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A class of nonsupersymmetric extensions of the standard model is proposed in which there is a

multiplicity of light scalar doublets in a multiplet of a nonabelian family group with the standard model

Higgs doublet. Anthropic tuning makes the latter light, and consequently the other scalar doublets remain

light because of the family symmetry. The family symmetry greatly constrains the pattern of flavor-

changing neutral-current interactions (FCNC) and p decay operators coming from scalar-exchange. Such

models show that useful constraints on model-building can come from an extended naturalness principle

when the electroweak scale is anthropically tuned.
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I. INTRODUCTION

In models with low-energy supersymmetry (SUSY), the
supersymmetry allows the existence at low energy of many
scalar fields in a way consistent with the old ‘‘naturalness
principle’’ [1], because of the nonrenormalization theo-
rems. Supersymmetry also allows great leeway in the
structure of the superpotential without violating the natu-
ralness principle. The consequent flexibility in model
building is both an advantage and a disadvantage. One
disadvantage is that a huge number of terms are permitted
whose coefficients are not constrained by any principle
(unless somewhat ad hoc symmetries are imposed).
Many of these terms violate baryon number, flavor or
CP. Thus, the very flexibility of low-scale SUSY seems
to undo several of the greatest successes of the standard
model, which were due to the fact that the symmetries of
the standard model greatly restrict the couplings that can
be written down.

If low-energy supersymmetry is abandoned there is one
large price to pay, namely, the fine-tuning of the mass-
squared parameter (�2) of the standard model (SM) Higgs
doublet. That is not necessarily a disaster, however, as such
a tuning might be anthropically accounted for [2–4], and
there is a corresponding gain, namely, more constrained
model-building. Without low-energy supersymmetry, the
possibilities for new particles at or near the electroweak-
scale are more limited and their small masses must either
be dynamically generated or protected by conventional
(i.e. non-SUSY) symmetries, such as chiral symmetry
and gauge invariance, which may place strong conditions
on their interactions. (One sees this, of course, in techni-
color models, which are so highly constrained that it is
difficult to construct realistic models based on the idea.)

In this paper, we consider models without low-energy
supersymmetry, and propose an extension of the old
naturalness principle, which we call the ‘‘extended natural-
ness principle’’. According to this principle, there should
be no parameters in a model that are very small (or other-
wise take very special values) unless this has either a

conventional ‘‘natural’’ explanation in terms of symmetry
principles and dynamical mechanisms, or can be
accounted for by ‘‘anthropic tuning.’’ We will see, by
considering a certain class of models, that this extended
naturalness principle can greatly constrain model building
(as the old naturalness principle did) and lead to interesting
and testable scenarios.
The kind of model that will be considered in this paper is

characterized by having a multiplicity of light scalar
doublets (instead of just one, as in the standard model).
One reason for considering such a possibility is that the
presence of several (six or even five) light scalar doublets
can lead to satisfactory unification of gauge couplings
without supersymmetry [5,6]. But to make a multiplicity
of scalar doublets light in a way consistent with the ex-
tended naturalness principle requires new symmetries. The
basic idea assumed here is that these symmetries are family
symmetries. The ‘‘extra’’ light scalar doublets will be
assumed to be in a multiplet of a nonabelian group GF

with the SMHiggs doublet. That means that when the mass
of the SM Higgs doublet is made small by anthropic
tuning, so will the entire multiplet of scalar doublets.
The idea that the tiny (and negative) mass-squared of the

SM Higgs may be the result of anthropic tuning in what is
now called a ‘‘multiverse’’ was proposed in [2]. Some
reasons to regard this possibility as plausible have been
stated by S. Weinberg: ‘‘If the electroweak-scale is
anthropically fixed, then we can give up the decades long
search for a natural solution to the hierarchy problem. This
is a very attractive prospect, because none of the ‘‘natural’’
solutions that have been proposed, such as technicolor or
low-energy supersymmetry, were ever free of difficulties.
In particular, giving up low-energy supersymmetry can
restore some of the most attractive features of the non-
supersymmetric standard model: automatic conservation
of baryon and lepton number in interactions up to
dimension 5 and 4 respectively; natural conservation of
flavors in neutral currents; and a small neutron electric
dipole moment’’ [4].
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If the SMHiggs doublet is in a nontrivial multiplet ofGF

and gives mass to the known quarks and leptons through
renormalizable d ¼ 4 Yukawa operators, then the known
quarks and leptons would also have to be in nontrivial
GF multiplets. In that case, GF would be a ‘‘family sym-
metry’’. This is an attractive possibility as there would be a
single explanation for both the multiplicity of the light
quarks and leptons and the multiplicity of the light scalar
doublets, namely, that they were multiplets of a family
symmetry. (Moreover, having ‘‘families’’ of both the fer-
mions and the scalars seems less unbalanced than the
standard model, where there are large numbers of quarks
and leptons, but only one scalar multiplet.) The most
obvious possibilities for GF, given the fact that there are
three light families of quarks and leptons, are SUð3Þ and
SOð3Þ, with the light families being in a 3 in either case. If
GF ¼ SUð3Þ, there could be six light scalar doublets either
in 3þ 3 or in 6. If GF ¼ SOð3Þ, there could be six light
scalar doublets in 3þ 3 or five of them in 5. We shall
consider these possibilities briefly later, and shall discuss a
toy model based on SOð3ÞF in Section III, but we shall find
it easier to construct a realistic model based on SOð4ÞF,
which will be discussed in Section IV. (There is a long
history of models with nonabelian continuous family
symmetries. See, for example, the papers in [7] and refer-
ences cited therein. Recently, nonabelian discrete family
groups have been used in models with multiple scalar
doublets, as in [8].)

The extra light scalar doublets must have masses of at
least several TeV to avoid excessive flavor violation in
neutral current processes. Thus, there must be splitting of
theGF multiplet of scalar doublets by an amount at least an
order of magnitude greater than the mass of the SM Higgs
doublet. The idea is that the overall mass-squared of the
GF multiplet of scalar doublets (i.e. the GF-invariant part)
‘‘scans’’ among the ‘‘domains’’ or ‘‘subuniverses’’ of the
universe and is anthropically set to have a value (in our
subuniverse or domain) such that the lightest member of
the GF multiplet (i.e. the SM Higgs doublet) has a mass-
squared that is negative and of order -ð100 GeVÞ2. That
means that all the other members of the GF multiplet
will have masses-squared that are of order M2

F, where

M2
F � 1 TeV is the scale of splitting of the multiplet.

(Of course, it must be only the lightest scalar doublet
whose mass-squared is pushed negative, since if more
than one is, the one with most negative mass-squared
will get a vacuum expectation value (VEV) of order MF,
which is not anthropically viable [2].) The breaking of GF

can be dynamical, and thus MF can naturally be much
smaller than the unification scale, and, in particular, in
the TeV range. Figure 1 illustrates the idea schematically.

