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We present an efficient method of reconstructing the parameters of the constrained MSSM from

assumed future LHC data, applied both on their own right and in combination with the cosmological

determination of the relic dark matter abundance. Focusing on the ATLAS SU3 benchmark point, we

demonstrate that our simple Gaussian approximation can recover the values of its parameters remarkably

well. We examine two popular noninformative priors and obtain very similar results, although when we

use an informative, naturalness-motivated prior, we find some sizeable differences. We show that a further

strong improvement in reconstructing the SU3 parameters can by achieved by applying additional

information about the relic abundance at the level of WMAP accuracy, although the expected data

from Planck will have only a very limited additional impact. Further external data may be required to

break some remaining degeneracies. We argue that the method presented here is applicable to a wide class

of low-energy effective supersymmetric models, as it does not require one to deal with purely

experimental issues, e.g., detector performance, and has the additional advantages of computational

efficiency. Furthermore, our approach allows one to distinguish the effect of the model’s internal structure

and of the external data on the final parameters constraints.
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I. INTRODUCTION

If softly broken low-energy supersymmetry (SUSY)
provides a correct description of the particle physics realm
at energy scales around a few hundred GeVand above, then
superpartners are likely to be discovered at the LHC. One
of the main goals of the ATLAS and CMS experiments will
be to identify those particles by determining their masses
and other properties.

The actual outcome will depend not only on the LHC
machine and detector performance but obviously also on
the mass scales of the superpartners themselves. A whole
plethora of different possibilities can be listed here, rang-
ing from one extreme where all of the superpartners may
come out to be too heavy for the LHC reach, to another
where all, or most, of them will be discovered.
Unfortunately, basically the whole spectrum of options
remains open even in perhaps the most economical
SUSY framework, the constrained minimal supersymmet-
ric model (constrained MSSM or CMSSM) [1] which
includes the minimal supergravity (mSUGRA) model [2],
as shown by a number of recent global fits of the CMSSM
based on Bayesian statistics [3,4] and on a �2 approach
[5,6]. While the latter show a stronger preference for a
fairly low SUSY mass scale, in the range of a few hundred
GeV, the former point to a more cautious picture, where a
much wider mass range remains allowed. This discrepancy

is caused by the fact that, with the data that are currently
available, even the CMSSM still remains to some extent
underconstrained, and the specifics of the statistical and
data analysis treatment can lead to fairly different results. It
is therefore clear that selecting, or at least limiting, SUSY
models by using LHC measurements is certainly going to
be a very challenging task as there exist large degeneracies
among the MSSM parameters that can lead to indistin-
guishable LHC signatures (see, e.g., Ref. [7]).
In preparation for dealing with real data, a number of

approaches to particle mass reconstruction have been de-
veloped based on extracting kinematic information from
one or more decay chains of superpartners, typically re-
quiring two or more visible particles in the final state [8].
These and other techniques have been used by LHC ex-
perimental groups which have performed a large number of
detailed studies in a few reference, or ‘‘benchmark,’’
points, often selected in such a way as to typically allow
several of the superpartners to be seen at the LHC.
In a recent extensive ATLAS report [9], in the frame-

work of the CMSSM/mSUGRA a so-called ATLAS SU3
benchmark point (which is specified below) was examined
with Markov chain Monte Carlo (MCMC) scans, with the
aim of evaluating the expected accuracy of reconstructing
CMSSM parameters: a common gaugino mass parameter
m1=2, a common scalar mass parameter m0, a common

trilinear term A0, all evaluated at the unification scale
MGUT ’ 2� 1016 GeV, plus the ratio tan� of Higgs vac-
uum expectation values. Assuming an integrated luminos-
ity of 1 fb�1, a dilepton and leptonþ jets edge analysis of
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the decay chain ~qL ! �0
2ð! ~l�l�Þq ! �0

1l
þl�q and the

high-pT and large missing energy analysis of the decay
chain ~qR ! �0

1q were performed, where ~qL (~qR) denotes
the first or second generation left (right) squark, �0

1;2 the

first and second neutralino, and ~l an intermediate slepton. It
was concluded that m1=2 and m0 could be reconstructed

with adequate accuracy, while prospects for tan� looked
somewhat poorer, and even more so for A0 (see Ref. [9],
page 1617 forward).

In this paper we perform an independent analysis of the
ATLAS SU3 point using the publicly available information
about the expected ATLAS capabilities to measure the SU3
mass spectrum. We first demonstrate that a simple model-
ing of the mass spectrum constraints in an effective like-
lihood is sufficient to reproduce with reasonable accuracy
the results of the full ATLAS analysis, while being much
more economical in terms of computational requirements,
when we use the same linear, or flat (as defined below)
prior. We then build on the ATLAS analysis by examining
the impact of two other priors. We find that noninformative
priors (i.e., priors whose characteristic scale is much larger
than the support of the likelihood) lead to approximate
prior-independence in the posterior, thus significantly im-
proving with respect to the current situation. On the other
hand, if one imposes extra theoretical prejudice in the prior
(by choosing a prior that penalizes fine-tuning), the poste-
rior is still quite strongly affected.

We also compare with the limits that can be obtained
using a maximum likelihood analysis, and we show that the
choice of statistics (Bayesian or maximum likelihood) no
longer matters once one combines ATLAS data with cos-
mological relic abundance determinations. We clarify what
role is played by assuming a specific theoretical model
(here the CMSSM) in complementing the information
coming from the ATLAS measurements with model-
specific theoretical correlations between masses of the
observables.

