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We present a QCD-based model where rescattering between final state partons in deep inelastic scattering

leads to events with large rapidity gaps and a leading proton. In the framework of this model the amplitude

for multiple gluon exchanges is calculated in the eikonal approximation to all orders in perturbation theory.

Both large and small invariant massMX limits are considered. The model successfully describes the precise

HERA data on the diffractive deep inelastic cross section in the whole available kinematical range and gives

new insight into the density of gluons at very small momentum fractions in the proton.
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I. INTRODUCTION

Hadronic processes with a hard scale involved constitute
an indispensable tool for probing the QCD dynamics of
quarks and gluons. Through the QCD factorization theo-
rems [1] that separate physics at small and large distances,
one may also study the dynamics of soft processes with
small momentum transfers. Hard quark and gluon interac-
tions at small distances are thus not affected by soft inter-
actions and are described in perturbative QCD. The most
problematic part of the process is soft interactions at large
distances, where nonperturbative QCD comes into the
game and manifests itself as the confinement of quarks
and gluons in hadrons and the related hadronization pro-
cess giving the observable hadronic final states in high-
energy collisions.

Diffractive processes are sensitive to the details of non-
perturbative QCD dynamics and provide a way to probe the
soft and semihard regimes directly. Diffractive events are
characterized by a leading ‘‘target’’ particle, carrying most
of the beam momentum, and a well-separated produced
hadronic system. The ‘‘gap’’ in between is connected to the
soft part of the event and therefore to nonperturbative
effects at a long space-time scale. Diffractive deep inelastic
scattering (DDIS) offers a particularly good opportunity to
explore the interplay between hard and soft physics due to
the precise data from the electron-proton collider HERA
[2,3].

DDIS in lepton-proton collisions involves hard scatter-
ing events where, in spite of the large momentum transfer
Q2 from the electron, the proton emerges essentially
unscathed with small transverse momentum, keeping
almost all of its original longitudinal beam momentum
(for reviews on DDIS, see e.g. Refs. [4–6]). The leading
proton is well separated in momentum space, or rapidity
y ¼ 1=2 lnðEþ pzÞ=ðE� pzÞ, from the central hadronic
system produced from the exchanged virtual photon’s

interaction with the proton. Thus, this new class of events
is characterized by a large rapidity gap void of final state
particles.
Rapidity gaps in deep inelastic scattering (DIS) were

discovered by the ZEUS and H1 experiments at HERA [3],
but the first discovery of hard diffraction was in p �p colli-
sions by the UA8 experiment [7]. These processes had
actually been predicted [8] by combining Regge phenome-
nology for soft processes in strong interactions via
Pomeron exchange, with hard processes based on pertur-
bative QCD. By parametrizing the parton content of an
exchanged Pomeron (or alternatively diffractive parton
density functions) it is possible to describe the HERA
data. However, the extracted parton densities are not
universal, since when used to calculate diffractive hard
scattering processes in p �p collisions at the Tevatron one
obtains cross sections an order of magnitude larger than
observed.
An alternative dynamical interpretation of hard diffrac-

tion was proposed in Refs. [9]. This soft color interaction
(SCI) model is based on the simple assumption of soft
gluon exchanges leading to color rearrangements between
the final state partons. Variations in the topology of the
confining color fields lead to different hadronic final states.
The SCI model is implemented in Monte Carlo event

generators, e.g. LEPTO for DIS [10]. The hard part of the
process shown in Fig. 1 is then calculated in the framework
of perturbative QCD with Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution of the parton showers
in the same way as in inclusive DIS. The large momentum
transfer means that the hard subprocess occurs on a space-
time scale much smaller than the bound state proton and is
thus ‘‘embedded’’ in the proton. The emerging hard-
scattered partons propagate through the proton’s color field
and may interact with it. Soft exchanges will dominate due
to the large coupling and the lack of suppression from hard
gluon propagators. Therefore, the momenta of the hard
partons are essentially undisturbed—the soft, long distance
interactions do not affect the hard, short distance process,
and the momentum transfer of the soft exchanges can be
neglected. However, the exchange of color changes the
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color charges of the emerging partons such that the con-
fining stringlike field between them will have a different
topology, resulting in a different distribution of final state
hadrons produced from the string hadronization [11]. In
particular, a region in rapidity without a string will result in
an absence of hadrons there, i.e. a rapidity gap.

The only parameter of this model is the probability for a
soft exchange, accounting for the unknown nonperturba-
tive dynamics. Remarkably, the SCI model is phenomeno-
logically very successful in describing many different
processes, both diffractive and nondiffractive [12], with
only a single parameter P ’ 0:5 for this probability.
Thus, the SCI model captures the essential dynamics of
diffraction, but lacks a solid theoretical basis.

To understand better what we can learn from the phe-
nomenology of the SCI model, we present in this paper a
detailed QCD-based mechanism for soft gluon rescattering
of final state partons, as illustrated in Fig. 1. This mecha-
nism leads to effective color singlet exchange and thereby
to diffractive scattering. Inspired by the SCI model, the
model presented here may be seen as an explicit realization
of the earlier attempt [13] to understand soft gluon
exchange in terms of QCD rescattering. Our model was
initially introduced in a recent paper [14], and is here
presented in detail.

The paper is organized as follows. In Sec. II we briefly
discuss the framework of the dipole approach and motivate
our study. In Sec. III we consider the kinematics of dif-
fractive DIS. Section IV treats the formalism for general-
ized unintegrated gluon distribution functions in the
diffractive limit. The explicit calculation of the q �q dipole
contribution to the diffractive cross section and analytic
approximations used are presented in Sec. V. In Sec. VI we
study the contribution of the q �qg final state. Numerical
results and comparisons with HERA data on the diffractive
cross section are given in Sec. VII. Finally, in Sec. VIII we
present some concluding remarks and an outlook.

II. DIPOLE APPROACH

Typical contributions to the diffractive DIS process are
represented by the diagrams in Fig. 2. In terms of the

four-momenta q of the photon, and P and P0 of the initial
and final proton, the kinematics of the ��P ! XP0 process
is defined by the variables

xB ¼ Q2

Q2 þW2
; � ¼ Q2

Q2 þM2
X

; xP ¼ xB
�

; (1)

where Q2 ¼ �q2. The invariant mass of the produced
system MX, and the total energy in the ��P center-of-
mass system W are given by

M2
X ¼ 1��

�
Q2; W2 � ðPþqÞ2 ¼Q2

xB
ð1� xBÞ: (2)

The DDIS cross section in general is represented as a
function of �, xP, Q

2 and the momentum transfer along
the proton line t ¼ ðP0 � PÞ2. Note, that we are working in
the forward limit of small jtj � Q2, M2

X.
Let us consider first the simplest case of the q �q contri-

bution, which is the leading one for small MX (or, equiv-
alently,� ! 1). To compute the diffractive DIS amplitude,
it is convenient to consider the process in the dipole frame
[15], where the deeply virtual photon with large virtuality
Q2 and polarization � first splits into a quark q and an
antiquark �q with massmq, spins � and �, and flavor f, and

then the q �q dipole with transverse size r interacts with the
target proton at impact parameter b and dissociates into a
final state X of invariant mass MX as shown in Fig. 3. The
photon splitting into the dipole is a QED process and is

FIG. 2. Typical diagrams contributing to diffractive DIS with
the leading-order q �q dipole scattering (left) and the gluonic q �qg
contribution (right) contributing significantly at � ! 0 (large
MX).

FIG. 1. Schematic illustration of the mechanism for diffractive
deep inelastic scattering considered in this paper, with soft gluon
exchanges in the final state.

FIG. 3. Amplitude of the process ��p ! Xp at the leading
order of perturbation theory.
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described by the wave functions c f;��
� ðz; r;Q2Þ in the

impact parameter space [15,16], where z is the fraction
of the longitudinal momentum carried by the quark. The
amplitude of the dipole-nucleon scattering (denoted as T in
Fig. 2) is the only unknown nonperturbative object (for a
review, see Ref. [5]). The dipole picture naturally incorpo-
rates the description of both inclusive and diffractive
events into a common theoretical framework [16,17], as
the same dipole scattering amplitudes enter into inclusive
and diffractive cross sections.

Final states with gluons are suppressed by powers of �s.
However, if � becomes small or Q2 large, the q �q dipole
emits soft or collinear gluons accompanied by large loga-
rithms lnð1=�Þ or lnQ2 which compensate the suppression
in �s [18]. The q �q pair can emit soft gluons, leading to the
dressing up of the quarks, which is parametrized by a scale-
dependent constituent quark mass meff

q ð�2Þ. In general, the
more gluons in the final state, the larger the invariant mass
produced. The dominant gluon emission from quarks is
described by DGLAP evolution [19] and is mostly col-
linear to the radiating quark, so it cannot build up a large
MX. The small � ! 0 and large Q2 ! 1 limits can be
driven, therefore, only by a semihard gluon radiation from
the active gluon (carrying xP) giving rise to a gluonic
dipole q �qg contribution. These aspects will be discussed
in detail below.