An obvious issue if the unification scale is around
1014 GeV (as in the non-SUSY SM with six scalar dou-
blets) is rapid proton decay. In [6] this was avoided by
assuming the unified group to be the ‘‘trinification’’ group

SUð3Þc � SUð3ÞL � SUð3ÞR � S3, where the S3 cyclically
permutes the three SUð3Þ factors. We shall use the same
group. (For an outline of the trinification scheme assumed
in this paper, see Appendix A.) This eliminates proton
decay mediated by gauge boson exchange. However, since
some of the extra light scalar doublets in our models shall
necessarily couple to light quarks and leptons with cou-
plings of order 1 (as will be seen), proton decay by the
exchange of their superheavy colored partners becomes an
issue. It is shown in Appendix B that there exist terms in
the scalar potential that can give the dangerous colored
scalars masses large enough to avoid excessive proton
decay. The proton decay that does exist, however, will
have characteristic branching ratios determined by the
symmetry GF, as will be discussed later.
Another possibility besides trinification is unification

based on a simple group, such as SUð5Þ or SOð10Þ, broken
by orbifold compactification [9]. If the light quarks and
leptons live on a brane where there is only the SM gauge
group, proton decay can be suppressed, since the gauge
bosons of GGUT=GSM will vanish on the SM brane by the
orbifold boundary conditions, and similarly for the colored
scalars that would mediate proton decay. On the other
hand, gauge kinetic terms in the 4D Lagrangian on the
SM brane would not respect GGUT and would affect the
gauge unification. If these effects were small for some
reason, then unification could still take place with 5 or 6
light scalar doublets. We shall not pursue this possibility
here, but will henceforth assume the unified group to be
SUð3Þc � SUð3ÞL � SUð3ÞR � S3, which will be denoted
GU for short. The irreducible multiplet that contains
a family, namely ð3; �3; 1Þ þ ð�3; 1; 3Þ þ ð1; 3; �3Þ will be de-
noted henceforth as F.
In the later sections it will be seen that the interrelated

set of assumptions we have made (no low-energy SUSY,
unification of gauge couplings by a multiplicity of light
scalar doublets whose mass is related to that of the SM
Higgs by a family symmetry) leads to tightly constrained
possibilities for model building and interesting and novel

FIG. 1. The overall (GF-invariant) mass-squared of the GF

multiplet of scalar doublets is tuned so the lightest (HSM) has
small negative mass-squared. The others then have positive
mass-squared from GF breaking.
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phenomenological consequences. While anthropic tuning
in general, and of the electroweak scale in particular,
cannot be tested directly, this shows that when it is com-
bined with the extended naturalness principle and other
attractive assumptions, predictive schemes can result. The
rest of the paper will be organized as follows. In Section II,
some basic points about the anthropic tuning of the elec-
troweak scale will be discussed. In Section III, a simple
SOð3ÞF toy model will be presented and its inadequacies
pointed out. In Section IV, a realistic model based on
SOð4ÞF will be described and analyzed. Some details
having to do with the trinification group and its breaking
will be discussed in the appendices.

II. ANTHROPIC TUNING OF
THE ELECTROWEAK SCALE

The idea that the electroweak scale might be anthropi-
cally determined in the context of what is now called the
multiverse scenario was proposed in [2]. There it was
noted that the cosmological constant �ð� 10�120M4

P‘Þ
and the Higgs mass parameter of the standard model
�2ð� 10�34M2

P‘Þ are the two smallest parameters in our

current theory (in natural units) as well as the ones whose
smallness has proven most difficult to explain in conven-
tional ways. (The next smallest parameter �� is only
bounded to be less than about 10�10, and several viable
natural explanations exist for its smallness [10]. Many
technically natural symmetry explanations have also been
proposed for the small quark and lepton Yukawa couplings
of the lighter families. And the explanation of the small-
ness of �QCD=MP‘ in terms of the logarithmic running of

�s and dimensional transmutation is perfectly natural.) It
was therefore suggested in [2] that � and �2 are the most
plausible candidates for anthropic tuning. This was also
suggested by S. Weinberg [4]: ‘‘The most optimistic hy-
pothesis is that the only constants that scan are the few
whose dimensionality is a positive power of mass: the
vacuum energy and whatever mass or masses set the scale
of electroweak symmetry breaking.’’

The reason that the magnitude of �2 must be at or lower
than ð100 GeVÞ2 for the evolution of life to be at all
plausible is that larger (negative) values of �2 lead to
larger v ( � hHSMi), and therefore larger quark masses.
This leads to larger pion masses and shorter range of the
nucleon-nucleon potential. This makes nuclei more un-
stable, beginning with the all-important deuteron, which
becomes unbound if v is larger than its observed value by a
factor of about 1.4 to 2.7 [2]. The case of positive �2

require separate arguments, given in [2] (for � ¼ 0) and
[3] (for � � 0).

An extension of the analysis of [2] to the case of two
doublets Hu and Hd, which transform under the standard
model gauge group as ð1; 2þ 1

2Þ and ð1; 2;� 1
2Þ respectively

(and which couple, respectively, to the up quarks and
to the down quarks and charged leptons) was give in [3].

This is relevant to the present work, since such a pair of
doublets exists in many unified schemes, including trinifi-
cation. With two doublets, there is a 2� 2 mass-squared
matrix that can be written as

ðHu;H
�
dÞ M2

u �2

�2� M2
d

� �
H�

u

Hd

� �
: (1)

Only one fine-tuning is required to make the SM doublet
light, namely, of the determinant of the mass-squared
matrix, with all the elements of the matrix remaining of
the unification scale. The light doublet would be

HSM ¼ cos�HHuþ ei� sin�HH
�
d;

tan2�H � 2j�2j=ðM2
u �M2

dÞ ¼Oð1Þ; �� arg�2:
(2)

The other mass eigenstate, which remains superheavy, is
Hh ¼ �e�i� sin�HHu þ cos�HH

�
d. In typical unified mod-

els, whereHu couples to up quarks andHd couples to down
quarks and charged leptons, this will be reflected in the
Yukawa couplings of the SM Higgs field at low energy,
which will be proportional to cos�H for the up quarks and
proportional to sin�H for the down quarks and charged
leptons. If at least two independent combinations of the
parameters M2

u, M
2
d, and �2 ‘‘scan’’ among the domains,

then both �2 (the mass-squared parameter of the SM
Higgs) and tan�H scan. As shown in [3], not only do
anthropic considerations set �2 to be near -ð100 GeVÞ2,
but they also set tan�H such that the d-quark mass is
comparable to, but slightly larger than, the u-quark mass,
as indeed observed. (See also [11].)
In our case, the scalar doublets are in a representation R

of the family group GF. Denoting them HA
u and HA

d , where

A ¼ 1; . . . ; R, one has

ðHA
u ;H

�
dAÞ M2

u�
B
A ð�2ÞAB

ð�2�ÞAB M2
d�

A
B

� �
H�

uB

HB
d

� �
: (3)

Note that if GF ¼ SUðNÞ and R is an N or other complex
representation, then ð�2ÞAB breaksGF and must be near the
electroweak scale. In that case, a single tuning to make the
determinant of the matrix small is not sufficient. Such a
tuning would make eitherM2

u orM
2
d to be of order the weak

scale, which would result in the light Higgs doublets being
almost purely of the type Hu or of the type Hd. That would
not give electroweak-scale masses to all the quarks and
leptons. In order for all the light quarks and leptons to
obtain realistic masses, both M2

u and M2
d would separately

have to be tuned to be of order the weak scale.
On the other hand, if GF ¼ SOðNÞ and R is an N or

other real representation, then the matrix can have the form

ðHA
u ;H

�A
d Þ M2

u �2

�2� M2
d

� �
�AB:

H�B
u

HB
d

� �
: (4)

In this case, all the elements of the mass matrix can be of
order the unification scale and a single tuning of the
determinant is enough to make a multiplet of scalar

NEWAPPROACH TO FLAVOR SYMMETRYAND AN . . . PHYSICAL REVIEW D 82, 055010 (2010)

055010-3



doublets light that is a mixture of both Hu and Hd type.
Specifically, what will be made light from a single tuning is
an R-multiplet of scalar doublets HA � ðcos�HHA

u þ
ei� sin�HH

�A
d Þ, where A ¼ 1; . . . ; R.

Not only do models with GF ¼ SOðNÞ require fewer
fine-tunings, in this sense, but the problem of cancelingGF

anomalies does not arise. We shall therefore consider only
models with orthogonal family groups.

