
Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of
symmetric-representation fermions

Thomas DeGrand

Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

Yigal Shamir and Benjamin Svetitsky

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
(Received 9 June 2010; published 21 September 2010)

We have measured the running coupling constant of SU(3) gauge theory coupled to Nf ¼ 2 flavors of

symmetric representation fermions, using the Schrödinger functional scheme. Our lattice action is defined

with hypercubic smeared links which, along with the larger lattice sizes, bring us closer to the continuum

limit than in our previous study. We observe that the coupling runs more slowly than predicted by

asymptotic freedom, but we are unable to observe fixed point behavior before encountering a first order

transition to a strong coupling phase. This indicates that the infrared fixed point found with the thin-link

action is a lattice artifact. The slow running of the gauge coupling permits an accurate determination of the

mass anomalous dimension for this theory, which we observe to be small, �m & 0:6, over the range of

couplings we can reach. We also study the bulk and finite-temperature phase transitions in the strong

coupling region.
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I. INTRODUCTION

Several possibilities for new physics beyond the stan-
dard model involve a new strongly interacting sector of
gauge fields and light fermions. In the oldest such idea,
technicolor, interactions are presumed to be asymptotically
free at very short distance but strong at long distance,
leading to a fermion–antifermion condensate h �c c i that
replaces the Higgs vacuum expectation value [1]. A more
recent proposal couples the standard model to a sector of
‘‘unparticles,’’ in which long distance dynamics is confor-
mal in the limit of zero fermion mass [2]. Determining
whether either of these scenarios occurs in a candidate
theory is a nonperturbative question. In the last few years
many groups have begun to attack it using lattice methods
[3].

One common tool for diagnosing the infrared structure
of a gauge theory is its beta function. In perturbation theory
it has the expansion

�ðg2Þ ¼ dg2

d logq2
¼ � b1

16�2
g4 � b2

ð16�2Þ2 g
6 þ � � � ; (1)

where, for an SUðNÞ gauge theory with Nf flavors of

fermions in representation R,

b1 ¼ 11

3
C2ðGÞ � 4

3
NfTðRÞ (2)

b2 ¼ 34

3
½C2ðGÞ�2 � NfTðRÞ

�
20

3
C2ðGÞ þ 4C2ðRÞ

�
: (3)

HereC2ðRÞ is the value of the quadratic Casimir operator in
representation R [where G denotes the adjoint representa-
tion, so C2ðGÞ ¼ N], while TðRÞ is the conventional trace

normalization. We are interested in asymptotically free
theories, so we demand b1 > 0 to force an infrared repul-
sive fixed point at g ¼ 0. If b2 < 0 while b1 > 0, the two-
loop beta function will have a zero [4,5] at some g ¼ g�.
Whether the theory is a candidate for strongly interacting
dynamics or for conformal behavior at long distance scales
depends on whether the complete, nonperturbative �ðg2Þ
has a zero. If it does have such an infrared attractive fixed
point (IRFP), then we have an unparticle theory with a
scale-invariant coupling g� at large distances. If it does not,
so that g runs to strong coupling in the infrared, we have a
technicolor candidate. The technicolor category also in-
cludes the possibility of a coupling region where �ðg2Þ
approaches zero without crossing it. The coupling would
then evolve slowly between widely differing energy scales.
‘‘Walking technicolor’’ is built on this scenario [6–8].
In a massive theory, the running coupling gðq2Þ is sup-

plemented by the running fermion mass mð�Þ. The coun-
terpart of the beta function is the anomalous dimension �m

of the mass operator �c c . It determines the running of the
mass parameter according to

�
@mð�Þ
@�

¼ ��mðg2Þmð�Þ: (4)

If the system is conformal at zero fermion mass mq, then

near mq ¼ 0 the correlation length � scales as

��m�1=ym
q (5)

where ym ¼ 1þ �mðg�Þ is the leading relevant exponent
of the system (in the language of critical phenomena).
In lowest order in perturbation theory,
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�m ¼ 6C2ðRÞ
16�2

g2: (6)

In the massless theories used for technicolor, �m governs
the running of the condensate h �c c i. It is thus an important
diagnostic for realistic ‘‘extended’’ technicolor models.
Phenomenological constraints on such models require it
to have a large, nonperturbative value.

Briefly [9], at issue is the dual role of the conventional
Higgs condensate in giving masses both to the weak bosons
W, Z and to the quarks and leptons. In technicolor theories,
theW mass comes from the techniquark condensate h �c c i;
this demands that the technicolor scale �TC be not much
above the weak scale, �TC � 1 TeV. The light fermions,
on the other hand, get their mass from joining the techni-
quarks in a multiplet of an extended technicolor (ETC)
gauge group, which breaks to the technicolor group at scale
�ETC. The coupling of the techniquark condensate to the
light fermions via emission of ETC gauge bosons gives the
light fermions their masses,

mf � h �c c i
�2

ETC

� �3
TC

�2
ETC

: (7)

On the other hand, the exchange of ETC gauge bosons
generates flavor-changing neutral currents (FCNC) among
the light fermions, with effective vertices �1=�2

ETC.

Suppression of FCNC demands that �ETC be pushed up
beyond 1000 TeV, but then the fermion masses generated
by Eq. (7) come out too light, as small as mf & 1 MeV.

The solution of this problem in ETC theories lies in the
recognition that the two uses of the h �c c i condensate
involve its evaluation at two very different energy scales.
The weak boson masses are connected to the condensate at
�TC, while the fermion masses are determined by its value
at �ETC. The condensate runs between these two scales
according to its anomalous dimension, so that the numera-
tor in Eq. (7) is really

h �c c ijETC ¼ h �c c ijTC exp
�Z �ETC

�TC

d�

�
�mðg2ð�ÞÞ

�
: (8)

If �m is approximately constant, then

h �c c ijETC � h �c c ijTC
�
�ETC

�TC

�
�m

: (9)

Since the ratio �ETC=�TC � 103, a ‘‘condensate enhance-
ment’’ of this order can account for most quark masses—
but only if �m is close to 1.

