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We demonstrate that in effective theories arising from a class of N ¼ 1 fluxless compactifications of

M theory on a G2 manifold with low-energy supersymmetry, CP-violating phases do not appear in the

soft-breaking Lagrangian except via the Yukawas appearing in the trilinear parameters. Such a mechanism

may be present in other string compactifications as well; we describe properties sufficient for this to occur.

CP violation is generated via the Yukawas since the soft trilinear matrices are generically not proportional

to the Yukawa matrices. Within the framework considered, the estimated theoretical upper bounds for

electric dipole moments of the electron, the neutron, and mercury are all within the current experimental

limits and could be probed in the near future.
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I. INTRODUCTION

The null measurements of the electric dipole moments
(EDMs) of the neutron [1], and, recently, heavy atoms like
thallium (205Tl) [2,3] and mercury (199Hg) [4,5], have put
very strong constraints on the amount of CP violation from
new physics beyond the standard model (SM). The preci-
sion of these measurements is expected to significantly
improve in a few years. If an excess above the SM pre-
diction is observed, it requires the presence of new physics
beyond the SM. However, since the EDMs, even if ob-
served, are already ‘‘small,’’ this strongly suggests that the
new physics must be such that it has an underlying mecha-
nism to naturally suppress EDMs.

In general versions of supersymmetric extensions of the
standard model, new sources of CP violation can arise
from complex phases of the soft supersymmetry breaking
parameters. These phases are therefore tightly constrained
to be small [6,7] (or to have cancellation [8–11]) for TeV-
scale superpartners. Thus, from a theoretical perspective,
the existence of such small phases has to be explained by
some underlying mechanism. Many studies of supersym-
metric models from a low-energy phenomenological per-
spective focus on the mediation mechanism and only
parametrize the supersymmetry breaking. Explaining
small soft CP-violating phases, which requires a dynami-
cal understanding of supersymmetry breaking, is espe-
cially challenging as this is not available in such a
framework. Without a specification of the supersymmetry
breaking mechanism, this problem exists in both gravity
and gauge-mediated models of supersymmetry breaking in
general.

Put differently, whenever supersymmetry is treated as a
general TeV-scale effective theory, both the values and
phases of the soft-breaking masses are treated as arbitrary,
and EDMs are typically much larger than experimental
values. Many people have argued that such large EDMs

are implied or required from supersymmetry, and that this
is a problem for supersymmetry. Such arguments ignore
the fact that any underlying theory will predict and relate
phases. This implies that the underlying theory of which
low-energy supersymmetry is a low-energy limit has a
structure that suppresses or relates the low scale phases.
Substantial progress has been made towards understand-

ing dynamical supersymmetry breaking, especially in re-
cent years. In this work, we will be interested in dynamical
mechanisms of supersymmetry breaking with low super-
partner masses which can be naturally embedded in the
framework of an underlying microscopic theory like string
or M theory. In particular, we study the effective four-
dimensional theory resulting from fluxless N ¼ 1 com-
pactifications of M theory with chiral matter [12]. These
are especially interesting because a hierarchy between the
electroweak and Planck scale is generated, and all geomet-
ric moduli are stabilized, at the same time [13,14]. We find
that the supersymmetry breaking and mediation dynamics
is such that it naturally gives rise to vanishing CP-violating
phases from supersymmetry breaking at leading order,
providing an excellent starting point to explain suppressed
EDMs. The mechanism is a nontrivial generalization of an
old idea [15] (and more recently [16]), and may also apply
to other classes of string compactifications where moduli
are stabilized in a de Sitter vacuum.
Although the CP-violating phases from supersymmetry

breaking vanish at leading order, there could still be sig-
nificant contributions toCP violation in the flavor-diagonal
sector in principle. First, in the M theory framework,
the trilinear matrices are typically not proportional to the
Yukawa matrices after moduli are stabilized, which in
general leads to nontrivial CP-violating phases in the tri-
linear A-terms in the basis of quark and lepton mass
eigenstates and therefore generates nonzero EDMs
[7,17]. The estimated upper bounds on EDMs are all within
the current experimental limits. For some values of
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parameters, some upper bounds on the EDMs are close to
the experimental limits. As will be clear, two features—
large sfermion masses and trilinears, and hierarchical
Yukawa textures, both natural within the M theory frame-
work—are important for getting viable but interesting
EDMs results. In addition, we argue that even though
higher-order corrections to the Kähler potential exist,
they do not give rise to new CP-violating phases. Finally,
it should be remarked that the EDM results are robust
anytime the trilinears dominantly acquire their phases
from Yukawas and the mass spectrum is as dictated by
the M theory framework.

It is worth mentioning that the solution to the super-
symmetric CP problem here is largely independent of any
particular solution to flavor issues as long as they satisfy a
certain criterion. As will be seen, the only feature of the
flavor structure used in computing results for EDMs is that
the sfermion mass matrices for visible matter in the super-
Cabibbo-Kobayashi-Maskawa (CKM) basis are approxi-
mately flavor diagonal at low energies. Therefore, the
results hold true for any proposed solution to the flavor
problem which is consistent with the above feature. For the
M theory framework, in particular, this approximately
flavor-diagonal structure arises due to the presence of
Uð1Þ symmetries under which the chiral matter fields are
charged [18]. The spontaneous breaking of these symme-
tries may introduce small nondiagonal components as long
as it occurs at a scale sufficiently below the Planck scale. In
the M theory framework, large sfermion masses* 10 TeV
already mitigate the flavor-changing neutral-current prob-
lems. In addition, small off-diagonal components (after
going to the super-CKM basis) suppressed by an order of
magnitude or more could arise from the approximate flavor
diagonality of the Kähler metric mentioned above and/or
due to family symmetries which could be present in the
underlying theory. This would then probably be consistent
with all flavor-changing neutral-current constraints. This
paper focuses on CP violation arising in the flavor-
diagonal sector, which is present in general even if
flavor-changing neutral-current problems, arising from
off-diagonal terms in the squark mass matrices in the
super-CKM basis, are solved; hence it is largely decoupled
from flavor physics. A more detailed discussion of flavor
issues will appear elsewhere.

The plan of the paper is as follows. In Sec. II, we review
the basic mechanism of supersymmetry breaking and its
implications for soft CP-violating phases at leading order.
In Sec. III, we discuss the connection between Yukawa
textures and imaginary parts of the diagonal trilinear ma-
trix components. After a brief discussion of EDMs using
the low-energy effective Lagrangian and the present ex-
perimental limits in Sec. IV, we compute the detailed
predictions for EDMs within this framework in Sec. V. In
Sec. VI, we discuss the effect of possible higher-order
corrections to the superpotential and Kähler potential in

this class of compactifications and argue that the results
obtained are robust against these corrections. We conclude
in Sec. VII. The appendixes deal with some technical
details of the computations.

II. SMALL CP-VIOLATING PHASES
FROM SUSY BREAKING

In fluxless compactifications of M theory [13], the mod-
uli superpotential is entirely generated nonperturbatively
and, hence, exponentially suppressed relative to the Planck
scale. This is crucial for both stabilizing the moduli zi and
generating the hierarchy. The strong gauge dynamics re-
sides in a three-dimensional submanifold of the internal
manifold which generically does not intersect the three-
dimensional submanifold where the supersymmetric
standard model particles live as these three-dimensional
manifolds are embedded inside a seven-dimensional inter-
nal manifold. For simplicity, we consider two non-Abelian
asymptotically free gauge groups with at least one of them

assumed to contain light charged matter fields Q and ~Q
(with Nf < Nc), and an associated meson � ¼ ð ~QQTÞ1=2
in the low energy. The strong gauge dynamics in the hidden
sector stabilizes the moduli of the G2 manifold, and dy-
namically generates a supersymmetry breaking scale with
Oð10Þ TeV gravitino mass. The supersymmetry breaking is
then mediated to the visible sector through gravitational
(mp suppressed) interactions.