III. AN SOð3ÞF TOY MODEL

Several key characteristics of the kind of model being
proposed in this paper can be understood in a simple toy
model with GF ¼ SOð3Þ. (A realistic model with GF ¼
SOð4Þ will be discussed in Section IV.) The gauge group of
the model is

G ¼ GU �GF �GDSB

GU ¼ SUð3Þc � SUð3ÞL � SUð3ÞR � S3

GF ¼ SOð3ÞF GDSB ¼ SUðNÞDSB:
(5)

The confining group SUðNÞDSB plays the role of dynami-
cally breaking the family group SOð3ÞF. The three pieces
of the GF multiplet F, namely ð3; �3; 1Þ, ð�3; 1; 3Þ, and
ð1; 3; �3Þ, will be denoted by the subscripts q, �q, and ‘,
respectively. The three families are in an ðF; 3; 1Þ of GU �
GF �GDSB that will be denoted c i ¼ c i

q þ c i
�q þ c i

‘,

where i is an SOð3ÞF vector index. The light scalar doublets
are in an ðF; 5; 1Þ of GU �GF �GDSB, which will be

denoted �ðijÞ ¼ �ðijÞ
q þ�ðijÞ

�q þ�ðijÞ
‘ . Note that �ðijÞ

‘ is a

rank-2 symmetric traceless tensor of SOð3ÞF and therefore

contains 5 doublets HðijÞ
u and 5 doublets HðijÞ

d . The Yukawa

terms of the quarks and leptons are therefore just

LYukawa ¼ y½ðc i
qc

j
�qÞ�ðijÞ

‘ þ cyclic�
þ y0½ðc i

‘c
j
‘Þ�ðijÞ

‘ þ cyclic�: (6)

The expression ‘‘þ cyclic’’ refers to the S3 permutations of
the three SUð3Þ trinification groups that take q ! �q !
‘ ! q.

The �ðijÞ
‘ has a nonzero VEV, but �ðijÞ

q and �ðijÞ
�q clearly

do not, as color is unbroken, so only the terms in the
cyclic permutation that are explicitly written out in

Eq. (6) contribute to quark and lepton masses. The �ðijÞ
‘

contains, among other components, HðijÞ
u and HðijÞ

d . (See

Appendix A.) These have GF-invariant mass-squared
terms of the form

M2
uH

ðijÞ�
u HðijÞ

u þM2
dH

ðijÞ�
d HðijÞ

d þ �2HðijÞ
u HðijÞ

d

þ�2�HðijÞ�
u HðijÞ�

d : (7)

As already explained in Section II, anthropic fine-tuning

will make light a 5 of light doublets, HðijÞ ¼ cos�HH
ðijÞ
u þ

ei� sin�HH
ðijÞ�
d . The terms in Eq. (7) are GF-invariant, and

so leave these 5 light doublets degenerate. (Their degener-
acy will be lifted when GF is dynamically broken.) As
shown in Appendix A, the terms in Eq. (7) come from the
terms

M2
��

ðijÞ�
‘ �ðijÞ

‘ þ ½M��
ðijÞ
‘ �ðijÞ

‘ �‘ þ H:c:�
þ �Trð�ðijÞ�

‘ �ðijÞ
‘ ÞTrð��

‘�‘Þ þ �Trð�ðijÞ�
‘ �ðijÞ

‘ ��
‘�‘Þ;

(8)

where � ¼ �q þ��q þ�‘ is a singlet under SOð3ÞF and

gets superlarge VEVs in the SM-singlet components of�‘.
(The traces in Eq. (8) refer toGU indices.) Of course, along
with the terms in Eq. (8) come those that result from the S3
permutations.
The sector that dynamically breaks SOð3ÞF consists of

fermions in the fundamental and antifundamental repre-
sentations of a confining gauge group SUðNÞDSB: ��i ¼
ð1; 3; NÞ and ���I ¼ ð1; 1; �NÞ, where I is just a label runs

from 1 to 3. These form condensates, which without loss of
generality can be written h��i ���Ii ¼ ðfNÞ3�i

I and which

break SOð3ÞF completely. There is also a set of several real
SOð3ÞF triplet scalars distinguished by the label J: �i

J ¼
ð1; 3; 1Þ. These are ‘‘messenger fields’’ that communicate
the breaking of SOð3ÞF to the standard model fields. These
have an explicit positive mass-squared term, with mass that
is naturally superheavy, and also a Yukawa coupling to the
��i, ���I:

L DSB ¼ 1

2
ðM2

�ÞJK�i
J�

i
K þ ½yIJð��i ���IÞ�i

J þ H:c:�: (9)

Note that we adopt the summation convention that repeated
indices are summed over, for indices of all types, including
labels like I, J, and K above. When the ��i and ���I form a

condensate, it gives a linear term for the �i
J that induces

a VEV

h�i
Ji ¼ ðfNÞ3ðM2

�Þ�1
JKyiK: (10)

M2
� is naturally superlarge, while the scale fN is dynami-

cally generated by the SUðNÞDSB interactions and can
naturally be of any magnitude. If fN is at an intermediate
scale, then the VEV of the �i

J can naturally be near the
weak scale. For example, with M2

� � ð1015 GeVÞ2 and

fN � 1011 GeV, one has h�i
Ji � 1 TeV.

Since fN is the scale of the breaking of the local SOð3ÞF
family symmetry, the family gauge bosons have mass of an
intermediate scale and produce negligible flavor-changing
neutral current (FCNC) interactions. The gauge symme-
tries of the model do not allow any direct renormalizable
couplings of the fields ��i and ���I to the light fields (i.e.

to the quarks and leptons and light scalar doublets). The
breaking of SOð3ÞF is communicated to the light fields by
the �i

J. (Note that the �
i
J are superheavy, even though their

VEVs are near the weak scale. The group SOð3ÞF, again, is
broken at high scales by the dynamical condensate.)
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In particular, it is easily seen that there is only one renor-
malizable term that gives SOð3ÞF-breaking splittings of the
multiplet of light scalar doublets, namely

L 0
� ¼ 	KIð�ðijÞ�

‘ �ðjkÞ
‘ �k

K�
i
IÞ: (11)

If we define the Hermitian matrix m2, which we shall call
the ‘‘master matrix’’, by ðm2Þki � �k

K	KI�
i
I (remembering

the summation convention), then the terms in Eq. (11) give

SOð3ÞF-breaking masses to the 5 light scalar doubletsHðijÞ
of the form

HðijÞ�HðjkÞðm2Þki ¼ Tr½H�Hm2�: (12)

As explained in Section II, anthropic tuning will set the
mass-squared of the lightest of the five scalar doublets to be
negative and of order -ð100 GeVÞ2. The other four scalar
doublets will then have mass-squared of orderm2 � h�i

Ji2.
Since these other four scalar doublets will mediate FCNC
processes, their masses must be at least several TeV. On the
other hand, they should not be much larger than this, as else
they will not give unification of gauge couplings.

Which linear combination of the five HðijÞ is the lightest
(i.e. which linear combination is the SMHiggs doubletHSM)
directly determines the ‘‘textures’’ of the Yukawa couplings
of HSM to the light quarks and leptons. For example, ifHSM

were purelyHð23Þ 	 �ð23Þ
‘ , then by Eqs. (2) and (6) one sees

that there would be terms y cos�Hð �u2u3 þ �u3u2ÞHSM þ
yei� sin�Hð �d2d3 þ �d3d2ÞHSM þ y0ei� sin�Hð‘þ2 ‘�3 þ
‘þ3 ‘

�
2 ÞHSM, so that the textures would all be of the same

form, having only nonvanishing 23 and 32 elements. In
general, however, the master matrix ðm2Þki ¼ �k

K	KI�
i
I is

a nontrivial 3� 3 Hermitian matrix. Therefore, one expects

HSM to be a linear combination of all 5 of the HðijÞ and the
quark and lepton mass textures to have all their elements

nonzero. In particular, if HSM ¼ P
ijaijH

ðijÞ, then the tex-

tures will simply be proportional to aij.