In the second step, we go beyond the ATLAS analysis by
applying additional information about the cosmological
relic density ��h

2 of the lightest neutralino �0
1 (below

often denoted by � for simplicity), assumed to be dark
matter (DM) in the Universe. The dark matter abundance
clearly provides additional information about the model at
hand, and in this analysis we aim at obtaining a quantitative

measure for the extra constraining power that it provides,
on top of that expected from the ATLAS data. Here we first
impose WMAP uncertainties on ��h

2 and demonstrate a

significant improvement in the determination of the
CMSSM parameters, especially m0. Next we investigate
the impact of further reducing the observational errors on
��h

2 to an accuracy as expected from Planck, and show

that this will lead to only a further modest improvement.
We also comment on the impact of some other commonly
used constraints, in particular, from b ! s� and ðg� 2Þ�,
which we, however, do not apply here. Finally, we examine
the impact of the different constraints from ATLAS and
cosmology on the uncertainties of mass measurements of
several superpartners and on predictions for the scattering
cross section relevant for direct detection of dark matter
experiments.
The paper is organized as follows. In Sec. II we present a

setup of our analysis for the ATLAS SU3 point in the
CMSSM, including details of our scans of the CMSSM
parameters. In Sec. III we present our numerical results for
the posterior probability density functions (PDFs), includ-
ing a discussion of an impact of adding further assumptions
and information. In Sec. IV we compare some of these with
the alternative measure of the profile likelihood. We sum-
marize our findings in Sec. V.

II. SETUP AND BENCHMARK POINT

A. The ATLAS SU3 benchmark point

We examine the ATLAS SU3 benchmark point for
which input values of CMSSM parameters are given on
the left side of Table I. Since in the ATLAS analysis errors
of relevant standard model (SM) parameters (‘‘nuisance
parameters’’) were not included, we assume that the bench-
mark values for the nuisance parameters are set at their
central values as given on the right side of Table I. In the
reconstruction done below, we then allow the nuisance
parameters to vary and we constrain them using the like-
lihood given below.
Since LHC data are rather unlikely to differentiate

among the flavors of the squarks of the first two genera-
tions, in what follows we denote them all by a common
symbol ~q, and by m~q their average mass, similarly as in

Ref. [9]. On the other hand, ~l will denote the lightest

TABLE I. Left side: input CMSSM parameter values for the ATLAS SU3 benchmark point.
Right side: input values of relevant SM parameters used in the numerical analysis.

CMSSM parameter ATLAS SU3 benchmark value SM parameter Input value

m1=2 300 GeV Mt 172.6 GeV

m0 100 GeV mbðmbÞMS 4.20 GeV

tan� 6.0 �sðMZÞMS 0.1176

A0 �300 GeV 1=�emðMZÞMS 127.955

sgnð�Þ þ
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slepton and m~l its mass. In the case of the ATLAS SU3
point its role is played by ~�1.

The resulting mass spectrum, as computed using the
SOFTSUSY code, version 1.0.18 [10], in the 1-loop approxi-

mation is given in Table II. By comparing with the mass
spectrum for the ATLAS SU3 point given in Ref. [9]
(cf. Table II), we can see some differences, especially a
systematic shift in squark masses by a few tens of GeV,
which may be due to using different numerical codes,
approximations (although in both cases 1-loop expressions
are applied) as well as different inputs in SM parameter
values. While this will contribute to some differences we
will find with the ATLAS results, at the end these discrep-
ancies are of secondary importance, as we discuss below.

B. The likelihood function

The study performed by the ATLAS Collaboration on
the SU3 point reports the expected accuracy in the recon-
struction of some of the masses and mass differences in the
benchmark SUSY spectrum given in Table II. Dilepton
edges will constrain m�0

1
, m�0

2
, m~q, and m~l with fairly

poor accuracy, while providing much tighter limits on the
mass differences between the three latter quantities and the
lightest neutralino, since these follow more directly from
end-point measurements. The end point in the dilepton
invariant mass distribution is determined by the masses
of the particles involved. In the case of the SU3 point

considered here, the two-body decay channel �0
2 ! ~l�l�

dominates, since m�0
2
>m~l, and the distribution of the

invariant mass of the two leptons is triangular, with an
end point given by [9] (page 1619)

medge ¼ m�0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�

m~l

m�0
2

�

2
v

u

u

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�m�0

1

m~l

�

2
s

: (1)

A measurement of the dilepton end point leads to a rela-
tionship between �0

2, �
0
1, and the slepton involved. Further

mass distributions are considered in order to determine the
masses of all the particles involved in the process, as
described in Ref. [9] (page 1619 forward), along with event
and cut selection procedures adopted in a reconstruction of
the dilepton and other edges.
The observable quantities to be constrained by ATLAS

are given by the set

� ¼ fm�0
1
; m�0

2
�m�0

1
; m~l �m�0

1
; m~q �m�0

1
g: (2)

We further assume that the maximum likelihood (ML)
value of � obtained by ATLAS, �ML, corresponds to
the value of the true benchmark point, �? ¼
f117:9; 105:5; 34:3; 534:5g GeV, where the numerical
value is obtained from Table II. In other words, we neglect
realization noise, an assumption which is justified by the
fact that h�MLi ¼ �?, where h�i denotes an average over
realizations. The likelihood function from ATLAS is then
modeled as a Gaussian centered around the true value of
the observable quantities,

�2lnLATLAS ¼�2
ATLAS ¼ ð���MLÞtC�1ð���MLÞ; (3)

where the covariance matrix C is given in Table III (and we
have dropped an irrelevant normalization constant). It rep-
resents the full covariance between the masses and the

TABLE II. Superpartner mass spectrum for the ATLAS SU3 point.