A. Superpotential and Kähler potential

To be self-contained, in the following we briefly discuss
the effective action of the fluxless compactifications of M
theory studied in detail in [13]. We will emphasize some
important features that are crucial for our results. Further
details can be found in the above references.
First, the superpotential can be separated into two parts:

W ¼ Ŵ þ Y0
���C

�C�C�; (1)

where Ŵ depends only on the moduli zi ¼ si þ iti and the
meson �. Here C� are the matter fields in the minimal
supersymmetric standard model with � being Higgs,
quark, or lepton chiral superfields. Y0

��� denote the

superpotential Yukawa couplings. The effective Yukawa
couplings (still not fully normalized) in the minimal super-

symmetric standard model are given by Y��� ¼ eK=2Y0
���.

The connection to the usual convention in the minimal
supersymmetric standard model can be made by taking
the first index to be the Higgs fields, the second to be
the quark doublets, and the third to be the quark singlets,
for example, YHuQiuj � Yu

ij. In the M theory framework,

an elegant way to generate Yukawa couplings Y0
��� is from

membrane instantons [19,20], which also depend holo-
morphically on the moduli zi in general as they measure
the volume of the manifold which the instanton wraps.
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It appears natural to generate a hierarchical Yukawa texture
from such effects.

The first term Ŵ in (1) is the moduli superpotential, and
is generated nonperturbatively from gaugino condensation
in two hidden sectors, one of which is assumed to also
contain matter fields (with Nf < Nc) [21]:

Ŵ ¼ A1ðdetð�2ÞÞa=2e�b1f þ A2e
�b2f: (2)

Here b1;2 are the beta function coefficients of the two

hidden sector gauge groups and f are the corresponding

gauge kinetic functions given by f ¼ P
N
i¼1 Nizi. � ¼

ð ~QQTÞ1=2 denotes the meson fields, and we have
suppressed the flavor indices for simplicity. The parameter
a in the superpotential is a rational number, a ¼
�2=ðNc � NfÞ.

The Kähler potential can be written as

K ¼ K̂ þ ~K��C
�yC� þ ðZ��C

�C� þ H:c:Þ: (3)

Here K̂ is the moduli Kähler potential and ~K�� is the

Kähler metric of matter fields C�. Z�� is expected to be

nonzero only for Higgs field Hu;d, which is needed to

generate �- and B-terms. In these compactifications,
charged chiral matter fields with different flavors are lo-
calized at isolated conical singularities [22]. These charged
matter fields, in addition to being charged under the rele-
vant non-Abelian gauge group, are also charged under
Uð1Þ factors which arise from the Kaluza-Klein reduction
of the three-form in 11-dimensional supergravity on two-
cycles present in the internal manifold [23]. These Uð1Þ’s
survive at low energies as good symmetries to all orders
in perturbation theory and hence must be respected
(up to exponentially suppressed nonperturbative effects).
Importantly, it turns out that conical singularities associ-
ated to different flavors cannot carry the same charges
under the Uð1Þ’s in a given basis [18] (at least in local
models). This forbids the existence of off-diagonal terms
in the Kähler potential of the form C�yC�, � � �.
Off-diagonal components may be introduced if these sym-
metries are spontaneously broken, but these will be sup-
pressed as long as this occurs sufficiently (an order of
magnitude or more) below the Planck scale.

Thus, the Kähler metric is expected to be approximately
flavor diagonal, i.e., ~K�� � ~K���� at the high scale. As

argued in [14], the Kähler potential for localized matter
fields C� in the 11-dimensional frame is canonical, i.e.

Cy
�C� due to the absence of local moduli. Going to the

Einstein frame implies that there is an overall dependence
on the internal volume VX, but this still preserves the
approximate diagonality. A flavor-diagonal Kähler metric
will lead to flavor-diagonal soft scalar mass parameters.
Note that the above features hold at the high scale (� GUT
scale). Renormalization group (RG) effects will in general
also lead to small flavor off-diagonal contributions to
scalar mass parameters at the electroweak scale.

The Kähler potential for moduli fields contains two
pieces:

K̂ ¼ �3 lnðVXÞ þ 2

VX

Trð�y�Þ: (4)

Here VX is the volume of the G2 manifold in units of the
11-dimensional length scale l11. The second term origi-
nates from the Kähler potential for vectorlike matter fields

Q and ~Q in the hidden sector, which generally takes the
form [14]

K̂ ¼ 1

VX

ðQyQþ ~Qy ~QÞ: (5)

By using the D-term equations QyQ ¼ ~QT ~Q� and the
definition of the meson field �, it can be rewritten in terms
of� as given in the second term in Eq. (4). Of course, there
could be additional (higher-order) corrections; these will
be discussed in Sec. VI. Now for the simple case Nf ¼ 1,

we can replace detð�2Þ by �2 and Trð�y�Þ by ��� in
Eqs. (2) and (4), respectively. Furthermore � can be writ-
ten as � ¼ �0e

i�, with � as the phase of �.
It has been shown in [13,14] that using the superpoten-

tial (2) (with Nf ¼ 1) and (4), it is possible to stabilize all

moduli, the meson field, and one combination of axions.
However, at this level the remaining axions are unfixed and
remain massless. At the sufficiently long-lived metastable
de Sitter minimum of the potential, supersymmetry is
spontaneously broken by the strong gauge dynamics, and
soft supersymmetry breaking terms in the visible sector of
the following usual form are generated:

L soft ¼ 1
2ðMa��þ H:c:Þ �m2

���Ĉ
��yĈ�

� 1
6Â���Ĉ

�Ĉ�Ĉ� þ 1
2ðB��Ĉ

�Ĉ� þ H:c:Þ; (6)

where Ĉ�’s are the canonically normalized chiral matter

fields. The trilinear Â��� can often be factorized as

A���Y���. In the following, we will be careful in distin-

guishing between trilinears Â and A.

B. CP-violating phases

Now we turn to analyzing the CP-violating phases in the
soft Lagrangian. In order to study the dependence of the
soft parameters on complex phases, it is crucial to under-
stand the structure of the superpotential in the relevant
supersymmetry breaking vacuum. In the superpotential
W in (2), A1, A2, zi, and � are complex variables in
general. Without loss of generality, it is possible to choose
A1 and A2 to be real and positive. Then the superpotential
(2) for Nf ¼ 1 can be written as

W ¼ ei	1ðjW1j þ jW2je�ið	1�	2ÞÞ; (7)

	� � b�
XN
i¼1

Niti þ ��1a�; � ¼ 1; 2; (8)
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where jW1j and jW2j are the magnitudes of the two terms
in (2).

As explicitly shown in [13] and summarized in
Appendix A, the relative phase between the first and sec-
ond terms in W is fixed by the minimization of axions in
the vacuum such that

cosð	1 � 	2Þ ¼ �1: (9)

This implies that both terms in the superpotential dynami-
cally align with the same phase (up to a negative sign),
leaving just one overall phase in the superpotential, ei	1 .
Since it is possible to do a global phase transformation of
the superpotential without affecting physical observables,
this overall phase 	1 is not physical and can be rotated
away, making the superpotential real. From now on, we
will take 	1 ¼ 0. The Kähler potential,K, as seen from (4),
only depends on real fields si which determine VX and the
combination ���, and so does not contain any explicit
phases.

Note that at this level all but one of the axions remain
massless since the supergravity scalar potential only de-
pends on one linear combination of axions but depends on
all moduli (through the Kähler derivative). So one may
worry that other possible terms in the superpotential which
eventually stabilize the remaining axions will generically
stabilize these axions in such a way that the superpotential
is not real in the vacuum, thereby ruining the dynamical
alignment of phases. However, it turns out that there exists
a class of compactifications in which the additional terms
in the superpotential stabilizing the remaining axions are
exponentially suppressed relative to the first two terms
[24]. In this class of compactifications, all results of the
moduli stabilization mechanism in [13,14] are kept intact
because the higher-order terms do not perturb the moduli
(and one axion) from their expectation values determined
by the first two terms. The remaining axions are stabilized
in such a way that the superpotential is real in the vacuum
up to exponentially suppressed effects. This is explained in
Appendix A to which the reader is referred. As shown in
[24] this mechanism also solves the strong CP problem in
an elegant manner, making this mechanism very attractive.
Furthermore, it can be shown that the dynamical alignment
of phases also works in certain classes of compactifications
in Type IIB string theory considered in [25] which have
very similar moduli and axion fixing mechanisms.