One of the interesting features of this kind of model,
therefore, is that there is a direct connection between the
spectrum of the light scalar doublets and the pattern of
Yukawa couplings of the standard model Higgs field. The
master matrix determines the pattern of masses and mix-
ings of the scalar doublets, which in turn determines which
linear combination is the standard models Higgs field,
which then in turn determines the quark and lepton tex-
tures. A hierarchy among the splittings of the scalar dou-
blets leads to a hierarchy among the quark and lepton
masses. Suppose, for example, that the master matrix m2

has the hierarchical form

m2 ¼m2
0

1þ�11 �12 �13

�12 �22 �23

�13 �23 �33

0
@

1
A; �ij 
 1; m2

0 > 0:

(13)

Then one can see that the term ½HðijÞ�HðjkÞðm2Þki� will give
mass-squared contributions to those HðijÞ which have one

or more indices equal to 1 (namely Hð12Þ, Hð13Þ, and

H0ð11Þ � ð2Hð11Þ �Hð22Þ �Hð33ÞÞ= ffiffiffi
6

p Þ) that are of order
m2

0, while it gives mass-squared contributions to the others

(Hð23Þ and H0ð22Þ � ðHð22Þ �Hð33ÞÞ= ffiffiffi
2

p
) that are only

Oð�ijÞm2
0. The lightest scalar doublet is the standard model

Higgs HSM, whose mass-squared is pushed slightly nega-
tive by anthropic fine-tuning. We will call the next lightest
the ‘‘lightest extra scalar doublet (LESD)’’ HLESD. These
two lightest doublets, HSM and HLESD, are approximately

linear combinations of H0ð22Þ and Hð23Þ and are therefore
only split from each other by Oð�ijÞm2

0. The other three

scalar doublets are split from these two by Oðm2
0Þ. The

pattern is schematically shown in Fig. 2.
The splittings shown in Fig. 2 come from diagonalizing

the explicit form of the mass matrix of the scalar doublets,
which (from Eq. (13)) is to leading order in �ij given by

½H0ð22ÞHð23ÞH0ð11ÞHð12ÞHð13Þ�

�

�22þ�33

2

��
23
��23

2
�33��22

2
ffiffi
3

p �12

2 � �13

2
ffiffi
2

p

�23���
23

2
�22þ�33

2

��
23
��23

2
ffiffi
3

p �13

2
ffiffi
2

p �12

2

�33��22

2
ffiffi
3

p �23���
23

2
ffiffi
3

p 2=3
2��

12
��12

2
ffiffi
3

p � �13

2
ffiffi
6

p

��
12

2

��
13

2
ffiffi
2

p 2�12���
12

2
ffiffi
3

p 1=2
��
23

2

� ��
13

2
ffiffi
2

p ��
12

2 � ��
13

2
ffiffi
6

p �23

2 1=2

2
666666666666664

3
777777777777775

�m2
0

H0ð22Þ

Hð23Þ

H0ð11Þ

Hð12Þ

Hð13Þ

2
666666664

3
777777775
; (14)

Therefore, the lightest scalar doublet HSM is predomi-

nantly a linear combination of H0ð22Þ ¼ ðHð22Þ �
Hð33ÞÞ= ffiffiffi

2
p

and Hð23Þ, with Oð�ijÞ admixtures of the others.

(Note that this depends on the sign of the largest elements
in m2, which were chosen in Eq. (13) to be positive.)
Specifically, one finds HSM to be of the form

FIG. 2. A schematic plot of the mass-squared spectrum of the 5
of scalar doublets in the toy SOð3ÞF model.
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HSM ffi cos
ððHð22Þ �Hð33ÞÞ= ffiffiffi
2

p þ sin
Hð23Þ

þOð�12; �13ÞHð12Þ þOð�12; �13ÞHð13Þ þOðð�22

� �33Þ; Imð�23ÞÞð2Hð11Þ �Hð22Þ �Hð33ÞÞ= ffiffiffi
6

p Þ:
(15)

That implies that the quark and lepton textures have
the form

Mq;‘

�
Oðð�22��33Þ; Imð�23ÞÞ Oð�12;�13Þ Oð�12;�13Þ

Oð�12;�13Þ cos
 sin


Oð�12;�13Þ sin
 �cos


0
BB@

1
CCA

hHSMi: (16)

Note that the largest (smallest) elements of these textures
correspond to the lightest (heaviest) scalar doublets.
Moreover, the ratios of splittings within the 5 of scalar
doublets is closely related to the ratios of quark and lepton
masses. The splitting between the two lightest scalar
doublets turns out to be (from Eq. (14)) OðImð�23Þ; ð�22 �
�33Þ2Þm2

0, while the splitting that separates these two dou-

blets from the three heavier doublets isOð1Þm2
0. See Fig. 2.

Compare this to the ratio of masses of the first family of
fermions to the masses of the heavier families, which is
Oðð�22 � �33Þ; Imð�23ÞÞ, as can be seen from Eq. (16).

One sees from Eq. (16) that this SOð3ÞF model is not
realistic, because the quark and lepton mass matrices have
to be traceless. (The 5 of SOð3Þ is a traceless tensor.) One
cannot therefore have a threefold fermion mass hierarchy:
if one of the families is made very light, the tracelessness
forces the other two families to have nearly equal and
opposite masses to each other.

Another unrealistic feature of this toy model is that the
up quark, down quark, and charged lepton mass matrices
(which shall be denoted MU, MD, ML) are all proportional

to the same matrix, namely hHðijÞi. Consequently there is
no Cabibbo-Kobayashi-Maskawa quark-mixing matrix
(CKM) mixing. The distinction between the different types
of fermions (up quarks, down quarks, and charged leptons)
comes from the breaking of the unified group SUð3Þc �
SUð3ÞL � SUð3ÞR � S3. The superlarge VEVs that do this
breaking must be invariant under SOð3ÞF (otherwise
SOð3ÞF would be broken at superlarge scales). Therefore,
the breaking of SOð3ÞF, which generates the nontrivial
quark and lepton textures, does not depend on these
GU-breaking VEVs and the textures do not ‘‘know’’ that
the unified group is broken, and hence the textures have the
same form for the different types of fermions.

A third difficulty of the SOð3ÞF model is that there are
only five light scalar doublets, and as Fig. 2 shows, three of
them are orders of magnitude heavier than 1 TeV. (If
Oð�ijÞm2

0 > 1 TeV, as must be the case if HLESD does

not mediate excessive flavor-changing neutral-current

interactions (FCNC) processes, then the other extra light
scalar doublets, whose masses are Oðm2

0Þ, must be several

orders of magnitude heavier than a TeV.) This does not give
a good unification of gauge couplings.
Some of these difficulties can be overcome in the con-

text of SOð3ÞF by making the model more complicated.
However, we shall find in Section IV that they can be
overcome in a very simple way by going to SOð4ÞF.
There will then be four light families; one of these, how-
ever, can be made heavy by ‘‘mating’’ and getting mass
with an SOð4ÞF-singlet mirror family. The full mass
matrices of the fermions would then contain a 4� 4 block
for the four families in the 4 of SOð4ÞF. There can be a
threefold hierarchy among the eigenvalues of such a
matrix. Tracelessness will then cause the two largest
eigenvalues to be nearly equal and opposite. That will
not matter, however, because one of these large eigen-
values can be of the family that mates with the mirror
family. Nevertheless, one will find that the near degeneracy
of these two (largest) eigenvalues is related to a near
degeneracy of the two lightest scalar doublets—just as in
the SOð3ÞF toy model (Fig. 2). This is a general feature of
this kind of model, and it is interesting phenomenologi-
cally because it means that one of the extra scalar doublets
(the LESD) will dominate over all the others in low-energy
phenomenology. That makes these models much more
predictive than they would otherwise be.
Since the LSED is split from the SM Higgs doublet by

an amount much smaller than the other splittings within the
GF multiplet, most of the extra scalar doublets have to be
several orders of magnitude heavier than a TeV. In an
SOð4ÞF model this can compensate for the fact that there
are nine scalar doublets, rather than five or six, and give a
good unification of gauge couplings.