Superpartner Mass Superpartner Mass Superpartner Mass

�0
1ð¼ �Þ 117.9 GeV ~eL, ~�L 230.8 GeV ~dL 666.2 GeV

�0
2 223.4 GeV ~eR, ~�R 157.5 GeV ~dR 639.0 GeV

�0
3 463.8 GeV ~�e, ~�� 217.5 GeV ~uL 660.3 GeV

�0
4 479.9 GeV ~�1 152.2 GeV ~uR 644.3 GeV

�þ
1 224.4 GeV ~�2 232.4 GeV ~b1 599.0 GeV

�þ
2 476.4 GeV ~�� 216.9 GeV ~b2 636.6 GeV

~g 717.5 GeV ~t1 446.9 GeV
~t2 670.9 GeV

TABLE III. ATLAS covariance matrix employed in the analysis.

m�0
1

m�0
2
�m�0

1
m~l �m�0

1
m~q �m�0

1

m�0
1

3:72� 103 53.40 1:92� 103 10:75� 102

m�0
2
�m�0

1
3.6 29.0 �1:3

m~l �m�0
1

1:12� 103 4.65

m~q �m�0
1

14.1
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mass differences. The covariance matrix includes statisti-
cal errors only; systematic errors are negligible.

The form of the ATLAS likelihood function given in
Eq. (2) is a simple Gaussian approximation to the actual
likelihood function that one would obtain from a full
analysis of simulated ATLAS data. The latter is, however,
not available outside the collaboration and therefore our
approximation represents the best that can be reasonably
done given the information that is expected to be publicly
available. There are two reasons why it might be interest-
ing to consider an approximate ATLAS likelihood function
at the level of the SUSY mass spectrum. Firstly, it is not
unreasonable that the simple approximation adopted here
will give a fairly accurate representation of ATLAS capa-
bilities (see below for further comments on how this com-
pares with the full analysis carried out by the ATLAS
Collaboration), and therefore provide a useful shortcut to
quantitatively implementing the constraints that would
result from a full analysis. Secondly, given the model-
independent constraints on the low-energy SUSY mass
spectrum, one can use them to constrain the high-energy
parameters of any SUSY model of the MSSM class, in this
case the CMSSM. As we shall show below, the constrain-
ing power included in the low-energy likelihood is then
supplemented by the theoretical structure of the model
itself.

We will now examine prospects for reconstructing the
input values of the ATLAS SU3 point. We consider the
following data combinations:

(i) ATLAS data only, including only the likelihood
function given by Eq. (3);

(ii) ATLAS data ðas aboveÞ þWMAP-level uncertain-
ty on dark matter abundance;

(iii) ATLAS data ðas aboveÞ þ Planck-level uncertain-
ty on dark matter abundance.

When including information about the cosmological
dark matter abundance, we have to address the fact that
the value of the neutralino relic abundance (computed
using the code MICROMEGAS [11]) for the ATLAS SU3
benchmark point, is ��h

2 ¼ 0:2332, which is a factor of

some 2.5 above the WMAP range of 0:1099� 0:0062 for
the cosmological dark matter [12]. However, assuming
standard big bang cosmology and that the CMSSM is
correct, we would expect that for the actual measured value
of the CMSSM parameters, for which ATLAS and/or CMS
measurements are made, ��h

2 would lie in the WMAP

range. It is therefore not unreasonable to examine the
impact of the extra piece of information, both in terms of
its value and uncertainty, which is provided by the cosmo-
logical relic density of dark matter. Notice that we do not
rely here on a potential ability to reconstruct ��h

2 from

LHC data alone [13] (which, on the other hand, could
provide an important cross-check of our cosmological
input) but use it as external constraint. Therefore, since
the ATLAS analysis has been carried out for the ATLAS

SU3 point, with the specific values of the CMSSM parame-
ters, we also adopt to keep this central value for the relic
abundance. On the other hand, we do not expect any major
change in the numerical results presented below if ��h

2

were actually close to the WMAP range.
In our analysis we implement the cosmological dark

matter determination as follows. Firstly, we assume that
the true value of the relic abundance corresponds to the
value computed for the benchmark point, and that WMAP-
level constraints correspond to a Gaussian likelihood
centered around that value with standard deviation given
by the current WMAP uncertainty, namely 	WMAP ¼
6:2� 10�3:

� 2 lnLWMAP ¼ �2
WMAP ¼ ð��h

2 � 0:2332Þ2
	2

WMAP

: (4)

The Planck satellite is expected to improve the WMAP
accuracy on the relic abundance by a factor �10 [14].
When including Planck-level constraints, we therefore
adopt the same likelihood as above but with a smaller
standard deviation, 	Planck ¼ 6:2� 10�4. Because for the
‘‘bulk region’’ to which the ATLAS SU3 point belongs
the theoretical error in the relic abundance is estimated to
be tiny [15] we neglect it here. In other cases it can be
much larger, primarily due to the larger uncertainties in
computing mass spectra; for example, in the focus point
region it would likely dominate and this would cloud the
potential impact of the cosmological data.
In order to facilitate a comparison with the ATLAS study

[9], in this analysis we do not apply any other constraints,
e.g., from LEP, rare processes in heavy quark physics
(b ! s�, etc.) or the anomalous magnetic moment of the
muon ðg� 2Þ�, which are routinely used in global analy-

ses of the CMSSM and other popular SUSY models. We
have also checked that fixing the nuisance parameters or
marginalizing over them has a negligible impact on the
results. Therefore we only present results with the nuisance
SM parameters fully marginalized, even though in the
ATLAS analysis the SM parameters were fixed at their
central values.