Diffractive DIS at the leading order in �s is described by
the two-gluon exchange diagram shown in Fig. 3. Let us
first discuss how the longitudinal momentum transfer
between the q �q dipole and the proton can be shared
between the gluons. The gluon momenta can be Sudakov
decomposed as

q1 ¼�xPþ�?; q2 ¼�x0Pþ�0
?; xþ x0 ¼ xP:

Cutting the diagram after the first gluon exchange (picking
up the leading poles only), in the high-energy limit xB ! 0,
we have

ðqþ xP� �?Þ2 ¼ M2
int ! �2PqðxB � xÞ ¼ M2

int;?:

In the deep inelastic limitQ2 ! 1, for fixed invariant mass
of the intermediate system Mint �MX and Bjorken vari-
able xB, we see that M2

int � 2Pq and x ’ xB, thus x0 ¼
xP � xB. On the other hand, when Q

2 ! 1 andM2
int fixed,

we see that � ¼ xB=xP ! 1. So x ! xP and x0 ! 0, and
the first gluon takes all the longitudinal momentum ex-
change neutralizing the virtuality of the q �q system. The
latter kinematical configuration gives the leading contribu-
tion to the cross section, whereas the other configurations
with equal momentum sharing between the gluons x�
x0 � xP=2 are suppressed by extra propagators.

Thus, we consider the asymmetric case with one hard
(perturbative) gluon carrying most of the longitudinal mo-
mentum transfer xP, and a number of multiple soft screen-
ing interactions with total x0 � xP in a color octet state (in
the large Nc limit) effectively described by the resummed

multigluon exchange amplitude as schematically sketched
in Fig. 4. The first ‘‘hard’’ gluon turns the proton into a
color octet proton remnant, which then interacts with a
system of soft screening gluons in an octet state and finally
recombines into a color singlet corresponding to the lead-
ing proton (or system with invariant mass close to the
proton mass). These soft gluons cannot dynamically
resolve a q �q dipole of small size r� 1=k?, However, we
assume that the gluons interact with the quark current and
not with the dipole as a whole. This will be further
discussed below in Sec. VE.

III. KINEMATICS OF DIFFRACTIVE DIS

Let us first define the kinematics of the process
��p ! Xp. Our primary interest is processes with small
momentum transfer t � Q2. It is convenient to fix the
frame of reference in the center-of-mass system of the final
states, i.e. the outgoing proton with momentum P0, and the
diffractive system X with momentum q0 ¼ k1 þ k2,
k1;? ¼ �k2;? � k?.
The total ��p center-of-mass energy squared is W2 ¼

ðP0 þ q0Þ2 ¼ 2P0q0 þM2
X (the proton mass mp is

neglected). In terms of the cross section variables defined
in Eqs. (1) and (2) we write

2P0q0 ¼ W2 �M2
X ¼ Q2 1� xP

xB
;

2Pq ¼ Q2

xB
’ 2P0q0:

Since xP � 1, we haveW2 � M2
X for any� andQ2, so we

will first keep M2
X and then drop it in comparison with W2

whenever appropriate.
The general Sudakov decompositions of the final quark/

antiquark momenta k1;2 are

k1 ¼ ð1� zÞq0 þ n1P
0 þ k1;?;

k2 ¼ zq0 þ n2P
0 þ k2;?;

where n1 ¼ �n2. The on-shell conditions for the quark
and antiquark in the final state

FIG. 4. Amplitude of the process ��p ! Xp with all-order
resummed soft gluon exchange.
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ð1� zÞ2M2
X þ n1ð1� zÞðW2 �M2

XÞ � k2? ¼ m2
q;

z2M2
X þ n2zðW2 �M2

XÞ � k2? ¼ m2
q;

give

n1 ¼
m2

q;? � ð1� zÞ2M2
X

ð1� zÞðW2 �M2
XÞ

; n2 ¼
m2

q;? � z2M2
X

zðW2 �M2
XÞ

:

Finally, n2 ¼ �n1 � n leads to

M2
X ¼ m2

q;?
zð1� zÞ ; n ¼ ð1� 2zÞ M2

X

ðW2 �M2
XÞ

; (3)

where m2
q;? ¼ m2

q þ k2? is the transverse quark mass

squared. Applying Eq. (2), we get the standard relation
for the quark transverse momentum

k2? ¼ zð1� zÞM2
X �m2

q; (4)

and we consider the light quark mass limit mq � M2
X. The

leading contribution to diffractive DIS at HERA comes
from light quarks, and from now on we do not distinguish
between their masses and account for them by one single
mass parameter meff

q .

In the diffractive limitQ2,M2
X � W2, when z and 1� z

are not very asymmetric, one has with good accuracy

k01 ’ kz1 ’ ð1� zÞW
2
; k02 ’ kz2 ’ z

W

2
:

Let us now define the quark propagators in the photon
splitting wave function. Because of the condition xP �
x2;3;... the soft screening gluons cannot change the longitu-

dinal momenta significantly, but only the transverse mo-
menta. Thus, to calculate the hard part of the amplitude let
us first neglect these extra screening gluons. We will show
below that adding the extra soft gluons leads only to phase
shifts (and their derivatives) in the transverse coordinates,
which are going be resummed to all orders in �s.

In the chosen frame, the momenta of the exchanged hard
and the sum of the soft gluons are

q1 ’ �xPP
0 þ �?; q2 ’ �0

?;

� ¼ j�0
? þ�?j ’

ffiffiffiffiffiffi�t
p

:

Let us first attach the hard gluon to the lower quark line k2.
Then the denominator of the quark propagator between the
photon and gluon vertices is

ðk2 þ q1Þ2 �m2
q ¼ �z2M2

X � zQ2 �� xP
�

� ðk? þ�?Þ2 �m2
q

’ �"2 þ ð1� zÞðk? þ�?Þ2 þ zk2?
1� z

’ �"2 þ ðk? þ �?Þ2
1� z

; (5)

where "2 ¼ zð1� zÞQ2 þm2
q. The first approximation is

obtained by substitutingM2
X from Eq. (3) in the limit xP �

� and the second by using the limit �? � k?, realized
when MX � mq, �?, giving a result valid at z � 1.

When the gluon is attached to the upper gluon line,
using momentum conservation q ¼ q0 þ q1 þ q2, we get
analogously

ðq� k02Þ2 �m2
q ’ �"2 þ ðk? � �?Þ2

z
; (6)

which is strictly valid at 1� z � 1. It is equal to Eq. (5)
with the exchanges z $ ð1� zÞ and k? $ �k?.
The expressions (5) and (6) will be used for all values of

z, as is common practice [5]. This is justified in our
asymmetric case xP � x0 because the dominating contri-
bution to the amplitude comes from the configuration that
either the quark or the antiquark from the photon is essen-
tially on-shell, and the other carries the negative virtuality
of the photon and then absorbs the hard gluon with
momentum fraction xP to become essentially on-shell.
In the limit considered, �? � k?, the quark virtuality

k2 is conventionally utilized as the factorization scale �2
F

of the process, and is expressed in terms of the energy "
and the transverse momentum k? as

�2
F � "2 þ k2? ¼ zð1� zÞðM2

X þQ2Þ: (7)

Thus, the hard scale depends on bothQ2 from the spacelike
photon andM2

X from the timelike final state X. Since these
can have any values, the QCD factorization is complicated
and the physics may be different in the three cases MX �
Q,MX �Q, andMX � Q. The quark propagator (with the
hard scale�2

F in Eq. (7)) is antisymmetric, k2 $ �k2, with
respect to reflection between the spacelike and timelike
regimes, i.e., with respect to the interchange M2

X $ �Q2

(or "2 $ �k2?) as it should be.

The next step is to compute the bilinear spinor combi-
nations �uðk2; �qÞ6�ð��Þvðk1; � �qÞ in the photon splitting

�� ! q �q. The photon polarization vectors in the XP0
center-of-mass frame have the following general form:

"T�ð�� ¼ �1Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;

"L�ð�� ¼ 0Þ ¼ i

2WQ
ðW2 þQ2; 0; 0; W2 �Q2Þ:

In particular, by straightforward calculation for the longi-
tudinally (L) polarized photon we simply get the following
expression:

�u�ðk2Þ6�ð�� ¼ 0Þv�ðk1Þ ’ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
Q; (8)

which is not dependent on the transverse momenta of the
initial quark and antiquark.
The transversely polarized case requires a separate dis-

cussion. Within the dipole picture the diffractive DIS pro-
cess can be basically decomposed into time-ordered stages.
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First, the spacelike photon with q2 ¼ �Q2 fluctuates into a
q �q pair, which is then scattered off the target through hard
gluon exchange, making the q �q-system timelike, and fi-
nally the on-shell quark and antiquark scatter softly off the
color background field in the proton resulting in a color
singlet X-system with invariant mass MX. Initially, at the
moment of the photon fluctuation, the only hard scale is
Q2, and the transverse momentum of a produced quark

is expressed through this scale as k0? ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp

Q, which

is different from the transverse momentum k? of a quark in
the final state defined in Eq. (4). In particular, the differ-
ence between k? and k0? can depend on the actual momen-

tum transfer �? for the hard gluon and on the sum of the
screening gluons, because according to Eq. (4) the small
variation in k? due to the attached �? brings a significant
change inMX for small z. The relative coefficient between
k? and k0? isQ=MX, and has to be taken into account when

expressing the transversely polarized photon splitting wave
function through the final state transverse momenta. This
physical argument agrees well with the kinematics corre-
sponding to the diagram shown in Fig. 4 for Q�MX. In
the opposite limits Q � MX or Q � MX the emission of
extra gluons significantly complicates the kinematics, and
this will be considered in detail below.

As a final result, for the transversely (T) polarized
photon, we get in the chiral limit

�u�ðk2Þ6�ð�� ¼ �1Þv�ðk1Þ ¼ Q

MX

ffiffiffiffiffiffiffiffiffiffiffiffi
2z

1� z

s
ðkx1 � iky1Þ: (9)

The spinor signs � here stand for quark/antiquark chiral-
ities, which coincide with the helicity for a quark and have
the opposite sign of the helicity for an antiquark. We do not
take into account the ‘‘þþ’’ and ‘‘��’’ components since
they are small in the Bjorken limit and for relatively light
quark and antiquark.

