li

þ��iÞvd�; (31)

with

ðM2
~�Þii ¼ ðm~L

2Þii þ 1

2
M2

Z cos2�: (32)

Here, we have neglected terms proportional to �2
i and v2

i ,
because they are much smaller than ðm~L

2Þii and M2
Z. Note

that we only obtain one nonzero sneutrino vev because �0
ijk

violates only one lepton flavor.
In many regions of parameter space the sneutrino vev in

Eq. (28) is at least 2 orders of magnitude larger than the
term vd�i=�. Thus the minimum of the neutrino mass can
only occur when the sneutrino vev is drastically reduced.
As we shall see, the sneutrino vev becomes very small,
when there is a cancellation between the two terms in
Eq. (31).
The second term of vi in Eq. (31), ðm2

hd ~Li
þ��iÞvd, and

the prefactor 1=ðM2
~�Þii are always positive and depend only

weakly on A0. This can be seen in Fig. 3 for ðm2
hd ~Li

þ
��iÞvd (dotted-dashed blue line) and also for 1=ðM2

~�Þii
(solid turquoise line). This behavior can be easily
understood:

10-6
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104

106
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FIG. 3 (color online). A0 dependence of mtree
� and the terms

determining the sneutrino vev v2, Eq. (31), at the REWSB scale
(used in SOFTSUSY to calculate the sneutrino vev). Since the
scale affects the parameters only logarithmically, there are only
minor changes when running to MEW. The other B3 mSUGRA
parameters are that of Point I with �0

233jGUT ¼ 10�5, Sec. II B.
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The soft-breaking parameter, m2
hd ~Li

, Eq. (3), is zero at

MGUT and is generated at lower scales via [53]

16	2
dm2

hd ~Li

dt
¼ ��0

ijkðYDÞjkF ð ~m2Þ � 6h0ijkðhDÞjk; (33)

where F ð ~m2Þ is a linear function of the soft-breaking
scalar masses squared and of the down-type Higgs mass
parameter squared. h0ijk [ðhDÞjk] is the soft-breaking analog
of �0

ijk [ðYDÞjk] with h0ijk ¼ �0
ijk � A0 [ðhDÞjk ¼ ðYDÞjk �

A0] at MGUT. The second term in Eq. (33) thus depends on
A2
0. However, F ð ~m2Þ is in general much larger than A2

0 due

to several contributions from soft-breaking masses [53].
Therefore, varying A0 does not significantly change the
magnitude of m2

hd ~Li
as long as A0 is not much larger than

the sfermion masses.
Concerning the term ��i in ðm2

hd ~Li
þ��iÞvd, we note

from the RGE for �i, Eq. (8), that the only A0 dependence
of �i stems from its proportionality to �. � atMEW can be
approximated by [109]

�2 ¼ c1M
2
0 þ c2M

2
1=2 þ c3A

2
0 þ c4A0M1=2 �M2

Z

2
: (34)

Here c1 and c2 are numbers of Oð1Þ whereas c3 and c4 are
only of Oð10�1–10�2Þ [115]. Therefore, except for A0 	
M0, M1=2, the order of magnitude of � remains constant

when varying A0.
We conclude that ðm2

hd ~Li
þ��iÞvd depends only

weakly on A0 and therefore, ~Di is decisive for the A0

dependence of the vev vi and thus of mtree
� . If the first

term in Eq. (31), ~Divu, is positive and only slightly larger
than the (nearly constant) second term, ðm2

hd ~Li
þ��iÞvd,

vi can equal vd�i=� and we get mtree
� ¼ 0, cf. Eq. (28).

The strong A0 dependence of the magnitude of ~Divu is
also displayed in Fig. 3 (dotted magenta line). We observe
that j ~Divuj is often larger than ðm2

hd ~Li
þ��iÞvd (dotted-

dashed blue line). However, near the tree-level neutrino
mass minimum (solid red line), it drops below ðm2

hd ~Li
þ

��iÞvd and vi can equal vd
�i

� . In this case mtree
� , Eq. (28),

vanishes.
In order to understand this behavior of ~Di, we need to

understand how ~Di is generated via the RGEs. Recall that
~Di ¼ 0 at MGUT within the B3 mSUGRA model. The
generation of ~Di primarily depends on the running of the
trilinear soft-breaking mass h0ijk [53],

16	2 d
~Di

dt
¼ �6�ðYDÞjkh0ijk þ . . . : (35)

We find the contribution in Eq. (9) proportional to ~B is
typically much smaller [116] and we here focus on the
effects due to h0ijk. The dominant terms of the correspond-

ing RGE are given by [53,83]

16	2
dh0ijk
dt

¼ 16

3
g23ð2M3�

0
ijk � h0ijkÞ þ . . . ; (36)

where g3 (M3) denotes the SU(3) gauge coupling (gaugino
mass). At MGUT this equation simplifies to

16	2
dh0ijk
dt

¼ 16

3
g2GUTð2M1=2 � A0Þ�0

ijk þ . . . : (37)

Keeping for now all parameters except A0 fixed (with
sgnð�Þ ¼ þ1 and �0

ijk > 0 [117]), we can classify the

running of h0ijk, Eq. (36) and (37), in the following way

(see also Ref. [83] for a detailed discussion):
(a) A0 
 2M1=2 (including negative values of A0):

Since the right-hand side (RHS) of the RGE for
h0ijk, Eq. (36), is always positive and large, h0ijk is

quickly reduced from its initial value of A0 � �0
ijk

and even becomes negative when running to lower
energies. This behavior is displayed in Fig. 4
(dashed green line), where the running of h0233 is

shown for different boundary conditions at MGUT.
(b) A0 � 2M1=2: If the size of A0 is comparable to

2M1=2, h
0
ijk will be fairly constant at high energies,

cf. the dotted magenta line in Fig. 4. However, when
running to lower energies it will still start decreas-
ing, but more slowly than in case (a). This is due to
the fact that M3 and �0

ijk themselves increase sig-

nificantly (by factors of approximately 2.5 and 3,
respectively; see Ref. [83]) when running to lower
energies. Thus the term 2M3�

0
ijk eventually domi-

nates in Eq. (36) even if initially A0 * 2M1=2. This

leads to a small, negative h0ijk at low energies.

(c) A0 	 2M1=2: h
0
ijk is large at MGUT and is further

increased when running to lower energies. This is

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

102 104 106 108 1010 1012 1014 1016

energy scale Q (Gev)

FIG. 4 (color online). Running of h0233 for various values of A0.
The other B3 mSUGRA parameters are that of Point I, Sec. II B,
with �0

233jGUT ¼ 10�5 and M1=2 ¼ 500 GeV.
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due to the negative RHS of the RGE for h0ijk,
Eq. (36); see also the dotted-dashed blue line in
Fig. 4.
Caveat: Since the term 2M3�

0
ijk in Eq. (36) increases

by a factor of approximately 8 � 3 � 2:5 when run-
ning from MGUT to MEW [as mentioned in (b)], h0ijk
only strictly displays the behavior of case (c) when
A0 * 20M1=2. Otherwise, h

0
ijk will decrease once the

term 2M3�
0
ijk dominates.