We now show that with dynamical alignment of phases
in the superpotential, there are no CP-violating phases in
the soft terms at the high (� GUT) scale. The structure of

the F-terms FI ¼ K̂I �JF �J � K̂I �Jð@ �J
�W þ ð@ �JKÞ �WÞ, where

I, J run over both zi and � in general, can be computed
as follows. For J corresponding to M theory geometric
moduli zi, it is easy to see that @ �JK is real and @ �J

�W is real
(by rotating away the unphysical �W). For J corresponding
to meson moduli �, ð@ �JKÞ �W ¼ real� ei�� , where �� is

the phase of �. Also, since W depends holomorphically

on fzi; �g as in the first line in (2), one finds @ �J
�W ¼

A1að ��Þa�1e�b1 �f ¼ a �W1= ��, where �W1 is the first term in
the complex conjugate of the superpotential (2). Since both
terms in the superpotential have the same phase, again
@ �J

�W ¼ real� ei�� . Therefore, we have F �J ¼ real for J
corresponding to the moduli and F �J ¼ real� ei�� for J
corresponding to meson moduli �.

Now KI �J is real for I and J both corresponding to either
moduli or meson fields, while for one of them correspond-
ing to moduli and the other corresponding to the meson

field, one has Ki �� ¼ real� e�i�� ; K� �j ¼ real� ei�� .
This can also be verified from the explicit calculation in
[14]. Thus, we see that FI ¼ real or FI ¼ real� ei�� for I
corresponding to zi or �, respectively. This leads to inter-
esting implications for the soft supersymmetry breaking
parameters.
First, the tree-level gaugino masses are given by

Mtree
a ð�Þ ¼ g2að�Þ

8


�X
I

eK̂=2FI@If
vis
a

�
: (10)

Since fvisa only depends on the geometric moduli zi with
integer coefficient, and as we have found, the auxiliary
component FI of zi is real, there are no phases generated
for the tree-level gaugino masses. In the M theory frame-
work, the tree-level gaugino masses are suppressed relative
to the gravitino mass [12,14], and the one-loop anomaly
mediated contribution has to be included, which is given
by [26]

MAMSB
a ¼ � g2a

16
2

�
bae

K̂=2 �W � b0aeK̂=2FIK̂I

þ 2
X
i

Ci
ae

K̂=2FI@I ln ~Ki

�
: (11)

This contribution includes terms proportional to either �W

or FI@IK̂ or FI@I ~Ki. Since the Kähler potential is a real

function of zi, @zi K̂ and @zi
~K are real. In addition, the

Kähler potential only depends on ���, which implies that
the derivative with respective to � is proportional to ���
e�i�� . Therefore, all these terms are real, which gives rise to
real anomaly mediated gaugino masses. Hence, the gaugino
masses have no observable phase in the above framework.
The trilinear A-terms (with the Yukawa couplings

factored out) are given in general by [27]

A��� ¼ eK̂=2FI@I½lnðeK̂Y0
���= ~K�

~K�
~K�Þ�; (12)

where I, J run over both zi and�. It should be noted that in
order to be able to factor out the Yukawa matrices the
matter Kähler metric has to be diagonal. This is a good
approximation in the M theory framework as we have

discussed. Since the moduli Kähler potential K̂ and the
visible sector Kähler metric ~K are real functions of zi þ �zi
and ��� and superpotential takes the form in Eq. (1), it is

straightforward to check that the contractions FI@IK̂,
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FI@I ~K, and FI@I lnŶ
0 are all real, implying that no CP

phases are generated in the trilinear A-terms through
supersymmetry breaking. However, there could be phases

in the full trilinear couplings Â coming from the Yukawa
couplings, as we shall discuss in the next section.

Finally, we move on to the �- and B-terms. We focus on
the case where the superpotential contribution to the overall
high scale � parameter vanishes. This can be easily guar-
anteed by a symmetry [19]. In this case,� and B parameters
of Oðm3=2Þ can be generated by the Giudice-Masiero

mechanism [28] via the parameter Z�� in Eq. (4). The

general result for � and B can be written in terms of Z,

FI@IK̂, F
I@I ~K, and FI@IZ [27], all of which have the same

phase �Z from Z�� (complex in general). Therefore, � and

B share the same phase e�Z . However, this phase is not
physical since it can be eliminated by a Peccei-Quinn Uð1Þ
rotation [29].

Before ending this section, we would like to summarize
our result in a more general fashion. In the previous
analysis, we have seen in general �B ¼ �� and �Ma

¼
�Af

¼ 0. Here �Ma
and �Af

are defined as the overall

phases of Ma and Af, respectively. Note �Af
is not a

basis-independent definition. From the observational point
of view, the relevant physical phases must be reparametri-
zation invariant and basis-independent, which can be built
from the following combinations [29]:

�1� ¼ ����B þ�Ma
; �2f ¼ �� ��B þ�0

Af
; (13)

where �0
Af

¼ 1
3 Arg½DetðÂfY

yÞ� is the flavor- and basis-

independent CP phase of the trilinears. Note that �0
Af

�

�Af
in general unless that the trilinears are universal. So we

can easily see �1� ¼ 0 and �2f ¼ �0
Af
. This implies that

the only flavor-independent phases that can appear in a
physical observable must be those from the trilinears. In
addition, there can be flavor-dependent CP phases coming
from the relative phases of the trilinear matrix elements. In
the following section, we will discuss the combination of
these phases that are relevant for the calculation of EDMs.

III. CP-VIOLATING PHASES FROM YUKAWAS

Although the CP-violating phases from supersymmetry
breaking are absent or small as found above, there is an

additional contribution to CP violation if the trilinear Â
parameters are not aligned with the Yukawas. This can be
easily seen as follows. Since the Yukawa matrix generi-
cally containsOð1Þ phases in order to explain the observed
CKM phase, the unitary matrices needed to go to the super-
CKM basis (in which the Yukawa matrices are real and
diagonal) also contain some phases. Therefore, the rotation

by itself can induce CP-violating phases even if the A or Â

matrices are initially completely real as long as Â’s are not
proportional to Yukawas in the flavor eigenstate basis (or
equivalently A’s are flavor nonuniversal and nondiagonal).

This implies, in particular, that the diagonal components of

trilinear Â will contain CP phases in the super-CKM basis,
giving rise to possibly important contributions for EDMs.
In the M theory framework, the Yukawa couplings Y0

���

depend holomorphically on the geometric moduli zi in
general which get nonzero F-term vacuum expectation
values. Hence, from (12) we find that the second term in
the expression for trilinears gives rise to anOð1Þ misalign-
ment between the Yukawas and the trilinears. If the
Yukawa couplings depend on moduli or other hidden sector
fields which do not break supersymmetry, then the tri-
linears can be naturally aligned with the Yukawas [16].
However, within M theory, this does not seem to be a
generic situation; hence we will consider the conservative
case in which the trilinears are misaligned with the
Yukawas.
In the remainder of this section, we will estimate the

diagonal CP phases in the trilinear Â in the super-CKM
basis since they are directly related to the EDM observ-
ables. We consider flavor nonuniversal and nondiagonal
trilinear A matrices (in the flavor eigenstate basis) at the
grand unified theory (GUT) scale with real Oð1Þ matrix
elements. To set the conventions, we write down the soft
trilinear terms explicitly

Lsoft � Au
ijY

u
ij
�QLiHuuRj þ Ad

ijY
d
ij
�QLiHddRj

þ Ae
ijY

e
ij
�LLiHdeRj; (14)

where Au;d;e are the trilinear matrices in the gauge eigen-
state basis of matter fields.
In the M theory framework, chiral matter fields are

localized on singular points inside the compact G2 mani-
fold [19,30–32]. Although a detailed understanding of
Yukawas within M theory is not yet available, a hierarch-
ical Yukawa texture seems well motivated. From a phe-
nomenological point of view, therefore, we consider the
following Yukawa texture,

Yu
ij � �qi �

u
j ; Yd

ij � �qi �
d
j ; Ye

ij � �li�
e
j ; (15)

which can arise naturally from the localization of matter
fields in extra dimensional models [33–36] or from a
spontaneously broken flavor symmetry (Froggatt-Nielson
mechanism) [37]. Then, the fermion mass hierarchy is
given by

mu
i =m

u
j �j�qi �ui j=j�qj �uj j; md

i =m
d
j �j�qi �di j=j�qj �dj j;

me
i =m

e
j �j�li�ei j=j�lj�ej j:

(16)

It is straightforward to check that the observed fermion
mass hierarchy can be accommodated by a set of properly
chosen �i with the hierarchy j�1j & j�2j & j�3j. The above
Yukawa couplings can haveOð1Þ phases in order to explain
the CP phase in the CKM matrix. To simplify the discus-
sion, we eliminate the phases in the diagonal elements by a
redefinition of the quark and lepton fields. Therefore, the

CP-VIOLATING PHASES IN M THEORYAND . . . PHYSICAL REVIEW D 82, 055005 (2010)

055005-5



diagonal elements ðÂc Þ11;22;33 with c ¼ u, d, e are all real
at the GUT scale.