IV. GENERALIZED UNINTEGRATED
GLUON DISTRIBUTIONS

Before calculating the amplitude for the hard and soft
gluon exchanges, we note that the exchanged gluons all
originate from the proton color field and should therefore
be treated through a common description of a general
gluon density. The first, hard gluon carries the dynamics
through the longitudinal momentum xPP, whereas the soft
rescattering gluons carry small momenta x0i � xP but may
transfer a color octet charge that screens the color of the
first gluon resulting in an overall color singlet exchange. In
this sense, the sum of all soft exchanges acts as a single
effective gluon exchange between the q �q dipole and the
proton remnant (see Fig. 5).

As an appropriate description of the density of hard
and soft effective gluons, we use the framework of
generalized off-diagonal unintegrated gluon distribution
functions (UGDF), which naturally appear in the

k?-factorization approach [20]. Within this framework
the coupling to a quark is replaced by an off-diagonal
UGDF F off

g ðxP; x0;�2
?;�

0
?
2; �2

FÞ, absorbing a factor

CF�sð�2
softÞ=� and by convention also a gluon propagator

��2
? in order to keep the UGDF regular as �2

? ! 0. The
absorbed coupling �sð�2

softÞ corresponds to the coupling of
a screening gluon with virtuality �2

soft � �2
? to a quark in

the proton, whereas the coupling of the hard gluon to the
q �q dipole is purely perturbative and occurs at the hard
scale �F.
Generalized parton distributions (GPD) are not very

constrained by data. We use a prescription for the gener-
alized UGDF [21], which works well in the description of
CDF data on central exclusive charmonium production
[22]. This prescription is motivated by positivity con-
straints for the collinear GPDs [23] and can be considered
as a saturation of the Cauchy-Schwarz inequality for the
density matrix [24]. It incorporates the dependence on the
longitudinal momentum fraction x0 and the transverse
momenta of the soft gluons in an explicitly symmetric way,

F off
g ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F gðxP;�2

?; �
2
FÞF gðx0;�0

?
2; �2

softÞ
q

; (10)

with �? � �0
?. Here F g is the normal diagonal UGDF,

which depends on the gluon virtuality �2
? and reduces to

the well-known collinear gluon parton distribution func-
tion (PDF) gðx;�2Þ when integrated over this virtuality.
This model (10) is a factorization of the generalized

UGDF into a hard part depending on a hard scale �F and
on xP, thus describing the hard gluon coupling to the
proton, and a soft part defined at some soft scale �soft

and small x0 � xP corresponding to a number of soft gluon
couplings. As we will see below, together with the facto-
rization in transverse momentum space, the model (10)
provides a QCD factorization of the diffractive amplitude
in momentum space.
The UGDFF gðx;�2

?; �
2Þ introduced above depends on

the gluon virtuality, and this dependence is not theoreti-
cally well-known for small virtualities. The UGDF is here
modeled using the collinear gluon density xPgðxP;�2

FÞ,
fixed at the QCD factorization scale �F, together with a

FIG. 5. The sum of the multiple soft gluon exchanges can in an
effective description be seen as a single gluon exchange between
the q �q dipole and the color octet proton remnant, resulting in the
color singlet X-system and a proton in the final state.
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simple Gaussian ansatz for the dependence on the gluon
virtuality �2

? as

ffiffiffiffiffiffi
xP

p
F off

g ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPgðxP;�2

FÞx0gðx0; �2
softÞ

q
fGð�2

?Þ;
fGð�2

?Þ ¼ 1=ð2�	2
0Þ expð��2

?=2	
2
0Þ;

(11)

where the Gaussian width 	0 is the soft hadronic scale. As
demonstrated below, this scale corresponds to the trans-
verse proton size rp � 1=	0. The Gaussian smearing is

then interpreted as the result of many soft interactions in
the bound state proton. The factor

ffiffiffiffiffiffi
xP

p
in Eq. (11) is

absorbed from the hard subprocess part describing the
coupling of a hard gluon to the q �q dipole, and gives us a
hint that the off-diagonal UGDF should be proportional

to � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPgðxPÞ

p
.

It is known that at some soft scale �soft ��QCD col-

linear PDFs like Gluck-Reya-Vogt (GRV) [25] saturate at
small x0 � xP, so one can introduce a function
�Rgðx0; �2

softÞ, which is assumed to be slowly dependent on

x0 in the case x0 � xP:

ffiffiffiffiffiffi
xP

p
F off

g ’ �Rgðx0; �2
softÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPgðxP;�2

FÞ
q

fGð�2
?Þ: (12)

This factor �Rgðx0Þ contains all the soft physics related with
soft gluon couplings to the proton. It is interpreted as the
square root of the gluon density at very small x0 � xP and
soft scale �2

soft. This is a nonperturbative object, which

contributes to the overall normalization and can be deter-
mined from data. As will be seen below, the prescription
(12) is consistent with the HERA data for all available M2

X

and Q2.
There is a debate about what the power of the gluon

density in the cross section should be (see [13] and refer-
ences therein). When squaring the amplitude containing
(12), this model leads to a linear dependence of the dif-
fractive cross section on the gluon PDF. This linear depen-
dence is the same as in the SCI model, where it describes
both diffractive and nondiffractive events, and provides a
continuous transition between the two types of events.

This is in contrast to the quadratic dependence on the
gluon density often encountered in two-gluon exchange
calculations of DDIS [5]. This arises from another pre-
scription for the off-diagonal UGDF in the asymmetric
limit x0 � xP and �2

F � �2
?, which in terms of the diago-

nal UGDF reads [26]

foffg ðxP; x0;�2
?;�

2
?; �

2
FÞ ’ Rgðx0ÞfgðxP;�2

?; �
2
FÞ; (13)

where the skewedness parameter1 Rg ’ 1:2–1:3 is roughly

constant at HERA energies, and gives only a small con-
tribution to an overall normalization uncertainty. The fac-
tor Rg can be approximately taken into account in this case

by rescaling the xP argument in the diagonal UGDF as [27]

foffg ðxP; x0;�2
?;�

2
?; �

2
FÞ ’ fgð0:41xP;�2

?; �
2
FÞ: (14)

Using the same Gaussian ansatz for the intrinsic transverse
momentum dependence as in Eq. (11), we see that pre-
scription (13) leads to a quadratic dependence of the
diffractive structure function on the gluon PDF.
The unintegrated gluon density in the form (10) reduces

to the diagonal form (13) in the kinematical domain where
x0 � xP and the hard gluon is soft, �F ��soft. In this limit
there is no QCD factorization, so the hard and soft gluons
must be taken into account together on equal footing. This
may be the case at low Q2 and M2

X, when a larger contri-
bution to the cross section comes from relatively soft scales
�F & 1 GeV, and Eq. (11) reduces toffiffiffiffiffiffi

xP
p

F off
g ’ 0:5xPgð0:5xP;�2

FÞfGð�2
?Þ; (15)

where the factor 0.5 appears from the equal momentum
sharing between active and screening gluons, since xP is
the sum of all gluon momentum fractions. In this sense, the
prescription (10) is more general since it describes both
x0 � xP and x0 � xP regimes, and contains prescription
(13) as a limiting case.
Equation (15) also leads to a cross section with the gluon

density in the second power. It is similar to the
‘‘Rg-prescription’’ (13) [if the Gaussian smearing like in

Eq. (11) is adopted], and close to its phenomenological
form with rescaled argument (14). This is more conven-
tional in the description of the exclusive processes [5], but
is valid only for the symmetric case where the two-gluon
exchanges carry longitudinal momentum fractions close to
each other, x0 � xP, and are connected to the same facto-
rization scale �F. This case can also correspond to the
‘‘no-soft-exchange’’ approximation, when the soft rescat-
tering of the on-shell partons in the final state is not taken
into account (then Rg ¼ 1).

The above discussion leads to the conclusion that
whether it is appropriate to use prescription (12) or (15)
depends on what kinematical regime one considers. The
problem is that x0 is not strictly constrained by kinematics.
Its order of magnitude should be2

x0 � �2
?

zð1� zÞW2
’ �2

soft

�2
F

xP: (16)

Thus the x0 � xP regime is realized in the perturbative
limit of large factorization scale �F. In the limit �F !
�soft, one instead has x0 ! xP, as naturally required by
matching the prescriptions of Eq. (12) and (15).
To summarize this section, we have formulated a frame-

work for the gluon density needed as input to the calcu-
lation of the diffractive cross section. Since this describes

1Our function �Rgðx0Þ is an analog of this skewedness factor.

2This is similar to central exclusive production in pp colli-
sions, where the screening gluons couple to the triplet/antitriplet
charges of the proton remnants, which have predominantly equal
momentum sharing z� 1=2, and thus we have x0 ��2

?=s.
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soft QCD dynamics in the proton, there are necessarily
some uncertainties. The precise HERA data on the diffrac-
tive cross section are, however, directly sensitive to this
gluon density and may, therefore, be used to obtain new
information about the gluon PDF at extremely small x0
values and at different scales.

V. LEADING-ORDER QUARK
DIPOLE CONTRIBUTION

We are now fully equipped to derive the amplitude for
the dipole-proton interaction.