Because ~Di is zero at MGUT and, according to Eq. (35),
also proportional to the integral of h0ijk over lnðQÞ, points
(a)–(c) have the following consequences for ~Di:

(a) A0 
 2M1=2: Since h0ijk always becomes negative

below some energy scale close to MGUT, the RHS
of Eq. (35) is positive. This leads to a large nega-
tive ~Di at MZ as can be seen in Fig. 5 (dashed
green line). Consequently, all terms except ~Divu

become negligible in vi, Eq. (31), and thus jvij at
MEW is large, dominating the tree-level neutrino
mass, Eq. (28).

(b) A0 � 2M1=2: Because of the initially negative RHS

of Eq. (35) at energies close to MGUT (where h0ijk �
A0 � �0

ijk),
~Di first increases when running to lower

energies but then starts decreasing once h0ijk be-

comes negative, cf. the dotted magenta lines in
Figs. 4 and 5. At some energy scale Q, ~Di becomes
small such that vi, Eq. (31), can equal vd

�i

� .

A cancellation between these two terms in mtree
� ,

Eq. (28), at the scale Q will then occur. This
corresponds to a vanishing tree-level neutrino mass
if Q ¼ MEW.

(c) A0 	 2M1=2: The RHS of Eq. (35) is always

negative with a large magnitude such that we get
a large positive ~Di at the weak scale, cf. the

dotted-dashed blue line in Fig. 5. As in case (a),
~Divu provides the main contribution to jvij,
Eq. (31). Therefore, jvij is large and dominates
mtree

� , Eq. (28).
Summarizing, the tree-level neutrino mass has a mini-

mum in the parameter region where the size of A0 is
comparable to 2M1=2. This is mainly due to the running of

the parameters ~Di and h0ijk that affect the sneutrino vevs;

in particular, due to a partial cancellation in Eq. (36).
Note that in Fig. 3 the tree-level neutrino mass vanishes at
A0 � 910 GeV, which is indeed close to 2M1=2.

As we see in the following section, the position of the
minimum is shifted towards higher values of A0 for small
tan�. In this case, a change of the sign of the bilinear
Higgs parameter � also has a significant impact.

B. Dependence of the tree-level neutrino mass on the
other mSUGRA parameters

In Appendix A, we discuss in detail how the neutrino
mass matrix depends on the other mSUGRA parameter
besides A0. Here we summarize the most important effects
and illustrate them in Fig. 6.
In Fig. 6, we show two-dimensional mSUGRA parame-

ter scans of the tree-level neutrino mass. The other
mSUGRA parameters are those of Point I, Sec. II B, with
�0
233jGUT ¼ 10�5. One scan parameter is always A0 in

order to show how the position of the minimum, which
was described in the last section, changes with the other
mSUGRA parameters.
Figure 6(a) shows the A0-M1=2 plane. We can clearly see

that the position of the neutrino mass minimum is at A0 �
2M1=2 as was concluded above. This illustrates that varying

M1=2 has a similar effect on the running of h0ijk, Eqs. (36)
and (37), as varying A0. This is clear from the arguments
(a)–(c) in Sec. IVA. We could just rephrase the case
differentiation as
(a) M1=2 	 A0=2.
(b) M1=2 � A0=2.
(c) M1=2 
 A0=2.
For � 2 f�ijkg the relation is altered to A0 � M1=2=2.

The change of the prefactor is due to the fact that �ijk

couples only leptonic fields to each other. Consequently,
only superfields carrying SU(2) and U(1) charges, but not
SU(3) charges, contribute to the relevant RGEs; see
Appendix A 5 for more details.
In Fig. 6(b) we present the tree-level neutrino mass as a

function of A0 and M0. We observe that the position of the
neutrino mass minimum is fairly insensitive to M0, com-
pared to A0, M1=2 and tan� (see below). The minimum is

shifted to slightly higher values of A0 for large M0.
However at large M0, the interval around the minimum
in the A0 direction where the tree-level neutrino mass is
considerably reduced (and therefore the bounds on �0

ijk are

substantially weakened) is significantly broadened.
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FIG. 5 (color online). Running of the bilinear coupling ~D2,
Eq. (35), for the same parameter sets as those in Fig. 4.
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Finally we show in Figs. 6(c) and 6(d) the A0-tan�
plane for sgnð�Þ ¼ þ1 and sgnð�Þ ¼ �1, respectively.
In Fig. 6(c) we can see that for low tan�, the neutrino
mass minimum shifts to higher values of A0. This is due to
a decrease of the down-type Yukawa coupling for low tan�
leading to a decrease of the RHS of Eq. (35). This decrease
needs to be balanced by increasing A0; recall that h

0
ijk ¼

�0
ijk � A0 at MGUT in Eq. (35).

A comparison of Figs. 6(c) and 6(d) also shows that
there is a mirror effect around A0 ¼ 800 GeV (� 2M1=2)

when we change the sign of the bilinear Higgs parameter
�. This happens because of a reversal of the sign of the
RGE for ~Di, cf. Appendix A 3. Therefore the shift of the
minimum for low tan� now appears towards lower values
of A0.

C. The dependence of the loop contributions to the
neutrino mass on the mSUGRA parameters

The loop contributions to the neutrino mass matrix are
usually several orders of magnitude smaller than the tree-
level contribution [42,53]. However, in the region around
the tree-level neutrino mass minimum, the loops dominate
as shown in Figs. 7 and 8. Therefore, we now briefly
discuss the dependence of the loop contributions on the
mSUGRA parameters.
(i) ��- and �0�0-loops: This contribution to the neutrino

mass, m��
� , depends only weakly on the mSUGRA

parameters, in particular, it depends logarithmically
on the relevant sfermion mass. For example, varying
A0 from 0 to 1400 GeV (� 200 GeV to 1000 GeV)
around Point I (Point II) leaves the magnitude ofm��

�

FIG. 6 (color online). Two-dimensional plots of the tree-level neutrino mass. The plots are centered around parameter Point I,
Sec. II B, with �0

233jGUT ¼ 10�5. The yellow regions signify parts of the parameter space where the neutrino mass becomes smaller

than 10�4 eV, Figs. 6(a), 6(c), and 6(d), or smaller than 10�5 eV, Fig. 6(b).
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nearly unchanged [118]; cf. the dotted-dashed blue
line in Fig. 7 (Fig. 8). However, increasing M0 or
M1=2 results in a decreasing m��

� : as the SUSY

spectrum gets heavier the sfermions in the loops
decouple.