First, we point out that the RG corrections to the trilinear
couplings typically mix the phases between different fla-
vors. This will lead to phases in the diagonal elements of
the trilinear matrices. It can be understood from the RG
equation for Yukawa couplings and trilinear couplings,

e.g., for Yu and Âu, which are given by

dYu

dt
� 1

16
2
Yu½3TrðYuYuyÞ þ 3YuyYu þ YdyYd�;

dÂu

dt
� 1

16
2
Âu½3TrðYuYuyÞ þ 5YuyYu þ YdyYd�

þ Yu

16
2
½6TrðÂuYuyÞ þ 4YuyÂu þ 2YdyÂd�; (17)

where only terms involving Yukawas are explicitly shown.

From the above equations, we notice that the phases in Âu

evolve during the RG running. To illustrate this, one can
examine the following term which contributes to the run-

ning of Âu
11:

dÂu
11

dt
� 5

16
2
Âu
13Y

uy
33 Y

u
31 þ

4

16
2
Yu
13Y

uy
33 Â

u
31: (18)

From the equation, one can see that the phases of Yu
31, Y

u
13,

Âu
13, and Âu

31 can enter that of Âu
11 through RG effects,

although it was real at the high scale. The magnitude of
this correction can be significant since the magnitude of the
right-hand side of the above equation is proportional to
1

16
2 jYu
33j2 given the factorizable Yukawa matrices as in

Eq. (15). This indicates that the RG corrections to Âu
11 can

giveOð1Þ phases. This is also true for other elements in the
trilinear matrices and Yukawa matrices. The only excep-

tion is for the third generation Yu
33 and Âu

33, for which the

largest RG corrections come from the terms involving only

Yu
33 and Âu

33 with additional flavor mixing terms typically

suppressed by �22=�
2
3. Since Â

u
33 has the same phase as Yu

33,

the corresponding A-term Au
33 ¼ Âu

33=Y
u
33 remains real up

to corrections of the order ð�2=�3Þ2.
Starting from the Yukawa matrices Yu;d;e

ij defined in the

flavor eigenstate basis, the super-CKM basis can be
achieved by unitary rotations of the matter fields so that
the Yukawa matrices are real and diagonal. In the super-
CKM basis, the trilinear couplings become

ðÂc
SCKMÞij ¼ ðVcy

L ÞilAc
lkY

c
lk ðVc

R Þkj; (19)

where c ¼ u, d, e. To be concrete, we focus on the up-type
trilinear in the discussion below. Given the hierarchical
Yukawa matrices in Eq. (15), the unitary transformation
matrices are given by

ðVu
LÞij � ðVu

LÞji � �qi =�
q
j ; for i < j;

ðVu
RÞij � ðVu

RÞji � �ui =�
u
j ; for i < j:

(20)

One can now perform the same transformation for the
trilinear terms to get the diagonal elements in the super-
CKM basis, which can be schematically written as

ðÂu
SCKMÞ11 � �q1�

u
1

X
i;j¼1;2;3

�ijA
u
ij; (21)

ðÂu
SCKMÞ22 � �q2�

u
2

X
i;j¼2;3

ijA
u
ij; (22)

ðÂu
SCKMÞ33 � Yu

33A
u
33 � �q3�

u
3A

u
33; (23)

where �ij and ij are possibly Oð1Þ coefficients arising

from those implicit coefficients in the Yukawa matrices in
(15), and are complex in general. In the above equations,
we have neglected subleading terms suppressed by �i=�j
for i < j. Since the off-diagonal components in Aij can be

Oð1Þ within our framework, the summations in Eqs. (21)
and (22) can be of Oð1Þ in magnitude with Oð1Þ phases.
The ðÂÞ33 component, however, does not mix with other
components and is proportional to Yu

33, so no phase is

generated at leading order for Âu
33.

Therefore, we conclude that the first two diagonal com-
ponents of the complete trilinear coupling in the super-
CKM basis can contain order one phases, while the third
diagonal component is real up to small corrections, i.e.,

ImðÂc
SCKMÞ11 � A0Y

c
11; ImðÂc

SCKMÞ22 � A0Y
c
22;

ImðÂc
SCKMÞ33 � A0

�
�2
�3

�
2
Yc
33;

(24)

where A0 is the characteristic magnitude of the trilinear A-
terms. Here ð�2=�3Þ2 is roughly the ratio of the second and
third generation fermion masses, which depends on the
choice of c ¼ u, d, e. In the discussion of EDMs in
Sec. VB, we will be taking �2=�3 � 0:1 as an order of
magnitude estimate compatible with the quark mass
hierarchy.
Although the result in Eq. (24) is derived for the specific

class of Yukawa matrices in Eq. (15), it is nevertheless
more generic than that. In fact, for any Yukawa matrices
such that the linear combination of terms giving the diago-
nal component of YSCKM do not have any large cancella-
tion, the first two relations in Eq. (24) would still be valid.
An additional requirement that the flavor mixing contribu-
tion to ðYSCKMÞ33 is suppressed would lead to a similar
relation as the last one in Eq. (24). These conditions can be
easily accommodated for more general Yukawa textures.
Other Yukawa textures that do not satisfy these conditions
are possible, but seem less generic and natural in order to
get the hierarchical fermion masses and mixings. This
result has important implications for EDM predictions,
which we shall discuss in Sec. V.
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IV. ELECTRIC DIPOLE MOMENTS AND
THE EXPERIMENTAL LIMITS

Before starting our calculation of EDMs, we briefly
summarize some general results relevant for the calcula-
tion of EDMs. In the minimal supersymmetric standard
models, the important CP-odd terms in the Lagrangian are

�L¼� X
q¼u;d;s

mq �qð1þ i�q�5Þqþ�G
�s

8

G ~G

� i

2

X
f¼u;d;s

ðdEq �qF������5qþ ~dCq �qgst
aGa

������5qÞ

� 1

6
dGq f���G���G

�
��G����

����; (25)

where �G is the QCD � angle. The terms in the second line
in (25) are dimension five operators, which are generated
by CP violation in the supersymmetry breaking sector

and evolved down to �1 GeV. The coefficients dE;Cq cor-
respond to quark electric dipole moment and chromoelec-
tric dipole moment (CEDM), respectively. The last line in
(25) contains the gluonic dimension sixWeinberg operator.
The CP-odd four-fermion interactions are not important
here, and so have not been included above.

Now let us briefly summarize the EDM results for
electrons, neutrons, and mercury in terms of the coeffi-
cients of these operators. The electron EDM in minimal
supersymmetric models is given by

dEe ¼ d	
þ

e þ d	
0

e þ dBZe ;

where d	
�

e and d	
0

e are one-loop contributions from the
neutralino and charginowhile dBZe is the two-loop Barr-Zee
type contribution [38–46]. It should be noted that what is
actually measured is the atomic EDM dTl, which receives
contributions mainly from the electron EDM and the
CP-odd electron-nucleon couplings [47]:

dTl ¼ �585� dEe � 8:5� 10�19e cmðCS TeV2Þ þ 	 	 	 ;
where CS is the coefficient of the operator �ei�5e �NN. The
CS coefficient could be generated from a new scalar parti-
cle coupled to quarks and leptons through a CP-odd Higgs-
like coupling [47]. However, this is independent of CP-odd
interactions originating from the soft terms. Given the
current experimental limit jdTlj< 9� 10�25e cm, we ob-
tain an upper limit on electron EDM

jdEe j< 2� 10�27e cm:

For the neutron, there exist several different approaches
to compute the corresponding EDM. In the following dis-
cussion, we shall follow a simple approach, i.e., the naive
dimensional analysis (NDA) [48–50]. The neutron EDM
can be calculated as

dn ¼ 4
3dd � 1

3du: (26)

