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We present a calculation of Oð�sÞ contributions to the process of t-channel single-top production and

decay, which include virtual and real corrections arising from the interference of the production and decay

subprocesses. The calculation is organized as a simultaneous expansion of the matrix elements in the

couplings �ew, �s and the virtuality of the intermediate top quark, ðp2
t �m2

t Þ=m2
t � �t=mt, and extends

earlier results beyond the narrow-width approximation.

DOI: 10.1103/PhysRevD.82.054028 PACS numbers: 14.65.Ha

I. INTRODUCTION

Both the D0 and CDF Collaborations have recently
announced the observation of single-top production at the
Fermilab Tevatron at a significance of 5 standard devia-
tions [1,2]. This process represents a promising channel for
the study of the charged-current weak interactions of the
top quark, and will play a prominent role in the physics
program at the LHC, where top quarks will be produced
singly at large rates. Measurements of the single-top pro-
duction cross section can be used to directly determine Vtb

and to test the unitarity of the CKM matrix [3].
Furthermore, angular correlations of the products of the
top-quark decay encode information on the spin structure
of the Wtb vertex and on the production dynamics of the
top quark [4,5]. The single-top production cross section
also probes the bottom-quark distribution inside the proton,
which at the moment is computed from light-parton
densities rather than extracted from data. Therefore, this
reaction represents a means of directly constraining the
heavy-quark content of the proton. Finally, single-top pro-
duction constitutes a background to a number of possible
new-physics processes, most notably some channels im-
portant for Higgs boson searches. In view of all these
considerations, a precise theoretical description of single-
top production in hadronic collisions is highly desirable.

In the standard model single-top production proceeds
via three main hadronic channels, namely, t-channel pro-
duction, qb ! q0t or �qb ! �q0t; s-channel production,
q �q0 ! t �b; and associated tW production, bg ! W�t. At
the Tevatron and at the LHC the t-channel production
process has the largest cross section. In particular, at the
LHC the s-channel production cross section and the tW
production cross section are expected to be, respectively,
20 times and 3 times smaller than the t-channel process
(see, e.g., Ref. [6]). Thus, in this paper we concentrate on
the t-channel production mechanism. However, the dis-
tinction between t-channel and s-channel production is
problematic beyond leading order (LO) and we will have
to be more precise (in Sec. II) in describing how exactly we

construct our observables and what we include in our
calculation.
Top-quark production, or the production of any unstable

heavy particle, can be treated in several ways. The most
straightforward way is to treat the top as a stable particle
and ignore its decay. In this context, the cross section for
the t-channel single-top production to next-to-leading or-
der (NLO) in QCD was computed in Refs. [7,8]. Later, a
fully differential calculation was presented in Refs. [9,10].
NLO QCD corrections have also been computed for
s-channel and associated tW production [9,11,12]. The
full electroweak corrections in the standard model and
MSSM were computed in Ref. [13] for stable t-channel
single-top production, and very recently for both t- and
s-channel processes [14]. Finally, effects of soft-gluon
corrections beyond NLO have also been studied [15].
Beyond the stable-top approximation, the one-loop

corrections split in a gauge-invariant way into so-called
factorizable and nonfactorizable corrections [16,17].
Factorizable corrections correspond to (on-shell) correc-
tions to either the production or the decay part of the
process. Thus, a way to simplify the calculation is to
separately compute the corrections to the production and
decay of an on-shell top. This approximation (sometimes
referred to as the improved narrow-width approximation)
allows the inclusion of realistic cuts on the decay products
of the top. NLO QCD analyses in this framework for the
semileptonic top decay were published in Refs. [18–21].
To our knowledge, none of the currently published

works on t-channel single-top production include the ef-
fects of interference between real radiation in production
and decay or virtual corrections connecting the two sub-
processes. A study of these nonfactorizable contributions
has been presented for s-channel single-top production
[22] and for t�t production [23]. These corrections are
known to be very small, for observables which are inclu-
sive enough in the invariant mass of the top quark [24,25],
due to large cancellations between virtual and real contri-
butions. However, there is, a priori, no reason why this
should hold true for arbitrary observables, especially if
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they involve kinematical cuts that could, in principle, spoil
the delicate cancellation of real and virtual contributions.

In this paper we want to assess the effect of these
production-decay interferences in t-channel single-top pro-
duction at NLO in the QCD coupling constant, �s. Hence,
we are interested in resonant top-quark production with
p2
t � m2

t , but p2
t ’ m2

t or, more precisely, p2
t �m2

t �
mt�t, where �t ’ 1:4 GeV is the width of the top. While
the effect of these ‘‘off-shell’’ corrections is expected to be
very modest for the total cross section, we are particularly
interested in distributions that are related to the measure-
ment of the top-quark mass, mt. For a reliable mass deter-
mination with an error �mt < �t, the nonfactorizable
corrections have to be under control. In this respect, we
also view the current calculation as a preparation to apply
our method to top-quark pair production.