(ii) Neutral scalar-neutralino-loops: This contribution
to the neutrino mass, m~� ~�

� , as a function of A0

possesses a minimum which lies in the vicinity of
the mtree

� minimum. However, there is no exact
alignment. This behavior can be understood by
noting that the minima of m~� ~�

� arise due to the
vanishing of ~Di, because roughly

m~� ~�
� / ~D2

i ; (38)

cf. Appendix A 6. This can be seen in Fig. 7 as well
as in Fig. 8 (dotted magenta line). Again, increasing
M0 or M1=2 will in general decrease m~� ~�

� , because

the SUSY mass spectrum gets heavier.
(iii) NLO corrections to the sneutrino vevs are typi-

cally at least 1 order of magnitude smaller than
the tree-level quantities determining the sneutrino
vevs, m2

hd ~Li
� vd=ðM~�Þ2ii and ~Di � vu=ðM~�Þ2ii, in

Eq. (10) [101]. For illustration, one could consider
this as a Oð10%Þ correction to m2

hd ~Li
. This shift

upwards of the dotted-dashed blue line in Fig. 3
slightly changes the position of the tree-level neu-
trino mass minimum, but does not alter any of the
conclusions drawn in this section. Since the effects
that we investigate in this paper arise mainly from

the contribution ~Divu to the sneutrino vevs (see
Sec. IVA), these corrections are not important for
the qualitative analysis.

For parameter Points I and II, Sec. II B, the A0 interval,
�A0, where the loops dominate is relatively small, cf.
Figs. 7 and 8. However, there are other parameter regions
where the loops dominate in intervals of �A0 ¼
Oð100 GeVÞ! This is, for example, the case if one varies
A0 around the benchmark point SPS1a [106]. We inves-
tigate the resulting bounds on the LNV trilinear couplings
in the following section.

V. BOUNDS ON TRILINEAR B3 COUPLINGS
FROM �-MASSES

In this section, we calculate upper bounds on all trilinear
LNV couplings � 2 f�ijk; �

0
ijkg at MGUT from the cosmo-

logical upper bound on the sum of neutrino masses as given
in Eq. (4). Note that in good approximation

m�jEW / �2jGUT; (39)

as explained in Sec. IVA [119], Eq. (18) and Appendix A 6.
Based on this approximation we employ an iterative pro-
cedure to account for effects beyond Eq. (39).
In Sec. VA, we first compare our bounds with those

given in Ref. [53], where the mSUGRA parameters of the
benchmark point SPS1a [106] (in addition to�) were used.
We choose the same mSUGRA parameters beside A0 in
order to show how the bounds change in the vicinity of the
tree-level neutrino mass minimum, cf. Sec. IVA. We then
perform in Sec. VC two-dimensional parameter scans
around the benchmark scenarios Point I and Point II (cf.
Sec. II B) to show more generally how the bounds depend
on the B3 mSUGRA parameters.
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 0  200  400  600  800  1000  1200  1400
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FIG. 7 (color online). A0 dependence of the different contri-
butions to the neutrino mass at the REWSB scale for the B3

mSUGRA Point I, Sec. II B, with �0
233jGUT ¼ 10�5. Note that

only the absolute values of the contributions to the neutrino mass
are displayed. mtree

� and m��
� are negative whereas m~� ~�

� is mostly
positive. m~� ~�

� is only negative between the two minima of jm~� ~�
� j;

see Appendix A 6 for details.
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FIG. 8 (color online). Same as Fig. 7, but for the B3 mSUGRA
Point II, Sec. II B, with �233jGUT ¼ 10�4.
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In our parameter scans we exclude parameter regions
where a tachyon occurs [53] or where the LEP2 exclusion
bound on the light SSM Higgs mass is not fulfilled [97,98].
However, we reduce the LEP2 bound by 3 GeV in order
to account for numerical uncertainties of SOFTSUSY
[120–122]. For instance, in the decoupling limit (where
the light Higgs, h0, is SM-like) a lower bound of

mh0 > 111:4 GeV (40)

is imposed. In the figures, we also show contour lines for
the 2
window of the SUSY contribution to the anomalous
magnetic moment of the muon [99,123–125]

8:6� 10�10 < 
aSUSY� < 40:6� 10�10: (41)

For more details see Ref. [83] and references therein.
We also note that the complete parameter space which

we investigate in the following (having rejected parameter
regions which contain tachyons or violate the LEP2 Higgs
bound) is consistent with the experimental upper bound on
the branching ratio of Bs ! �þ�� [100], i.e.

BR ðBs ! �þ��Þ< 4:7� 10�8; (42)

and with the 2
window for the branching ratio of b ! s�,
[100,126],

2:74� 10�4 < BRðb ! s�Þ< 4:30� 10�4: (43)

We employed micrOMEGAs2:2 [127], for the evaluation
of 
aSUSY� , BRðBs ! �þ��Þ, and BRðb ! s�Þ. Note that
there is a significant correlation in mSUGRA models be-
tween the muon anomalous magnetic moment and Bs !
�þ�� [128]. Furthermore, we are well above the standard
supersymmetric mass bounds, as, for example, on the
charginos.

A. Comparison with previous results

In Ref. [53], bounds on single couplings � at MGUT in
the B3 mSUGRA model were determined for the
mSUGRA parameters of SPS1a, in particular A0 ¼
�100 GeV. However, the possibility of obtaining much
weaker bounds on the coupling� in the region of the tree-
level neutrino mass minimum was not exploited. Note that
the bounds in Ref. [53] were also obtained for a less
restrictive cosmological bound of

P
m�i

< 0:71 eV

[129]. We present here an update of these results by using
Eq. (4). We then explore the mSUGRA parameter depen-
dence of the bounds.

In Tables I and II (� 2 f�0
ijkg and � 2 f�ijkg, respec-

tively), we compare the previous results with bounds (at
MGUT) that we obtain for identical B3 mSUGRA parameter
points, where only the choice of A0 differs. In order to
obtain corresponding bounds atMEW one needs to take into
account the RGE evolution of the couplings. Quantitatively
this results in multiplying the bounds in Table I (Table II)
by roughly a factor of 3.5 (1.5), cf. Refs. [45,53,55,75,84].