A. Hard-soft factorization

The total amplitude for ��p ! Xp is decomposed into
longitudinal (L) and transverse (T) parts depending on the
photon polarization �� ¼ 0, �1, and each part can be

written as a convolution of the hard and soft subprocess
amplitudes based on loop integration and cutting rules.

Starting from the general Sudakov decomposition of the
total screening gluon momentum q2 ¼ aq0 þ bP0 þ�?
with a, b � xP, we can write down the amplitude, for
example, for transversely polarized photon as

M
��¼�
�� �

Z d2�?
ð2�Þ2 dadb

�ððk1 þ k2 þ q2Þ2 �M2
XÞ�ððP0 � q2Þ2Þ

Mhardð�0
?ÞMsoftð�?Þðkx1 � iky1Þ:

The �-function product can be rewritten as

�ð	 	 	Þ�ð	 	 	Þ ’ 1

W4
�

�
b� xB

�2
?

Q2

�
�

�
aþ xB

�2
?

Q2

�
;

which takes care of the integrals over a and b, leading to

M
��¼�
�� ¼ Q

MX

ffiffiffiffiffiffiffiffiffiffiffiffi
2z

1� z

s Z d2�?
ð2�Þ2 M

hardMsoftðkx1 � iky1Þ;

where, in the frame with q0? ¼ 0,

kx1 � iky1 ¼ �ðkx2 � iky2Þ � kx � iky:

Analogously, the longitudinal contribution is

M
��¼0
�� ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
Q
Z d2�?

ð2�Þ2 M
hardMsoft:

To calculate the Fourier transform of the total amplitude
we use the convolution theorem

hðqÞ ¼
Z

fðpÞgðq� pÞdp ! ĥðxÞ ¼ f̂ðxÞĝðxÞ;

where f̂ denotes the Fourier transform of f. In our ampli-
tude this convolution is represented by the integral over
�?, while � ¼ ffiffiffiffiffiffi�t

p ¼ j�0
? þ �?j plays the role of q.

Thus, the inverse transformation over the impact parameter
b is

Mð�Þ �
Z

d2be�i�bM̂hardðbÞM̂softðbÞ;

leading to factorization of the amplitude in b-space as a
direct consequence of k?-factorization in impact parame-
ter space.

B. Hard part

Consider first the hard gluon coupling to q or �q shown in
Fig. 4 in the rotated frame of reference with q? ¼ �? and
P? ¼ ��?, where k02? ¼ �k01? � k0?. In what follows,

we use the relation for quark-gluon vertices in the eikonal
approximation

�uðk02 þ q1Þ��uðk02Þ ’ 2k
0�
2 ; q1 � k02;

and for the product of the t-matrices in the large Nc limit
we have

taijt
a
kl ’ TF�ik�jl:

The hard part, describing the two possible couplings of the
hard gluon to the q �q pair, can then be written as

Mhard
L;T ð�?; k0?Þ ¼

Z
d2rd2bM̂hard

L;T ðb; rÞe�irk0
?e�ib�? ;

(17)

where k0? is the transverse momentum of a quark in the

intermediate state (see Fig. 4), and the Fourier-transformed
hard amplitudes are given by

M̂ hard
L ¼ iC�sð�2

FÞ
ffiffiffiffi
�

p
W3z3=2ð1� zÞ3=2K0ð"rÞV ðb; rÞ;

M̂hard
T;� ¼ iC�sð�2

FÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

1� �

s
1ffiffiffiffiffiffi
xP

p W2z1=2ð1� zÞ3=2


 "K1ð"rÞ
rx � iry

r
V ðb; rÞ;

where C ¼ 8�eq
ffiffiffiffiffiffiffiffiffiffiffiffi
��em

p
=N2

c , and K0;1 are Bessel func-

tions. The function V ðb; rÞ is the gluon density in impact
parameter space defined as

V ðb; rÞ ¼ 1

�sð�2
softÞ

Z d2�?
ð2�Þ2

ffiffiffiffiffiffi
xP

p
F off

g ðxP;�2
?Þ


 fe�ir�? � eir�?geib�? : (18)

Here, F off
g ðxP;�2

?Þ is the generalized UGDF, and �2
soft the

typical soft scale of the process given by the gluon virtual-
ity ��2

?. The factor containing �sð�2
softÞ is introduced in

the normalization of the soft part in order to compensate its
absorption into the UGDF (see above). Inserting F off

g from

Eq. (12), we finally get

V ðb; rÞ ¼ 1

�sð�2
softÞ

�Rgðx0Þ
ð2�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPgðxP;�2

FÞ
q


 ½e�ð	2
0
=2Þjb�rj2 � e�ð	2

0
=2Þjbþrj2�: (19)
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In the Fourier transformation we assumed slow evolution
of the QCD coupling�sð�2

softÞ, as is the case in the analytic
perturbation theory discussed in the next section or often
assumed by freezing the coupling at very small�2

soft. Thus,

in the Gaussian model (11), the unintegrated gluon density
in the impact parameter space V ðb; rÞ is factorized into a
collinear gluon density multiplied by an ðr; bÞ-dependent
normal distribution.

C. Soft part

We now turn to the soft subprocess amplitude, which can
be calculated order-by-order as follows. The softness of the
color-screening gluons with x0i � xP implies that all inter-
mediate particles are on-shell, and that the dipole size r is
not changed during the soft interactions. Cutting the inter-
mediate propagators we have only the phase shifts with the
same origin as in Eq. (17), and a dependence on the soft
momentum exchanges �0

i;?.
In particular, for one and two soft gluon exchanges (in

the large Nc limit) we obtain

e�irk0
?Msoft

1 ¼ Ae�irk?
1

�02
?
½e�ir�0

? � 1�;

e�irk0
?Msoft

2 ¼ A2

2!
e�irk?

Z d2�0
2?

ð2�Þ2
1

�02
1?�

02
2?

½e�ir�0
?

� e�ir�0
2? � e�ir�0

1? þ 1�;
where �0

1? ¼ �0
? ��0

2? and A ¼ 2�iCF�sð�2
softÞ with

CF ’ TFNc in the large Nc limit. For example, the next-to-
leading order (NLO) gluonic contribution to the soft part
Msoft

2 is represented by the four diagrams shown in Fig. 6.
Fourier transformation with respect to �0

? leads to

e�irk0
?M̂soft

1 ¼ e�irk?AW ðb; rÞ;

e�irk0
?M̂soft

2 ¼ e�irk?
A2W ðb; rÞ2

2!
; . . . ;

(20)

where

W ðb; rÞ ¼ 1

2�
ln
jb� rj
jbj : (21)

Continuing this procedure we see that summing over the
number of soft gluons in the final state leads to exponen-
tiation in impact parameter space, so that for the total soft
subprocess amplitude we finally get

e�irk0
?M̂softðb; rÞ ¼ �e�irk?ð1� eAW ðb;rÞÞ: (22)

A similar expression was previously derived in the case of
scalar Abelian gauge theory in Ref. [28]. Note that

M̂softðb; rÞ is independent of the photon polarization in
the soft limit of small �0

i;?.
As mentioned before, the soft gluon exchanges between

the final state partons occur at nonperturbatively small
longitudinal x0 and transverse momentum transfer �0

? at

some soft scale �soft. The strong coupling �sð�2
softÞ is not

small in this case. There are several approaches for dealing
with the Landau pole at low momentum transfer (see e.g.
Ref. [29] and references therein). We use the infrared-finite
analytic perturbation theory (APT) [30] approach to pa-
rametrize �sð�2

softÞ at �2
soft ��2

QCD. The analytic strong

coupling �APT
s ð�2Þ is stable with respect to the choice of

the QCD renormalization scheme, higher-order radiative
corrections, and variations in �QCD. APT has also proved

to give a quantitative description of light quarkonium
spectra within the Bethe-Salpeter approach [31] and DIS
spin sum rules at low Q2 [32].
In the one-loop case, the APT Euclidean function A1,

i.e. the analyticized first power of the coupling �s in the
Euclidean domain, is [30]

Að1Þ
1 ð�2

?Þ ¼
1

�0

�
1

L
þ �2

QCD

�2
QCD � �2

?

�
;

L ¼ ln

�
�2

?
�2

QCD

�
;

(23)

where �0 is the first coefficient of the QCD �-function.
Since a significant contribution comes from the phase

space region with strongly uneven longitudinal momentum
distribution between the quark and the antiquark, and
where k? is not very large, the diffractive structure func-
tion becomes sensitive to the model of the strong coupling
used to calculate �soft

s , and hence to the typical soft scale
�soft of the process. To avoid this problem in practice, in
the soft regime we are considering, where �? ��QCD, we

do not extract the value of �soft but rather fix the coupling
at �soft

s ¼ A1ð�QCDÞ ’ 0:7.
Having all the L and T amplitudes, we can now finally

rotate our frame of reference in the transverse plane to one
with q0? ¼ 0 andP0

? ¼ 0, where k? is defined as in Eq. (4).

In this frame, the variables b and r are the impact parameter
and the q �q dipole size in the final state, respectively.