Wewill neglect quark-mixing effects and treat the bottom
quark as massless throughout, using the 5-flavor scheme.
The importance of bottom-quark mass corrections and the
relation between the 4-flavor and 5-flavor scheme has been
studied in Refs. [26,27]. Furthermore, our calculation does
not include any effects due to parton showers. The matching
of the NLO QCD result with parton shower Monte Carlo
was implemented inMC@NLO [28] and in POWHEG [29].

The calculation is organized as an expansion in the
virtuality of the top quark, p2

t �m2
t , in a way similar to

the pole approximation [30,31], and employs effective-
theory (ET) inspired techniques analogous to the ones
used in Refs. [32–34]. These are based on splitting contri-
butions to the amplitude into so-called hard and soft parts
using the method of regions [35,36], thereby extending the
separation between factorizable and nonfactorizable correc-
tions beyond NLO. The hard part can be identified with the
factorizable corrections, whereas the soft part corresponds
to the nonfactorizable contributions [37]. This approach has
the advantage of providing a gauge-invariant resummation
of top-quark finite-width effects. Furthermore, the expan-
sion in p2

t �m2
t allows for an identification of the terms

relevant to the achievement of a given target accuracy
before the actual computation, leading to a significant sim-
plification of the calculation. The method has been dis-
cussed in detail for a toy model [33] and can easily be
adapted to our case for the tree-level and virtual contribu-
tions. For the real corrections this is more problematic and
we will not be able to follow a strict ET approach in this
case, but will have to combine ideas from the effective
theory with a standard fixed-order approach. As will be
shown in this paper, this results in straightforward calcula-
tions of the contributions that are expected to be relevant for
phenomenological applications at hadron colliders.

The outline of the paper is as follows: we start with a
general description of our method to deal with resonant
particles at hadron colliders in Sec. II. While we will
concentrate on the process at hand, the discussion is
meant to be general enough to be easily adapted to other

processes. We will also be more precise in describing the
observables we are interested in and the accuracy we are
aiming for. In Sec. III we first give explicit results for the
amplitudes needed and details of the computation. We then
discuss a series of successive approximations to the exact
cross section, which relate to previous results in the litera-
ture, and illustrate the cancellation of infrared singularities
in the various cases. Numerical results for the cross sec-
tions and distributions will be presented in Sec. IV. Finally,
in Sec. V we summarize and give an outlook on further
possible applications of our method.

II. METHOD

A. Setup of the calculation

In order to include production-decay interference ef-
fects, the narrow-width approximation has to be relaxed.
In particular, the top quark cannot be treated as a stable
particle. Physical observables must be computed for final
states containing only long-enough lived particles, which
in the case of interest in this paper are represented by the
products of the top-quark decay. Considering the LHC, we
are interested in the process

pðP1ÞpðP2Þ ! JbðpbÞWþðpWÞX; (2.1)

where Jb is a b-quark jet and X stands for an arbitrary
number of further jets, as long as they do not originate from
a b or �b quark. Rejecting �b-quark jets (naively) excludes
contributions from the s-channel process. Furthermore, we
do not allow a second W in the final state in order to
exclude associated production, and we insist on a posi-
tively charged lepton (from the W decay) to exclude
single-�t production. Some of these constraints are, of
course, questionable from an experimental point of view
and most could easily be avoided. But this is a minimal,
more or less realistic setup that allows us to discuss the
inclusion of nonfactorizable corrections.
The most important constraint we make on the final state

is that the invariant mass of the WþJb pair is close to the
top-quark mass, i.e., that the top is resonant. More pre-
cisely, we require1 ðpb þ pWÞ2 �m2

t �mt�t � �ewm
2
t �

m2
t . As is well known, in this case strict fixed-order

perturbation theory breaks down due to the kinematic
enhancement of formally higher-order corrections. These
corrections have to be resummed in a consistent way.
To illustrate this, consider the process (2.1) at partonic

tree level, where we have to compute

qðp1Þbðp2Þ ! q0ðp3Þbðp4ÞWþðpWÞ
! q0ðp3Þbðp4Þlþðp5Þ�lðp6Þ; (2.2)

1If taken at face value this would correspond to an invariant-
mass window �pt � �t around the top-quark mass. In fact, a
numerical study reveals that the suppression of nonresonant
configurations is already effective for much looser invariant-
mass cuts.
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with the initial parton, q, being a light quark ðu; cÞ or
antiquark ð �d; �sÞ. Accordingly, q0 is either a quark ðd; sÞ or
antiquark ð �u; �cÞ, respectively. For the purpose of the current
discussion the b quark can be identified with a b jet, Jb,
with momentum pb ¼ p4. The decay of theW

þ ! lþ�l is
described in the improved narrow-width approximation.
This considerably simplifies the calculation, and yet allows
for a noninclusive treatment of the leptons coming from the
W-boson decay.