IV. A REALISTIC SOð4ÞF MODEL

The SOð4ÞF model is quite similar to the SOð3ÞF toy
model except that in addition to the families in a vector of
the family group, there is a mirror family that is a singlet of
the family group. The quarks and leptons are therefore in
two multiplets of GU � SOð4ÞF � SUðNÞDSB, namely
ðF; 4; 1Þ ¼ c i ¼ c i

q þ c i
�q þ c i

‘, where i ¼ 1; . . . ; 4, and

ð �F; 1; 1Þ ¼ �c ¼ �c q þ �c �q þ �c ‘. The SOð4ÞF -singlet

mirror family will mate with one of the families leaving
three families light. The quark and lepton Yukawa terms
are (Equation (6))

L Yuk ¼ y½c i
qc

j
�q�

ðijÞ
‘ þ cyclic� þ y0½c i

‘c
j
‘�

ðijÞ
‘

þ cyclic� þ yJ½c i
q
�c q�

i
J þ cyclic�; (17)

where the �i
J are now in (1, 4, 1) of the full gauge group

and couple as in Eq. (9) to the ��i, ���I, which are now in

ð1; 4; NÞ and four ð1; 1; �NÞ.
The quark and lepton textures consequently have the

form
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ðf1f2f3f4 �fcÞ

a11f a12f a13f a14f b1f
a12f a22f a23f a24f b2f
a13f a23f a33f a34f b3f
a14f a24f a34f a44f b4f
b1fc b2fc b3fc b4fc 0

0
BBBBBBB@

1
CCCCCCCA

fc1
fc2
fc3
fc4
�f

0
BBBBB@

1
CCCCCA; (18)

where f stands for u, d, or ‘�, and fc stands for uc, dc, and
‘þ. The 4� 4 block is symmetric and traceless and is
given by (see Eqs. (2) and (17))

aiju ¼ cos�HyhHðijÞi; aijd ¼ ei� sin�HyhHðijÞi;
aij‘ ¼ ei� sin�Hy

0hHðijÞi ) aiju / aijd / aij‘ :
(19)

From the third term in Eq. (17) it appears that the entries
bif ¼ bifc ¼ �JyJh�i

Ji and that these are the same for f ¼
u; d; ‘. However, as discussed in Appendix C, there can be
d > 4 effective operators (involving the superlarge VEVs
that break the unification group GU) which have the effect
at low-energy of making the Yukawa couplings yJ in
Eq. (17) different for different fermion types. Thus the

third term in Eq. (17) should really be written yQJ Q
i �Q�i

J þ
yu

c

J ðucÞi �uc�i
J þ yd

c

J ðdcÞi �dc�i
J þ yLJL

i �L�i
J þ y‘

c

J
�‘c�i

J. So

that one has bif ¼ �Jy
f
Jh�i

Ji and bifc ¼ �Jy
fc

J h�i
Ji, where

f ¼ u; d; ‘�, and fc ¼ uc; dc; ‘þ. It turns out, as explained
in Appendix C, that in simple situations yQJ ¼ yu

c

J ¼ y‘
c

J ,
but yd

c

J and yLJ can be different. (This ultimately stems from
the fact that in the representation F of GU there are extra
superheavy fermions in each family with the same SM
charges as dc and L and their conjugates. These extra
fermions are called Dc and L0 in the Appendices.) So

biu ¼ bid ¼ biuc ¼ bi‘c � bi‘ � bidc : (20)

It follows that the full 5� 5 matrices of the different
fermion types ðu; d; ‘Þ are no longer simply proportional
to each other, and so CKM mixing can occur. Moreover,

the tracelessness of the aðijÞ is no longer a problem. For

example, suppose that there is a hierarchy in aðijÞ such that
its first and second rows and columns are very small (with
the first much smaller than the second), and suppose that
biu ¼ biuc points in the i ¼ 4 direction, then the mass
matrix of the up quarks has the form

MU ¼

a11 a12 a13 a14 0
a12 a22 a23 a24 0
a13 a23 a33 a34 0
a14 a24 a34 �a033 B
0 0 0 B 0

0
BBBBB@

1
CCCCCA; (21)

where a033 ¼ a33 þ a11 þ a22 ffi a33. Since B� h�i �
TeV, while the aij are proportional to the electroweak
breaking VEV �100 GeV, what happens with the form
in Eq. (21) is that the three observed light families of up
quarks, u, c, and t, are approximately those with i ¼ 1; 2; 3,
while the i ¼ 4 up quark gets a mass much greater than a

TeV with the mirror family up quark. The 3� 3 mass
matrix of the observed up quarks is then approximately

~MU ffi
a11 a12 a13

a12 a22 a23

a13 a23 a33

0
B@

1
CA; (22)

which is unconstrained by the tracelessness condition of
the 4� 4 matrix aij and can have a realistic hierarchy.
As in the SOð3ÞF toy model, the hierarchy in the quark

and lepton textures is closely connected to a hierarchy in the
spectrum of the scalar doublets, of which there are 9 in the
SOð4ÞF model. Suppose, for example, the master matrix
ðm2Þki � �k

K	KI�
i
I (which is now 4� 4, of course) has

ðm2Þ11 � ðm2Þ22 � the other elements. Then the four

scalar doublets with an index 1 (namely, Hð12Þ, Hð13Þ,
Hð14Þ, and H0ð11Þ � ð3Hð11Þ �Hð22Þ �Hð33Þ �Hð44ÞÞ= ffiffiffiffiffiffi

12
p

)
will be much heavier than the three scalar doublets without

an index 1 but with an index 2 (namely, Hð23Þ, Hð24Þ, and
H0ð22Þ � ð2Hð22Þ �Hð33Þ �Hð44ÞÞ= ffiffiffi

6
p

), which in turn will
be much heavier than the two scalar doublets that have

neither a 1 nor a 2 index (namely H0ð33Þ � ðHð33Þ �
Hð44ÞÞ= ffiffiffi

2
p

andHð34Þ). Moreover, these two lightest doublets
will have a relatively small splitting, as shown schemati-
cally in Fig. 3. (Figure 3 is not drawn to scale. Munif is
supposed to be many of orders of magnitude larger than

m2
0. H

0ð11Þ is supposed to be one or 2 orders of magnitude

heavier than H0ð22Þ, and so forth.)
There is mixing among these scalars, of course, so that

the lightest scalar doublet (the SM Higgs doublet) is pre-

dominantly a linear combination of ðHð33Þ �Hð44ÞÞ= ffiffiffi
2

p
and Hð34Þ, but with small admixtures of the others.
Corresponding to this hierarchy, as seen in the last section,
the standard model Higgs doublet will have its largest
Yukawa couplings in the 33, 34, 43, 44 elements, the
next largest in the 22, 23, 32, 24, 42 elements, and the
smallest in the 11, 12, 21, 13, 31, 14, 41 elements.
Moreover, the ratios of the splittings in the scalar multiplet
are closely related to the ratios of the elements of the 4� 4
block of the fermion mass matrices.