C. Scanning the CMSSM parameters

With the aim of reconstructing the true values of the
defining parameters for the ATLAS SU3 point, we explore
the CMSSM parameter space with the help of the nested
sampling (NS) scanning technique, as implemented in the
MULTINEST algorithm [16].

We consider two different noninformative priors, that is,
priors which contain minimal assumptions about the values
of the parameters:
(i) flat prior: flat in m1=2, m0, A0, tan�, with the ranges:

50 GeV � m1=2; m0 � 500 GeV, 2 � tan� � 62,
and �4 TeV � A0 � 4 TeV.
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(ii) log prior: flat in logm1=2, logm0, A0, tan�, with the

same ranges: logð50Þ � logm0; logm1=2 � logð500Þ
(in GeV), and as above for A0 and tan�.

Notice that we have employed here narrower ranges of
m1=2 and m0 than the values of up to a few TeVused in our

previous analyses [4,17]. However, we have checked that
enlarging the prior range to much larger values ofm1=2,m0

(up to 4 TeV) has no impact on our reconstructed parame-
ter values, as our algorithm correctly recovers the true
parameter values even in the case of a much larger prior
range. Finally, for the SM nuisance parameters we assume
the same ranges as in our previous papers [4,17]; in any
case as we have mentioned above, the details of the treat-
ment of nuisance parameters has basically no impact on the
results presented here.

One of the aims of this work is to demonstrate that
ATLAS data will achieve approximate prior independence
for the two choices of noninformative priors given above,
which have been widely used in the literature so far and for
which it has been shown that the current posterior for the
CMSSM retains a fairly substantial prior dependence [17].
However, while this is encouraging, clearly that does not
imply that one should expect the same to hold with any
other choice of prior, of which there is an infinite range.
Furthermore, in the Bayesian framework it is always
possible to supplement the information contained in the
likelihood by external prior information, for example, by
imposing ‘‘naturalness’’ constraints [18,19]. In this case,

one would not expect the posterior to remain independent
of the prior, but actually to show stronger constraints than
for the case of noninformative priors. In order to inves-
tigate to what extent a naturalness prior can supplement
ATLAS data in constraining CMSSM parameters, we also
consider an informative prior choice in Sec. III D, with the
following ‘‘CCR prior’’ (after Cabrera, Casas, and Ruiz de
Austri, who introduced it) [19],
(iii) CCR prior: flat on m0, m1=2, A0, B but with an

effective ‘‘penalty term’’ that naturally leads to low
fine-tuning among SUSY parameters.

The CMSSM is often treated as an effective theory
following from mSUGRA which is parametrized in terms
of the following parameters fm0; m1=2; A0; B;�; g, which
are then treated as in some sense more fundamental. On the
other hand, for the purpose of performing a numerical
scanning of the model parameter space it is much more
convenient to trade some of them for the CMSSM parame-
ters which have a more direct phenomenological signifi-
cance. (In addition one has the usual SM nuisance
parameters.) In Refs. [19,20] it has been shown that it is
convenient to replace � with mZ, which is trivially inte-
grated out. In addition, this procedure automatically takes
into account the usual measure [21,22] of the degree of
fine-tuning. Furthermore, it is also convenient to trade the
B parameter for the derived quantity tan�.
The change of variables f�;Bg ! mZ, tan� leads to the

effective prior in the CMSSM variables

peffðm0; m1=2; A0; tan�Þ � Jj�¼�Z
pðm0; m1=2; A0; B;� ¼ �ZÞ; (5)

where pðm0; m1=2; A0; B;� ¼ �ZÞ is the prior for the mSUGRA parameters and J is a Jacobian of the transformation,
which is evaluated in the usual way from minimization equations of the Higgs scalar potential, VðH1; H2Þ. This way one
arrives at an approximate form for the effective prior [19]

peffðm0; m1=2; A0; tan�Þ / tan2�� 1

tan2�ð1þ tan2�Þ
Blow

�Z

pðm0; m1=2; A0; B;� ¼ �ZÞ; (6)

where Blow is the parameter B evaluated at the electroweak
scale and �Z is chosen so that it gives the correct mZ. The
CCR prior is then defined as the effective prior
peffðm0; m1=2; A0; tan�Þ, Eq. (6), where we take a flat prior
in m0, m1=2, A0, B, and �.

III. RESULTS

In this section we present our numerical results from
scans performed using the publicly available SUPERBAYES

package, version 1.35 [23], which we have modified in
order to include a Gaussian likelihood from projected
ATLAS data as described above.

A. Using ATLAS data only and noninformative priors

We begin by considering the constraining power on the
CMSSM parameters of ATLAS mass spectrum data alone.
In Figs. 1 and 2 we present two-dimensional (2D) Bayesian

posterior PDFs assuming the log and the flat prior, respec-
tively, while the corresponding 1D PDFs for the log prior
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FIG. 1 (color online). Two-dimensional posterior PDF for the
case of applying ATLAS mass spectrum data alone, for some
CMSSM parameter combinations and for the log prior choice.
Compare with Fig. 12, page 1638 of [9].