In this expression, the quark EDMs can be estimated via
NDA as

dq ¼ EdEq þ C e

4

dCq þ G e�

4

dG

with dE;Cq ¼ d~gðE;CÞ
q þ d

~	þðE;CÞ
q þ d

~	0ðE;CÞ
q . The QCD cor-

rection factors are given by E ¼ 1:53, C � G � 3:4
[9], and �� 1:19 GeV is the chiral symmetry breaking
scale. The current experimental limit on neutron EDM is
given by

jdnj< 3� 10�26e cm:

The current theoretical estimate for the mercury EDM
induced by dimension 5 operators is given by [51]

dHg
¼ �7:0� 10�3eðdCd � dCu � 0:012dCs Þ þ 10�2 � de;

where we have included the contribution from the strange
quark CEDM [52]. The recent experimental result on
mercury EDM [5] significantly tightens the bound

jdHgj< 3:1� 10�29e cm:

In the standard model, the primary source of hadronic
EDMs comes from the QCD �-term in (25). This gives the
following results [47,53–55]:

dn � 3� 10�16�e cm; dD ��1� 10�16�e cm;

jdHgj �Oð10�18–10�19Þ�e cm:
(27)

On the other hand, the electron EDM is induced by the SM
electroweak interactions, and is typically of order
10�38e cm [56,57]. The results in (26) together with the
suppressed leptonic EDMs provide a correlation pattern for
the �-induced electric dipole moments. The current upper
bound on the neutron EDM implies � <Oð10�10Þ, which
leads to the strong CP problem. Once EDMs are observed
for n, Hg, and Tl, it will be essential to separate the strong
and weak contributions, by combining data on different
nuclei and dEe .

V. PREDICTIONS FOR EDMS

For an explicit computation of the EDMs, it is important
to specify the general structure of supersymmetry breaking
parameters, in particular, the structure of the trilinear pa-
rameters (especially the imaginary part of the diagonal
components), as well as that of the scalar and gaugino
masses, since all of these appear in the final expression
for the EDMs. This is the subject of this section.
Within the M theory framework, the general structure of

supersymmetry breaking parameters is as follows. For the
choice of microscopic parameters with a vanishingly small
positive cosmological constant, the gravitino mass natu-
rally turns out to be in the range 10–100 TeV [13]. The
gravitino mass is essentially �F�=mp. However, as men-

tioned earlier, the F-terms of the moduli are suppressed
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compared to F�. Since the gauge kinetic function for the

visible sector depends only on the moduli, from (10) it is
easy to check that the gaugino masses are suppressed
relative to that of the gravitino. However, this suppression
does not hold for the scalar masses, trilinears, and � and
B� parameters unless the visible sector is sequestered
from the supersymmetry breaking sector. Sequestering
does not seem to be generic in M theory [14], so scalar
masses, trilinears, and � and B� parameters typically turn
out to be of Oðm3=2Þ �Oð10Þ TeV. The third generation

squarks, however, could be significantly lighter because of
the RG effects.

As we have discussed in Sec. II, within the M theory
framework it is natural to expect that the Kähler metric for
visible matter fields is approximately diagonal in the flavor
indices. Then, the scalar mass matrix turns out to be
roughly diagonal with suppressed off-diagonal contribu-
tions. The estimates for the EDMs then depend on the
overall scale of the squark masses. So for concreteness
we consider gauginos with masses & 600 GeV, nonuni-
versal but flavor-diagonal scalar mass matrices with
masses �20 TeV, and �, B�, and trilinear parameters of
the same order as scalar masses. Some contributions to
EDMs depend primarily on third generation sfermion
masses, so we also mention the situation when third gen-
eration scalars are much lighter, i.e., Oð1Þ TeV.

We now estimate the contribution to the EDMs of the
electron, neutron, and mercury from dimension 5 and 6
operators [Eq. (25)] in the M theory framework. As we
have seen in the Sec. III, the CP-violating phases appear

only in the trilinear Â parameters. After renormalization
group evolution and the super-CKM rotation of the tri-
linear matrices, these phases appear in the off-diagonal
elements in the squark mass matrices, leading to imaginary
parts of the following mass-insertion parameters:

ð�ii
q ÞLR ¼ vqððÂq

SCKMÞii ���Yq
iiRqÞ

ðm2
~qÞii

; (28)

where RuðdÞ ¼ cot� ( tan�) and vuðdÞ ¼ v sin�ðv cos�Þ.
As explained above, ÂSCKM is in general a 3� 3 matrix
in the super-CKM basis and its diagonal components con-
tain CP-violating phases. Thus, these insertion parameters
contribute to EDMs through the dimension 5 and 6 opera-
tors in (25).

A. Leading contributions

The dimension five electric and chromoelectric cou-
plings can be generated at leading order [6,8,9] at one-

loop through the vertices f~f~	0
i , f

~f0 ~	�
i , and q~q ~g as can be

seen in Fig. 1.
First consider the quark CEDM which contributes to

both the mercury and neutron EDMs. Since there exists a
hierarchy between gauginos and squarks in the M theory
framework [12,13], one can expand using the small ratio

r � m2
i =m

2
~q, where mi is the corresponding neutralino,

chargino, or gluino masses in the diagram. One then ob-
tains the following result:

dCq � gs�s

4


mq

m3
i

ImðAq
SCKMÞr2GðrÞ; (29)

where Aq
SCKM is the diagonal element of the corresponding

trilinear matrix (factoring out the Yukawa coupling) in the
super-CKM basis. In the expression, the function GðrÞ ¼
CðrÞ þ rC0ðrÞ for gluinos and GðrÞ ¼ BðrÞ þ rB0ðrÞ for
charginos and neutralinos. The function BðrÞ and CðrÞ
are loop functions defined in Appendix B. One can see
that dCq decreases rapidly as m�4

~q when the squark masses

increase. However, the function GðrÞ behaves differently
for different particles ð~g; ~	�; ~	0Þ in the loop. Due the
gaugino and squark mass hierachy, r is small. From
Fig. 2, we can see that CðrÞ þ rC0ðrÞ is enhanced in the
small r region compared to other functions which remain
small. Therefore, the gluino contribution dominates the
quark CEDM. For the quark EDM, it is given by a similar
expression as (29) but now the quantity GðrÞ is determined
only by AðrÞ and BðrÞ. In particular, GðrÞ is determined
solely by BðrÞ for ~g and ~	0 in the loop, and by a combi-
nation of AðrÞ and BðrÞ for ~	� in the loop. Since AðrÞ þ
rA0ðrÞ and BðrÞ þ rB0ðrÞ are much smaller than CðrÞ þ
rC0ðrÞ as seen from Fig. 2, the quark EDM contributions to
the neutron EDM are negligible compared to that of the
quark CEDM contributions. Therefore, we only need to
calculate the quark CEDM, for which the gluino diagram

FIG. 1. One-loop contributions to fermion (C)EDMs.

FIG. 2 (color online). Comparison of the one-loop functions
AðrÞ, BðrÞ, and CðrÞ. The x coordinate is the ratio r � m2

i =m
2
~q.
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gives the dominant contribution as explained above. Since
Aq
SCKM �m~q in the M theory framework, one obtains

dCq �10�28�
�

mq

1 MeV

��
m~g

600 GeV

��
20 TeV

m~u

�
3
e cm: (30)

Based on the quark EDM and CEDM, the neutron EDM
can be computed from (26):

dNDAn � 3� 10�28 �
�

m~g

600 GeV

��
20 TeV

m~u

�
3
e cm: (31)

Similarly, the mercury EDM is

jdHg
j � 10�30 �

�
m~g

600 GeV

��
20 TeV

m~u

�
3
e cm: (32)

Moving on to the electron EDM, it can be computed at
leading order from the one-loop neutralino and chargino
diagrams. First, we notice that the chargino diagram does
not contribute in our framework. This is because of the fact
that the�-term phase1 and the gaugino phases are zero and
there is no phase in the chargino mixing matrix, as can be
seen from Eq. (B7) in Appendix B. The neutralino contri-
bution, on the other hand, gives rise to a nonzero contri-
bution because of a dependence on the selectron mixing
parameters (which contains CP-violating phases) in its
couplings [see Eq. (B8)]. Given the fact that the
Higgsino coupling to the electron and selectron is sup-
pressed by the small electron Yukawa coupling, and the
wino does not couple to right-handed fermions and sfer-
mions, the dominant contribution is from the diagram with
~	0
2 (almost pure bino in the M theory framework), which

can be calculated using Eq. (B11) in Appendix B. Thus, the
electron EDM is given by

dEe �
� m~	0

2

200 GeV

��
20 TeV

m~e

�
3 � 10�31e cm: (33)