The matrix element for the partonic process (2.2) can be
computed from the Feynman diagrams shown in Fig. 1.
These can be divided into two classes: resonant diagrams
[(diagram 1(a)], in which the Wb pair originates from the
decay of an internal top-quark; and nonresonant or
background diagrams [(diagrams 1(b) and 1(c); and
diagrams 1(d)–1(f)], that do not contain intermediate top-
quark lines. The latter are subdivided into electroweak-
mediated [(diagrams 1(d)–1(f)] and mixed QCD-EW
diagrams [(diagrams 1(b) and 1(c)]. It is important to
note that only the sum of all electroweak diagrams [(dia-
gram 1(a); and diagrams 1(d)–1(f)] is gauge invariant,
though, strictly speaking, only diagram 1(a) describes the
production of a single top quark. Obviously, the sum of all
QCD-EW diagrams is separately gauge independent.

The fixed-order tree-level amplitude, Atree, can be
written as

A tree ¼ KðpiÞ
p2
t �m2

t

þ J ðpiÞ; (2.3)

where KðpiÞ and J ðpiÞ are functions of the external
momenta, pi, i ¼ 1; . . . ; 6. The first term in Eq. (2.3)
describes resonant contributions, whereas J accounts for
nonresonant diagrams. Equation (2.3) has a pole at p2

t ¼
m2

t that is related to the breakdown of the fixed-order
perturbation theory mentioned above. When an intermedi-
ate virtual top quark approaches the mass shell, a subset of
formally subleading corrections to the top-quark propaga-
tor are enhanced, and must be resummed to all orders:

iðp6 t þmtÞ
p2
t �m2

t

! iðp6 t þmtÞ
p2
t �m2

t

X1
n¼0

�
�i ��tðp6 tÞ iðp6 t þmtÞ

p2
t �m2

t

�
n
:

(2.4)

��tðp6 tÞ denotes the sum of (renormalized) one-particle
irreducible corrections to the top-quark two-point function,
and contains an imaginary part of order �ewmt that, upon
resummation, regularizes the propagator. However, mixing
different orders in perturbation theory leads, in general, to
a violation of gauge invariance and unitarity, which are
guaranteed only for strictly fixed-order calculations and
for the full amplitude. Therefore, a meaningful gauge-
invariant expansion of the matrix element in p2

t �m2
t

(a) (b) (c)

(d) (e) (f)

FIG. 1. Tree-level Feynman diagrams for the process qb ! q0bW. The figure shows both purely EW contributions, diagram 1(a) and
diagrams 1(d)–1(f), and mixed QCD-EW contributions, diagrams 1(b) and 1(c). The semileptonic (on-shell) decay of the W is
understood.
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requires addressing the issue of resummation of finite-
width effects.

In recent years, several frameworks for the gauge-
invariant calculation of production cross sections for
unstable particles have been proposed, from ad hoc proce-
dures to treat weak gauge bosons [38], to more general
methods based on complex renormalization [39,40] or
modified perturbative expansion in terms of distributions
[41–43]. Here we adopt an effective-theory inspired
approach [33] which, in this case, can be considered as
an extension of the pole-approximation scheme [30,31]. As
we will see, this provides a consistent framework for a
systematic gauge-invariant expansion of the amplitude
around the complex pole of the full top propagator at�2

t �
m2

t � imt�t. Note that we have used the same notation,mt,
for the mass parameter in Eq. (2.4) and for the real part of
the complex pole. Strictly speaking, the first one is the
scheme-dependent renormalized mass, mt;r, and the latter

the physical pole mass,2 and in a generic renormalization
scheme they differ by an amount proportional to �s, as
shown in Sec. III C. However, in the on-shell scheme
adopted in this paper, the two masses coincide up to
corrections which are beyond our target accuracy.
Therefore, in the following we refrain from introducing
more than one mass parameter, except for Sec. III C, where
it will be necessary to explicitly distinguish the renormal-
ized mass, mt;r, from the pole mass, mt.