FIG. 3. A schematic plot of the mass-squared spectrum of the
9 of scalar doublets in the SOð4ÞF model.
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As explained below, the mass matrices of up quarks,
down quarks, and charged leptons can, without loss of
generality, be brought to the form

MU ¼

a11 a12 a13 a14 0
a12 a22 a23 a24 0
a13 a23 a33 a34 0
a14 a24 a34 �a033 B
0 0 0 B 0

0
BBBBB@

1
CCCCCA; (23)

MD ¼ t

a11 a12 a13 a14 0
a12 a22 a23 a24 0
a13 a23 a33 a34 0
a14 a24 a34 �a033 B=t
C1 0 0 C4 0

0
BBBBB@

1
CCCCCA; (24)

ML ¼ r

a11 a12 a13 a14 D1

a12 a22 a23 a24 D2

a13 a23 a33 a34 0
a14 a24 a34 �a033 D4

0 0 0 B=r 0

0
BBBBB@

1
CCCCCA: (25)

These forms are achieved as follows: By the freedom to
choose an SOð4ÞF basis, one can simultaneously do the
same SOð4ÞF rotation to all the fi and ðfcÞi. Under this, of
course, the matrices aij retain their symmetric form and the
vectors biu ¼ bid ¼ biuc ¼ bi‘c can be brought to the form

ð0; 0; 0; BÞ. The vectors bidc and bi‘, being different in

general, will not be brought to a special form by this
rotation. However, by another change of SOð4ÞF basis
that involves rotating only in the 1,2,3 directions, one
leaves the form of ð0; 0; 0; BÞ unchanged and the vector
bidc can be brought to the form ðC1; 0; 0; C4Þ. Finally, by a

third change of basis that involves only the 2,3 directions,
one can bring bi‘ to the form ðD1; D2; 0; D4Þ. The parame-

ters t and r are defined by t � tan�H, and r � y0=y, where
y and y0 are Yukawa couplings appearing in Eq. (17).

From Eqs. (23)–(25) it can be seen that the effective
mass matrices of the three light families of up quarks,
down quarks, and charged leptons, ~MU, ~MD, and ~ML,
depend on 14 parameters: aij, t, r, C1=C4, D1=D4, and
D2=D4. These must fit 12 observables: six quark masses,
three charged lepton masses, and the three CKM parame-
ters Vus, Vcb, and Vub. (The neutrino masses can arise in
several ways, as discussed in Appendix C, and depend on
several other parameters.) If one considers just the quarks,
there are 11 parameters to fit 9 quantities. Realistic fits can
be obtained, and will be presented in another place.

The model can fit, but does not predict, the quark and
lepton masses and mixing angles, but by fitting those
quantities, one determines enough parameters of the model
to allow one to calculate in terms of only a few unknown
parameters the flavor violation mediated by the extra scalar
doublets—which in fact is dominated by the exchange of

the lightest extra scalar doublet (LESD), as well as all the
proton-decay branching ratios.
To illustrate how predictive the SOð4ÞF model is, con-

sider for simplicity the case where CP is conserved and all
parameters are real. The traceless part of the 4� 4 sym-
metric matrix ðm2Þij, which has 9 parameters, determines
the complete mass spectrum of the 9 light scalar doublets
(except for the overall mass of the 9-plet, which is deter-
mined anthropically, and is known once the mass-squared
of the SM Higgs doublet is measured directly). That means

that m2 determines which linear combinations of HðijÞ the
SM Higgs doublet is and therefore the entries aij in the
mass matrices in Eq. (23). Therefore the 9 parameters in
the ‘‘master matrix’’ m2, together with the two parameters
C1=C4 and t in Eq. (24), determine 8 measurable quanti-
ties: the six quark masses and two CKM mixings. (In this
CP conserving case, the mixing Vub is a real number, and
therefore not realistic.) However, far more than that is also
determined. The master matrix m2 determines the masses
of all nine of the light scalar doublets and which linear

combinations ofHðijÞ they are. Consequently, it determines
also their Yukawa coupling matrices to the quarks and
therefore all the flavor-changing amplitudes at low energy,
which involves the coefficients of many four-fermion op-
erators. To put it another way, just fitting the quark masses
and the CKM angles leaves three undetermined parameters
in terms of which all the FCNC amplitudes in the quark
sector can be calculated. (Actually, there are only two
undetermined parameters, since the unification of gauge
couplings gives one constraint on the mass spectrum of the
scalar doublets.)
If one considers also the charged leptons, there is even

more predictivity. Three additional model parameters,
namely r, D1=D4, and D2=D4, allow one to determine
the textures of the charged leptons, and thus the masses
me, m�, and m�). The net effect, therefore, is that without

any more undetermined parameters being brought in the
couplings of the lepton sector and many more observable
quantities can be computed. Among these are the coeffi-
cients of all the flavor-violating four-fermion operators that
involve charged leptons, of which there are many
(�þ

R e
�
L �sRdL, �

�
R e

þ
L e

�
R e

þ
L , etc.).

Finally, in terms of just a few more parameters, one
can also predict all the proton decay branching ratios.

Proton decay is mediated by the exchange of ~DðijÞ and
~DcðijÞ . (Actually, these mix with ~dðijÞ and ~dc

ðijÞ
. See

Appendix A.) These are superheavy, and so the
GF-breaking splittings among their masses can be
neglected in computing proton decay. The masses of these
colored scalars are dominated by two terms, which in the

notation of Appendix B are M0
�ðh~Si ~DcðijÞ þ h ~Nci~dcðijÞ Þ ~DðijÞ.

The couplings of these colored scalars are completely
known, since they are part of the same SOð4ÞF multiplet
with the SM Higgs doublet, and are controlled by the same
Yukawa terms (the first two in Eq. (17)). For example, in
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the basis of Eqs. (23)–(25), ~DðijÞ just couples in the ijðjiÞ
direction. There is also proton decay mediated by the
GF-singlet colored scalars ~D, ~Dc. These amplitudes would
depend on an additional parameter. (Again, the pattern of
the Yukawa couplings of these GF-singlet colored scalars
is completely known, since they couple as c i

qc
i
�q�‘ plus

similar terms.)
In sum, fitting the quark and charged lepton masses and

the CKM angles, leaves only a small number of undeter-
mined parameters in terms of which the coefficients of
many flavor-violating four-fermion operators and all the
proton branching ratios can be computed.

The counting is different if complex phases are taken
into account. On the one hand, there are more model
parameters (the complex phases), but most of these can
be ‘‘absorbed’’ by field redefinitions, and there are also
more quantities that in principle can be measured (the
coefficients ofCP-violating operators). We leave the fitting
of the quark and lepton masses, and the predictions of
the patterns of FCNC and proton-decay amplitudes to
future work.

V. CONCLUSIONS

In this paper it is shown how a realistic model can be
constructed in which there is a multiplicity of light scalar
doublets (one of which is the standard model Higgs dou-
blet), just as there is a multiplicity of fermion families. The
multiplicity of light scalar doublets can give satisfactory
gauge coupling unification [6]. The multiplicity of both
light fermions and light scalars is due to their forming
multiplets of a nonabelian family group. This family group
protects the lightness of the ‘‘extra’’ scalar doublets by
tying their masses to that of the standard model Higgs
doublet. The mass of the standard model Higgs doublet
is ‘‘anthropically tuned’’ to be small [2–4].

While the anthropic tuning of the scalar masses cannot
be tested, there are many consequences of the nonabelian
family symmetry that can be tested. In particular, the
couplings of the scalars are all related to each other by
the family symmetry. Knowledge of the quark and lepton
masses and mixings therefore gives much information
about the pattern of couplings of all the scalars. In this
way many predictions of the patterns of the flavor-
changing mediated by the extra light scalar doublets and
of proton decay mediated by the superheavy colored part-
ners of the light scalars can in principle be extracted. The
number of parameters is enormously restricted by the
family symmetry.