D. Diffractive structure function

Let us turn to the cross section. We are interested in the
case when the proton remnant forms a particle in the final
state with invariant mass close to the proton mass, so we
have a three-particle phase space. We may write in general

FIG. 6. Illustration of resummation of the gluonic contribu-
tions to the (NLO) soft part Msoft

2 (two-gluon exchanges) in the

large Nc limit.
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q00
d3
��p!Xp0

d3q0

¼ 1

2�1=2ðW2; m2
p;�Q2Þ

Z d3k1

ð2�Þ32k01
d3k2

ð2�Þ32k02

 d3P0

ð2�Þ32P0
0

q00�ð3Þðq0 � k1 � k2Þ


 ð2�Þ4�ð4Þðqþ p� k1 � k2 � P0Þ X
�q;� �q;��

jM��

�q� �q
j2:

In the large W limit the flux factor is

2�1=2ðW2; m2
p;�Q2Þ ’ 2W2. The left-hand side can be

transformed to

q00
d3
��p!Xp0

d3q0 ’ W2

�

d2
��p!Xp0

dM2
Xdt

¼ �W2�2

�Q2

d2
��p!Xp0

d�dt
:

The diffractive structure functions have simple relations to
the corresponding differential cross sections

xPF
Dð4Þ
L;T ð�; xP;Q2; tÞ ¼ � Q2�

4�2�em

d2
��p!Xp0
L;T

d�dt
;

xPF
Dð3Þ
L;T ð�; xP;Q2Þ ’ � Q2�

4�2�em

1

BD

d2
��p!Xp0
L;T

d�dt

��������t¼0
;

assuming an exponential t-dependence � expðBDtÞ of the
cross section on the diffractive slope BD. The �-functions
remove the integrals over P0 and one of the quark
momenta, say, k1, and we get

d2
��p!Xp0

d�dt
’� Q2

4�2

�

ð2�Þ5
1

W6

Z d3k2

zð1� zÞ

�ðq0þP0�k01�k02�P0

0Þ
X

�q;� �q;��

jM��

�q� �q
j2:

The remaining �-function removes the integral over k2z ’
zW=2. The last phase space integration is rather trivial,

Z
d2k? ¼ 2�

1

2

Z k2?;max

0
dk2? ¼ �M2

X

Z 1=2

0
dzð1� 2zÞ:

Finally, in the full phase space we have to take into account
an extra factor of 2 due to the symmetry with respect to the
interchange z $ 1� z.

Straightforward calculation leads to the following ex-
pressions for the longitudinal and transverse fully uninte-

grated diffractive structure functions FD;ð4Þ
L;T ðxP;Q2; �; tÞ:

xPF
Dð4Þ
L ¼ SQ4M2

X

Z 1=2

zmin

dzð1� 2zÞz2ð1� zÞ2jJLj2; (24)

xPF
Dð4Þ
T ¼ 2SQ4

Z 1=2

zmin

dzð1� 2zÞfð1� zÞ2 þ z2gjJTj2;
(25)

where S ¼ P
qe

2
q=ð2�2N3

cÞ sums over light quark charges

eq, and

JL ¼ i�sð�2
FÞ

Z
d2rd2be�i�be�irk?K0ð"rÞ


V ðb; rÞ½1� eAW �; (26)

JT ¼ i�sð�2
FÞ

Z
d2rd2be�i�be�irk?"K1ð"rÞ


 rx � iry
r

V ðb; rÞ½1� eAW �: (27)

These are the general expressions of the QCD-based soft
multiple gluon rescattering model.

E. Physical interpretation and simplification

We have now derived Eqs. (24)–(27), which describe the
diffractive structure function. These have nonperturbative
soft gluon exchanges as important ingredients, and to
calculate these exchanges we have had to make some
model assumptions. Some of these assumptions have
already been discussed above: we treat the coupling to
the quarks using the strong coupling obtained in APT and
the coupling to the proton remnant using the function �Rg.

Moreover, we extrapolate perturbation theory and assume a
perturbative propagator for the gluons. The infrared loga-
rithmic divergences in these gluon propagators, which
appear at each order in the resummation [see Eqs. (20) and
(21)], disappear when the gluon exchanges are resummed
to all orders [Eq. (22)].
There is one additional model assumption, as we will

explain shortly, but let us first discuss a physical argument
based on effective field theory principles, or equivalently,
on the uncertainty principle: A gluon with momentum k has
a ‘‘resolution power,’’ or minimal scale of an object it can
resolve, of order 1=k. Put another way, physics should not
depend on scales much smaller than the resolution scale.
The hard gluon in our calculation can resolve the q �q

dipole with transverse size r, allowing us to apply pertur-
bation theory to the hard part. On the other hand, the soft
gluons do not carry significant longitudinal momentum
fractions, and only small transverse momenta �? � � ¼ffiffiffiffiffiffi�t
p

, so their ‘‘maximal resolution’’ scale is b� 1=�. This
means that the screening gluons cannot dynamically re-
solve the internal structure of a small q �q dipole with size
r � b. However, in constructing our model, we extrapo-
late perturbative QCD to the nonperturbative regime and
assume that the soft gluons couple individually to the quark
and antiquark, since the essential point of the dynamics
here is the color exchange and not the momentum transfer.
This is in a similar vein to using quark currents in hadronic
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matrix elements, such as form factors. The underlying
quark and gluon dynamics is still important even at very
low scales (see e.g. Ref. [29] for a discussion of this). In
this way there is a continuous transition between soft
perturbative and soft nonperturbative gluons.

As they stand, the integrals in Eqs. (26) and (27) exhibit
unphysical singularities in the angular integrations. This,
however, is because of our model assumption, which so far
does not fully take into account the resolution power argu-
ment. Since the gluons are soft, physics should not depend
on the orientation of the q �q dipole with respect to the
impact parameter. This will regulate the unphysical singu-
larities in the angular integration in Eqs. (26) and (27). This
will also allow us to evaluate the integrals analytically, and
wewill use this in our calculations below.We argue that the
resulting expressions, Eqs. (34) and (35) below, are the
physically correct expressions for JL and JT to use in
Eqs. (24) and (25).

The expression (19) can be considered as a model for the
unintegrated gluon density in impact parameter space. In
particular, it defines the probability to probe a gluon at
impact distance b from the proton center with momentum
�? � 1=b by a hard q �q dipole with small size r � b,
where the quarks carry the hard momentum k? � 1=r.
The process is considered at a factorization scale equal to
the quark virtuality �2

F. The gluons cannot resolve scales
below the dipole size r. Therefore, the gluon density
cannot depend on the orientation of the q �q dipole with
respect to b, i.e., on the angle between r and b. Also, in this
Gaussian model there is no physical reason for an asym-
metry of the UGDF with respect to the direction of the
vector b. Thus we rewrite our expression (19) in the
following way:

V ’ 1

�sð�2
softÞ

�Rgðx0Þ
2�2

ffiffiffiffiffiffiffiffi
xPg

p
e�ð	2

0
=2Þðb2þr2Þ sinhð	2

0brÞ:
(28)

In the small dipole limit r � b this becomes

V ðb; rÞ ’ 1

�sð�2
softÞ

�Rgðx0Þ 	2
0

2�2

ffiffiffiffiffiffiffiffi
xPg

p
bre�ð	2

0
=2Þb2 ; (29)

which will be used below to obtain the formula for the
DDIS amplitudes.

We can check our formalism by taking the small
coupling limit �sð�2

softÞ � �sð�2
FÞ � 1, where we can

approximate

1� eAW ’ �i�sð�2
softÞCF

r

b
: (30)

In the longitudinally polarized case, the Fourier integrals
are then reduced to Hankel transforms, leading to

JL ’ 8 �Rgðx0Þ�sð�2
FÞCF

ffiffiffiffiffiffiffiffi
xPg

p
et=ð2	2

0Þ "2 � k2?
ð"2 þ k2?Þ3

:

Thus, in the limit �s � 1 our model successfully repro-
duces the standard leading-order two-gluon amplitude [18]
and leads to the correct exponential t-dependence of the
cross section � expðBDtÞ with diffractive slope BD �
1=	2

0 ¼ 6:9� 0:2 GeV�2 known from HERA data [2].

This gives 	0 ’ 380 MeV, close to the value of �QCD.

Thus, the Gaussian width 	0 physically corresponds to
the effective transverse size of the proton.
However, the strong coupling�sð�2

softÞ is not small in the

case of small momentum transfers& �QCD, and we cannot

calculate the integral in JL in general form analytically. The
soft phase AW is not in general small in the Fourier
transformation, and in evaluating the Fourier integrals in
Eqs. (26) and (27) we should not impose the W � 1
condition, but rather keep the exponent expðAW Þ with
imaginary A. This produces an extra phase shift in the
Fourier transform over r, coming from the soft gluon ex-
ponentiation in the large Nc limit. Employing the ‘‘maxi-
mum resolution’’ argument introduced above, we can write

eAW ðb;rÞ ’ e�ir�; � ¼ �sð�2
softÞCF

b

b2
: (31)

In the longitudinally polarized case the result of the Fourier
integration over r is the Hankel transformation of K0ð"rÞr
with respect to the momenta k? and k? þ �. We obtain

JL ’ �Rg

�sð�2
FÞ

�sð�2
softÞ

ffiffiffiffiffiffiffiffi
xPg

p 	2
0

�

Z
d2be�i�be�ð	2

0
=2Þb2


 b

�
2"2Eð� k2?