In addition to A0 ¼ �100 GeV (SPS1a), we choose two
parameter points which lie �A0 � 10 GeV and �A0 �
60–70 GeV, away from the neutrino mass minimum. In
Table I (� 2 f�0

ijkg), we choose A0 ¼ 500 GeV (column 3

and 6) and A0 ¼ 550 GeV (column 4 and 7). In Table II
(� 2 f�ijkg), we choose A0 ¼ 200 GeV (column 3) and

A0 ¼ 120 GeV (column 4). This enables us to examine the
dependence of the bounds on A0 around the tree-level mass
minimum.
Note that at SPS1a and when varying A0, the neutrino

mass minimum for �0
ijk � 0 lies at A0 ¼ 563 GeV. This

value is mostly independent of the choice of the indices i, j,
k. This is clear because the condition for the minimum to
occur, A0 � 2M1=2, does not depend on i, j, k, cf. Sec. IV.
Similarly, for �ijkjGUT � 0 the minimum is expected at

A0 � M1=2=2. For the SPS1a parameters we thus obtain

A0 � 127 GeV [130].
We first concentrate on Table I. Comparing the columns

for A0 ¼ �100 GeV and then for A0 ¼ 500 GeV, i.e.
approaching the minimum up to �A0 ¼ 63 GeV, the
bounds from too large neutrino masses are weakened by
a factor of 13–15. When we go even closer, i.e. A0 ¼
550 GeV and �A0 ¼ 13 GeV, the bounds are weakened
by a factor of 40–64 compared to A0 ¼ �100 GeV. As we
discuss below, in the case of up-mixing, some couplings in
Table I (column 2–4) can not be restricted at all by too
large neutrino masses. In this case we show the bounds at
MGUT [marked by ðÞt], that one obtains from the absence of
tachyons; see also Ref. [53].
We differentiate in Table I between up- and down-type

quark mixing, cf. Sec. II D. Different quark mixing has
important consequences for the bounds on the couplings
�0
ijk if j � k. As is clear from Sec. (IVA), the tree-level

neutrino mass is generated proportional to �0
ijk � ðYDÞjk.

Thus, no tree-level mass is generated at this level when we
consider j � k and up-type mixing (which implies a
diagonal YD). But, an additional �0

ikk coupling will be

generated via RGE running at lower scales, cf. Ref. [53].
This coupling will still generate a tree-level neutrino mass,
which is however suppressed by the additional loop effect
due to RGE running [131].
This effect can be seen in Table I, if we compare, for

example, the upper bounds on �0
223 and �0

233 for up- and

down-type quark mixing. The ratio between these bounds
is roughly 200 in the case of up-type mixing whereas there
is only 1 order of magnitude difference for down-type
mixing.
In the latter case, the ratio between the �0

223 and �0
233

bounds originates mainly from the ratio

ðYDÞ23
ðYDÞ33

¼ ðVCKMÞ23
ðVCKMÞ33 ; (44)

since the tree-level mass is generated via �0
223 � ðYDÞ23

and �0
233 � ðYDÞ33, respectively.
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To conclude, the bounds from the generation of neutrino
masses (at least in the case of down-type mixing) are
usually the strongest bounds on the couplings �0

ijk at

MGUT. As considered in Ref. [53], they range from
Oð10�4Þ to Oð10�6Þ for the parameter point SPS1a
(column 5 in Table I). However, there is a large window

around the tree-level neutrino mass minimum, where
bounds may be obtained that are between one and 2 orders
of magnitude weaker than those in Ref. [53]. Around the
minimum, the couplings are only bounded from above by
Oð10�2Þ to Oð10�4Þ (cf. column 7 in Table I). Thus, other
low-energy bounds become competitive [45,52,132].
We now discuss in Table II the case of a nonvanishing

coupling �ijk at MGUT. Contrary to Table I, in the case

considered in Table II the quark mixing assumption does
not affect the bounds since �ijk couples only to lepton

superfields. Because of the antisymmetry �ijk ¼ ��jik

there are only 9 independent couplings.
We observe in Table II that if i � j � k � i there are no

bounds from too large neutrino masses. The only bound we
obtain stems from the absence of tachyons. This is because
we assume a diagonal lepton Yukawa matrix YE as stated
in Sec. II D and therefore, only couplings of the form �ikk

can generate a neutrino mass [133].
For these couplings, the bounds at MGUT for A0 ¼

�100 GeV (column 2) range from 1:1� 10�1 (�211 and
�311) to 2:7� 10�5 (�133 and �233). If we approach the
tree-level mass minimum, i.e. going from column 2 to
column 4 with A0 ¼ 120 GeV, the bound is weaker than
the tachyon bound (�211 and �311) or it is weakened to

TABLE II. Upper bounds on the trilinear couplings �ijk, at
MGUT for different values of A0 (first row). The other mSUGRA
parameters are those of SPS1a [106]. For the calculation of the
bounds, loop-corrected neutrino masses were employed as de-
scribed in Sec. III D. Bounds arising from the absence of
tachyons are marked by ðÞt.
A0 (GeV) �100 200 120

�211 1:1� 10�1 2:7� 10�1 ð7:1� 10�1Þt
�311 1:1� 10�1 2:7� 10�1 ð7:1� 10�1Þt
�231 ð5:5� 10�1Þt ð6:7� 10�1Þt ð7:1� 10�1Þt
�122 4:7� 10�4 1:7� 10�3 4:9� 10�3

�322 4:7� 10�4 1:7� 10�3 4:9� 10�3

�132 ð5:5� 10�1Þt ð6:7� 10�1Þt ð7:1� 10�1Þt
�123 ð5:1� 10�1Þt ð6:3� 10�1Þt ð6:7� 10�1Þt
�133 2:7� 10�5 1:0� 10�4 2:8� 10�4

�233 2:7� 10�5 1:0� 10�4 2:8� 10�4

TABLE I. Upper bounds on the trilinear couplings �0
ijk, Eq. (2), atMGUT for several values of A0 (second row). For the calculation of

the bounds, loop-corrected neutrino masses were employed as described in Sec. III D. The other mSUGRA parameters are those of
SPS1a [106]. We assume up-mixing (down-mixing) in column 2–4 (5–7), cf. Sec. II D. Bounds arising from the absence of tachyons
are in parentheses and marked by a superscript t: ðÞt.