Here it has been shown that it is relatively easy to
construct realistic models based on orthogonal family
groups, and, in particular, one based on SOð4ÞF has been
described in detail. It may be possible to use many other
kinds of family symmetries, such as SUðNÞ or nonabelian
discrete symmetries.

The models discussed here are meant to illustrate the
utility in guiding model-building of an extension of
the old ‘‘naturalness principle’’, which is called here the
‘‘extended naturalness principle.’’ This extended principle
forbids apparent tunings of parameters that are not justified
either by symmetry principles and dynamical mechanisms
(as required by the original naturalness principle), or by
anthropic considerations. Whereas anthropic tuning of a
parameter is not something that can be directly tested, the
requirement that tunings be either anthropically justified or
be natural in the usual sense can constrain model building
and lead to testable scenarios. The kinds of models pre-
sented here, which can be highly predictive, only make
sense (it would seem) in the context of an anthropically
tuned electroweak scale.

APPENDIX A

The group used for unification in this paper is GU ¼
SUð3Þc � SUð3ÞL � SUð3ÞR � S3, where S3 permutes the
three SUð3Þ factors cyclically. A multiplet that is used both
for a family and for the Higgs field that breaks the elec-
troweak symmetry is ð3; �3; 1Þ þ ð�3; 1; 3Þ þ ð1; 3; �3Þ, which
is denoted F throughout this paper. The following table
shows how standard model fields are contained in this
multiplet. Our convention in the appendices is that un-
primed indices refer to SUð3Þc, primed indices refer to
SUð3ÞL, barred indices refer to SUð3ÞR, a ¼ 1; 2; 3 is a
color SUð3Þ index, 	0 is a weak SUð2Þ index, and a tilde
over a field means that it is a boson with the same SM
charges as the fermion field denoted by the same letter. The
SM hypercharge is given by Y=2 ¼ � 1

3	
0
8 � 1

3
�	3 þ �	8,

where 	3 ¼ diagð12 ;� 1
2 ; 0Þ and 	8 ¼ diagð12 ; 12 ;�1Þ.

Rep Fermions Bosons Y=2

ð3; �3;1Þ ðc qÞa	0 ¼Q¼
�u
d

�
ð�qÞa	0 ¼ ~Q¼

� ~u
~d

�
1=6

ðc qÞa30 ¼D ð�qÞa30 ¼ ~D �1=3

ð�3;1;3Þ ðc �qÞ�1a ¼ dc ð��qÞ�1a ¼ ~dc 1=3

ðc �qÞ�2a ¼ uc ð��qÞ�2a ¼ ~uc �2=3

ðc �qÞ�3a ¼Dc ð��qÞ�3a ¼ ~Dc 1=3

ð1;3; �3Þ ðc ‘Þ	0
�1
¼ L0 ð�‘Þ	0

�1
¼Hd �1=2

ðc ‘Þ	0
�2
¼ �L0 ð�‘Þ	0

�2
¼Hu 1=2

ðc ‘Þ	0
�3
¼ L ð�‘Þ	0

�3
¼ ~L �1=2

ðc ‘Þ30�1 ¼Nc ð�‘Þ30�1 ¼ ~Nc 0

ðc ‘Þ30�2 ¼ eþ ð�‘Þ30�2 ¼ ~eþ 1

ðc ‘Þ30�3 ¼ S ð�‘Þ30�3 ¼ ~S 0

(A1)

There are two scalar multiplets that transform as F

under GU, �
ðijÞ and �. The former is rank-2 symmetric

traceless tensor under the family group GF, the latter a
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singlet under GF. �
ðijÞ ¼ �ðijÞ

q þ�ðijÞ
�q þ�ðijÞ

‘ and � ¼
�q þ��q þ�‘. These couple to the fermion families,

which also transform as F under GU, but as vectors under
GF: c

i ¼ c i
q þ c i

�q þ c i
‘.

There are the following types of Yukawa couplings:

y½ðc i
qc

j
�qÞ�ðijÞ

‘ þ ðc i
�qc

j
‘Þ�ðijÞ

q þ ðc i
‘c

j
qÞ�ðijÞ

�q �
þ y0½ðc i

qc
j
qÞ�ðijÞ

q þ ðc i
�qc

j
�qÞ�ðijÞ

�q þ ðc i
‘c

j
‘Þ�ðijÞ

‘ �
þ Y½ðc i

qc
i
�qÞ�‘ þ ðc i

�qc
i
‘Þ�q þ ðc i

‘c
i
qÞ��q�

þ Y0½ðc i
qc

i
qÞ�q þ ðc i

�qc
i
�qÞ��q þ ðc i

‘c
i
‘Þ�‘�

(A2)

Suppressing the family indices these contain the following
kinds of terms

ðc qc �qÞ�‘ þðc �qc ‘Þ�q þðc ‘c qÞ��q

¼ ðQdcÞHd þðdcL0Þ ~Q þðL0QÞ~dc
þðQucÞHu þðuc �L0Þ ~Q þð �L0QÞ~uc
þðQDcÞ ~L þðDcLÞ ~Q þðLQÞ ~Dc

þðDdcÞ ~Nc þðdcNcÞ ~D þðNcDÞ~dc
þðDucÞ~eþ þðuceþÞ ~D þðeþDÞ~uc
þðDDcÞ~S þðDcSÞ ~D þðSDÞ ~Dc;

(A3)

and

ðc ‘c ‘Þ�‘ þðc qc qÞ�q þðc �qc �qÞ��q

¼ ðLeþÞHd þðQQÞ ~D þðdcucÞ ~Dc

þðL0LÞ~eþ þðQDÞ ~Q þðucDcÞ~dc
þðeþL0Þ ~L þðDcdcÞuc
þðLNcÞHu

þð �L0LÞ ~Nc

þðNc �LÞ ~L
þð �L0SÞHd

þðL0 �L0Þ~S
þðSL0ÞHu

(A4)

In the scalar multiplets�ðijÞ and�, only the parts�ðijÞ
‘ and

�‘ have components with nonzero VEVs, as otherwise
color would be broken. �‘ contains superlarge VEVs in
~Sð¼ �30

�3
Þ and ~Ncð¼ �30

�1
Þ, which help break GU down to

the standard model group (which, of course, also means
breaking S3). These large VEVs get rid of the extra fermi-
ons in each family by giving mass to the D;Dc; L0; �L0, as
can be seen from Eqs. (A3) and (A4). (If h ~Nci ¼ 0, then D
mates purely with Dc, and �L0 mates purely with L0. With
h ~Nci � 0, however,Dmates partly with dc, so that the light
right-handed down quarks are linear combinations of Dc

and dc. Similarly, �L0 mates partly with L, so that the light
lepton doublets are linear combinations of L and L0.)

The �ðijÞ
‘ contains the doublets HðijÞ

u , HðijÞ�
d , and ~LðijÞ�.

Anthropic fine tuning makes one linear combination of

these light (as discussed below) which we call HðijÞ.

The lightest of the HðijÞ is the standard model Higgs
doublet HSM.
The GF-invariant masses of the scalar doublets get

contributions from the terms

M2
��

ðijÞ�
‘ �ðijÞ

‘

þ½M��
ðijÞ
‘ �ðijÞ

‘ �‘ þH:c:�
þ�Trð�ðijÞ�

‘ �ðijÞ
‘ ÞTrð��

‘�‘Þ þ �Trð�ðijÞ�
‘ �ðijÞ

‘ ��
‘�‘Þ;
(A5)

where ‘‘Tr’’ in the last two terms refers to traces over the
SUð3Þc � SUð3ÞL � SUð3ÞR indices. There are other terms
that are related to those in Eq. (A5) by S3 permutations.
There are also other quartic terms that do not contribute to
the superlarge masses of the scalar doublets. The terms in
Eq. (A3) give a mass-squared matrix for the scalar doublets
of the form

ðHu;H
�
d;
~L�Þ

M2 M�h~Si M�h ~Nci
M�

�h~Si� M2 þ�jh ~Ncij2 �h~Si�h ~Nci
M�

�h ~Nci� �h ~Nci�h~Si M2 þ�jh~Sij2

0
BB@

1
CCA

�
H�

u

Hd

~L

0
BB@

1
CCA; (A6)

where M2 ¼ M2
� þ �ðjh~Sij2 þ jh ~Ncij2Þ.