EFFICIENT RECONSTRUCTION OF CONSTRAINED MSSM . . . PHYSICAL REVIEW D 82, 055003 (2010)

055003-5



case are shown in Fig. 3. By examining the ðm1=2; m0Þ
plane for the log prior in Fig. 1, we can see that both the
68% (inner regions) and the 95% (outer regions) total
probability regions are well centered around the true value.
Our algorithm recovers the best-fit point within the limits
of numerical noise for all CMSSM parameters, except for
A0, where the reconstructed best-fit ends up in a wrong
region of the parameter space due to a fundamental degen-
eracy discussed below. The posterior mean is also reason-
ably close to the true value (within 1	 for all parameters,
except for A0), although it is slightly skewed due to the

asymmetric nature of the contours, which exhibit heavier
tails than Gaussian (see also Fig. 3 below). On the other
hand, tan� is somewhat less well reconstructed, yielding
only an upper limit.
In contrast, A0 is rather poorly constrained in this case,

and actually shows a sign ambiguity. This is because it
enters the analysis in a rather indirect way, mostly via the
off-diagonal terms X� ¼ A� �� tan� in the stau mass
matrix, where A� is the value of A0 at the electroweak
scale evaluated with its renormalization group equation
and � is computed from the usual requirement of correct
electroweak symmetry breaking. A closer examination
reveals that, for A0 � 1 TeV (in between the two 1	
regions in the right panel of Fig. 1), X� is minimized and
the mass difference between ~�2 and ~�1 (which plays the
role of the lightest slepton in the decay chain) goes to zero.
Since in the ATLAS analysis only ~�1 was considered, such
cases are not allowed. Our study thus reveals that in study-

ing the decay �0
2 ! ~l�l� ! �0

1l
þl� the exchange of both

~�2 and ~�1 should be considered, as for some values of A0

their masses, and therefore also relative contributions, may
be comparable.
In the case of the flat prior (Fig. 2) the emerging picture

remains essentially identical, thus confirming that the prior
choice becomes less of an issue once the constraining
power of the data is sufficiently strong, as expected.
Many of the features seen in Fig. 1 are displayed more
clearly in Fig. 3 where the corresponding 1D PDFs are
presented for the log prior case only; the flat prior produces
very similar results and is therefore not shown. We give the
68% and 95% intervals of our reconstructed CMSSM
parameters in Table IV. A comparison with the profile
likelihood is carried out further below.
When considering posterior constraints on the SUSY

mass spectrum, it is apparent that some of the constraints
are much stronger than the likelihood function alone
(which actually applies to a more general case of the
MSSM) would seem to imply. For instance, the 1	
error on m�0

1
from the ATLAS likelihood is 60 GeV

(cf. Table III, where the likelihood 1	 range is obtained
as the square root of the diagonal elements). However, the
reconstructed neutralino mass within the CMSSM shows a
much smaller error, of order �4 GeV (cf. Table IV). The
reason for this is that the information supplied by the
likelihood is supplemented by the internal structure of
the CMSSM parameter space, within which the masses
of many of the sparticles are highly correlated. This is
demonstrated in Fig. 4, where one can see that the corre-
lation between masses in the spectrum within the CMSSM
is nearly orthogonal to the constraints provided by ATLAS
for the mass spectrum observables plotted in the figures.
One can think of this correlation as an additional a priori
piece of information contained in the model. In other
words, given the theoretical structure of the CMSSM,
certain mass combinations in the spectrum (which are
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FIG. 3 (color online). One-dimensional posterior PDF for the
case of applying only ATLAS mass spectrum data, summarized
in 1D projections. We show only the log prior case, for the flat
prior case is essentially identical. It is clear that ATLAS data
alone are not sufficient to reconstruct all of the CMSSM pa-
rameters. In particular, whilem1=2 is well measured, A0 and tan�

remain largely undetermined.
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otherwise allowed by the projected ATLAS constraints, red
ellipses in Fig. 4) are simply not allowed by the structure of
the model. Therefore the final constraints on the spectrum
are much tighter than the likelihood alone would imply.
Supplementing the mass spectrum constraints with a
model-specific implementation, as done here, has the addi-
tional advantage of displaying which part of the constrain-
ing power comes from the experimental data and which
one from the theoretical properties of the model.

It is interesting to examine how well our procedure
allows one to use the assumed ATLAS data alone to
determine the relic abundance for the ATLAS SU3 point,
in some analogy with what, for example, has been done for
some other benchmark points in Refs. [13,24]. This is
shown in Fig. 5 where we find that, from the assumed
ATLAS data alone, one would obtain ��h

2 ¼ 0:253�
0:034, hence with a relative accuracy of �13%. For this
specific point, this would imply that ATLAS data would
determine the neutralino dark matter abundance at about
7	. Since the neutralino dark matter abundance for the
ATLAS SU3 benchmark point is some 2.5 times larger than
the value currently preferred by cosmological observa-
tions, if we assume that the accuracy for the benchmark

TABLE IV. Reconstructed values and errors for the input CMSSM parameters and for some key observables. We also give the best-
fit from our scan. The 68% and 95% ranges are computed from the posterior PDF as shortest intervals around the mean. For
definiteness, we have employed the log prior scan but the results from the flat prior case are essentially identical.

Applying ATLAS data only

Parameter True value Best-fit 68% (95%) range

m1=2 (GeV) 300 300.4 [288.2, 308.4] ([278.2, 316.3])

m0 (GeV) 100 104.3 [98.7, 173.6] ([89.8, 235.2])

tan� 6.0 3.8 <13:8 (< 27:4) (one tail)

A0 (GeV) �300 1749.7 ½�568:3; 1701:8	, (½�995:1; 2311:6	)
m�0

1
(GeV) 117.9 116.9 [113.7, 120.8], ([110.6, 123.7])

��h
2 0.2332 0.2330 [0.2264, 0.2870], ([0.2096, 0.3450])

log	SI
p (pb) �8:92 �8:87 ½�9:14;�8:42	, (½�9:45;�8:04	)