The walking-technicolor scenario combines a near-zero
of the beta function with a large anomalous dimension for
the mass. One envisions a (perhaps) rapid evolution of the
coupling away from g ¼ 0 at some extremely high energy
scale, which slows to near-fixed-point behavior at some
moderately large coupling g at scale �ETC. The coupling
then runs very slowly until �TC is reached, even as the
techniquark mass runs with a large anomalous dimension

�m. At �TC, the coupling is a bit stronger and creates the
techniquark condensate; the techniquarks thereupon
decouple and the coupling runs on to strong values, leaving
technicolor confined at low energies.
Most of the ingredients in this story—near-fixed-point

behavior, condensation, and subsequent confinement—
involve nonperturbative physics. Lattice methods, which
have been fairly successful in dealing with the properties of
QCD, are a natural approach to investigate them [10].
Every candidate model for new physics begs the two
questions:
(1) Is the long distance dynamics of the candidate the-

ory conformal, or confining, or something else?
(2) What is the value of �m in the interesting energy

range?
For some time our program has been to study the gauge

theory proposed for ‘‘next-to-minimal’’ walking techni-
color [11–14]: SU(3) gauge fields coupled to two flavors
of fermions in the two-index symmetric representation,
which is the sextet. In Ref. [15] we measured the running
coupling constant defined in the Schrödinger-functional
background field method. We found, with the small lattices
at our disposal, that the integrated beta function has a zero,
indicating that the theory is in a conformal phase. In
Ref. [16] we performed spectroscopic studies in the theory
with nonzero quark mass. We observed two phases for the
system in finite volume: a strong-coupling, confined phase
and a weakly coupled, chirally restored phase. (See Fig. 1.

q

= 0mq

> 0mq> 0mq

cκ (β)

(β  ,κ  )11

β

m < 0

confining

non−conf.
1st

1st

κ

FIG. 1 (color online). Sketched phase diagram of the lattice
theory in finite volume, as found for both thin links [16] and fat
links (this paper). For quantitative information, see Figs. 2 and 3.
The �cð�Þ curve (solid line), where mq ¼ 0, exists only in the

nonconfining phase; it meets the phase boundary (dashed line) at
ð�1; �1Þ. The dotted line indicates the extension of �cð�Þ into the
confining phase via the metastable nonconfining state.
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The massless �cð�Þ curve is where our Schrödinger func-
tional calculations are done.) While one might interpret the
two phases as low- and high-temperature phases, the phase
transition in the massless theory [i.e., at ð�1; �1Þ] appeared
not to move as the lattice volume increased; this is in
marked contrast to the usual high-temperature phase tran-
sition in confining gauge theories.

Following these calculations, we changed the lattice
action from the usual Wilson–clover action (‘‘thin links’’)
to an improved action, incorporating normalized hyper-
cubic smearing (‘‘nHYP fat links’’) that has shown dra-
matic reduction of lattice artifacts when used for QCD
simulations. One of us [17] performed a finite-size scaling
analysis of correlation lengths in the weak coupling phase,
approaching the massless �c curve. A small anomalous
dimension, �m ’ 0:5, was observed at two values of the
bare parameters.1

In this paper we report on a new calculation of the
running coupling constant and of the mass anomalous
dimension, using the improved action on lattice volumes
larger than in Refs. [15,16]. The first step is to determine
the phase structure of the lattice theory. As with the origi-
nal, thin-link action, the improved, fat-link action has a
confined phase in which it is not possible to tune the quark
mass to zero. We go beyond Ref. [16] in studying closely
the region where the �c line intersects the phase boundary,
and we find that there is no critical point. The phase
boundary moves up the �c curve very slowly as the simu-
lation volume grows; it is also affected by the choice of
boundary conditions. As noted in the context of other,
similar gauge theories (e.g., [21]), this phase diagram is
different from that of QCD and it is hard to see how it can
tend to a confining theory in the continuum limit. Such
considerations, however, are far from conclusive.

Turning to the Schrödinger functional (SF) calculation,
we find that the coupling constant runs more slowly than
two-loop perturbation theory would predict. This is such
slow running that we are unable to chain together results
from different sets of bare parameters to construct a picture
of gðLÞ running over decades of the length scale L. The
range of couplings that we can investigate is limited by the
strong-coupling phase transition. The beta function might
cross zero at the strongest coupling that we can reach, but
we cannot make a strong claim to this effect.

Our previous calculation [15], with the thin-link action,
was unable to pursue the � function to SF couplings
stronger than g2 ’ 2:5 because of the transition to the
strong-coupling phase. The infrared fixed point found in
that work was at a renormalized coupling g2 ’ 2:0 (see
Fig. 7 below), which was uncomfortably close to the tran-
sition. With the fat-link action we are able to push the
transition to g2 ’ 5, so that the region around g2 ’ 2:0 is

well insulated from lattice artifacts. Thus the present cal-
culation is more reliable when it rules out the fixed point
found previously.
As part of the SF calculation, we compute the anoma-

lous dimension �m. Even when one takes into account
possible finite-lattice effects, the result has much smaller
uncertainty than the calculation of Ref. [17] and confirms
its conclusion: �m is small over our observed range of
couplings.
The outline of the paper is as follows: In Sec. II we

review our lattice action and the techniques we use to
measure the beta function and �m. In Sec. III we describe
our studies of the boundary between the strong- and weak-
coupling phases. Sections IV and V contain our results for
the running coupling constant and mass anomalous dimen-
sion. We summarize the calculation in Sec. VI, and place it
in context of other lattice calculations. The appendix con-
tains data that support our determination of the phase
boundary as presented in Sec. III.

II. METHODOLOGY

A. Lattice action and simulation

We study the SU(3) gauge theory with two flavors of
dynamical fermions in the sextet representation of the color
gauge group. The lattice action is given by the single-
plaquette gauge action and a Wilson fermion action with
added clover term [22]. The gauge connections in the fer-
mion action employ the differentiable hypercubic smeared
link of Ref. [23], from which the symmetric-representation
gauge connection for the fermion operator is constructed.
The parameters that are inputs to the simulation are the bare
gauge coupling� ¼ 6=g20 and the fermion hopping parame-

ter �, related to the bare mass m0 by � ¼ ð8þ 2m0Þ�1.
Unlike our earlier calculation with the thin-link fermion
action, no tadpole improvement is necessary here and thus
we set the clover coefficient to its tree-level value (i.e.,
unity). The smearing parameters for the links are the same
as in Ref. [23]: �1 ¼ 0:75, �2 ¼ 0:6, �3 ¼ 0:3.
The molecular dynamics integration is accelerated with

an additional heavy pseudofermion field as suggested by
Hasenbusch [24], multiple time scales [25], and a second-
order Omelyan integrator [26]. Lattice sizes range from
64 to 164 sites; some data for the phase diagram were
obtained with lattices of 12� 63 sites.

B. Why fat links?

The simulations we reported in Ref. [15] were per-
formed using the usual clover action [22] in which the
coefficient cSW of the clover term was adjusted via tadpole
improvement. When we began the present set of simula-
tions, we were faced with a choice: either to continue using
the same action and simply to push to larger lattice
volumes, or to attempt as well to improve the action
further. We chose the latter course.

1For other recent work on SU(3) gauge theory with sextet
fermions, see [18–20].
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Improvement criteria are basically identical for any
asymptotically free theory. As one tunes the bare coupling
toward zero, the lattice theory should have an expansion in
powers of the lattice spacing a. The dimension-four terms
in this expansion are identical to those of a continuum
action, while the higher-dimensional terms, which are
multiplied by positive powers of the lattice spacing, corre-
spond to irrelevant operators. The inclusion of a clover
term, for instance, allows the fermion action to be free of
OðaÞ artifacts if the clover term is appropriately chosen. In
general, the particular choice of lattice discretization is
formally irrelevant. In practice, however, it will make a
big difference in terms of eliminating lattice artifacts. We
chose hypercubic smeared links because of our positive
experience with them in QCD simulations.