B. Two-loop contributions

So far, we have considered the one-loop contribution to
quark and electron EDMs (and/or CEDMs). In addition,
there are two-loop Barr-Zee type contributions [38–46]
such as the one in Fig. 3. In general, the Barr-Zee type
diagrams can involve squarks, charginos, or neutralinos in
the inner loop, and Higgs bosons (neutral or charged) and/
or gauge bosons in the outer loop (the two-loop diagram
considered in split supersymmetry is not relevant here,
since there the CP violation is not from trilinear couplings,
but instead from the chargino sector). Since only the tri-
linear couplings contain CP-violating phases in our frame-
work, we consider those diagrams with squarks running in
the inner loop as seen in Fig. 3. One might wonder whether
there are any two-loop diagrams that would contribute if
there were phases in the gaugino masses or�-term such as

in the split supersymmetry scenario [45,58]. Since the
Higgsino in the M theory framework is very heavy with
mass ��m3=2 and hence decoupled from the low-energy

theory, the only diagram which might contribute is the one
in Fig. 4. However, it turns out that the CP phases in the
2 W-chargino-neutralino couplings cancel out (up to a
small correction due to the heavy Higgsino) in the final
result giving no EDM contribution.
When the mass splitting between the two third genera-

tion squarks is not particularly large, the diagram to the
quark CEDM can be estimated as (see Appendix C)

dCBZf � gs�s

64
3

mfRf�

M4
A

X
q¼~t;~b

y2q ImðAq
SCKMÞF0ðrqÞ

� 10�32 � Rf

�
mf

1 MeV

��
20 TeV

m~q

�
2
e cm; (34)

where Rf ¼ cot� ( tan�) for I3 ¼ 1=2 (� 1=2), and rq �
m2

~q=M
2
A with m~q third generation squark mass and MA the

pseudoscalar mass of A0. Here we have used (24) for
ImðAq

SCKMÞ. For simplicity, we also take��MA �m~t;~b �
m~u. It can be seen that the result of the Barr-Zee diagram to
quark CEDM (similar for EDM) is negligibly small. One of
the reasons is that CP violation in the third generation is
suppressed by about 2 orders of magnitude as in (24).
Similarly, for the electron EDM the result is

dEBZe � 10�33 �
�
20 TeV

m~u3

�
2
tan�e cm (35)

which is again quite suppressed. This contribution may be
enhanced for large tan� as seen from above. The M theory
framework, however, generically predicts tan� ¼ Oð1Þ
[14].
The neutron EDM could also get a contribution from the

dimension six pure gluonic operator (Weinberg operator),
which can be generated from the two-loop gluino-top-stop
and gluino-bottom-sbottom diagrams (see Fig. 5). For the

FIG. 3. Two-loop Barr-Zee type diagrams contributing to fer-
mion (C)EDMs.

FIG. 4. Two-loop Barr-Zee type diagrams which do not in-
volve a sfermion in the loop.1Here we have set �B ¼ 0 by a Uð1ÞPQ rotation.
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case where CP violation only comes from the soft trilinear
couplings, the result can be estimated by [59]

dG��3�s

�
gs
4


�
3 1

m3
~g

X
q¼t;b

ImðASCKM
q ÞzqHðz1;z2;zqÞ; (36)

where zi ¼ m2
~qi
=m2

~g for i ¼ 1, 2, and zq ¼ m2
q=m

2
~g for q ¼

t, b. The two-loop function Hðz1; z2; ztÞ is given in [59].
This gives a contribution to the neutron EDM dGn �
10�30e cm for m~t;~b � 20 TeV, m~g ¼ 600 GeV, and

Aq ¼ 20 TeV. Thus the neutron EDM from the Weinberg

operator is smaller than the one-loop CEDM contribution.
However, when the masses of the third generation squarks
and trilinears are around 1 TeV, the contribution to the
neutron EDM can be significantly larger, and be compa-
rable to the one-loop result.

To summarize our results, we have calculated the EDMs
arising from the CP-violating phases in the trilinear terms
in a general framework with light gauginos and heavy
sfermions, and the results are within current experimental
bounds. We find that the one-loop diagram is typically the
dominant contribution to EDMs. However, in contrast to
the situation in which gaugino and sfermion masses are
comparable, the one-loop diagram with gluino is enhanced
over the one with neutralino. This leads to a larger ratio
between neutron EDM and electron EDM of * 103. In
typical supersymmetric models with gaugino and sfermion
masses of the same order, this ratio is & 102 [60]. This
seems to be a robust feature of models in which the
gauginos are suppressed relative to the squarks and the
trilinears and the trilinears are not proportional to
Yukawas. Finally, it is easy to see that the mercury EDM
provides the most stringent limit on the squark masses. For
squark masses around 10 TeV, the mercury EDM will
increase to �10�29e cm, which could be tested in the
near future with better experimental precision. Basically,
we have found that the upper bounds on the EDMs in
the M theory framework result from two of its generic
features—large scalar masses and trilinears [Oð10Þ TeV],

and CP-violating phases only in the trilinear couplings and
those arising only from the Yukawas.

VI. HIGHER-ORDER CORRECTIONS

In Sec. II, we found that there are no CP-violating
phases from supersymmetry breaking at leading order in
the framework of M theory compactifications considered.
It is therefore important to check if corrections to the
Kähler potential and superpotential lead to further contri-
butions to CP-violating phases in the soft parameters and
in turn to the EDMs. Although the detailed form of pos-
sible corrections is not known in M theory, some general
arguments can nevertheless be made, which strongly sug-
gest that higher-order corrections still naturally suppress
CP-violating phases.
The corrections to the soft parameters may arise in

general from corrections in the superpotential and the
Kähler potential. In the zero flux sector which we have
considered, the superpotential may only receive additional
nonperturbative corrections from strong gauge dynamics
or from membrane instantons. As mentioned in Sec. II B
and explained in Appendix A, the dynamical alignment of
phases still works if these additional terms are subdomi-
nant compared to the first two terms. The subdominance of
these additonal terms is required anyway to keep the results
of the moduli stabilization mechanism intact and hence the
consistency of the whole approach. Moreover, it also pro-
vides an elegant dynamical solution to the strong CP
problem within string theory [24].
The Kähler potential for the hidden sector comprising

the moduli and hidden matter fields on the other hand
receives perturbative corrections such as terms with higher
powers of � as there is no nonrenormalization theorem for
the Kähler potential. However, the field � is composed of

elementary quark fieldsQ; ~Q which are charged under the
hidden gauge group. Therefore, higher-order corrections

must be functions of QyQ or ~Qy ~Q in order to be gauge
invariant. When written in terms of�, these corrections are
always functions of �y�. This structure is important for
our claim of small CP-violating phases since it does not
introduce any new phases in the soft parameters. In addi-
tion, the perturbative corrections to the Kähler potential
are always functions of zi þ �zi, which do not lead to any
CP-violating phases in the soft terms as argued in Sec. II B.
The dependence on zi þ �zi is a reflection of the shift
(Peccei-Quinn) symmetry of the axion ti ! ti þ �, where
ti ¼ ImðziÞ. This symmetry is only broken by exponen-
tially suppressed nonperturbative effects [61,62]. This im-
plies that up to exponentially suppressed contributions, the
corrections to the Kähler potential do not give rise to any
CP-violating phases in the soft terms. Thus, although it is
very hard in general to compute the form of corrections in
M theory, the result that the CP-violating phases in soft
parameters are highly suppressed should be quite robust as
it only relies on symmetries.