For the tree-level amplitude, Eq. (2.3), the pole expan-
sion reads

Atree ¼ Kðpi;p
2
t ¼ �2

t Þ
�t

ð1þ �RtÞ þ @K
@p2

t

ðpi; p
2
t ¼ �2

t Þ

þ J ðpi;p
2
t ¼ �2

t Þ þ . . . ; (2.5)

where we have introduced �t � p2
t ��2

t , and 1þ �Rt

denotes the residue of the full propagator at p2
t ¼ �2

t .
The leading resonant contribution is encoded in
Kðpi;p

2
t ¼ �2

t Þ. In @K=@p2
t the resonant propagator

has been cancelled by a �t arising from the expansion of
KðpiÞ around p2

t ¼ �2
t , while J ðpi;p

2
t ¼ �2

t Þ represents
the leading contribution of the truly nonresonant diagrams.
The ellipsis denotes higher-order contributions suppressed
by additional powers of �t. These can, in principle, be
computed to any order, but in the following discussion only
the terms shown in Eq. (2.5) will be relevant.

Beyond the leading approximation, Atree �
Kðpi;p

2
t ¼ �2

t Þ=�t, the consistency of the expansion
(2.5) requires the inclusion of loop corrections. The kine-
matic expansion in the parameter, �t, must be combined
with a standard expansion in the coupling constants, �s ¼
g2s=ð4�Þ and �ew ¼ g2ew=ð4�Þ. For counting purposes, in

the following we refer to the three expansions parameters
collectively as � and assume the relative scaling:

�� �2
s � �ew � �t

m2
t

: (2.6)

We are thus led to write the tree-level amplitude for the
process (2.2) as

A tree ¼ �31�42ðg3ewAð3;0Þ
ð�1Þ þ g3ewA

ð3;0Þ
ð0Þ þ . . .Þ

þ Ta
31T

a
42gewg

2
sA

ð1;2Þ: (2.7)

The superscripts denote the order of the couplings which
multiply the amplitude, while the subscripts denote the order
to which the propagator, �t, appears within the amplitude,

i.e., Aðm;nÞ
ðlÞ has a prefactor gmewg

n
s with Aðm;nÞ

ðlÞ � �l
t. The

coupling from the decay of theW is not counted. A missing
subscript indicates that the amplitude does not contain a �t

propagator, i.e., Aðm;nÞ � Aðm;nÞ
ð0Þ . Thus, g3ewA

ð3;0Þ
ð�1Þ � �1=2,

gewg
2
sA

ð1;2Þ � �, and g3ewA
ð3;0Þ
ð0Þ � �3=2. Terms suppressed

beyond �3=2 are indicated by the ellipsis. In the notation

of Eq. (2.5), g3ewA
ð3;0Þ
ð�1Þ corresponds to Kðpi;p

2
t ¼ �2

t Þ=�t,

while g3ewA
ð3;0Þ
ð0Þ includes both the @K=@p2

t and J terms.

Clearly, gewg
2
sA

ð1;2Þ receives contributions from nonresonant
diagrams only.

Note that the QCD-EW contribution, Að1;2Þ, is usually
considered to be a background to single-top production.

However, the final state is identical and, therefore, Að1;2Þ
has to be included in Atree. In principle, there could be

interferences between Að3;0Þ
ð�1Þ and Að1;2Þ, however, due to

color they vanish at tree level. For the color-averaged
squared amplitude, Mtree ¼ 1

N2
c

P
cjAtreej2, we obtain

Mtree ¼ g6ewjAð3;0Þ
ð�1Þj2 þ g6ew2ReðAð3;0Þ

ð�1Þ½Að3;0Þ
ð0Þ ��Þ

þ g2ewg
4
s

CF

2Nc

jAð1;2Þj2 þ . . . ; (2.8)

where, as usual, Nc ¼ 3 and CF ¼ 4=3. The (first) leading
term of Eq. (2.8) scales as �, whereas the other two terms
scale as �2 and represent a correction of order �� 1% to the
leading contribution. All other terms are further suppressed.
Our aim is to compute all contributions to the cross

section up to Oð�3=2Þ. According to our counting,
Eq. (2.6), this requires, beside the leading tree-level

amplitude, the calculation of Að3;2Þ
ð�1Þ, the Oð�sÞ one-loop

corrections to the leading resonant contribution. For the
squared amplitude this leads to a contribution

MNLO ¼ g6ewg
2
s2ReðAð3;2Þ

ð�1Þ½Að3;0Þ
ð�1Þ��Þ; (2.9)

which we will refer to as NLO. Along with the virtual
corrections we also have to include real corrections, qb !
q0bWþg. There are also gluon-initiated processes at NLO,
namely gb ! q0bWþ �q and qg ! q0bWþ �b. The former is