Fermionic actions with hypercubic smeared links have a
number of favorable features, which we enumerate in the
context of the present simulation:

(1) The gauge fields seen by the fermions are smoother
with a smeared link than they are with a thin
link. The plaquette (in the fermions’ color represen-
tation) is a rough indicator of this. For example, at
(� ¼ 4:4, � ¼ 0:1351) the thin-link (fundamental)
plaquette has a value of about 0.43 (normalized to a
maximum of 1) while the sextet-representation
smeared-link plaquette is about 0.78 (normalized
likewise). Thus, even at this strong (bare) coupling,
one can imagine expanding the link variable U� �
1þ igA� þ � � � in order to recover the continuum

action.
(2) The value of �cð�Þ, at which the quark mass (see

below) vanishes, is closer to the free-field value of
1=8with smeared links than it is in our original thin-
link calculation. Even at the boundary of the strong-
coupling phase we find �c & 0:136, versus a range
of 0.15–0.17 for the entire range of couplings
studied in the thin-link theory in Ref. [15].

(3) Tests with quenched fundamental fermions [27]
reveal that the nonperturbatively improved clover
coefficient is very close to its tree level value at
fairly large lattice spacings. Preliminary results
show this to be the case in the present theory
as well [28]. This is our justification for setting
cSW ¼ 1 here.

(4) Finite renormalization factors for (partially) con-
served currents are much closer to unity than for
the thin-link clover action. This is easily checked in
one-loop perturbation theory, where the vector and
axial-vector lattice-to-continuum renormalization
factors are Z ¼ 1þ g2C2ðRÞc, where c is a pure
number, a lattice integral [29].

While the formal arguments for improvement via smear-
ing may be called into question outside the weak-coupling
limit, the practical observations listed above justify its
application and show why results from the smeared theory

are more reliable than those obtained without smearing.
Nonetheless, asymptotic freedom does underlie the whole
philosophy. If an infrared fixed point were to be found, the
theory on the strong-coupling side of the fixed point would
not be asymptotically free. Little is known a priori about
such a strong-coupling theory.
As mentioned in the introduction, we find in the present

study that the use of hypercubic smeared links allows us to
reach a much larger value of the Schrödinger functional
coupling g2 than we could get to in Ref. [15], g2 ’ 5 versus
about 2.5, before encountering the strong-coupling phase
transition. Thus the region g2 ’ 2:0, where the thin-link
calculation indicated an infrared fixed point, can be studied
more reliably.

C. Schrödinger functional method
and the running coupling

The Schrödinger functional (SF) [30–33] method is an
implementation of the background field method that is
especially suited for a lattice calculation. Taking the simu-
lation volume to be a 4-cube of dimension L, one imposes
fixed boundary conditions on the gauge field at t ¼ 0 and
t ¼ L while imposing periodic boundary conditions in
the spatial directions. The classical field that minimizes
the Yang–Mills action subject to the fixed boundary con-
ditions is a background color-electric field. By construc-
tion, the only distance scale that characterizes the
background field is L, so the n-loop effective action � �
� logZ gives the running coupling via

� ¼ gðLÞ�2SclYM; (10)

where

SclYM ¼
Z

d4xF2
�� (11)

is the classical action of the background field. When � is
calculated nonperturbatively, Eq. (10) gives a nonpertur-
bative definition of the running coupling at scale L.
Since in a lattice calculation, one cannot calculate �

itself, one differentiates Eq. (10) with respect to some
parameter 	 in the boundary conditions. Thus

@�

@	

��������	¼0
¼ K

g2ðLÞ ; where K � @SclYM
@	

��������	¼0
: (12)

The derivative of � gives an observable quantity, whileK is
just a number [31]. We choose boundary fields as described
in Ref. [33]; for these boundary values the coefficient
K ’ 37:7. The observable,

@�

@	

��������	¼0
¼

�
@SYM
@	

� tr

�
1

Dy
F

@ðDy
FDFÞ
@	

1

DF

����������	¼0
; (13)

is a particular expectation value of the gauge fields and the
Dirac operator DF. The parameter 	 enters linearly into
phase angles so the derivatives on the right-hand side of
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Eq. (13) are implemented by putting the appropriate fixed
values in place of the boundary links [31]. We also impose
twisted spatial boundary conditions on the fermion fields as
suggested in Ref. [32], c ðxþ LÞ ¼ expði
Þc ðxÞ, with

 ¼ �=5 on all three axes [34].

The observable (13) is quite noisy and requires long
simulation runs, as shown in Table I. The acceptance in
the hybrid Monte Carlo simulations was kept at 80–90%,
except at the strongest couplings for L=a ¼ 16 where we
were forced to use short time steps even to reach accep-
tances as low as 40%.

D. Anomalous dimension

The mass anomalous dimension is determined from
the volume dependence of the renormalization factor ZP

of the isovector pseudoscalar density Pa ¼ �c�5ð�a=2Þc .
(The latter is related by a chiral rotation to �c c , which is
the object of interest.) It is computed from two correlators
via [35–38]

ZP ¼ c
ffiffiffiffiffi
f1

p
fPðL=2Þ : (14)

fP is the propagator from the t ¼ 0 boundary to a point
pseudoscalar operator at time x0,

fPðx0Þ ¼ � 1

3

X
a

Z
d3yd3z

�
�c ðx0Þ�5

�a

2
c ðx0Þ

� ��ðyÞ�5

�a

2
�ðzÞ

�
; (15)

and we take x0 ¼ L=2; here � and �� are gauge-invariant
wall sources at t ¼ a, meaning one lattice layer away from
the t ¼ 0 boundary. The normalization of the wall source is
removed by the f1 factor, which is the boundary-to-
boundary correlator,

f1 ¼ � 1

3L6

X
a

Z
d3ud3vd3yd3z

�
�� 0ðuÞ�5

�a

2
� 0ðvÞ

� ��ðyÞ�5

�a

2
�ðzÞ

�
; (16)

where � 0 and �� 0 are wall sources at t ¼ L� a. The con-
stant c allows imposing a volume-independent normaliza-
tion condition in the weak-coupling limit.
In SF calculations for QCD, correlators such as (15) and

(16) are usually computed with the spatial link matrices
at t ¼ 0 and t ¼ L set to unity. This is because it is desired
to compute ZP with an absolute normalization (to fix
the physical value of a quark mass, for example).
Correspondingly, the constant c that normalizes ZP has
only been calculated for these boundary conditions. Since
our interest, however, is in how ZP runs with the scale L,
we will calculate only ratios of values of ZP for different L
at fixed lattice couplings. Because of this, the overall
normalization of ZP is irrelevant. We are thus free to ignore
c and also to use the same boundary conditions for the
calculation of ZP as for the simulations which generated
the data for the SF coupling. Thus the data for ZP came
from the same configurations as the coupling calculation,

effectively giving ZP for free. We set c ¼ 1=
ffiffiffi
2

p
in tabulat-

ing ZP below.