Applying ATLASþWMAP-like data

Parameter True value Best-fit 68% (95%) range

m1=2 (GeV) 300 302.3 [293.2, 310.7] ([285.5, 317.5])

m0 (GeV) 100 98.3 [95.9, 112.2] ([90.9, 151.6])

tan� 6.0 5.5 <7:3 (< 16:3) (one tail)

A0 (GeV) �300 �228:2 ½�498:1; 1437:6	, (½�887:7; 2199:1	)
m�0

1
(GeV) 117.9 118.6 [115.1, 121.3] ([112.2, 123.8])

��h
2 0.2332 0.2333 [0.2281, 0.2397] ([0.2225, 0.2454])

log	SI
p (pb) �8:92 �8:85 ½�9:07;�8:51	, (½�9:36;�8:03	)

Applying ATLASþ Planck-like data

m1=2 (GeV) 300 300.5 [295.7, 311.1], ([289.0, 317.6])

m0 (GeV) 100 99.4 [95.3, 106.1] ([92.0, 115.6])

tan� 6.0 6.1 <4:3 (< 11:3) (one tail)

A0 (GeV) �300 �257:4 ½�397:5; 1378:7	, (½�700:1; 2045:5	)
m�0

1
(GeV) 117.9 118.0 [115.9, 121.3] ([113.3, 123.8)]

��h
2 0.2332 0.2332 [0.2327, 0.2338] ([0.2322, 0.2345])

log	SI
p (pb) �8:92 �8:88 ½�8:99;�8:56	, (½�9:20;�8:31	)
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FIG. 4 (color online). Illustration of the extra constraints com-
ing from the assumption of the CMSSM as the theoretical
framework. The parameter space accessible within the
CMSSM is given by the green/light gray region (dots represents
uniformly drawn samples), the red/dark gray (wide) ellipses are
the ATLAS likelihood (as given by the covariance matrix of
Table III) while the blue/light gray (narrow) contours are the
posterior constraints. In the context of the CMSSM this allows
one to derive much tighter constraints on m�0

1
than it would be

possible based on the likelihood alone.
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point is representative for the accuracy that ATLAS will
actually find around a point with the correct cosmological
relic abundance of about 0.11, our estimate is that ATLAS
data alone would be able to determine the DM relic abun-
dance at the level of �3	. Finally, in our present analysis
we have ignored any theoretical error in the DM abundance
prediction. While for the ATLAS SU3 point, which falls
into the bulk region, such an error is likely to be very small,
in general it should be folded in when producing the
posterior shown in Fig. 5.

B. Comparison with the ATLAS Collaboration results

It is instructive to compare Figs. 1 and 2 with Fig. 12 in
Sec. 9.3 of the ATLAS report [9] where 2D marginal
Bayesian posteriors are presented following the ATLAS
MCMC analysis.1 The overall shape of the high-
probability ðm1=2; m0Þ and ðtan�;A0Þ regions is qualita-

tively similar although quantitatively we find somewhat
less stringent bounds. In particular, we can see the largest
difference in the case of A0 where the highest probability
region found in [9] lies on the boundary of the correct
region found in our analysis, while the other, multi-TeV
region, is in Ref. [9] absent altogether. There is also some
difference in m0 which in our case is not as well con-
strained as in Ref. [9].

It is however difficult to carry out a closer comparison,
since not many details are given regarding the setup used in
the ATLAS fitting analysis, in particular, about their treat-
ment of SM nuisance parameters. Also, the ATLAS fitting
analysis was performed directly from end-point measure-
ments while we used a Gaussian approximation to the

likelihood for masses and mass differences alone, thus
inevitably losing a certain amount of information con-
tained in the full analysis. It is, however, certainly encour-
aging that our ‘‘shortcut’’ method of reconstructing
CMSSM parameters using a relatively crude Gaussian
approximation to the full ATLAS analysis was able to
recover quite compatible regions of SUSY parameters
around their true values. The only exception is A0, as
explained above. As we show below, adding cosmological
relic abundance constraints does help in further tightening
some of the constraints. We conclude that, despite those
differences, overall we find a reasonably good agreement
with the ATLAS analysis. This suggests that not too much
information is lost by carrying out the analysis employing
an effective likelihood at mass spectrum level.
The advantage of our procedure is that it allows one to

easily change the model-specific assumptions: if one re-
places the CMSSM by another SUSY model that one is
interested in, the analysis can be carried out without the
need of going through the details of detector performance
and obtaining the ATLAS likelihood numerically via
Monte Carlo, thereby strongly reducing the computational
requirements. In fact, our analysis requires about 24 hours
on eight 3 GHz processors, and it is therefore relatively
computationally undemanding. Furthermore, it would be
easy to adapt our method to employ a more complete
likelihood function on the mass spectrum should this be-
come available as part of the data products released by the
LHC collaborations. This would allow theoretical studies
of the constraints implied on different SUSY models with-
out the need to reproduce the full detector-specific signal
reconstruction.

C. Impact of including the DM relic abundance

We now add to our likelihood function a constraint on
the relic abundance uncertainties, as discussed in Sec. II B.
In Fig. 6 we show the effect of imposing the ATLAS and
WMAP data (ATLASþWMAP) in the upper row, and an
analogous case for the ATLASþ Planck case in the lower
row. We plot the posterior for the log prior case; the flat
prior case is basically identical. It is clear that adding
WMAP-like constraints improves the reconstructing power
in determining the CMSSM parameters very considerably
in the case of m0 (and to some extent also tan�), while the
impact on the other two CMSSM parameters is fairly
limited. This can be traced back to the fact that, in the
bulk region, ��h

2 is determined primarily by the mass of

the lightest slepton, via a t-channel exchange. Tightening
the allowed range of ��h

2 selects a more peaked range of

m~l and thus also m0 on which it mostly depends. On the

other hand, m1=2, which primarily determines m�, can be

adequately constrained already by using only ATLAS data.
As regards A0, the bimodality still remains as it is caused
by the internal structure of the CMSSM. On the other hand,
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FIG. 5 (color online). One-dimensional posterior PDF for the
relic DM abundance ��h

2 of the neutralino, obtained from

ATLAS data alone. We show only the log prior case, for the
flat prior case is basically the same.