2It is well known that for a mass determination with an error
�mt & �QCD, a mass definition other than the pole mass has to
be used [44,45]. However, in this paper we ignore effects of the
order �QCD � mt�.
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fully included in our calculation, whereas the latter
deserves special discussion as it mixes t-channel and
s-channel single-top production. Writing the amplitude
for qðp1Þgðp2Þ ! q0ðp3Þbðp4ÞWþðpWÞ �bðp7Þ as

A tree
qg ¼ gsg

3
ewðTa2

47�31A
47
qg þ Ta2

31�47A
31
qgÞ; (2.10)

we first note that upon squaring Atree
qg there are no inter-

ference terms, due to color. Conventionally, the term
�jA47

qgj2 is included in t-channel single-top production,

whereas the term �jA31
qgj2 is considered to be a higher-

order correction to s-channel single-top production. We
will follow this convention but stress that a fully satisfac-
tory solution requires the simultaneous inclusion of both
processes, which we reserve for future work.

In summary, we need to compute the tree-level ampli-
tudes for

ub ! dbWþ; �db ! �ubWþ; (2.11)

ub ! dbWþg; �db ! �ubWþg; (2.12)

ug ! dbWþ �b; �dg ! �ubWþ �b; (2.13)

gb ! dbWþ �u; (2.14)

and the QCD one-loop corrections to the leading (in
�t=mt) part of process (2.11). Of course, we will also
have to include the processes with fu; dg ! fc; sg. Note
that the various processes containing a gluon are related by
crossing. We stress once more that the semileptonic decay,
Wþ ! ‘þ�‘, is taken into account in the improved
narrow-width approximation.

B. Loop corrections in the effective-theory approach

Detailed discussions and applications of effective-theory
methods to the calculation of processes involving unstable
particles can be found in the literature [32,33,37,46]. Here
we will restrict ourselves to a discussion of the points
directly relevant to our calculation.

The main idea of the ET approach is to systematically
exploit the hierarchy of scales, ðp2

t �m2
t Þ �mt�t � m2

t ,
by integrating out degrees of freedom with virtuality�m2

t .
In doing this, the Lagrangian of the underlying theory is
rewritten as a series of gauge-invariant operators multi-
plied by matching coefficients, which are determined such
that the ET reproduces the results of the underlying theory
up to a certain approximation. The matching coefficients
are guaranteed to be gauge independent and they contain
the information on the degrees of freedom that have been
integrated out.

Once the hard part is integrated out, we are left with
degrees of freedom with virtuality much smaller than m2

t .
In general, we have to take into account several different
such degrees of freedom, but in the case at hand it is
sufficient (to the accuracy we are aiming at) to consider
only soft modes.

Within this picture, the leading contribution to the pro-
cess (2.2) is to be viewed as the production of an on-shell
top, the propagation of a soft top, and the subsequent decay
of an on-shell top. This is to say that the matching of the
full theory onto the ET is done on-shell. It is important to
note that on-shell in this context means p2

t ¼ �2
t , i.e., on

the complex pole of the two-point function. Thus, the
matching coefficients are generally complex. The propa-
gator of the soft top is derived from the bilinear operator in
the effective theory and includes the resummation of the
self-energy insertions.
There are several sources of higher-order corrections.

First, there areOð�sÞ andOð�ewÞ corrections to the match-
ing coefficients. These correspond to loop corrections to the
production and decay of a stable top and have been taken
into account in previous calculations. Furthermore, there
are subleading corrections to the bilinear operator, i.e.,
corrections to the propagator. There are also subleading
operators in the ET that do not refer to a top quark at all.
These operators reproduce the effect of background dia-
grams, as well as subleading effects of resonant diagrams,
and correspond to the terms J and @K=@p2

t in Eq. (2.5),
respectively. Finally, there are the contributions from loop
diagrams in the effective theory, i.e., loop diagrams with the
still dynamical soft degrees of freedom. These contribu-
tions correspond to the nonfactorizable corrections and link
the production and decay parts of the process.
From a technical point of view, the calculation of

the aforementioned corrections is achieved by using the
method of regions [35,36] and computing the hard and soft
parts of loop integrals. The hard part is defined by expand-
ing the integrand under the assumption that the loop
momentum, q�, scales as q�mt. In what follows we
will always suppress powers of mt in the scaling relations
and write the scaling of the hard modes as q� � 1. The soft
part is obtained by expanding the integrand of a loop
integral assuming that the loop momentum scales as q� �.
A strict application of the effective theory would require

the introduction of collinear fields for the massless external
fermions and a heavy-quark field for the top quark, as well
as soft and collinear gauge-boson fields. However, we
refrain from doing this because for the real corrections
we will have to deviate from a strict ET approach anyway.
We will, however, make extensive use of the gauge-
invariant separation of the one-loop contribution into
hard and soft parts, and the associated counting rules to
obtain a result that is gauge invariant and reproduces all
terms to the desired accuracy with a minimal amount of
computation.