"2
Þ � ð"2 þ k2?ÞKð�

k2?
"2
Þ

"ð"2 þ k2?Þ2

� 2"2Eð� ðk?þ�Þ2
"2

Þ � ð"2 þ ðk? þ �Þ2ÞKð� ðk?þ�Þ2
"2

Þ
"ð"2 þ ðk? þ �Þ2Þ2

�
(32)

in terms of the complete elliptic integrals of the first and
second kind, KðxÞ and EðxÞ, respectively. In the forward
limit of small � � k? we expect k? � �, � � j�j.
There is a similar simplification in momentum space for

the hard momentum k? � 1=r, i.e., k?�� k?�, neglect-
ing the dependence on the direction of the q �q transverse
momentum in the isotropic color field of the proton
remnant.
Further, we expand the integrand in Eq. (32) in � ¼

k?�þ �2 � k2?, and keep only the leading term in �.
Taking the last Fourier integral gives

Z
d2be�i�be�ð	2

0=2Þb2
�
k? þ v

b

�
¼ 2�

	2
0

UðtÞ;

where

U ðtÞ ¼ k?et=ð2	
2
0
Þ þ

ffiffiffiffi
�

2

r
v	0e

t=ð4	2
0
ÞI0

��t

4	2
0

�
; (33)
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I0 is a modified Bessel function, and v ¼ �sð�2
softÞCF. The

second term is a NLO contribution since it is proportional
to the �s in v, and typically in the forward limit t �
1 GeV2 and in the hard momentum transfer limit it is
much smaller than the leading term (we do not consider
large t, where the whole formalism here does not apply).
However, this term is the only leading term which survives
in the limit when both k? ! 0 and jtj � 1=b2 ! 0, so we
have to take it into account.

As regards the t-dependence, the second term in Eq. (33)
decreases at large t, but not as rapidly as the first term. To
good approximation, the integral over t in the cross section
can be written asZ 1

0
dtUðtÞ2 ’ 	2

0ðk? þ 
0vÞ2; 
0 ¼ 0:73 GeV:

The second term must be taken into account when k? is
& 1 GeV.

Straightforward calculation leads to the following result
for the longitudinal contribution:

JL ’ �Rg

ffiffiffiffiffiffiffiffi
xPg

p �sð�2
FÞCFUðtÞ

2"3ðk2?þ"2Þ3
�
ðk2?þ"2Þ



�
8K

�
�k2?

"2

�
"2þ�

�
22F1

�
1

2
;
3

2
;2;�k2?

"2

�
"2

þðk2?þ"2Þ2F1

�
3

2
;
3

2
;2;�k2?

"2

���
�32"4E

�
�k2?

"2

��
;

(34)

and for the transverse contribution,

JT ’ �Rg

ffiffiffiffiffiffiffiffi
xPg

p �sð�2
FÞCFUðtÞ

2"k3?ðk2? þ "2Þ3



�
8ð"6 þ 3k2?"

4 � 2k4?"
2ÞE

�
� k2?

"2

�
� ð"2 þ k2?Þ



�
�

�
ð"2 � k2?Þ2F1

�
1

2
;
3

2
; 2;� k2?

"2

�

þ ð"2 þ k2?Þ2F1

�
3

2
;
3

2
; 2;� k2?

"2

��
k2?

þ 8ð"4 þ 2k2?"
2ÞK

�
� k2?

"2

���
; (35)

where 2F1 is the hypergeometric function and E and K are
the complete elliptic integrals as above.

VI. GLUON CONTRIBUTION TO THE
DIFFRACTIVE STRUCTURE FUNCTION

In the large-MX limit, gluon emission may be important.
In principle, gluons may be radiated from both the q �q
dipole and the hard gluon. The gluons emitted from the
quarks are dominantly soft and move collinearly with the
quarks, and do not significantly change the invariant mass
of the final system X. Rather, they dress the quarks to build

up their effective massmeff
q , which is, in general, a function

of the two hard scales Q2 and M2
X. This mass parameter

may be treated as a constituent quark mass. In the current
work we do not make predictions for meff

q , but instead

extract it from data.
The scale dependence of the effective quark mass in

processes with two hard scales like the one under consid-
eration may be complicated. This will be discussed in
connection with the numerical results in Sec. VII.

A. Kinematics

The small � ! 0 limit is, therefore, driven by gluon
emission from the hard gluon, as illustrated in Fig. 7.
The kinematics of the process in the XP0 center-of-mass
frame, where k1;? þ k2;? ¼ �p?, is given by the

Sudakov decompositions

k1 ¼ ð1� z� z0Þq0 þ n1P
0 þ k1;?;

k2 ¼ zq0 þ n2P
0 þ k2;?; p ¼ z0q0 þ n3P

0 þ p?;
(36)

with n1 þ n2 þ n3 ¼ 0. Analogously to the q �q case, we
obtain the following expression for the invariant mass MX

in terms of momentum fractions z, z0:

M2
X ¼ zk21;?þ ð1� z� z0Þk22;? þ ð1� z0Þm2

q

zð1� z� z0Þ þp2
?
z0

: (37)

MX can also be represented in terms of the invariant mass
of the q �q system as

M2
X ¼ M2

q �q

1� z0
þ p2

?
z0ð1� z0Þ ; ðk1 þ k2Þ2 ¼ M2

q �q: (38)

B. Soft gluon resummation and the gluonic dipole limit

The q �qg-system scatters off the proton by exchanging
soft gluons, in the same way as the q �q-system above, and
also here the gluon exchanges can be resummed. We have
two independent transverse momenta, k01;? and k02;?, out-
going from the hard subprocess, corresponding to impact
parameters r1 and r2. Proceeding as for the q �q case, we
obtain for the q �qg case

FIG. 7. Typical diagram for gluon emission in the DDIS final
state (a), and its asymptotic limit reducing to the ‘‘gluonic
dipole’’ contribution for � ! 0 and p? � k? (b).
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e�ir1k
0
1;?e�ir2k

0
2;?Msoft

1;q �qg ¼ e�ir1k1;?e�ir2k2;?
1

�02
?
½Ae�ir1�

0
?

þAe�ir2�
0
? þAg�;

where the prefactorA was introduced above for the gluon
coupling to a q �q dipole, and Ag corresponds to the case

with a gluon coupling to a gluon in the q �qg-system. By
explicit calculation of the color factors it can be shown
that in the large-Nc limit Ag ¼ �2A. This allows us to

perform the Fourier transformation of the soft part over�0
?

for any number of exchanged gluons and to resum them in
the same way, as for q �q dipole rescattering. For one- and
two-gluon exchanges we have

e�ir1k
0
1;?e�ir2k

0
2;?M̂soft

1;q �qg ¼ e�ir1k1;?e�ir2k2;?


A½W ðb; r1Þ þW ðb; r2Þ�;
e�ir1k

0
1;?e�ir2k

0
2;?M̂soft

2;q �qg ¼ e�ir1k1;?e�ir2k2;?


A2

2!
½W ðb; r1Þ þW ðb; r2Þ�2;

whereW ðb; rÞ is defined above in Eq. (21). Summing over
the number of soft gluons in the final state leads to
exponentiation in impact parameter space, i.e.,

e�ir1k
0
1;?e�ir2k

0
2;?M̂softðb; r1; r2Þ

¼ �e�ir1k1;?e�ir2k2;?½1� eA½W ðb;r1ÞþW ðb;r2Þ��: (39)

Let us now focus on the leading asymptotic behavior of
the diagram in Fig. 7(a) in the limit � ! 0. In this limit the
hard scale of the process �2

F �Q2=� becomes very large.
From Eqs. (37) or (38) we see that the M2

X ! 1 limit is
realized when z0 � z (more precisely z0 ! 0), so the
invariant mass of the q �qg � X system is

M2
X ’ M2

q �q þ
p2
?
z0

� M2
q �q; (40)

where

M2
q �q ’ k2? þm2

q

zð1� zÞ � M2
X: (41)

Consider first the limit where the gluon transverse
momentum p? is small, such that jk1;?j ’ jk2;?j �
jp?j. In impact parameter space this kinematical configu-
ration corresponds to the diagram shown in Fig. 7(b). In
this limit the q �q pair is very small, i.e., we have strong
ordering in impact parameter space, which can be written
as rq � rg � b. In color space the q �q pair can be consid-

ered as a single gluon, and we consider ‘‘gluonic dipole’’
scattering off the target. This is consistent with our ex-
pression for the corresponding soft part (39), which in the
limit r1 ’ r2 � rg reduces to �1� expð2AW ðb; rgÞÞ ¼
1� expð�AgW ðb; rgÞÞ, corresponding to the amplitude

for soft gluon-gluon scattering. This reproduces the

conventional gg dipole result [18] in the small rg � b

limit, in which the amplitude of the gluonic dipole scatter-
ing differs by a factor of Nc=CF ’ 1=TF ¼ 2 from the
amplitude of the q �q scattering. Indeed, from our model it
follows that in this limit

Asoft
gg ¼ 1� expð�AgW ðb; rgÞÞ ’ 2i�soft

s CF

r

b

¼ �2Asoft
q �q ; (42)

as compared to Eq. (30).
However, this limiting case cannot give a leading con-

tribution to the diffractive structure function at large MX

because of the smallness of the transverse momentum of
the final state gluon p? � k1;2?. Because of Eq. (38) the

larger gluon p?, the larger invariant massMX is produced.
At the same time, p? cannot be significantly larger than the
quark and antiquark transverse momenta k1;2?. Because of
momentum conservation, the maximal MX at fixed z0
occurs in the limit p? � k1;? � k2;?, which corresponds

to r1 � r2 in impact parameter space, leading to
W ðb; r1Þ � W ðb; r2Þ. From Eq. (39), this corresponds
to the situation when only the q �q component of the q �qg
system scatters off the target with soft part Asoft

q �q . This

purely kinematical argument is compatible with an obser-
vation [33] with respect to models for parton saturation
[34], that the q �qg and q �q dipole contributions should
saturate to the same value, i.e. Asoft

q �qg ’ Asoft
q �q at large invari-

ant massesMX. In particular, this means that the scattering
of the q �qg system off the proton cannot be reduced to the
scattering of the gg dipole.