E. Quark mass

We studied the massless theory by fixing � ¼ �cð�Þ,
the point at which the quark mass mq vanishes for each �.

We define mq using the unimproved axial Ward identity

(AWI),

@t
X
x

hAa
0ðx; tÞOai ¼ 2mq

X
x

hPaðx; tÞOai: (17)

where Aa
0 ¼ �c�0�5ð�a=2Þc and Oa could be any source.

We follow the usual SF procedure and take the source to be
the gauge-invariant wall source at t ¼ a as in Eq. (15).
The correlation functions in Eq. (17) are then measured at
t ¼ L=2, the midpoint of the lattice. The derivative is taken
as the symmetric difference, @�fðxÞ ¼ ½fðxþ �̂aÞ �
fðx� �̂aÞ�=ð2aÞ.

TABLE I. Number of hybrid Monte Carlo trajectories (of unit length) needed to produce the
Schrödinger-functional coupling g2 at the bare couplings ð�; �cÞ, for the lattice sizes L used in
this study.

� �c trajectories

L ¼ 6a L ¼ 8a L ¼ 12a L ¼ 16a

5.8 0.12835 8 000 2 300 10 000 � � �
5.4 0.12920 8 000 3 050 9 600 � � �
5.0 0.13062 13 000 6 030 8 800 � � �
4.8 0.13173 45 000 5 250 16 700 � � �
4.6 0.13320 74 000 13 400 11 300 22 400

4.4 0.13510 67 200 22 900 11 300 29 200

4.3 0.13617 14 800 15 600 8 000 6 750
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III. STRONG COUPLING

A. First-order phase boundary

As shown in Fig. 1, both the thin-link and the fat-link
lattice theories show a first-order phase transition separat-
ing a low-� (strong bare coupling) phase from a high-�
(weak bare coupling) phase. Our work on the thin-link [16]
and fat-link [17] theories showed that:

(i) The low-� phase is confining, as revealed by the
heavy-quark potential (for sources in the fundamen-
tal representation).

(ii) The high-� phase is chirally restored, as revealed by
parity doubling between the scalar and pseudoscalar
masses, and also between the vector and axial-
vector masses. The string tension is unobservably
small in this phase.

(iii) In the high-� phase, all screening masses and the
pseudoscalar decay constant f� fall towards zero as
mq ! 0þ, until the correlation length � ( � 1=m�)

approaches L, the length of the lattice in a direction
transverse to the direction in which the correlator is
measured. Then � plateaus at a value proportional
to L. This behavior superficially resembles the
usual finite-size scaling for a critical system in
finite volume, where 1=L plays the role of a rele-
vant perturbation [39]. (This behavior was ex-
ploited in Ref. [17].)

While the two phases appear for both SF boundary con-
ditions and for the usual thermal [i.e., (anti-)periodic tem-
poral] boundary conditions, there are important differences
between the two cases. For thermal boundary conditions
(BC) the Polyakov loop (in the fundamental representation)
can be used as usual to distinguish between the two phases.
In the strong-coupling phase it is near zero, real and slightly
negative. (It will be recalled that the fermion action with
thermal BC breaks the global Zð3Þ symmetry of the gauge
action.) In the weak-coupling phase the Polyakov loop P
orders along one of the Zð3Þ center elements. The state with
hPi real and positive is the stable one, while the states which
order along the other directions, hPi � expð	2�i=3Þ, are
metastable.2 This allows the characterization of the phase
transition as a finite-temperature confinement transition, as
far as is possible in a theory with dynamical fermions.

With SF boundary conditions (SFBC), on the other
hand, the fermion action does not break the Zð3Þ center
symmetry—the Zð3Þ symmetry is exact, just as in the pure
gauge theory. As it turns out, the Zð3Þ symmetry is sponta-
neously broken in the weak-coupling phase; it is unbroken
in the strong-coupling phase, so that hPi ¼ 0 there, much
the same as in a pure gauge theory with thermal BC. Of
course, a gauge theory with SFBC has no interpretation as
a true finite-temperature system.

In both cases, the entire phase boundary is strongly first-
order, as seen in discontinuities in the plaquette, in the AWI
quark mass, in the ordering of the Polyakov loop, and, most
of all, in hysteresis. Simulations initialized in one phase but
run at parameters in the other phase can run for hundreds of
molecular dynamics time steps without tunneling. We
present plots of the mean plaquette and the AWI quark
mass in the appendix.
We located the phase boundary by performing simula-

tions with mixed starts—one half of the initial gauge
configuration is taken from an equilibrium configuration
at some ð�; �Þ in one phase, while the other half is from an
equilibrium lattice at ð�0; �0Þ in the other phase. We then
watch the system equilibrate. This can be quite expensive,
as it requires tiny time steps to avoid rejection of the
molecular dynamics trajectory in the hybrid Monte Carlo
algorithm.We have thus only done these tests for lattices of
temporal extent Nt ¼ 6 and 8: 64, 12� 63, and 84 lattices
with SFBC, and 123 � 6 and 123 � 8 lattices with thermal
BC. The location of the phase boundary depends on the
choice of BC as well as on Nt. We show the region of
the intersection of the phase boundary with the �c curve for
the various cases in Figs. 2 and 3.
It should not be surprising that the phase boundary shifts

when SFBC are replaced by thermal. For given Nt, thermal
lattices have Nt spacelike layers of dynamical links, while
SF lattices have only Nt � 1. The smaller number of
dynamical degrees of freedom means that the SF lattice

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7
β

0.12

0.13

0.14

0.15

κ

κ
c

N
t
 = 6

N
t
 = 8

FIG. 2 (color online). Phase diagram with SF boundary con-
ditions. The curve is �cð�Þ. Symbols show the location of the
phase boundary between the strong-coupling phase at lower �
and the weak-coupling phase at higher �. Diamonds are from
12� 63 lattices (� ¼ 4:0–4:2) and 64 lattices (� ¼ 4:3–4:6)
while squares are from 84 lattices.

2We observed tunneling among these states on lattices with
volume 84. See Ref. [19] for a study of the thin-link theory, and
compare [20].
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is effectively at a higher ‘‘temperature’’ than the thermal
lattice at the same ð�; �Þ. Indeed, comparison of Figs. 2
and 3 shows that the phase boundary for the SF theory lies
below and to the left of that of the thermal theory with the
same Nt. This behavior is familiar in thermal gauge theo-
ries when Nt is varied. We repeat, however, that the SF
theory is not a finite-temperature theory and that the phase
transition in the SF theory is not a finite-temperature
transition.