The one-loop diagrams necessary to achieving Oð�3=2Þ
accuracy are shown in Fig. 2. Apart from the top self-
energy insertion [(diagram 2(b)], at the accuracy we are
interested in we have to deal with QCD one-loop diagrams
only. Because of color, the one-loop diagrams containing
gluon exchange between the upper and lower quark lines
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result in a vanishing contribution to the amplitude squared
and are therefore not shown in the figure. A detailed
discussion of the computation of the various diagrams
will be given in Sec. III B. Here we briefly mention which
parts of the diagrams in Fig. 2 enter our calculation.

As explained in detail in Sec. III B, taking the leading
hard and soft parts of the QCD self-energy insertion
[(diagram 2(a)] we obtain the scalings g3ew�s�

�2 � 1 and
g3ew�s�

�1 � �, respectively. For the soft part this corre-
sponds precisely to a correction we are interested in. The
hard part, however, seems to be superleading, i.e., the one-
loop correction is enhanced compared to the tree-level

amplitude (which scales as g3ew=�� �1=2). However, as
we will see below, in the on-shell scheme used in this
paper this superleading contribution is cancelled precisely
by the counterterm. In a generic renormalization scheme
this is not the case, and the leading hard part of the self-
energy has to be resummed and enters the definition of the
complex pole, �2

t , as explained in detail in Sec. III C. The
same applies to the two-loop QCD self-energy. An inser-
tion of the leading hard part results in a diagram scaling as

g3ew�
2
s�

�2 � �1=2 and, in general, has to be resummed. The
subleading hard terms are suppressed by at least one factor
p2
t �m2

t � � compared to the leading hard contribution
and, therefore, result in contributions g3ew�s�

�1 � �, i.e.,
of the same order as the leading soft contribution. Thus, the
subleading hard part of the self-energy diagram has to be
included (but not necessarily resummed) independent of
the renormalization scheme adopted.

To obtain the scaling of the EW one-loop self-energy
insertion we simply have to replace �s by �ew. Thus,

diagram 2(b) scales as �1=2 and �3=2 with hard and soft
EW self-energy insertions, respectively. Therefore, the
hard part is not suppressed with respect to the tree-level
amplitude and has to be resummed. The soft part contrib-
utes beyond the accuracy of our calculation and can be
neglected. Obviously, the resummation of the hard part of
the EW self-energy insertion corresponds to the resumma-
tion indicated in Eq. (2.4).
For diagram 2(c), the decomposition into hard and soft

part is trivial in that the soft part results in scaleless
integrals and therefore vanishes, whereas the hard part
corresponds to the full diagram. This is not surprising as
the loop correction in this diagram is not affected by the
instability of the top quark.
Diagrams 2(d) and 2(e) are more interesting and both

behave in a similar way. The soft and hard parts scale as
g3ew�s�

�1 � � and contribute at NLO. From an ET point of
view, the hard part of diagram 2(d) contributes to the
matching coefficient of the production operator [or to the
decay operator in the case of diagram 2(e)], whereas the soft
part is reproduced by a loop diagram in the effective theory.
Finally, performing a similar expansion for the box

diagram [2(f)], it can be seen that the hard part scales as
�2 and thus contributes beyond the accuracy of our calcu-
lation. The soft part, however, scales as � and must be
included at NLO. This illustrates the simplifications that
can be achieved in the calculation. Rather than having to

FIG. 2. Virtual QCD corrections to t-channel single-top production at leading order in �t=mt.
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compute a full box diagram with several scales, we end up
computing only the soft part, which is much simpler.

C. Real corrections

For the tree-level and virtual calculations, an ET
approach can be used in a straightforward manner. If one
is only interested in the total cross section, real corrections
can also be tackled in this way by relating the total cross
section to the imaginary part of the forward-scattering
amplitude. However, here we are interested in computing
an arbitrary infrared-safe observable. Hence, we want to
compute the real corrections without explicitly specifying
the observable.

It is clear that, to a certain extent, this is in conflict
with an ET approach. An effective theory relies on making
all scales explicit. Since the definition of the observable
itself can introduce additional scales, it is not possible to
follow a strict ET approach. In this subsection we describe
how we deal with the real corrections, making sure that
we keep all terms to the desired accuracy, for a general
observable. The only assumption we make on the observ-
able is that it does not introduce another hierarchy of
scales. We stress that this assumption has to be made for
any fixed-order calculation because a large ratio of scales
usually introduces large logarithms which have to be
resummed.