C. Leading q �qg contribution to the diffractive
structure function

We argued above that the leading q �qg contribution to the
diffractive structure function in the large MX limit comes
from on-shell gluon emission from the hard gluon as in
Fig. 7(a). It is clear from Eq. (40) that the relevant limit
MX ! 1 corresponds to essentially on-shell gluon emis-
sion with z0 � z. The corresponding gluon propagator can
be only slightly off-shell to give a leading contribution to
the cross section. In this case the q �q pair takes most of the
longitudinal momentum of the X system, and kinemati-
cally there is no symmetry with respect to interchange z0 $
1� z0 in such a q �qg system, whereas for a q �q dipole this
symmetry z $ 1� z holds explicitly. If one allows the
active gluon to couple to the q �q pair directly, the final state
gluon connected to the hard quark propagator cannot be
on-shell, and we get an extra suppression of the cross
section. Such a ‘‘symmetry breaking’’ in the q �qg system
does not allow us to reduce it to a symmetric gluonic gg
dipole and consider its soft scattering in the same way as
q �q scattering.
The corresponding physical situation is illustrated in

Fig. 8. The hard virtual photon first fluctuates into a virtual
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q �q pair, and the leading configuration is when one quark
(antiquark) takes most of the photon virtuality whereas the
other one is almost on-shell. Then the most virtual quark
(antiquark) emits a (less virtual) gluon, which interacts
with a slightly virtual sea gluon from the proton back-
ground field. This last interaction produces an essentially
on-shell final state gluon, which contributes to the final X
system. After the first hard gluon exchange both quarks
have similar and small virtualities and scatter off the proton
background field.

In order to calculate the q �qg contribution to the diffrac-
tive structure function we include a DGLAP splitting of the
hard gluon (with longitudinal momentum fraction xP) into
two gluons—one carries momentum fraction zgxP and

couples to the hard part, and one is on-shell and contributes
to the final state in ��p center-of-mass frame as shown in
Fig. 8. The diffractive structure function corresponding to
the q �qg contribution can be then written as (see e.g. [35])

xPF
Dð4Þ
q �qg ’ 1

N2
c

Z dtgdzg

tg þm2
g

P̂ggðzgÞ
�sðtgÞ
2�

xPF
Dð4Þ
q �q ; (43)

where the integral is regulated in the infrared by the
effective gluon mass mg ’ �QCD in the gluon propagator.

The factor 1=N2
c is due to averaging over the color indices

(in the large Nc limit) of the extra gluon contributing to the
color singlet X, and PggðzgÞ is the gluon-gluon splitting

function

P̂ ggðzÞ ¼ CA

�
1� z

z
þ z

1� z
þ zð1� zÞ

�
: (44)

Since the q �q contribution is dominated by transverse pho-
ton polarization, in our formulation the same is true of the
q �qg contribution.

One could also include more gluons in the final state by
applying DGLAP evolution of the gluon density, and par-
tially populate the rapidity gap by extra hadronic activity
from the hadronization of gluons emitted from the hard
gluon in the same way as in Monte Carlo simulations. This
would lead to a model describing a smooth transition
between diffractive and nondiffractive final states.

Let us finally comment on another approach to resum-
ming multigluon exchange, which results in similar eiko-
nal factors ½1� expð	 	 	Þ� in the amplitudes. This approach

was developed by Hautmann, Kunszt, and Soper [36]
(HKS) and by Hautmann and Soper [37] (HS), and is
applicable in both inclusive and diffractive DIS. This ap-
proach is similar to ours, employing factorization and
resummation of soft t-channel gluons. In diffractive DIS,
the incoming partonic dipole is assumed to move closely
together in the transverse plane before interacting with the
color field of the proton. In the HKS/HS approach all
exchanged gluons are treated on the same footing. These
gluons collectively carry color singlet charge and are re-
summed using a Wilson line. In our approach, we use
conventional kt-factorization in terms of the unintegrated
gluon distribution, and we additionally factorize the hard
gluon, which carries most of the momentum, from the rest
of the exchanged gluons, which are much softer (x0 � xP)
and are resummed to all orders. The resummed gluons
collectively carry color octet charge, which combined
with the first gluon is required to form an overall color
singlet exchange. It would be interesting to examine the
connections between the two approaches further.

VII. NUMERICAL RESULTS

The HERA data [2,3] on DDIS are given in the form of
the reduced cross section

xP

Dð3Þ
r ¼ xPF

Dð3Þ
q �q;T þ

2� 2y

2� 2yþ y2
xPF

Dð3Þ
q �q;L þ xPF

Dð3Þ
q �qg

(45)

expressed in terms of the diffractive structure functions

FDð3Þ
L;T ðxP;Q2; �Þ. The momentum transfer t is integrated

over since in most of the data the leading proton is not
observed, and diffraction is equivalently defined through
a large rapidity gap. The kinematical variable y ¼
Q2=ðsxBÞ � 1, where

ffiffiffi
s

p ¼ 318 GeV is the center-of-
mass energy of ep-collisions in HERA. In Fig. 9 we
compare the latest ZEUS data [2] with the numerical
evaluation of our model. A generally very good agreement
is found, but this needs to be discussed in detail in order to
gain understanding of the dynamics involved.
As discussed in Sec. IV, we need the generalized gluon

distribution function in the proton, and use the prescription
in Eq. (12) for the UGDF. This reduces the problem to an
input of a standard parametrization of the gluon density in
the proton, i.e. xgðx;�2

FÞ. Here we mainly use the recent
CTEQ6L1 parametrization [38], which is in leading order
and thereby consistent with our treatment. Below we also
consider other parametrizations to illustrate the uncertainty
at very small x and factorization scales �F. The minimum
factorization scale �F is fixed to be �2

F;min ¼ 0:2 GeV2

giving rise to a minimum possible fraction of the quark
longitudinal momentum zmin in the phase space integral.
The physical parameters that are fixed, are the

‘‘soft’’ coupling �soft
s ¼ A1ð�QCDÞ ’ 0:7, obtained from

infrared-finite analytic perturbation theory (see Sec. VC)

FIG. 8. Illustration of the q �qg contribution to diffractive DIS.
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FIG. 9. The reduced cross section xP

Dð3Þ
r ðxP; �;Q2Þ as a function of xP for different values ofMX andQ2. The latest ZEUS data [2],

from diffractive deep inelastic scattering events with a large rapidity gap, compared with our model using for the gluon density in the
proton the CTEQ6L1 (full line) parametrization [38] and at low x and Q2 also the GRV94 (dotted line) parametrization.
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and used for the coupling of the soft screening gluons, and
the gluon mass mg ’ �soft ’ �QCD adopted as the infrared

regulator in the gluon propagator in Eq. (43).
Fixing �soft

s and mg, the only free parameters in our

model are meff
q and �Rg, representing different soft effects

that cannot be calculated or safely estimated. The constitu-
ent quark massmeff

q , which enters the kinematics in Sec. III,

accounts for the soft gluon radiation from the q �q dipole and
corresponds to forming dressed quarks before hadroniza-
tion. The soft part �Rg of the off-diagonal UGDF in Eq. (12)

can be identified with the square root of the soft collinear
PDF defined at some x0 � xP and �soft which represents
the soft scale of the color screening gluons. The sensitivity
to these parameters is discussed in the following.

The shapes of the model curves are in quite good agree-

ment with the data, except for a few points at extremely

small xP & 5
 10�4, and small scales Q2 & 5 GeV2 and

MX (see the upper right corner of Fig. 9). Here, we are in

the kinematical domain where the uncertainties in the

parametrizations of the gluon density of the proton become

extremely large, as illustrated in Fig. 10. As can be seen,

for x & 10�3 there are substantial differences between the

different gluon parametrizations and the differences be-

come huge for x� 10�4 and Q2 & 1 GeV2. The reason is

that there is no data from inclusive DIS or other processes

that can measure the gluon density directly in this domain.

This gluon PDF uncertainty strongly affects the calculated

diffractive structure function at small quark fractions

z and/or small Q2 and MX, where �F may drop below

1 GeV. In this case x0 � xP, due to Eq. (16), so our basic

assumptions and QCD factorization itself become less

reliable. In principle, the diffractive DIS data can be uti-

lized for selecting the best gluon parametrization among

those available in the literature or, even better, for making

new gluon parametrizations including the data on DDIS,

which depend directly on the gluon density.
Another signature of such uncertainties is the Q2 behav-

ior of the soft part of the UGDF, i.e. �RgðQ2Þ, which is

shown in Fig. 11 for different PDFs. As can be seen, using
either the typical leading-order CTEQ6L1 PDF [38], which
decreases at small xP and�F, or the more regular but older
GRV94HO PDF [25] (see comparison in Fig. 10) to per-
form the fit of our model to ZEUS data results in quite
different fitted �RgðQ2Þ. At higher scales, Q2 * 16 GeV2,

the soft factor is quite stable at �Rg ’ 1. However, at Q2 &

5 GeV2, the diffractive cross section calculated with
CTEQ6L1 is underestimated by almost an order of magni-
tude, and in order to get the correct normalization the fitted
�Rg value grows significantly. This is mostly because of the

strong suppression in CTEQ6L1 at small xP & 5
 10�4 at
scales �2

F � 1 GeV2. In contrast, the fit with GRV94HO,
which does not decrease at small xP, leads to a more stable
behavior at low Q2, such that �Rg essentially becomes an

overall normalization constant close to unity.
In order to illustrate how uncertainties in the PDFs and

in the UGDF prescriptions affect the xP-dependence in
comparison with data, we compare our model to the data
using both CTEQ6L1 and GRV94HO in the UGDF pre-
scription of Eq. (12). This is our ‘‘normal’’ prescription
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FIG. 10 (color online). The dependence on momentum fraction x for the gluon density in the proton at the scales Q2 ¼ 1; 2 and
5 GeV2 given by the standard parametrizations CTEQ6L1 [38], GRV94HO [25], MSTW2008LO, and MSTW2008NLO [40].
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FIG. 11. Q2-dependence of the normalization parameter �Rg