We performed SF calculations on the �c line, defined by
mq ¼ 0. In the weak-coupling phase, it is quite easy to find

�c, and its volume dependence is small. When � is less
than �1, the gauge coupling where the �c line meets the
first order line, the quark mass is never zero; it changes sign
discontinuously when � crosses the phase boundary (see
the appendix). This means that there is no massless theory
to the left of �1. The �c curve can, however, be extended
leftward into the strong-coupling phase by simulating in
the metastable state, which is continuously connected to
the weak-coupling phase. It is in fact possible to do long
runs in this state without tunneling out if it. We can
calculate mq, which does cross zero and thus gives us �c;

we can also calculate g2ðLÞ and ZPðLÞ. As we will show,
these observables remain very similar to their values in the
region of bare parameter space where the weak-coupling
phase is the true vacuum.

There is another metastable extension of the �c line,
found by following a confining state into the nonconfining
phase. We have not explored this because simulation in
confining states is much more difficult.

B. Shift of the phase boundary with lattice size

For � < �c the phase boundary shifts to the right asNt is
increased. For sufficiently small � this is to be expected
since this is the scaling behavior typical of the finite-
temperature transition when the fermions are massive. It
turns out to be true for � > �c as well. Close to ð�1; �1Þ,
this shift is very small. One interpretation of the lack of
motion of the phase boundary here is that, close to this
point, the transition is a bulk transition, weakly affected by
the finite size of the lattice. The alternative explanation is
that (at least for thermal boundary conditions) the transi-
tion is still a finite-temperature transition, but that it is
moving very slowly.
To appreciate the distinction, we have to make a com-

parison to theory. From asymptotic freedom we expect the
bare coupling g0 at a physical finite-temperature transition
to scale with the two-loop formula,

1

g20ða2Þ
¼ 1

g20ða1Þ
þ b̂1xþ b̂2

b̂1
logð1þ b̂1g

2
0ða1ÞxÞ: (18)

where [see Eqs. (1)–(3)] x ¼ logða1=a2Þ2, b̂1 ¼
b1=ð16�2Þ ’ 0:027, and b̂2 ¼ b2=ð16�2Þ2 ’ �0:003. For
Nt ¼ 6 and 8 the two lattice spacings a1;2 are ð6T�Þ�1 and

ð8T�Þ�1, respectively, where the transition temperature T�
gives the scale. Using Eq. (18) for the shift in the bare
coupling � ¼ 6=g20, we would predict �� ’ 0:08. In the

appendix we show that the true shift near �c is somewhat
smaller than this.
It is instructive to compare this to quenched QCD, where

the deconfinement transition is physical. In that case
its shift, when comparing Nt ¼ 6 and Nt ¼ 8 [40,41], is
similarly smaller than perturbation theory predicts: The
observed shift is �� ’ 0:14, while the two-loop prediction
is 0.24. For sextet QCD, the shortfall in the observed shift is
the same or less.
The size of the shift in �1 carries profound implications

for the continuum physics of this gauge theory. If the first-
order transition at ð�1; �1Þ comes to a halt when L=a is
large, then there is no massless continuum limit in which
the theory shows confinement and chiral symmetry break-
down. This is because the only place where mq ¼ 0 is on

the �c line, which is entirely in the nonconfining phase.
One can take a continuum limit along this line by tuning
� ! 1, but the infrared physics, for any L=a, will always
be that of a conformal theory with anomalous dimensions.
In order for the massless continuum theory to display

confinement, then, the point ð�1; �1Þ must move towards
large � as L=a grows. One would tune � ! 1 while
keeping �<�1ðLÞ. This is not enough, however. In lattice
QCD one maintains confinement and mq ¼ 0 at zero tem-

perature by tuning to �c before taking � ! 1 [while
maintaining �<�1ðLÞ]. This is possible in QCD if the
�c line represents a continuous phase transition between
the confining phase at � < �c and the Aoki phase at

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7

β

0.12

0.13

0.14

0.15

κ

FIG. 3 (color online). Phase diagram with thermal boundary
conditions. The curve is �cð�Þ. Symbols show the location of the
phase boundary. Diamonds are from 123 � 6 volumes while
squares are from 123 � 8 volumes.
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� > �c. In our theory, however, the confining phase ends
at the first-order boundary and there is no place where
mq ¼ 0 for �<�1.

Thus the best one can do at a given L in this scenario is
to minimize mq by tuning the couplings to ½�1ðLÞ; �1ðLÞ�
from below. This is not a massless theory. The massless
theory with confinement can only be recovered in the
continuum limit; this will happen only if the discontinuity
in mq at ½�1ðLÞ; �1ðLÞ� goes to zero as L=a ! 1, which is

a possibility but by no means assured.3

The observed dependence of �1 on L=a is related to our
results for the SF beta function (see below). The derivative
d�1=dðlogLÞ defines a beta function. The beta function we
measure in this way is smaller than its two-loop value near
the current value of �1. Our result for the SF beta function
behaves similarly. We find that it is smaller than the two-
loop beta function, and in fact we cannot tell whether it
actually possesses a zero near �1. In both cases, a zero in
the beta function would imply conformal IR physics; a
near-zero would imply slow running, and even walking,
but confinement in the end.

IV. RUNNING GAUGE COUPLING

Turning now to the SF coupling, we list our results for
g2ðLÞ in Table II and plot them in Fig. 4. We compare to the
one-loop formula,

1

g2ðLÞ ¼ � 2b1
16�2

logLþ constant; (19)

where b1 ¼ 13=3, by plotting Eq. (19) as the dotted line in
the figure. At� ¼ 8we find that the coupling runs with the
slope of the one-loop result, but g2 runs more slowly at all
stronger bare couplings. For each �, the change in the
coupling over the widest range of L for which we have

data is never more than about 15%. This should be com-
pared to the case of QCDwithNf ¼ 2, where b1 ¼ 29=3 is

more than twice as large and where in nonperturbative
studies the coupling always runs faster than perturbation
theory predicts (see Ref. [34]). In an ordinary QCD simu-
lation, one wishes to simulate at bare parameter values
where the theory is weakly interacting at short distance,
so that one can use perturbation theory to match lattice-
regulated matrix elements to their continuum-regulated
counterparts. One makes the lattice large enough so that
the system becomes strongly interacting at long distance,
so that the simulation captures the physics of confinement.
Satisfying both conditions does not seem to be possible for
sextet QCD.
Note also that there does not seem to be any value of the

bare coupling at which g2ðLÞ clearly decreases as L=a
increases. This means that we cannot argue for the exis-
tence of an IRFP.
From Fig. 4 we derive finite-lattice approximations to

the step-scaling function (SSF), conventionally defined by
comparing g2 measured on two lattices, viz.,

ðu; sÞ ¼ g2ðsLÞ; (20)

where u ¼ g2ðLÞ and s is the scale factor between the two
lattices. Thus ðu; sÞ � u is the change in the SF coupling
when the lattice IR scale is changed by a factor of s. For
scale factor s ¼ 2 we can compare lattices with L ¼ 6a
and 12a as well as lattices with L ¼ 8a and 16a; for
s ¼ 4=3 we compare L ¼ 6a and 8a and also L ¼ 12a
and 16a. We plot u� ðu; sÞ, which parallels the usual
continuum beta function,4 for these scale factors in Figs. 5
and 6. The curves come from integrating the two-loop beta
function from L to sL [cf. Equation (18)].
We see in Fig. 5 that the SSF from the L ¼ 6a ! 12a

comparison reflects running that is consistently slower than
the integrated two-loop beta function. It is possible that the
rightmost point indicates a fixed point (where we would
have u� ðuÞ ¼ 0), but the error bar is large; also this

TABLE II. Schrödinger functional couplings g2 evaluated at the bare coupling ð�;�cÞ for
lattice size L.