To begin with, we need the real matrix element squared
for the process (2.12). We show the diagrams containing
a top-quark propagator in Fig. 3. There are additional

diagrams corresponding to the diagrams [1(b)–1(f)] of
Fig. 1 with an additional gluon radiated off, however, they
are suppressed and contribute only beyond the accuracy we
are aiming at. The real corrections have an additional factor
of �s, which allows us to work at leading order in �t=mt.
In the case of the real corrections it is not, a priori, clear

what the correct expansion parameter is. Diagrams 3(a)–3(c)
have a resonant-top propagator for ðpW þ p4Þ2 ’ m2

t , dia-
gram 3(e) has a resonant-top propagator for ðpW þ p4 þ
pgÞ2 ’ m2

t , and diagram 3(d) is resonant in both kinematic

configurations. Depending on how the final state partons are
combined to jets, both regions can be relevant and have to be
taken into account. This can be achieved by a slight modi-
fication of the usual subtraction method.
In order to isolate infrared singularities, real corrections

are usually computed by subtracting from the real, nþ 1

parton matrix element squared, Mnþ1, a term Msing
nðþ1Þ that

approximates the full matrix element in all singular
regions. This term has essentially n-parton kinematics. It
is added back and a partial phase-space integration is
performed analytically to recover the infrared 1=� poles
explicitly. The kinematic configurations associated with

Msing
nðþ1Þ correspond either to a gluon being soft or two

partons being collinear. Thus, for Msing
nðþ1Þ it is always clear

whether the gluon is combined with the b quark or not and,
correspondingly, what the appropriate expansion parame-
ter is. Therefore, we can expand the term that is added back
and write for the real corrections

FIG. 3. Real QCD corrections to resonant t-channel single-top production at leading order in �t=mt.
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Z
d�nþ1Mnþ1

¼
Z
d�nþ1ðMnþ1�Msing

nðþ1ÞÞþ
Z
d�nþ1M

sing
nðþ1Þ

’
Z
d�nþ1ðMnþ1�M

sing
nðþ1ÞÞþ

Z
d�nþ1M

singexp
nðþ1Þ : (2.15)

The explicit infrared poles in Msing exp
nðþ1Þ now match the

infrared poles of the virtual corrections. The error intro-
duced in the second line of Eq. (2.15) is suppressed by a
factor �s� relative to the Born term and, therefore, is
beyond the accuracy we are aiming at. It corresponds to
the error introduced in expanding the virtual corrections.
Treating the real corrections in this way, we ensure that the
expansion of the real and virtual corrections in �t=mt is
performed in a consistent way, such that the infrared poles
always match. We have implemented this procedure in two
independent programs, using the FKS [47] and dipole
subtraction [48] methods. The agreement of the results
produced with the two programs provides us with a useful
check of the implementation.

III. HELICITYAMPLITUDES FOR
SINGLE-TOP PRODUCTION

In this section we present all the helicity amplitudes

necessary for the computation of the Oð�Þ and Oð�3=2Þ
contributions to the cross section of the process (2.1).
These consist of the leading resonant tree-level diagram

[1(a)] shown in Fig. 1, which scales as �1=2, and of virtual
and real QCD corrections to this diagram ([including the
gluon-initiated processes Eqs. (2.14) and (2.13)], which

scale parametrically as �1=2�s � �. The resummation of
finite-width effects, illustrated in Eq. (2.5), also requires
the calculation of one-loop electroweak self-energies, as
discussed in Secs. III B and III C. Any other contribution is
suppressed by at least � compared to the leading tree-level
process and is beyond the accuracy pursued in this work.
The inclusion of real corrections in our formalism has been
discussed in the previous section, and here we limit
ourselves to giving a list of the relevant amplitudes. For
the virtual corrections we will explain, in some detail, the
application of the method of regions to the computation of
the expansion in � of loop integrals. Throughout this
section, and the rest of the paper, we adopt the helicity
notation introduced in Ref. [49,50] and make use of
the following abbreviations: sij � ðpi þ pjÞ2, pt � p4 þ
p5 þ p6, Dt � p2

t �m2
t , and �t � p2

t ��2
t .