FIG. 5. Two-loop diagrams contributing to the Weinberg
operator.
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VII. CONCLUSIONS

In this paper, we have discussed CP violation in theories
arising from fluxless M theory compactifications with low-
energy supersymmetry and all moduli stabilized. We have
found that the supersymmetry breaking dynamics is CP
conserving (up to exponentially suppressed effects). The
gaugino masses, scalar masses, and � and B� parameters
are real at the GUT scale and remain real at the electro-
weak scale since RG evolution does not introduce new
CP-violtaing phases. However, the full trilinear couplings

Â��� ¼ A���Y��� manage to pick up CP-violating phases

from the Yukawa couplings as the trilinear matrices are not
proportional to the Yukawa matrices. In addition, RG
effects mix the phases between different flavors.

Given a model of Yukawas, therefore, one can estimate
the effects of these phases of Yukawas on the trilinear
couplings, and therefore on the EDMs. Since hierarchical
Yukawa textures are well motivated within this framework,
we compute EDMs for such textures. The other relevant
feature of the low-energy theory is that the scalar masses
and trilinears are naturally ofOðm3=2Þ due to the absence of
sequestering generically. Moreover, these scalar masses
and trilinears are naturally of Oð10 TeVÞ since this is the
natural scale of the gravitino mass within the M theory
framework. These two features naturally give rise to small
CP-violating effects consistent with experimental limits.

We have estimated the electron, neutron, and mercury
electric dipole moments utilizing the above features, and
found that the estimated upper bounds of the EDMs are all
within current experimental limits. The estimated upper
bound for the mercury EDM is close to the current experi-
mental limit and could be probed in the near future. A
robust prediction of the framework is the existence of a
hierarchy of about 3 orders of magnitude between the
neutron and electron EDMs. This essentially results from
the mass hierarchy between gauginos and scalars as pre-
dicted within M theory [13], and provides an additional
means to test the framework.

It should be emphasized that our results for EDMs are
based on the result that the CP-violating phases are en-
tirely from the Yukawas, and therefore, any experimental
result which indicates other significant sources of phases
would contradict and rule out this approach. We also dis-
cuss effects of possible corrections to the Kähler potential
and superpotential, and the generalization to other string
compactifications.

Note that our results are largely independent of a full
solution to the flavor problem. Our results have been derived
using the fact that the squark matrices are approximately
flavor diagonal at low energies which is naturally predicted
within the M theory framework, as explained in Sec. II A.
Therefore, any solution to the flavor problem consistent with
the above feature is consistent with our results.

The quark Yukawas give the CKM phases, and the
lepton Yukawas the Pontecorvo-Maki-Nakagawa-Sakata

phases. The latter can provide the phases needed for baryo-
genesis via leptogenesis consistent with the above frame-
work, for example, as described in [63]. So even with no
phases from the soft supersymmetry breaking this frame-
work can give a complete description of all known CP
violation.
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APPENDIX A: DYNAMICAL ALIGNMENT OF
PHASES IN THE SUPERPOTENTIAL

The dynamical alignment of phases is crucial for solving
the SUSY CP problem in the M theory framework. It
means that terms in the moduli superpotential dynamically
align to acquire the same phase in the vacuum (perhaps up
to exponentially suppressed effects), implying that the
superpotential in the vacuum becomes real after rotating
away the unphysical overall phase.
It was shown in [13,14] that with just two nonperturba-

tive contributions (‘‘double condensate terms’’) in the
superpotential, all N moduli, the meson field, and one
axion can be fixed in the supergravity regime with both
terms in the superpotential acquiring a common phase in
the vacuum. At this level, however, all but one of the axions
remain unfixed. This is because the supergravity scalar
potential only depends on one linear combination of axi-
ons, while it depends on all the moduli (through the Kähler
derivative). It is important to stabilize the remaining N
axions in a way such that the superpotential becomes
(dominantly) real in the vacuum.
Precisely such a mechanism to stabilize the axions has

been recently studied in [24]. There, it was shown that
higher-order terms in the superpotential, which depend on
the remaining linear combinations of axions, can stabilize
these axions. The superpotential is then given by

W ¼ A1�
ae�b1f þ A2e

�b2f þ X
k>2

Ake
�bkf

k
; (A1)

where we have assumed that the subdominant terms in
(A1) arise from string instantons or gaugino condensates
in pure super-Yang-Mills hidden sectors. It is possible to
include matter in the hidden sectors as well, but that will
not change the qualitative results obtained. In order to keep
the original moduli stabilization mechanism and the result-
ing analysis of [13,14] intact, the ‘‘double condensate’’
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terms must be parametrically larger than these higher-order
terms. This can be naturally obtained when b1 � b2 < bk,
k > 2. It turns out that this will also make the superpoten-
tial real in the vacuum (up to exponentially suppressed
effects), as shown below.

It is easy to see that in the N ¼ 1 supergravity poten-
tial, the dominant terms arise from the first two terms in
(A1). Following [13], the dependence of the dominant
potential on the axions is given by

VdomðtiÞ ¼ 1

V 3

�X2
�¼1

�XN
i¼1

Vð1Þ
�i þ Vð2Þ

�

�
e�2b� ReðfÞ

þXN
i¼1

ðVð3Þ
i þ Vð4ÞÞe�ðb1þb2Þ ReðfÞ

� cosð	1 � 	2Þ
�
; (A2)

where 	i � bi ~N
i 	 ~tþ �i1a�, ImðfÞ � ~N 	 ~t, � ¼ �0e

i�,

and Vð1Þ
�i , V

ð2Þ
� , Vð3Þ

i , Vð4Þ are positive coefficients indepen-
dent of the axions. Thus, the axion combination 	1 � 	2 is
minimized at

cosð	1 � 	2Þ ¼ cos½ðb1 � b2Þ ~N 	 ~tþ a�� ¼ �1 (A3)

while the remaining axion combinations stay unfixed.
Now, including other terms in the superpotential such

that the ‘‘double condensate’’ approximation is valid, one
finds that the remaining N axions are stabilized by the next
N largest terms in the scalar potential depending on those
N linearly independent combinations of axions. These
terms are generated by the product of one of the two
dominant terms and one of the subdominant terms. To
compute the stabilized values of the axion combinations
	1 � 	k, k > 2, it is useful to write the effective potential
for light axions after integrating out the moduli, meson
field, and one axion combination which receive a mass of
Oðm3=2Þ. This is given by [24]

Veffð	iÞ � V0 �m3=2e
K=2

XNþ2

k¼3

Dke
�bkVk cosð	1 � 	kÞ;

8k: bkVk < bkþ1Vkþ1;
(A4)

where Dk are Oð1Þ coefficients. This implies that the N
axion combinations 	1 � 	k are all stabilized such that

cosð	1 � 	kÞ ¼ �1; k ¼ 3; . . . ; N þ 2; (A5)

depending on whether Dk is negative or positive, respec-
tively. In terms of 	i, the full superpotential can thus be
written as

W¼ei	1

�
jW1jþjW2je�ið	1�	2Þþ XNþ2

k¼3

jWkje�ið	1�	kÞþ . ..

�

¼ei	1

�
jW1j�jW2j�

XNþ2

k¼3

jWkj
�
þ . . .

which is (dominantly) real up to one overall phase. The
phases of other possible terms present in the superpoten-
tial (denoted by ‘‘. . .’’ above) will be completely deter-
mined by the stabilized axions above, and may be
different from 0 or 
. However, since these terms are
exponentially suppressed relative to the dominant terms,
one finds that after rotating away the unphysical overall
phase the superpotential is real in the vacuum up to
exponentially suppressed effects. Note that for the above
mechanism to work it is crucial that the terms in the
superpotential which stabilize all moduli and one combi-
nation of axions are dominant compared to the remaining
terms. In the case studied in this paper this amounts to
having the first two terms in the superpotential dominant
compared to other ones. If many or all terms are compa-
rable to each other, the analysis becomes more compli-
cated and the axion combinations 	1 � 	k, k ¼ 3, 4, . . .,
are then generically stabilized at a nontrivial value other
than 0 or 
, implying that the superpotential is not real in
the vacuum. Another consequence of the above result
which has been studied in [24] in detail is that these light
axion mass eigenstates are exponentially lighter compared
to the moduli, meson, and heavy axion which areOðm3=2Þ.
This allows for a beautiful dynamical solution to the
strong CP problem within string theory and explicitly
realizes the string axiverse scenario considered in [64].
It is remarkable that the mechanism which stabilizes the
axions in the framework considered in [24] and solves the
strong CP problem automatically stabilizes them in such a
way that the superpotential is (dominantly) real in the
vacuum. The above result also applies to other classes
of string compactifications. For example, it was shown in
[25] that within certain classes of Type IIB flux compac-
tifications, all Kähler moduli and one of their axion part-
ners can be stabilized with a superpotential with a
constant term and just one nonperturbative contribution
which depends on a linear combination of all moduli,
i.e., for

W ¼ W0 þ Ae�bf; f ¼ XN
i

NiTi: (A6)

All but one of the axions remain massless at this level. If
these axions are stabilized by subdominant terms in the
superpotential, this would give rise to the same conclusion
in these compactifications as well.