1Although it is labeled ‘‘likelihood maps,’’ the quantity plotted
in Fig. 12 in of Ref. [9] is actually a marginal Bayesian posterior
[25], analogous to the one plotted in our Figs. 1 and 2.
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a further improvement of the error on ��h
2 to the level

expected from Planck does not seem to improve the situ-
ation much beyond the ATLASþWMAP case. In this
context we again emphasize that, at this level of accuracy,
it will be essential to achieve a similar, or better, level of
theoretical errors, which may be challenging even for the
bulk region.

In Fig. 7 we show the constraints on the masses of
several superpartners obtainable with the three sets of
data considered in this paper. We can see that in the case
of the gauginos (�0

1;2, ��
1 , and ~g), whose masses are

determined primarily by m1=2 (which is well recon-

structed), the errors are rather small, while for Higgsino-
like states (�0

3;4 and ��
2 ) the errors are large because of a

poor determination of the � parameter. For the states
whose mass strongly depends on m0 (spin-zero superpart-
ners) the errors again reflect that of the common scalar
mass, whose reconstruction, while reasonable, is not as
good as for m1=2.

The impact of further imposing other often used con-
straints from b ! s� and ðg� 2Þ� is in the present case

rather limited. This is because the total error in the first
quantity is still substantial while the dominant SUSY con-
tribution to ðg� 2Þ� comes from sneutrino-chargino

exchange. In the low mass region the masses of both
particles are low and thus their contribution can be large
enough to significantly reduce the discrepancy between the
experimental data and the SM value.
Finally, we investigate how well one can predict the

spin-independent cross section 	SI
p of dark matter neutra-

lino scattering off a proton tested in direct detection experi-
ments. As can be seen from Fig. 8, at 68% the value of 	SI

p

will remain uncertain to within about 1 order of magnitude,

FIG. 7 (color online). Reconstruction of the SUSY mass spec-
trum using projected ATLAS data only (red/left-most error bar),
adding WMAP-like constraints on the dark matter relic abun-
dance (blue/central error bar), and adding Planck-like dark
matter constraints (green/right-most error bar). The error bars
represent the 68% range of the Bayesian posterior for the log
prior. (The results for the flat prior are essentially identical.)
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FIG. 8 (color online). Impact of adding to the ATLAS data
cosmological dark matter abundance determination with
WMAP-like (left panel) and Planck-like (right panel) errors on
the predictions for the spin-independent cross section of dark
matter neutralino scattering off a proton, relevant for direct
detection experiments. Filled regions are for ATLAS plus either
WMAP or Planck, while empty contours are for ATLAS only.
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FIG. 6 (color online). Impact of adding to the ATLAS data
cosmological dark matter abundance determination with
WMAP-like (upper row) and Planck-like (lower row) errors on
ðm1=2; m0Þ (left panels) and ðtan�; A0Þ (right panels). Filled

regions are for ATLAS plus either WMAP or Planck, while
empty contours are for ATLAS only. Only the log prior case is
presented; the flat one produces very similar results.
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while the neutralino mass will be very well constrained by
LHC data as a reflection of the bounds on m1=2. This is

because in the case studied here 	SI
p is too a large extent

determined by a t-channel heavy scalar Higgs exchange,
where, in addition tom�, the main two parameters are tan�

and the Higgs mass which shows a considerable spread of
values, mostly due to the larger uncertainty in m0. Adding
information about the DM relic abundance therefore im-
proves the situation only in a fairly limited way.

D. Impact of a naturalness prior

We now turn to investigating the impact that a highly
informative prior choice based on naturalness considera-
tions would have on the Bayesian posterior. The CCR
effective prior implements Occam’s razor penalization of
regions of the parameter space exhibiting large fine-
tunings [19]. This implies that the statistical weight of
regions with large tan� is reduced, since fine-tuning gen-
erally increases with increasing tan�. The same applies to
the soft-terms, except for m0 where lower fine-tuning is
actually achieved in the TeV range, in the so-called hyper-
bolic branch/focus point (FP) region [26,27].

The posterior PDF for the CCR prior for the CMSSM
parameters is shown in Fig. 9 as blue-shaded 68% (darker)
and 95% (lighter) regions, where for comparison we also
show the noninformative log prior case (the corresponding
black contours). We observe that the CCR prior leads to
much tighter errors on especially tan�, and to some extent
also m0, by assigning a larger penalty, and therefore
stronger constraints, to ‘‘less natural’’ ranges of those
parameters. The posteriors for m1=2 and A0, on the other

hand, are only mildly affected by the CCR prior. This is an
example of how supplementing the information from the
likelihood with a naturalness prior coming from theoretical
prejudice leads to a posterior which can be significantly
different from one obtained using noninformative log
(or flat) prior.