� �c g2

L ¼ 6a L ¼ 8a L ¼ 12a L ¼ 16a

5.8 0.12835 1.898(16) 1.936(48) 2.015(28) � � �
5.4 0.12920 2.241(27) 2.346(48) 2.360(37) � � �
5.0 0.13062 2.770(22) 2.830(53) 2.913(59) � � �
4.8 0.13173 3.173(51) 3.345(59) 3.324(50) � � �
4.6 0.13320 3.715(37) 3.827(54) 3.960(79) 4.37(11)

4.4 0.13510 4.564(50) 4.755(77) 4.81(12) 4.72(12)

4.3 0.13617 5.355(91) 5.33(11) 5.45(20) 6.20(36)

3In fact this is the current state of QCD with Wilson fermions.
The absence of the Aoki phase for large � means that there is no
theory withmq ¼ 0 for finite-lattice spacing [42]. One hopes that
the minimal value of mq at the boundary of the confining phase
will go to zero in the continuum limit, i.e., on sufficiently large
lattices.

4For instance, a negative value for u� ðu; sÞ means asymp-
totic freedom.
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point was measured in a metastable state, so its interpre-
tation is unclear. As for the L ¼ 8a ! 16a SSF, the most
we can say is that it is not inconsistent with that from the
smaller lattices. The SSF for scale factor s ¼ 4=3 (Fig. 6)
tells a similar story.
In order to connect to our earlier work [15] on the thin-

link lattice theory (on smaller lattices) we also plot the
discrete beta function (DBF) as defined there,5

Bðu; sÞ ¼ 1

g2ðsLÞ � u; (21)

where u ¼ 1=g2ðLÞ (Fig. 7.) Again we note that the fat-link
results show running that is slower than two-loop pertur-
bation theory, but no solid evidence for an IRFP. In fact
they rule out the fixed point found in the thin-link theory
(on smaller lattices) at 1=g2 ’ 0:5.
The apparent linearity of the data in Fig. 4 suggests

trying to collapse all the DBF’s onto each other by plotting
the ratio

Rðu; sÞ � Bðu; sÞ
logs

; (22)

combining data for all available scale factors s on one
graph. Rðu; sÞ gives the beta function for 1=g2 when s !
1 in the continuum limit L=a ! 1. This is shown in Fig. 8.

0.05 0.15 0.20.1

a/L

0.2

0.4

0.6

0.8

1

g−2
(L

)
one loop

β=8.0
β=5.8
β=5.4
β=5.0
β=4.8
β=4.6
β=4.4
β=4.3

FIG. 4 (color online). SF coupling 1=g2 vs a=L. The dotted
line shows the expected slope from one-loop running. The data at
� ¼ 4:3 were taken in the metastable weak-coupling state.
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FIG. 5 (color online). Change in coupling under a scale factor
s ¼ 2. Squares show a comparison of L ¼ 6a ! 12a while
crosses are from L ¼ 8a ! 16a. The rightmost point in each
set was measured in the metastable state at � ¼ 4:3. The curve is
the result of integrating the two-loop perturbative formula. Here
and in other figures where g2 or 1=g2 is the abscissa, horizontal
error bars, if not drawn, are smaller than the plotting symbols.
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FIG. 6 (color online). Change in coupling under a scale factor
s ¼ 4=3. Squares show a comparison of L ¼ 6a ! 8a while
crosses are from L ¼ 12a ! 16a. The rightmost point in each
set was measured in the metastable state at � ¼ 4:3. The curve is
the result of integrating the two-loop perturbative formula.

5The definition in Ref. [15] included a factor ofK [see Eq. (12)
above] which we drop here.
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While, again, the data show slower running than the two-
loop prediction, the scatter and the error bars pretty much
preclude any ambitious further analysis.

A complete analysis of the data would involve taking
the a=L ! 0 limit. In principle, doing this on the

weak-coupling side of the phase transition would produce
a result that is free of lattice discretization errors. Figure 8
shows that the scatter in Rðu; sÞ from different values of
a=L is at least as large as the statistical fluctuations in the
individual points. A fit to Rðu; s; LÞ ¼ R0ðu; sÞ þ C=L, for
example, would just produce noise. We are defeated by the
slow intrinsic running of the coupling. Nonetheless, we can
at least make two plain statements:
(i) The IRFP observed in Ref. [15] is ruled out.
(ii) The SF coupling runs slowly over its observed

range. This slow running permits an easy and un-
ambiguous measurement of the mass anomalous
dimension as a function of the bare parameters or,
equivalently, of the SF coupling g2. This is the
subject of the next section.

V. MASS ANOMALOUS DIMENSION

After the discussion of the running gauge coupling, our
result for the mass anomalous dimension is more definite:
�m is never larger in magnitude than about 0.6. This con-
firms the previous, noisy results of Ref. [17]. It suggests
that, regardless of the existence of a zero of the beta
function, this theory may not furnish a phenomenologi-
cally interesting model of walking technicolor.
We extract the anomalous dimension of �c c from

the scaling of ZP [Eq. (14)] between systems rescaled as
L ! sL. We define the (continuum) mass step-scaling
function [35–38] as

Pðu; sÞ ¼ ZPðsLÞ
ZPðLÞ

��������g2ðLÞ¼u
: (23)

It is related to the mass anomalous dimension via

Pðu; sÞ ¼ exp

�
�
Z s

1

dt

t
�mðg2ðtLÞÞ

�
: (24)

Equation (24) is actually too complicated for our needs.
For any bare coupling �, the SF coupling g2ðLÞ runs so
slowly that we can replace Eq. (24) by

Pðu; sÞ ¼ s��mðg2Þ: (25)
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u = 1/g
2
 (4

4
, 6

4
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4
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fat links 6->12
fat links 8->16
2 loops

FIG. 7 (color online). Discrete beta function (21) for scale
factor s ¼ 2. Thin-link data are from Ref. [15]. The bracketed
points at left were measured in the metastable state at � ¼ 4:3.
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FIG. 8 (color online). Lattice approximants (22) to the beta
function for many scale factors, derived by comparing lattices as
shown in the legend. The one-loop perturbative result
�13=ð24�2Þ ’ �0:054 is plotted as a dashed line.