In the discussion in the main text, only the mixing ofHu

and Hd were considered, not ~L, for ease of discussion.
Including the mixing with ~L does not qualitatively affect
the conclusions reached in the text. Note that in general
there are three unequal eigenvalues of this matrix. Also, by
having two parameters scan, such asM2

� andM�, both the

lightest eigenvalue �2 and the parameter that was called
tan�H in the text will scan.

APPENDIX B

From the Yukawa couplings shown in Appendix A one
sees that ~D, ~Dc can mediate proton decay. The terms
ðdcNcÞ ~D, ðuceþÞ ~D conserve B and L only if ~D has
B ¼ 1

3 , L ¼ 1; whereas the term ðQQÞ ~D conserves B and

L only if ~D has B ¼ � 2
3 , L ¼ 0. Since both kinds of terms

are present, ~D exchange mediates proton decay. Similar
arguments apply to ~Dc. (On the other hand, the exchange of
~Q does not cause dangerous proton decay. The terms

ðdcL0Þ ~Q and ðDcLÞ ~Q conserve B and L if ~Q has B ¼ 1
3

and L ¼ �1. Then the term ðQDÞ ~Q violates B and L, but
this term contains the purely superheavy quark D, and so
does not produce rapid proton decay.)
The question is whether the ~D and ~Dc can be made

heavy enough to avoid rapid proton decay, while
leaving GU unbroken down to the scale 1014 GeV. This

can be done by the terms (M0
��

ðijÞ
q �ðijÞ

�q �‘ þ cyclic)

and M00
��q��q�‘ þ cyclic). These give masses
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ðM0
�h~SiÞ ~DðijÞ ~DcðijÞ and ðM00

�h~SiÞ ~D ~Dc. Since GU invariance

allowsM0
� andM00

� to be arbitrarily large, the masses of the

dangerous colored scalars can be much larger than
1014 GeV. Note that these are different terms than the

(M��
ðijÞ
‘ �ðijÞ

‘ �‘ þ cyclic) that are responsible for the �2

term in the scalar doublet mass matrix (Equation (8) of the
text), and unrelated to it by S3. Making the dangerous
scalars heavy to suppress proton decay does create split
multiplets that give threshold corrections to the running of
the gauge couplings above the scale 1014 GeV.

APPENDIX C

As discussed after Eq. (19) in the text, the Yukawa
couplings yJ½c i

q
�c i
q�

i
J þ cyclic� must be different for the

different types of fermions (up quarks, down quarks, and
charged leptons) in order to get realistic mass matrices. If
they are not different, then all the 3� 3 mass matrices of
the observed quarks and leptons, ~MU, ~MD, and ~ML will be
proportional to each other, giving no CKM mixing and
unrealistic mass relations. To make the couplings different,
the superlarge VEVs that break the unified group must
come into the low energy Yukawa couplings. This can
happen in a simple way if superheavy fields that get mass
from these VEVs are ‘‘integrated out’’ to give effective
d > 4 Yukawa terms.

Suppose, for example, that in the SOð4ÞF model of
Section IV there is an additional superheavy family-mirror
family pair, c 0 þ �c 0 The complete set of quarks and
leptons is thus ðF; 4; 1Þ ¼ c i, ð �F; 1; 1Þ ¼ �c , ðF; 1; 1Þ ¼
c 0, ð �F; 1; 1Þ ¼ �c 0. Then the GF-singlet family c 0 will
‘‘mate’’ with some linear combination of the two
GF-singlet mirror families �c and �c 0 to get a superlarge
mass, leaving one mirror family light. Superlarge VEVs
that break the unified group can also contribute to these
superlarge masses. Thus, the mirror family that remains
light will consist of linear combinations of �c and �c 0 that
know about the breaking of the unified group.

Consider the following terms;

yJðc i �c Þ�i
J þ y0Jðc i �c 0Þ�i

J: (C1)

Suppose that for a type of fermion f, the ‘‘light’’ �f (the one
that does not get a superlarge mass) is a combination
�f ¼ �f

�fðc Þ þ f
�fð �c 0Þ. Then, the above term gives

½�fðyJh�i
Ji þ fðy0Jh�i

JiÞ�fi �f: (C2)

Since, in general, yJh�i
Ji and y0Jh�i

Ji point in different
directions in SOð4ÞF space, and �f and f can be different

for different fermion types f, one sees that the desired

difference in the textures can result: the 1� 4 and 4� 1
blocks can be different in MU, MD, and ML.
The superheavy fermion mass terms that are relevant are

ðM1c
0 �c þM2c

0 �c 0Þ½qqþcyclic�
þð	1c c�þ 	2c

0c 0�þ 	3c c 0�Þ½‘‘‘þcyclic�
þð�1c c�þ �2c

0c 0�þ �3c c 0�Þ½q �q‘þcyclic�
þð	4

�c �c �� þ 	5
�c 0 �c 0�� þ 	6

�c �c 0��Þ½‘‘‘þcyclic�
þð�4

�c �c �� þ �5
�c 0 �c 0�� þ �6

�c �c 0��Þ½q �q‘þcyclic�:
(C3)

The complete problem will not be analyzed explicitly here,
but the significant points that emerge from such an analysis
will be indicated. If the superheavy VEVs of �‘ (namely

h~Si and h ~Nci) are neglected, one only has the terms
M1c

0 �c þM2c
0 �c 0Þ½qqþcyclic�, which treat all types of

fermions the same. The distinction between the different
fermion types comes from the superlarge VEVs of �‘,
which break the unified group GU. But these superlarge
VEVs give mass only to the species D, Dc=dc, L0=L, and
�L0. That is why it is only the particle types dc and L that get
distinguished from the others, as stated in Eq. (20).
Neutrino masses can arise in several ways. Perhaps the

simplest is to introduce fermions that are singlets underGU

and vectors under the family group, to play the role of
‘‘right-handed neutrinos’’ in the type-I seesaw mechanism.
For example, in the SOð4ÞF model they would transform
under GU � SOð4ÞF � SUðNÞDYN as (1, 4, 1). Denote
these by Ni. Then the following couplings would be
allowed:

Y1½ðc i
‘N

jÞ��ðijÞ
‘ þ cyclic�

þY2½ðc i
‘N

iÞ��
‘ þ cyclic�

þMNðNiNiÞ

½ð��

‘�
ðijÞ
‘ Þð��

‘�
ðijÞ
‘ Þ þ cyclic� þH:c:

(C4)

Integrating out the Ni would give a tree-level contribution
to the light neutrino masses of the type-I form, namely

M� ¼ �MDiracM
�1
R MT

Dirac, with ðMDiracÞij ¼ Y1hHðijÞ
d i�

and ðMRÞij ¼ MN�
ij. This by itself would give unrealistic

neutrino masses, as they would have a strong hierarchy of
masses. There would also be loop contributions to the

neutrino masses that went as ðM�Þij ¼ �ij 1
16�2 
ðY2Þ2 �

hHðk‘Þ
u i2=M, where M is a combination of superheavy

masses that arises from the momentum integral of the
loop. Other contributions to the light neutrino mass matrix,
both tree-level and from loops are also possible, depending
on what fields and couplings are present at high scales.
Thus, such models are not predictive of neutrino
properties.
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