IV. COMPARISON WITH PROFILE LIKELIHOOD

In order to examine the robustness of the results ob-
tained with the Bayesian posterior PDF, in this section we
compare them with what would be obtained by using a
more traditional �2-based analysis. We thus define the
profile likelihood for, e.g., the CMSSM parameter m1,
where m1; . . . ; m8 comprise the four CMSSM parameters
and the four SM nuisance parameters of Table I, as

L ðm1Þ � max
m2;...;m8

LðdjmÞ; (7)

where in our case LðdjmÞ is the full likelihood function.
Thus in the profile likelihood one maximizes the value of
the likelihood along the other CMSSM and SM parame-
ters, rather than integrating it out as in the marginal poste-
rior. From the profile likelihood, confidence intervals are
then obtained using the usual likelihood-ratio criterion. In
the context of MCMC scans of the parameter space, the
profile likelihood can be evaluated by simply finding the
maximum likelihood value within a given bin. This has
been studied before in the context of the CMSSM in
Refs. [17,18,28]. Its interest lies in the fact that it is a
prior-independent measure. One should however be aware
that, given current data, the numerical value of the profile
likelihood remains dependent on the scanning algorithm
employed (see the analysis in Ref. [28]). This problem is
not relevant for the current paper, as we are dealing with
simulated data and we can thus double check that our
profile likelihood correctly peaks near the true maximum
likelihood value. Since we have found above little prior
dependence of the posterior PDF, this suggests that the
posterior PDF is dominated by the likelihood. Therefore
we generically expect that the profile likelihood will give
similar statistical results as the posterior studied above.
This is indeed confirmed in the top row of Fig. 10, where

we present the 68% (inner contours) and the 95% confi-
dence regions (outer contours) of the profile likelihood for
the ATLAS-only data case and we compare them with the
analogous regions derived from the posterior PDF pre-
sented earlier in Fig. 1. We show only the log prior case
as the profile likelihood is prior independent (which we
have verified numerically). We can see that at the 95% C.L.
the region from the profile likelihood is quite similar to the
corresponding 95% region derived from the Bayesian pos-
terior for all parameters, except for m0, for which the
profile likelihood yields looser constraint. It is worth notic-
ing that the posterior PDF yields a somewhat better recon-
struction of m0 and tan� and a similar one for the other
CMSSM parameters. However, the relative merits of the
reconstructed confidence regions from the posterior or
from the profile likelihood cannot be assessed here. It is
in general a difficult task to decide which statistics yields
the ‘‘best’’ results (however one chooses to define this). A
possible way forward would be to carry out a coverage
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FIG. 9 (color online). Two-dimensional posterior PDF for the
case of applying ATLAS mass spectrum data alone with an
informative naturalness prior (the CCR prior, filled contours),
compared with the posterior obtained using noninformative log
priors (empty contours).
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study of the quoted confidence intervals, which is beyond
the scope of this paper.

On the other hand, what is encouraging is that, when the
data becomes sufficiently constraining, both statistical
quantities produce essentially equivalent confidence inter-
vals. This is presented in Fig. 10 for the ATLASþ Planck
case, which should be compared with the bottom row of
Fig. 6.

V. SUMMARYAND CONCLUSIONS

In this paper we have examined prospects for recon-
structing supersymmetric parameters from assumed future
data that one can reasonably expect to become available.
To this end we focused on the constrained MSSM and on
the benchmark point ATLAS SU3.

By following the ATLAS assumptions as closely as
possible without having access to the full simulated like-
lihood function, we arrived at generally rather similar
results for the reconstruction of the CMSSM parameters,
with the exception of A0, for which our projected limit
appears somewhat weaker. We stress here that our method
is generally applicable, and that the quantitative discrep-
ancies observed with the ATLAS Collaboration result are a
consequence of the limited information available about the
precise shape of the likelihood function. We therefore
would urge experimentalists to make publicly available
numerical fits to the likelihood functions that could be

used to improved on the Gaussian assumption adopted
here. We highlighted the computational advantage of our
method which employs an effective likelihood at the mass
spectrum level, which allows one to shortcut the computa-
tionally expensive simulation of the whole experimental
setup. We also demonstrated that, once LHC data become
available, previously observed prior dependence of the
results disappears if one adopts the broad, noninformative
flat or log priors, although this may not be the case with any
choice of this class of priors. We showed that the conclu-
sions depend only mildly on which statistical quantity one
chooses to adopt, i.e., Bayesian posterior or profile like-
lihood, in marked contrast with the presentday situation.
The information from the likelihood can also be supple-
mented by a prior encoding a preference for naturalness,
thus suppressing the statistical weight of finely tuned re-
gions. This choice leads to tighter errors on m0 and tan�,
while hardly affecting the conclusions on A0 and m1=2. We

then extended the analysis by adding to the likelihood
function information about the neutralino dark matter relic
abundance by imposing WMAP-like and Planck-like con-
straints. This improved the ability to reconstruct the value
of especially m0 and tan�, much less so for m1=2 (com-

pared to the ATLAS data only case), while the bimodality
in the determination of A0 could not be removed.
While the ATLAS SU3 point (and maybe also the

CMSSM in the first place) may be unlikely to be realized
in nature, the method presented here appears to be power-
ful and robust enough to adequately reconstruct supersym-
metric parameters from summary statistics of LHC
measurements. The additional advantages presented here
are the ability to easily investigate several different theo-
retical scenarios with relatively little computational effort,
and the capability to produce predictions for derived ob-
servable quantities, such as, for example, the cosmological
relic abundance and direct detection cross sections. The
inclusion of observational constraints from such probes has
also been demonstrated to be easily implemented. Finally,
the favorable scalability of our MULTINEST scanning algo-
rithm with the dimensionality of the parameter space
means that this method is in principle ready to investigate
theories with several tens of free parameters, thereby open-
ing the way to massive inference in supersymmetry phe-
nomenology. As such we believe that our method will be a
useful tool to face the real data that are expected to soon
start arriving from the LHC, even if the data differ signifi-
cantly from the case considered here.
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