Up-mixing Down-mixing

A0 (GeV) �100 500 550 �100 500 550

�0
111 2:0� 10�3 2:7� 10�2 8:3� 10�2 9:7� 10�4 1:3� 10�2 5:3� 10�2

�0
211 2:0� 10�3 2:7� 10�2 8:3� 10�2 9:7� 10�4 1:4� 10�2 5:3� 10�2

�0
311 2:0� 10�3 2:7� 10�2 8:3� 10�2 9:6� 10�4 1:3� 10�2 5:3� 10�2

�0
121; �

0
112 ð1:3� 10�1Þt ð1:7� 10�1Þt ð1:7� 10�1Þt 4:3� 10�4 6:0� 10�3 2:7� 10�2

�0
221; �

0
212 ð1:3� 10�1Þt ð1:7� 10�1Þt ð1:7� 10�1Þt 4:3� 10�4 6:0� 10�3 2:7� 10�2

�0
321; �

0
312 ð1:3� 10�1Þt ð1:7� 10�1Þt ð1:7� 10�1Þt 4:3� 10�4 5:9� 10�3 2:6� 10�2

�0
131 ð1:4� 10�1Þt ð1:9� 10�1Þt ð1:9� 10�1Þt 6:9� 10�4 9:5� 10�3 4:2� 10�2

�0
231 ð1:4� 10�1Þt ð1:9� 10�1Þt ð1:9� 10�1Þt 6:9� 10�4 9:5� 10�3 4:3� 10�2

�0
331 ð1:4� 10�1Þt ð1:9� 10�1Þt ð1:9� 10�1Þt 6:8� 10�4 9:3� 10�3 4:2� 10�2

�0
122 9:1� 10�5 1:3� 10�3 5:3� 10�3 8:9� 10�5 1:2� 10�3 5:2� 10�3

�0
222 9:1� 10�5 1:3� 10�3 5:3� 10�3 8:9� 10�5 1:2� 10�3 5:2� 10�3

�0
322 9:0� 10�5 1:3� 10�3 5:3� 10�3 8:8� 10�5 1:2� 10�3 5:2� 10�3

�0
132 2:4� 10�2 ð1:9� 10�1Þt ð1:9� 10�1Þt 5:8� 10�5 8:0� 10�4 3:9� 10�3

�0
232 2:4� 10�2 ð1:9� 10�1Þt ð1:9� 10�1Þt 5:8� 10�5 8:0� 10�4 3:9� 10�3

�0
332 2:4� 10�2 ð1:9� 10�1Þt ð1:9� 10�1Þt 5:8� 10�5 7:9� 10�4 3:8� 10�3

�0
113 4:2� 10�3 5:5� 10�2 1:9� 10�1 6:3� 10�4 8:7� 10�3 3:8� 10�2

�0
213 4:2� 10�3 5:5� 10�2 1:9� 10�1 6:3� 10�4 8:7� 10�3 3:8� 10�2

�0
313 4:2� 10�3 5:4� 10�2 1:7� 10�1 6:2� 10�4 8:6� 10�3 3:7� 10�2

�0
123 5:9� 10�4 8:7� 10�3 2:4� 10�2 5:3� 10�5 7:4� 10�4 3:4� 10�3

�0
223 5:9� 10�4 8:7� 10�3 2:4� 10�2 5:3� 10�5 7:4� 10�4 3:4� 10�3

�0
323 5:8� 10�4 8:5� 10�3 2:4� 10�2 5:3� 10�5 7:2� 10�4 3:4� 10�3

�0
133 2:3� 10�6 3:2� 10�5 1:3� 10�4 2:3� 10�6 3:2� 10�5 1:3� 10�4

�0
233 2:3� 10�6 3:2� 10�5 1:3� 10�4 2:3� 10�6 3:2� 10�5 1:3� 10�4

�0
333 2:3� 10�6 3:1� 10�5 1:3� 10�4 2:3� 10�6 3:1� 10�5 1:3� 10�4
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2:8� 10�4 (�133 and �233). The bounds from neutrino
masses are thus decreased by roughly a factor of 10.

Comparing the bounds on �ikk at MGUT, one can see
nicely how the choice of k influences the strength of the
bound. The bounds resemble the hierarchy between the
lepton Yukawa couplings ðYEÞkk analogously to Eq. (44).
Therefore, the bounds are strongest for k ¼ 3.

In contrast to Table I, the bounds are only reduced by 1
order of magnitude when we approach the tree-level mass
minimum. This is because the loop contributions play a
more important role for the bounds in Table II than in
Table I, as we discuss in the following subsection.

B. Influence of loop contributions

We now shortly discuss the influence of the neutrino
mass loop contributions on the bounds. Typically, one
expects that the closer we approach the tree-level neutrino
mass minimum the more important the loop contributions
become. This is because the loops are not aligned to the
tree-level mass, cf. Sec. IVC.

However, in the case of the neutral scalar loops there
is still partial alignment, because both the tree-level
mass minimum and the minima of the neutral scalar
loops crucially depend on the vanishing of the bilinear
LNV parameter ~Di, cf. Sec. IVC. Therefore, it is the
�0�0-loops and ��-loops, Sec. III B, that are relevant when-
ever the loop contributions become dominant over the tree-
level contributions.

We now give a few examples. For � 2 f�ijkg, Table II,
the loop contributions dominate over the tree-level mass in
a range of �A0 � �50 GeV around the tree-level mass
minimum at A0 ¼ 127 GeV. Therefore, the bounds in this
region are much more restrictive (i.e. the value of the
bounds decreases) when taking into account the loop con-
tributions. For example,

�tot
233

�tree
233

� 0:3; (45)

for A0 ¼ 120 GeV; column 4 in Table II. Here, �tot
233 is

the bound on �233 at MGUT if we take into account both
tree-level and loop contributions to the neutrino mass. In
contrast, �tree

233 would be the bound if we only employ the

tree-level mass.
Further away from the minimum, the influence of the

loop contributions is weaker. The bounds are strengthened
by approximately 5% for A0 ¼ 200 GeV (column 3 of
Table II) and <1% for A0 ¼ �100 GeV (column 2 of
Table II).

The loop contributions are less important for the bounds
in Table I, i.e. � 2 f�0

ijkg. For example, even near the

tree-level mass minimum (column 4 and 7 with
A0 ¼ 550 GeV), the bounds become only stronger by up
to 20% if we take the loop induced neutrino masses in
addition to the tree-level mass into account.

C. Dependence of bounds on B3 mSUGRA parameters

In this section, we discuss the dependence of the bounds
on � 2 f�ijk; �

0
ijkg at MGUT on the B3 mSUGRA parame-

ters. For that purpose we perform two-dimensional pa-
rameter scans around the benchmark scenarios, Point I
and Point II, of Sec. II B. For the calculation of the bounds
all contributions to the neutrino mass considered in Sec. III
are included. We will focus here on the couplings �0

233 and

�233, because these couplings have the strongest con-
straints from neutrino masses, cf. Tables I and II.
We have analyzed in Sec. IV how the neutrino mass

changes with the mSUGRA parameters. Because of its
approximate proportionality to �2, cf. Eq. (39), the analy-
sis in Sec. IV is directly transferable to the mSUGRA
dependence of bounds on the LNV trilinear couplings.
Therefore, the parameter scans presented in this section,
i.e. Figs. 9 and 10, resemble closely those in Fig. 6, Sec. IV.
We show in Fig. 9 [Fig. 10] how the bounds on �0