[see Eq. (12)] extracted from the HERA data, with solid curve
obtained using CTEQ6L1 PDF [38] and dashed curve using
GRV94HO PDF [25] for the gluon density in the proton.
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that gives a linear dependence of the cross section on the
gluon density. For comparison we also use CTEQ6L1 with
the ‘‘old Rg’’-prescription defined in Eq. (15), which

makes the cross section depend on the square of the gluon
density. Figure 12 shows the results in the bins of interest
with small scales MX and Q2. The old Rg-prescription

leads to an order of magnitude smaller diffractive structure
function at all Q2, which cannot be explained by the
expected normalization factor Rg of order unity in

Eq. (13). The corresponding curves in Fig. 12 have there-
fore been normalized in order to compare the xP-slopes.
These slopes are in reasonable agreement with the data, but
there is a tendency for a too large curvature generated by
the squared gluon density, in particular, at large Q2.

For the curves with linear gluon density, the curves with
GRV94HO lead to better slopes at the smallest Q2 andMX

than those with CTEQ6L1, but at higher scales they be-
come too steep and cannot describe data. This is not
surprising since the old GRV parametrization from 1994
does not take into account later data from HERA and
elsewhere, but it provides an interesting alternative due
to its more regular behavior at very small x at low scales.
The curves fitted with the recent CTEQ6L1 parametriza-
tion have better xP-slopes at higher scales and this is
therefore the main alternative in Fig. 9, in spite of its
shortcoming at the very lowest xP points.
The remaining free parameter to discuss is meff

q , the

effective mass of the quark and antiquark in the
X-system which is used in kinematical relations. In
Fig. 13 we show fitted values of meff

q at different scales

MX and Q2. The diffractive cross section itself is not very
sensitive to meff

q , which therefore only varies within the
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physically reasonable interval �QCD & meff
q & 1:3 GeV.

Thus, it is mostly of nonperturbative nature and can be
interpreted as a constituent quark mass. Nevertheless, meff

q

depends on both Q2 and MX, indicating that both scales
contribute to generating softer gluon radiation. This
dependence is, however, nontrivial.

Indeed, a larger invariant mass MX provides a larger
phase space, which may accumulate more soft collinear
gluons, leading to a larger effective quark mass. On the
other hand, a harder photon (largeQ2) can probe a quark at
smaller distances, so theQ2-dependence of the quark mass
obeys renormalization group evolution, i.e. meff

q , should

decrease at larger Q2. These two effects are indeed ob-
served in the description of data (see Figure 13) for MX &
10 GeV. At largerMX the situation changes somewhat due
to more hard gluon radiation contributing to MX (in par-
ticular, the q �qg contribution becomes important).

We now investigate the role of the different contribu-

tions to xP

Dð3Þ
r in Eq. (45), i.e. q �q from longitudinally and

transversely polarized photons and the q �qg contribution. In
our results shown in Figs. 9 and 12 above, they are all
included. We find, however, that the leading order
q �q-dipole contribution dominates in all bins of MX and
Q2 and is enough to describe all data for � * 0:2, below
which the q �qg contribution becomes significant and can be
approximated with its leading part calculated via DGLAP
splitting of the first, hard gluon.
Figure 14 shows the �-spectra for the different contri-

butions. They all vanish in the limits of � ! 0, corre-
sponding to large MX, and � ! 1, corresponding to
small or vanishing MX with production of resonances,
which is not taken into account here, or no available phase
space. The transverse q �q contribution dominates over the
other contributions. The longitudinal q �q contribution is
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always small, although it becomes slightly larger at
smaller Q2 scales. The gluonic q �qg contribution becomes
relatively larger both at high Q2 and small �, where
it gives an important contribution that must be taken into
account.

VIII. CONCLUSIONS AND OUTLOOK

We have in this paper developed a proper QCD frame-
work for diffractive hard scattering, which contains both
hard and soft dynamics. The hard part produces a well-
defined state of emerging partons, and the soft part is the
rescattering of these partons with the color field of the
proton remnant. We have demonstrated that, by taking
the Fourier transform from momentum space to impact
parameter space, the overall amplitude can be factorized
into separate amplitudes for these hard and soft parts. This
provides a substantial simplification for the calculation and
is consistent with the physical insight that soft, long dis-
tance processes cannot affect the hard process occurring on
a short distance scale.

The hard part is calculated using perturbative QCD, in
the same way as for inclusive DIS. A perturbative hard
scale is provided by the photon virtuality Q2 and invariant
mass MX of the diffractive system, and the process thus
occurs at a space-time scale much smaller than the proton
size. For small x, the hard subprocess ��g ! q �q domi-
nates. This process is mediated by a single gluon exchange
taking most of the longitudinal momentum transfer, and
leaves a proton remnant consisting of the three valence
quarks in a color octet state. The proton remnant carries
most of the beam momentum, and is therefore well sepa-
rated in rapidity from the q �q system.

The soft part of the amplitude accounts for the rescatter-
ing of the q �q pair (in a color octet state) with this remnant.
This rescattering is dominated by multiple exchanges of
soft gluons, which have larger couplings and less propa-
gator suppression. The result is a negligible change of the
momenta of the emerging partons, but an important change
of phase is picked up—this is the essence of the eikonal
approximation. We find that summing over an arbitrary
number of exchanged gluons leads to exponentiation of the
soft amplitude, which can be written in a closed analytic
form free of infrared divergences. The color exchange,
treated in the large-Nc approximation, leads to an overall
color singlet exchange between the q �q dipole and the
proton. These two color singlet systems then hadronize
independently separated by a gap in rapidity as character-
istic signature of diffractive scattering.

By invoking physical considerations based on the un-
certainty principle, which limits the possible resolution of
small momentum transfers, we obtain simplifications of
the otherwise complicated angular relations in the impact
parameter space. In essence, the orientation of the
q �q-dipole relative to the proton color field is physically
irrelevant and can be averaged out.

In addition to the leading order contribution from the
q �q-dipole, we have also included the next-to-leading con-
tribution q �qg with an extra gluon in the final state. Here,
we find that the most important contribution is emission of
this gluon from the exchanged hard gluon (in ��g ! q �q),
which can be well approximated by leading logarithmic
DGLAP emission.
Numerical evaluation of the analytical results gives good

agreement with the precise HERA data on the diffractive
deep inelastic cross section. The q �q contribution is indeed
dominant, but at � & 0:2, the q �qg contribution is impor-
tant. At very small xP & 5
 10�4 and scales �2

F �
1 GeV2 the gluon density in the proton, which is used as
input in our calculation, is very poorly known and gives a
complication in the comparison with the few HERA data
points in this extreme region. Standard up-to-date parame-
trizations have a too low gluon density in this x,�2

F region,

whereas, e.g., the old GRV94 gluon density does better.
Since the diffractive cross section depends directly on the
gluon density, and not only indirectly via DGLAP evolu-
tion as for inclusive DIS, one here obtains an interesting
possibility to constrain the gluon density at very small x.
Having demonstrated that our theoretical formalism for

DDIS does describe HERA data, one may then extract the
part describing the multigluon exchange process and apply
it to other hard scattering processes. This soft rescattering
description ought to be universal, due to the factorization
of the hard and soft amplitudes. Thus, one may apply it
together with hard processes in p �p collisions at the
Tevatron to describe the different hard diffractive pro-
cessed observed there, and then go to the higher energies
at the LHC. One may also apply it to more detailed
observables in diffractive DIS, such as diffractive dijets
or diffractive vector meson production.
However, not only diffractive processes are of interest.

The soft color interaction model discussed above has pre-
viously been successfully applied to both charmonium
production and B-meson decays [39], and one may expect
the model presented in this paper to have interesting ap-
plications in such processes too. Moreover, the multigluon
exchange mechanism will also affect the underlying event,
since it effectuates color exchanges that modify the color-
string topology and thereby the hadronic final state after
hadronization. The underlying event is important in its own
right to understand nonperturbative QCD dynamics, and
also for understanding of inclusive events when subtracting
the standard model background in searches for new phe-
nomena at LHC.
Finally we note that in deriving the theoretical formal-

ism presented here, we have not used any assumptions or
results from the previous soft color interaction model. Our
new formalism stands on its own, based on QCD theory
and basic physical arguments. The formalism can, how-
ever, explain why the simple SCI model has been so
successful in describing data on diffractive hard scattering
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and other phenomena. The assumptions of the SCI model
as well as its major features are essentially what comes out
as results of the present paper. Of course, our new formal-
ism has a richer dynamical structure and we will therefore
attempt to improve the Monte Carlo implementation of the
SCI model by replacing its fixed probability for soft gluon
exchanges with a mechanism based on the above amplitude
for the multiple soft gluon exchanges. This will introduce a
nontrivial dependence on the kinematical variables, giving
a new level of event-to-event variations. As usual with full

event simulation using Monte Carlo, this will give access
to more detailed studies of both the employed theoretical
model and its comparison to data in terms of the indicated
more elaborate observables.
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