TABLE III. Pseudoscalar renormalization factor ZP evaluated
at the couplings ð�; �cÞ, for the lattice sizes L used in this study.

� ZP

L ¼ 6a L ¼ 8a L ¼ 12a L ¼ 16a

5.8 0.2696(16) 0.2509(12) 0.2248(18) � � �
5.4 0.2606(19) 0.2333(14) 0.2102(17) � � �
5.0 0.2398(19) 0.2318(15) 0.1839(14) � � �
4.8 0.2246(23) 0.1981(15) 0.1716(10) � � �
4.6 0.2127(14) 0.1808(16) 0.1518(14) 0.1340(6)

4.4 0.1888(18) 0.1631(16) 0.1311(13) 0.1163(13)

4.3 0.1777(17) 0.1516(17) 0.1247(15) 0.1063(10)
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Our results for ZPðLÞ are listed in Table III and displayed
in Fig. 9. As can be seen in the figure, the L-dependence of
ZP is very close to linear on a log–log plot at all values of
�. This is a consequence of the slow running of the

coupling constant. The theory is ‘‘conformal for all prac-
tical purposes’’ over the range of L’s that are accessible at
any single value of �. The slopes of the curves allow us to
read off �mðg2Þ since the simplified Eq. (25) implies

logZPðLÞ ¼ ��m logLþ const: (26)

We thus fit straight lines to the data in Fig. 9, keeping only
the three largest volumes at each �. The result of the
analysis is shown in Fig. 10, a plot of �mðg2Þ versus the
SF coupling g2. We use g2ðL ¼ 6aÞ for each bare coupling
�; since g2ðLÞ varies so little, this gives a good first
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FIG. 9 (color online). Pseudoscalar renormalization constant
ZP vs L=a.
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FIG. 10 (color online). Mass anomalous dimension �m vs g2,
the L ¼ 6a SF coupling. The diamonds are the SF result (this
paper). The squares with the large error bars are the values of �m

derived from the finite-size scaling study of Ref. [17] (plus one
additional point added later), and the triangle is the exponent
inferred from the scaling of Dirac eigenvalues in that work. The
line is the perturbative prediction �m ¼ 6C2ðRÞg2=ð16�2Þ.

FIG. 11. Approximants R�ðu; s; a=LÞ to the anomalous dimen-
sion �m for the two bare couplings � ¼ 4:4 (top) and � ¼ 4:6
(bottom). Diamonds are for s ¼ 2, squares for s ¼ 4=3 and the
octagon is the s ¼ 3=2 point.
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approximation. We compare to the one-loop perturbative
expectation, �m ¼ 6C2ðRÞg2=ð16�2Þ. It can be seen that
the numerical results follow the perturbative line closely
until they deviate downward at the strongest couplings.
The agreement with Ref. [17] is gratifying, as is the much
smaller uncertainty obtained with the present method.

To study finite-lattice effects we define the lattice ap-
proximation to the step-scaling function (23),

�Pðu; s; a=LÞ ¼ ZPð�; sL=aÞ
ZPð�;L=aÞ

��������g2ðL;aÞ¼u
; (27)

such that

Pðu; sÞ ¼ lim
a!0

�Pðu; s; a=LÞ: (28)

We form the ratios of Eq. (27) from the data in Table III.
The rescaled quantities

R�ðu; s; a=LÞ ¼ � log�Pðu; s; a=LÞ
logs

(29)

give �m directly as s ! 1 in the continuum limit. They are
shown for two bare couplings, � ¼ 4:4 and 4:6, in
Fig. 11. At these couplings, we have data for L=a ¼
6; 8; 12; and 16 and so we can form two combinations
each with s ¼ 2 and s ¼ 4=3. We also plot the analogous
result for the s ¼ 3=2 pair (L ¼ 8a, sL ¼ 12a). While
there does appear to be some cutoff (a=L) dependence,
no possible extrapolation to a=L ¼ 0 can push �m much

above 0.6. We follow up this figure with a compilation of
R�ðu; s; a=LÞ, plotted against u ¼ g2ðLÞ for many pairs of
ðL; sLÞ, in Fig. 12.
We can use all the data to derive �mðg2Þ by fitting at each

� to the form

logZP ¼ Að�Þ � �mð�Þ logL=aþ Cð�Þ a
L
: (30)

The fit involves three parameters if C is kept, two if it is
discarded. Again, at any particular value of the bare
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FIG. 12 (color online). Approximants R�ðu; s; a=LÞ to the
anomalous dimension �m, plotted against u ¼ g2ðLÞ. In this
cluttered graph, squares label points (L=a ¼ 6, sL=a ¼ 8),
octagons (6, 12), diamonds (8, 12), bursts (8, 16), and crosses,
(12, 16). The dashed line is the perturbative prediction.

TABLE IV. The anomalous dimension �m from two-parameter
fits to the data in Table III, showing the fit range and �2.

� L’s kept �m �2

5.8 8, 12 0.271(23) 0

6, 8, 12 0.261(14) 0.29

5.4 8, 12 0.257(25) 0

6, 8, 12 0.308(15) 7.12

5.0 8, 12 0.372(25) 0

6, 8, 12 0.382(16) 0.26

4.8 8, 12 0.353(23) 0

6, 8, 12 0.378(15) 2.04

4.6 6, 8, 12 0.432(14) 0.0003

6, 8, 12, 16 0.464(8) 7.3

4.4 6, 8, 12 0.494(21) 2.7

6, 8, 12, 16 0.491(14) 2.7

4.3 6, 8, 12 0.512(20) 0.77

6, 8, 12, 16 0.519(13) 0.98
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FIG. 13 (color online). �m from fits to Eq. (30). Squares are
two-parameter fits to all data points at one � value while
diamonds are three-parameter fits. The abscissa is the SF cou-
pling determined for L ¼ 6a.
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coupling, the spread of g2ðLÞ is so small as to be irrelevant
in any plots. Table IV and Fig. 13 show the results of two-
parameter ðA; �mÞ and three-parameter ðA; �m; CÞ fits to all
(three or four) data points at each � value. Fitting all the
data at one � value to the three-parameter form produces
results that are basically identical to those obtained if
values of R�ðu; s; a=LÞ are themselves used to approxi-
mate �mðg2; aÞ as above, whereupon �mðg2; aÞ is then fit to
�mðg2; 0Þ þ Cða=LÞ. The data do not really allow us to say
much, especially when we only have three L’s per � value;
nonetheless the figure does confirm that �m never rises
above 0.6. Lattice spacing artifacts will not alter our result.

VI. SUMMARYAND CONCLUSIONS

Our system exhibits two phases, a weak-coupling phase
which is nonconfining and chirally restored, and a strong-
coupling phase which is confining. The AWI quark mass
does not vanish in the confining phase, so we cannot
perform a Schrödinger functional study there (except in a
metastable state). In the weak-coupling phase, we find that
the SF coupling runs more slowly than predicted by two-
loop perturbation theory over the entire domain of cou-
plings accessible to analysis.