233

[�233] atMGUT vary with mSUGRA parameters.We present
in Figs. 9(a)–9(c) [10(a)–10(c)] the A0-M1=2, A0-tan�, and
A0-M0 planes, respectively. The bounds are shown on a
logarithmic scale. The blackened out regions designate
areas of parameter space which are rejected due to tachyons
in the model or violation of the LEP2 bound on the lightest
Higgs mass, cf. Eq. (40). Furthermore, we include contour
lines of the 2
 window for the SUSY contribution to the
anomalous magnetic moment of the muon, Eq. (41).
Imposing Eq. (41) disfavors the parameter space below
[above] the green contour line in Figs. 9(a), 9(b), 10(a),
and 10(b) [Figs. 9(c) and 10(c)].
We observe in Fig. 9 that the strictest bounds on �0

233

from too large neutrino masses are of Oð10�6Þ. However,
there are sizable regions of parameter space where the
bounds are considerably weakened. For example, in the
A0-M1=2 plane, Fig. 9(a), the bounds are ofOð10�6Þ only in
approximately half of the parameter space whereas in the
other half, the bounds are Oð10�5Þ or weaker. In roughly
10% of the allowed region in Fig. 9, the bounds even lie at
or above Oð10�4Þ! In this region, the loop contributions to
the heaviest neutrino mass are essential for determining the
bounds since the corresponding tree-level neutrino mass
vanishes, cf. also the discussion in Sec. VB.
We can see in Fig. 10 a similar behavior for the parame-

ter dependence of the bounds on �233. Here, the strongest
bounds are now of Oð10�5Þ. However, for example, in
the A0-M0 plane, Fig. 10(c), the bounds are as strong as
Oð10�5Þ in only about 25% of the parameter plane. The
remaining 75% have bounds of Oð10�4Þ (50%) or even
Oð10�3Þ (25%)!
Up to now, we have analyzed how the bounds on the

trilinear LNV couplings �0
233 and �233 vary with the

mSUGRA parameters. However, from the analysis in
Sec. VA, we can easily deduce how most of these bounds
change for different couplings �0

ijk and �ijk, i.e. for differ-

ent indices i, j, k. For �0
ijk the index i does not significantly
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influence the bound, because the employed Yukawa cou-

pling, ðYDÞjk, via which the tree-level mass is generated,

does not depend on i. But, the situation is totally different

when we change the indices j, k. In general, for �0
ijk (and

down-mixing) the bounds will display the hierarchy of the

down-type Yukawa couplings. Therefore, bounds for cou-

plings �0
i11 are about 3 orders of magnitude weaker than

bounds for the couplings �0
i33 as long as the other B3

mSUGRA parameter are the same. We also observe a

similar behavior for �0
ijk with up-mixing and for �ijk [using

ðYEÞjk instead of ðYDÞjk], if j ¼ k; cf. the discussion in

Sec. VA.

To conclude, one can use the Yukawa matrix YD (YE) to
easily translate the bounds in Fig. 9 (Fig. 10) to bounds on
couplings other than �0

233 (�233).

VI. SUMMARYAND CONCLUSION

We have calculated upper bounds on all trilinear lepton-
number violating couplings at the grand unification scale
within the B3 (i.e. lepton-number violating) minimal su-
pergravity (mSUGRA) model, which result from the cos-
mological bound on the sum of neutrino masses. We have
shown that these bounds on the couplings can be weaker
by 1 to 2 orders of magnitude compared to the ones
which were previously presented in the literature for the

FIG. 9 (color online). Upper bounds on �0
233 at MGUT from the cosmological bound on the sum of neutrino masses, Eq. (4), as a

function of mSUGRA parameters. For the calculation of the bounds, loop-corrected neutrino masses were employed as described in
Sec. III D. The parameter scans are centered around the benchmark Point I, cf. Sec. II B. The blackened-out region denotes parameter
points where tachyons occur or where the LEP2 Higgs bound is violated.
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benchmark scenario SPS1a; cf. Sec. V. In general, the
bounds can be as weak asOð10�1Þ. Thus other low-energy
bounds become competitive.

The reason for these large effects is that the tree-level
neutrino mass depends strongly on the trilinear soft-
breaking A0-parameter (and also similarly on the gaugino
masses). We concluded in Sec. IV, that in regions of
parameter space with A0 � 2M1=2 (A0 � M1=2=2) for

�0
ijkjGUT � 0 (�ijkjGUT � 0), a cancellation between the

different contributions to the tree-level mass can occur.
We have explained this effect in detail and have shown
that such a cancellation is significant in large regions of the
mSUGRA parameter space. For example, the bounds can
be weakened by 1 order of magnitude in A0 intervals of up
to Oð100 GeVÞ, see Figs. 9 and 10. Therefore, much
weaker bounds (compared to previous ones) can be ob-
tained without significant fine-tuning.

In order to obtain the correct bounds in the vicinity of the
tree-level neutrino mass minimum, we included the main

loop contributions to the neutrino mass matrix; cf. Sec. III.
We also described in Sec. IV and Appendix A for the first
time the dependence of the tree-level and loop induced
neutrino mass on all mSUGRA parameters. Although we
concentrated in this work on the B3 mSUGRA model, the
mechanisms described will also work in more general
R-parity violating models.
Our work can help to find new supersymmetric scenarios

that are consistent with the observed neutrino masses and
mixings. We have shown in this publication how the (typi-
cally large) hierarchy between the tree-level and one-loop
neutrino masses can systematically be reduced. Together
with at least one additional lepton-number violating cou-
pling, one can use this mechanism to match the ratio
between tree-level and one-loop induced masses to the
observed neutrino mass hierarchy, both for hierarchical
neutrino masses and for a degenerate spectrum.
We also note, as described in the Introduction, that large

lepton-number violating couplings can lead to distinct

FIG. 10 (color online). Same as Fig. 9, but for �233 at MGUT and for the benchmark scenario Point II, cf. Sec. II B.
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collider signatures. We will address these topics in future
publications.
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APPENDIX A: �-MASSES: DEPENDENCE ON
FURTHER B3 MSUGRA PARAMETERS

In Sec. IVA, we described in detail the dependence of
the tree-level neutrino mass, Eq. (17), on the B3 mSUGRA
parameter A0. We also reviewed some further effects in
Sec. IVB. In this appendix, we explain now in more detail
the dependence of the tree-level neutrino mass and the
loop induced masses on the remaining B3 mSUGRA
parameters.