APPENDIX B: THE LEADING ONE-LOOP
CONTRIBUTIONS TO EDM

The fermion EDMs can be generated at one-loop in
supersymmetric models with CP-violating phases in the
soft supersymmetry breaking sector. Within the framework
considered in this paper, the CP-violating phases only
reside in the trilinear terms and therefore appear in the

GORDON KANE, PIYUSH KUMAR, AND JING SHAO PHYSICAL REVIEW D 82, 055005 (2010)

055005-12



mass mixing terms of the left- and right-handed sfermions.
Therefore, the main contribution to the quark EDM and
CEDM comes from diagrams involving gluinos because of
the large gauge coupling. For the electron EDM, the domi-
nant contribution comes from the diagram involving neu-
tralinos. This is because the diagrams with charginos in the
loop require CP-violating phases in the chargino sector
which do not arise within the M theory framework
considered.

Let us first consider the diagrams contributing to quark
EDM and CEDM with gluino running in the loop

d~gðEÞ
q ¼ �2e�s

3


X2
k¼1

Imð�1k
q Þ m~g

m2
~qk

Q~qB

�m2
~g

m2
~qk

�
; (B1)

d~gðCÞ
q ¼ gs�s

4


X2
k¼1

Imð�1k
q Þ m~g

m2
~qk

C

�m2
~g

m2
~qk

�
; (B2)

where �1k
q ¼ Dq2kD

�
q1k and Dq is the 2� 2 matrix which

diagonalizes the squark mass matrix m2
~q

Dy
qm2

qDq ¼ Diagðm2
~q1; m

2
~q2Þ: (B3)

More explicitly

~q L ¼Dq11~q1þDq12~q2; ~qR ¼Dq21~q1þDq22~q2: (B4)

Here BðrÞ and CðrÞ are loop functions defined as

BðrÞ ¼ 1

2ðr� 1Þ2
�
1þ rþ 2r lnðrÞ

1� r

�
;

CðrÞ ¼ 1

6ðr� 1Þ2
�
10r� 26þ 2r lnðrÞ

1� r
� 18 lnðrÞ

1� r

�
:

In the above equations, we assume no flavor mixing in the
squark mass matrices as argued in the main body of the
paper. Using the fact that Imð�11

q Þ ¼ �Imð�12
q Þ, we have

d~gðEÞ
q � �2e�sQ~q

3


Imðm2
~qÞLR

m3
~g

r2ðBðrÞ þ rB0ðrÞÞ: (B5)

Similarly

d~gðCÞ
q � gs�s

4


Imðm2
~qÞLR

m3
~g

r2ðCðrÞ þ rC0ðrÞÞ: (B6)

In the calculation above, we assume the mass splitting of
squarks is small compared to the squark mass. This is
usually true since we are only interested in the up and
down squarks. When r ¼ m2

~g=M
2
~q 
 1, one finds that

CðrÞ � AðrÞ, BðrÞ. It is easy to see that d~gðCÞ
q � d~gðEÞ

q .

For other diagrams which involve neutralinos and chargi-
nos, the structure is very similar. However, they are much

smaller than d~g
q and can be neglected.

Now let us turn to the one-loop diagrams contributing to
the electron EDM:

d
~	þ
e ¼ e�em

4
sin2�W

X2
k¼1

Imð�eiÞ
m~	þ

m2
~�

A

�m2
~	þ

m2
~�

�
; (B7)

d
~	0

e ¼ e�em

4
sin2�W

X2;4
k;i¼1;1

ImðeikÞ
m~	0

m2
~ek

B

�m2
~	0

m2
~ek

�
; (B8)

where �ei ¼ U�
i2V

�
i1, and

eik ¼ ½� ffiffiffi
2

p ftan�WðQe � T3eÞX1i þ T3eX2igD�
e1k

þ �eXbiD
�
e2k�ð

ffiffiffi
2

p
tan�WQeX1iDe2k � �eXbiDe1kÞ:

Here we have

�e ¼ meffiffiffi
2

p
mW cos�

: (B9)

The loop function AðrÞ is given by

AðrÞ ¼ 1

2ð1� rÞ2
�
3� rþ 2 lnðrÞ

1� r

�
: (B10)

In the above equations, UðVÞ, X, and De are the conven-
tional chargino, neutralino, and selectron mixing matrices.
It is easy to see that the chargino diagram does not con-
tribute to the electron EDM in the framework considered,
since there is no CP-violating phases in the chargino
sector. In the absence of the neutralino mixing, the expres-

sion of d
~	0
e can be significantly simplified:

dEe � e�em

4
cos2�W

Imðm2
~eÞLR

m3
~B

r21½Bðr1Þ þ r1B
0ðr1Þ�; (B11)

where r1 ¼ m2
~B
=m2

~e with m~e denoting the average mass of

the selectrons. In the above result, the Higgsino contribu-
tion is neglected since it is suppressed by the small Y2

e .

APPENDIX C: BARR-ZEE DIAGRAM

As we have discussed in Sec. VB, we are concerned
with the Barr-Zee diagram with the third generation

squarks, i.e., ~t and ~b, running in the inner loop. Here we
give the detailed derivation of Eqs. (34) and (35). We start
with the general results of EDM and CEDM for the Barr-
Zee diagram [40]:

dEf ¼ Qf

3e�em

32
3

Rfmf

M2
A

X
q¼t;b

�qQ
2
q½Fðr1Þ � Fðr2Þ�;

dCf ¼ gs�s

64
3

Rfmf

M2
A

X
q¼t;b

�q½Fðr1Þ � Fðr2Þ�;
(C1)
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where MA is the mass of pseudoscalar Higgs A0, r1;2 ¼
m2

~q1;2
=M2

A, Rf ¼ cot�(tan�) for I3 ¼ 1=2(�1=2), and FðzÞ
is the two-loop function

FðzÞ ¼
Z 1

0
dx

xð1� xÞ
z� xð1� xÞ ln

�
xð1� xÞ

z

�
: (C2)

The CP-violating couplings are given by

�t ¼ � sin2�~tmt Imð�ei�tÞ
2v2sin2�

;

�b ¼ � sin2�~bmb ImðAbe
�i�bÞ

2v2 sin� cos�
;

(C3)

where �~t;~b are the stop and sbottom mixing angles, and

�q ¼ ArgðAq þ Rq�
�Þ. The mixing angle of the squark

sector is given by

tanð2�qÞ ¼ � 2mqj�Rq þ A�
qj

M2
~Q
�M2

~q þ cos2�M2
ZðTq

z � 2eqs
2
wÞ

� � 2mqj�Rq þ A�
qj

M2
~Q
�M2

~q

: (C4)

Therefore, Eq. (C3) becomes

�t � y2t jA�
t þ� cot�j Imð�ei�tÞ

M2
~Q
�M2

~t

;

�b � cot�
y2bjA�

b þ� tan�j ImðAbe
�i�bÞ

M2
~Q
�M2

~b

:

(C5)

Using Eqs. (C3) and (C4), we can rewrite Eq. (C1) as

dEf � Qf

3e�em

32
3

Rfmf

M4
A

Im

�
4y2t
9

�ðAt þ�� cot�ÞF0ðr1Þ

þ y2b
9
AbðA�

b þ� tan�Þ cot�F0ðr2Þ
�
;

dCf � gs�s

64
3

Rfmf

M4
A

Im½y2t �ðAt þ�� cot�ÞF0ðr1Þ

þ y2bAbðA�
b þ� tan�Þ cot�F0ðr2Þ�; (C6)

where r1 � m2
~t =M

2
A and r2 � m2

~b
=M2

A with m~t;~b being the

average masses of the stops and sbottoms, respectively.
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