The location of the fixed point reported in our earlier
paper is not confirmed. The present simulation has an
improved lattice discretization and larger simulation vol-
umes. We did not observe an IRFP, nor did we rule one out.
We did not observe a positive beta function anywhere.

We studied the first-order phase boundary in some de-
tail. In order to ascertain the relevance of this transition to
continuum physics one has to study its location and
strength on yet larger lattices. Moreover, the location of
this transition almost certainly depends on the particular
choice of bare action. An obvious question is whether one
can devise lattice discretizations that push the transition to
larger values of the SF coupling. Then it is possible that the
extension of the beta function to larger couplings will
reveal a fixed point.

Of other gauge theories similar to ours, the one with the
most similar result is the SU(2) gauge theory with Nf ¼ 2

fermions in the adjoint representation—a candidate for
‘‘minimal walking technicolor’’ (MWT) [38,43–49]. Its
SF gauge coupling runs slowly, and evidence for a zero
is ambiguous. It has a small, nearly perturbative mass
anomalous dimension. In these studies also Wilson fermi-
ons were used. There is a first-order transition as � is varied
in strong coupling, but, in contrast to our results, this line
ends in a critical point [44,45]. The connection of what is
evidently a bulk transition to the finite-temperature phase
transition is unclear. Nonetheless, the critical point itself is
a sign of interesting structure along the �c line. The latter is
bounded by IR-repulsive fixed points at zero coupling
(asymptotic freedom) and at strong coupling (the critical
point), which may indicate that it is in the basin of attrac-
tion of an IR-attractive fixed point and hence that it

constitutes a conformal phase. We emphasize that, in con-
trast, our first-order transition at �<�1 continues
smoothly into the first-order finite-temperature transition
at � < �1 without any sign of a critical point at the inter-
section with the �c line.
The other class of slowly running theories is SU(3)

gauge theory with Nf > 3 flavors of light fermions in the

fundamental representation. The earliest study of the phase
diagram using Wilson fermions is that of Iwasaki et al.
[21,50]. The authors found, for 7 
 Nf 
 16, that ‘‘the

massless quark line exists only in the deconfined phase.’’
Recent simulations [51] in strong coupling for SU(2) and
SU(3) gauge groups confirm this picture, with first-order
behavior (i.e., no �c where mq ¼ 0) appearing at Nf ¼ 6

for SU(2) and in the range 6–8 for SU(3). Simulations with
Nf ¼ 10 Wilson fermion flavors [52] also produce a first-

order transition in strong coupling.
Kogut and Sinclair [20] have studied the SU(3) gauge

theory with sextet fermions and reached conclusions rather
different from ours. They report the existence of two finite-
temperature transitions, a chiral and a confinement transi-
tion, at very different bare gauge couplings, implying both
dramatic scale separation and nonconformal physics. That
study was done with unimproved staggered fermions and
the usual square-root prescription. Away from the contin-
uum limit, this prescription is known to induce nonlocal-
ities; equivalently, the number of quark species is not well
defined.6 It is important to monitor the magnitude of taste
violation carefully in such calculations. Badly broken taste
symmetry would mean that the theory under study has
fewer effective massless flavors, which would bias the
result towards confinement rather than conformality.
Returning to the present study, we note again that the

slow running of the gauge coupling constant allows an
inexpensive and accurate measurement of the mass anoma-
lous dimension �m. This measurement confirms, and con-
siderably improves on, the calculation of Ref. [17]. �m is
small, never greater than 0.6 in the coupling region where
we can measure it.
The small value of �m in this theory presents a challenge

for technicolor phenomenology. Even if sextet QCD is not
phenomenologically viable, it is, however, characterized
by a coupling constant that evolves very slowly with scale.
Such systems are theoretically interesting in their own
right.
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APPENDIX: ILLUSTRATIONS OF
THE STRONG-COUPLING TRANSITION

In this appendix we present data supporting the location
of the first-order phase transitions �confð�Þ for Nt ¼
6 and 8, as well as determinations of where the boundaries
cross the �cð�Þ curve. (We denote the crossing points by
½�1ðLÞ; �1ðLÞ�, for L ¼ 6a and 8a.)

FIG. 14. The AWI quark mass mq from simulations on Nt ¼ 6
(top) and Nt ¼ 8 (bottom) lattices. Data collected at the same �
values are connected by lines. In the top panel, squares indicate
64 volumes while octagons indicate 12� 63. The � values are,
from left to right, � ¼ 4:6; 4:5; 4:4; 4:35; 4:3; 4:2; 4:1; and 4:0. In
the bottom panel, all data are from 84 lattices and the � values
are, from left to right, � ¼ 4:6; 4:5; 4:4; 4:35; 4:3; and 4:2.

FIG. 15. The plaquette average from the same simulations as
in Fig. 14. Symbols and � values are the same. Data collected at
the same � values are connected by lines.
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First we show data for the AWI quark mass mq (Fig. 14)

and plaquette average (Fig. 15) from simulations with SF
boundary conditions. Each curve shows the variation with
� for a given �, as � is swept across the phase boundary at

�conf . The first-order transition is evident in each curve, as
is the fact that the discontinuity nowhere tends to zero:
There is no critical point anywhere.
In Fig. 14 we see that the condition mq ¼ 0 can be used

to define �cð�Þ for�>�1ðLÞ, where 4:30<�1ð6Þ< 4:35
while 4:35<�1ð8Þ< 4:40. Thus the phase boundary and
the �c curve are distinct for �>�1ðLÞ, as seen in Figs. 1
and 2. For �<�1ðLÞ we find that mq crosses zero dis-

continuously, and thus there is no �c curve here. (The data
shown here refer to equilibrium states only; the metastable
extension of the �c curve to the left of �1 cannot be seen.)
Since the variation of �1ðLÞ is of great importance,

we devote some effort to interpolating �confð�Þ to find
its intersection with the �c curve. In Fig. 16 we plot
the difference �conf � �c vs �, where �c is determined in
the deconfined phase. (Where this quantity is positive, the
phase boundary lies above the �c curve; the AWI quark
mass in the deconfined phase at the phase boundary is
negative, and the mq ¼ 0 point lies in a metastable phase.)

The curves in the figure are quadratic fits. Inverting them to
find �1, the point where the transition crosses the �c curve,
we find �1 ¼ 4:315ð8Þ for Nt ¼ 6 (with �2 ¼ 5:26=3 dof)
and 4:383ð10Þ for Nt ¼ 8 (with �2 ¼ 0:83). The difference
is then �� ¼ 0:068ð13Þ, to be compared to the prediction
of 0.08 from Eq. (18). These results are stable under
variation in the number of points used in the fit: For
example, quadratic fits to the three points at � ¼
4:3; 4:35 and 4:4 give 4:308ð6Þ and 4:376ð15Þ for Nt ¼
6; 8, respectively.
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