1. M1=2 Dependence

The tree-level neutrino mass minimum can be explained
equivalently in terms of its dependence on M1=2 instead of

its dependence on A0. This is because varying M1=2 has a

similar effect on the sneutrino vev vi, Eq. (31), as varying
A0, cf. Sec. IVA and IVB. However, when varying M1=2

there are additional effects coming on the one hand from
the dependence of �2, ðM2

~�Þii and m2
Hd

~Li
on M1=2. These

quantities are linear functions of M2
1=2. For �

2 this can be

seen from Eq. (34). For ðM2
~�Þii and m2

Hd
~Li

this follows

because the respective RGEs are functions of the squared
sfermion masses [53]. One obtains for example [109]

ðM2
~�Þii � M2

0 þ 0:52M2
1=2 þ

1

2
M2

Z cos2�: (A1)

On the other hand, there is also a direct proportionality of
mtree

� to M�1
1=2, cf. Eq. (17). All these additional effects do

not significantly influence the position of the tree-level
neutrino mass minimum, i.e. A0 � 2M1=2 still holds for

� 2 f�0
ijkg; see Sec. IV. However, the effects add a global

slope to the terms (as a function ofM1=2), which contribute

to the tree-level mass. This behavior can be seen in Fig. 11.
We show in Fig. 11 the same contributions as in Fig. 3,

but now as a function of M1=2 instead of A0. Here A0 has

been fixed to 900 GeV. On the one hand, we observe that
the quantities ~Divu (dotted magenta line) and ðm2

hd ~Li
þ

��iÞvd (dotted-dashed blue line) are nearly constant for
low values ofM1=2, but they have a positive slope for large

values of M1=2. This is mainly due to their dependence on

�; cf. Eq. (9) [Eq. (8)] for ~Di [�i]. On the other hand
ðM�2

~� Þii (solid turquoise line) has a negative slope for all
values of M1=2 because of Eq. (A1). Overall this leads to a

steep decrease of the tree-level neutrino mass (solid red
line) in the region of low M1=2, whereas in the region of

large M1=2, the various contributions’ dependence on M1=2

roughly cancels, see Fig. 11.
Going beyond the plot, for M1=2 ! 1 the tree-level

mass scales with M�1
1=2, as follows from the different con-

tributions to mtree
� in Eq. (17). Such a behavior is expected,

because SUSY decouples from the SM sector in the limit
M1=2 ! 1.

2. tan� dependence

Varying tan� most importantly affects the tree-level
neutrino mass via the term ~Divu in Eq. (31). The RGE
for ~Di, Eq. (35), is proportional to the down-type Yukawa
coupling ðYDÞjk � ðmdÞjk=vd. Therefore,

~D ivu / c1 þ c2
vu

vd

� c1 þ c2 tan�; (A2)

at MEW. The factors c1 and c2 depend on the other
mSUGRA parameters but their magnitude is approximately
independent of tan�. However, there is a dependence of
sgnðc2Þ on tan� via the RGE of h0ijk. Especially in case (b)
of Sec. IVA, i.e. in the region around the tree-level neutrino
mass minimum, this becomes relevant [134].
This (weak) tan� dependence of j ~Divuj is illustrated in

Fig. 12 for our B3 mSUGRA parameter set Point I; see
Sec. II B. One observes that the dotted magenta line
(j ~Divuj) increases between tan� ¼ 2 and tan� � 40.
Here, sgnðc2Þ> 0. Above tan� � 40, j ~Divuj starts de-
creasing, i.e. sgnðc2Þ< 0. This is due to the enhancement
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FIG. 11 (color online). Same as Fig. 3, but now for the
mSUGRA parameter M1=2 instead of A0.
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of the down-type Yukawa coupling when increasing tan�,
since this reduces h0ijk further and further until it becomes

negative. This decrease of j ~Divuj is only partially visible in
Fig. 12 since the parameter region with high tan� is
excluded due to tachyons.

One can also see in Fig. 12 that the other term determin-
ing the sneutrino vev, ðm2

hd ~Li
þ��iÞvd, which is displayed

as a dotted-dashed blue line, is fairly constant regarding
tan�. This contribution to the sneutrino vev is subtracted
from the first term, ~Divu (dotted magenta line), so that the
sneutrino vev becomes zero when the two lines intersect;
see Eq. (31).

We observe this intersection in Fig. 12 at tan� � 22,
thus yielding the tree-level neutrino mass minimum in this
region. In theory, there could even arise two minima
because above tan� � 40 ~Divu starts decreasing again,
leading to another intersection with ðm2

hd ~Li
þ��iÞvd.

However, as mentioned before, this usually happens in an
excluded region of parameter space.

As is also illustrated in Fig. 12, there is quite a sizable
difference between the two terms which determine the
sneutrino vev, i.e. ðm2

hd ~Li
þ��iÞvd (dotted-dashed blue

line) and ~Divu (dotted magenta line) in the region of low
tan�. If we are looking for a neutrino mass minimum in
this region of parameter space, we need to adjust A0

towards higher values, which will increase h0ijk [cf.

Eq. (36)]. Therefore, increasing A0 will shift the dotted
magenta line upwards until it intersects with the dotted-
dashed blue line at the desired low tan� value. This shift of
the tree-level neutrino mass minimum to higher A0 is
clearly visible in Fig. 6(c). For tan� ¼ 20, the minimum
lies at A0 � 900 GeV whereas for tan� ¼ 5, it has shifted
to A0 � 1300 GeV.

3. sgnð�Þ dependence
A change of sgnð�Þ notably affects the tree-level neu-

trino mass via the RGE running of ~Di [Eq. (35)], in which
the overall sign of the RGE is changed. Therefore, the sign
of ~Di itself is reversed at any energy scale but its magnitude
is mostly unaffected. Consequently, the A0 value where
~Di ¼ 0 is still mostly the same after a sign change.
However, at the position of the tree-level neutrino mass

minimum, ~Di needs to be slightly larger than zero in order
to cancel the other terms contributing to the tree-level
mass, cf. Sec. IVA and Appendix A 2. When we are at a
parameter point where the tree-level neutrino mass mini-
mum occurs for positive� (i.e. ~Di is small and positive), a
sign change to sgnð�Þ ¼ �1will yield a ~Di which is small
and negative. The other contributing terms undergo no
overall sign change. If we would like to obtain a neutrino
mass minimum now, ~Di needs to be increased in order to
become slightly larger than zero again. This can be
achieved by decreasing A0, Sec. IVA, (or, equivalently,
increasingM1=2, Appendix A 1) since this increases ~Di via

h0ijk in its RGE, Eq. (35), when � is negative. Therefore,

the tree-level minimum will occur at smaller values of A0

(or equivalently larger values of M1=2) when we change

sgnð�Þ ¼ þ1 to sgnð�Þ ¼ �1.
This effect becomes more important when we go to

regions of low tan�. Here the influence of h0ijk on ~Di,

Eq. (35), becomes weaker due to the decrease of the
down-type Yukawa coupling, as we discussed in
Appendix A 2. In order to still obtain a positive ~Di after
reversing sgnð�Þ, h0ijk has to decrease in a more substantial

fashion than for large tan�. Therefore, the parameter point
where the tree-level neutrino mass minimum is located will
shift to smaller A0 when changing sgnð�Þ ¼ þ1 to
sgnð�Þ ¼ �1, especially for tan� & 10.
Overall, this leads to a ‘‘mirroring’’ of the tree-level

mass minimum curve in the A0-tan� plane around
A0 ¼ 800 GeVð� 2M1=2Þ. This can be seen in Figs. 6(c)

and 6(d): for sgnð�Þ ¼ þ1 the minimum shifts to
higher values of A0 with decreasing tan�, whereas for
sgnð�Þ ¼ �1 the minimum shifts to lower values of A0.

4. M0 dependence

Varying M0 does not greatly affect the tree-level neu-
trino mass. However, similar effects as those described in
Appendix A 1 as additional effects, arise due to the depen-
dence of several parameters on M2

0, cf. for example Eqs.

(34) and (A1). This can be seen in Fig. 13, where we again
show the terms, which enter the tree-level neutrino mass
formula, Eq. (17). We can see that most of the quantities
depend only weakly on M0. This results in a nearly con-
stant tree-level neutrino mass, cf. solid red line in Fig. 13.
However, the above mentioned M2

0 dependences lead to

a moderate shift of the tree-level neutrino mass minimum
towards higher values of A0 when increasing M0.
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FIG. 12 (color online). Same as Fig. 3, but now for the
mSUGRA parameter tan� instead of A0.
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Explaining this in detail is fairly lengthy because the M0

dependence of the parameters determining the tree-level
neutrino mass is not as straightforward as the dependence
on other mSUGRA parameters. However, the effect is
shown numerically in Fig. 6(b).

It should be noted that there is a similar mirror effect
when changing sgnð�Þ as for tan�. For sgnð�Þ ¼ �1,
the minimum shifts towards lower values of A0 when
increasing M0.

5. Changes for � 2 �ijk

We now consider the case of� 2 f�ijkg instead of � 2
f�0

ijkg. Since �ijk only couples lepton superfields to each

other (as opposed to the �0
ijk operator which also involves

quark superfields), the RGEs in Sec. IVA are reduced by a
(color) factor of 3 [53,55]. In addition, the down-quark
Yukawa matrix elements, ðYDÞjk, need to be replaced by

the respective lepton Yukawa matrix elements, ðYEÞjk.
Otherwise, the structure of the RGEs remains the same.

The only RGE where there are more extensive relevant
changes is that for hijk (which replaces h0ijk); cf. Eq. (3).
Equation (36) must be replaced by [53]

16	2
dhijk
dt

¼ 9

5
g21ð2M1�ijk � hijkÞ

þ 3g22ð2M2�ijk � hijkÞ þ . . . ; (A3)

with hijk ¼ A0 � �ijk at MGUT. This looks exactly the

same as the RGE for h0ijk, Eq. (36), only with g3 and M3

replaced by g� and M� (� ¼ 1, 2). However, it is impor-
tant to realize that the running of g� and M� is different
from the running of g3 and M3. As was mentioned in
Sec. IVA, the latter quantities increase when running to
lower energy scales whereas the former decrease [24].

This has important consequences for the position of the
tree-level neutrino mass minimum. The terms g2�M��ijk

of Eq. (A3) now decrease [as opposed to g23M3�
0
ijk in

Eq. (36)]. It is thus necessary to choose A0 smaller in order
to have a smaller hijk at MGUT and at lower scales to

compensate for this. Quantitatively, we checked numeri-
cally that we now need A0 � M1=2=2 (� 2 f�ijkg) to

achieve a vanishing tree-level neutrino mass rather than
A0 � 2M1=2 (� 2 f�0

ijkg) as was the case in Sec. IVA.

For illustrative purpose, we show in Fig. 14 the A0

dependence of the tree-level neutrino mass (solid red
line) and of the terms determining the sneutrino vev v2

for a nonvanishing coupling �233 at MGUT. Figure 14 is
equivalent to Fig. 3 besides the fact that we now employ
the parameter Point II with �233jGUT ¼ 10�4 instead of the
parameter Point I with �0

233jGUT ¼ 10�5, cf. Sec. II B. The

qualitative behavior of all terms is the same in both figures.
However, in Fig. 14 the minima are shifted to lower values
of A0 compared to Fig. 3.
We conclude that the line of argument explaining the

minimum of the tree-level neutrino mass in the case of
� 2 f�0

ijkg still holds for � 2 f�ijkg. However, the posi-

tion of the minimum now shifts to A0 � M1=2=2.

6.A0 Dependence of the neutral scalar-neutralino-loops

According to Eqs. (26) and (27), the dominant loop
contribution from neutral scalar-neutralino-loops to the
neutrino mass matrix, ðm~� ~�

� Þii, is proportional to

ðm~� ~�
� Þii / ð ~Divd� ~BviÞ2fðm2

~�0
k

;m2
~�i
;m2

H0
;m2

A0
;m2

h0
Þ; (A4)

where f is a function of the neutralino, sneutrino and Higgs
masses squared, respectively.
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FIG. 13 (color online). Same as Fig. 3, but now for the
mSUGRA parameter M0 instead of A0.
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FIG. 14 (color online). Same as Fig. 3, but now for the B3

mSUGRA Point II, Sec. II B, with �233jGUT ¼ 10�4.
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The A0 dependence of Eq. (A4) is mainly determined
by ~Di, since the A0 dependence of vi is governed by
~DiðA0Þ,

viðA0Þ / ~DiðA0Þ þ c; (A5)

where the term c depends mainly on the other mSUGRA
parameters but barely on A0, as discussed in Sec. IVA.
Therefore ðm~� ~�

� Þii is roughly proportional to ~D2
i . The be-

havior of ~Di has been discussed in detail in Sec. IVA in the
context of the tree-level neutrino mass. We have shown
that there is always a value of A0 where ~Di becomes zero.
Thus the neutral scalar-neutralino-loops display a similar

minimum as the tree-level neutrino mass. The position of
the minimum is close to the tree-level one, but not exactly
aligned. This can be seen by comparing the dotted magenta
line and dashed green line in Figs. 7 and 8. However, since
Eq. (A4) is only an approximate formula [for the exact
formula, cf. Eq. (23)], the real curve is slightly shifted
downwards such that its minimum reaches negative values.
Therefore jðm~� ~�

� Þiij in Figs. 7 and 8 appears to have two
minima.
It is also immediately obvious from Eq. (A4) that

the scalar-neutralino-loops are roughly proportional to
½�� ðYDÞjk�2 like the tree-level mass.
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