A. Tree-level amplitude

As pointed out in Sec. II A, of the tree-level diagrams
shown in Fig. 1 only the resonant one, diagram 1(a),

contributes to the amplitude at Oð�1=2Þ. Given its purely
electroweak nature, the only nonvanishing amplitude is the

one for the helicity configuration uLbL ! dLbLe
þ
R �L and

it reads

g3ewA
ð3;0Þ
ð�1Þ ¼ g4ew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ½12�h46ih3j4þ 6j5�
ðs13 þM2

WÞ�t

: (3.1)

In Eq. (3.1), the extra power of the coupling constant,

gew, and the prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=MW�W

p
arise from the

inclusion of the W-boson decay in the improved narrow-
width approximation; 1=ððp2

W �M2
WÞ2 þM2

W�
2
WÞ �

�=ðMW�WÞ�ðp2
W �M2

WÞ. Note, however, that this prefac-
tor does not modify the scaling of the amplitude since
�W / g2ew. The complex pole, �2

t � m2
t � imt�t, in the

top-quark propagator, �t, resums leading finite-width
effects and can be related order-by-order in �s, �ew to
the renormalized mass and self-energy of the top quark.
This is explicitly shown below in Sec. III C. The amplitude

Að3;0Þ
ð�1Þ is formally gauge independent, up to terms sup-

pressed by � or higher. These gauge-violating terms, which
would normally be cancelled by the electroweak back-
ground diagrams in Fig. 1, are numerically small as long
as the condition � � 1 is satisfied. For the input parame-
ters and cuts adopted in Sec. IV, they amount to a correc-
tion to the leading resonant contribution to the cross
section of much less than 1%. However, when � * 1 the
effective-theory expansion breaks down and these para-
metrically suppressed contributions can be numerically
important. In this case it is necessary to calculate the
complete gauge-invariant set of diagrams, shown in Fig. 1.

B. Virtual corrections

The relevant one-loop contributions to the amplitude up
toOð�Þ are shown in Fig. 2. As mentioned in Sec. II B, we
use the method of regions [35] to compute these loop
integrals. This automatically yields the expansion of the
full integral in � and has the advantage of simplifying the
calculation. In the case of interest here, the two relevant
momentum regions are soft (q0 � ~q� �) and hard (q0 �
~q� 1). Only the hard part of the electroweak self-energy
diagram [2(b)] contributes to the amplitude at order �, and
this is automatically included in the cross section through
the resummation of finite-width effects in the top-quark
propagator, as explained in Sec. III C. Therefore, we focus
here on the remaining QCD diagrams, 2(a) and 2(c)–2(f).
To illustrate how the expansion by regions works we will

now explicitly show how it is applied to the case of
diagram 2(d), starting with the computation of the soft
part. The full expression for the three-point loop integral is

Að3;2Þ
ð�1Þ;d ¼ �sCF

Z ddq

ð2�Þd

� . . . ðp6 t �mtÞ��ðp6 t � q6 �mtÞ . . . ðp6 2 � q6 Þ��uðp2Þ
q2ðq2 � 2pt � qþDtÞðq2 � 2p2 � qÞ

;

(3.2)
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where the ellipses denote constants and spinor quantities
which do not depend on the loop momentum, q. Let us first
consider the expansion of the three propagators appearing
in the denominator. The gluon propagator has an homoge-
neous scaling, since all the components of q are of order �,
and is not expanded. In the light-fermion propagator,
q2 � 2p2 � q, the quadratic term (� �2) is suppressed com-
pared to the linear term (� �) and can be dropped.
Therefore, q2 � 2p2 � q ! �2p2 � q. In the top-quark
propagator, the term quadratic in q can again be neglected,
whereas p2 � q and Dt both scale as �. Furthermore, given
that Dt � 2pt � q� � in the soft region, finite-width
effects must be resummed to all orders in the top-quark
propagator, leading to

1

q2 � 2pt � qþDt

! 1

�t � 2pt � q : (3.3)

In the numerator of Eq. (3.2), the loop momentum, q, is
always parametrically smaller than the external momenta,
pi, and can be neglected at leading order in �. From the
properties of the Dirac algebra and of the spinors, uðpÞ, it
also follows that

p6 2��uðp2Þ ¼ 2p2;�uðp2Þ; (3.4)

ðp6 t �mtÞ��ðp6 t �mtÞ ¼ 2p�
t ðp6 t �mtÞ �Dt�

�

� 2p
�
t ðp6 t �mtÞ; (3.5)

where we have usedDt � � to drop the second term. Thus,
the leading soft contribution to the loop integral (3.2) is

Að3;2ÞS
ð�1Þ;d ¼ �sCFð4p2 � ptÞ

Z ddq

ð2�Þd

� . . . ðp6 t �mtÞ . . . uðp2Þ
q2ð�t � 2pt � qÞð�2p2 � qÞ

: (3.6)

Note that the leading soft part in the expansion by regions
is equivalent to the well-known eikonal approximation,

ðp6 2 � q6 Þ��

ðp2 � qÞ2 ! p�
2

ð�p2 � qÞ : (3.7)

Equation (3.6) is much simpler than the original integral
(3.2) and can be easily computed with standard techniques.
The explicit result is given in Eq. (3.8). The parametric
scaling of the correction (3.6) can actually be checked
before the explicit calculation of the integral. Given that
a soft momentum scales as �; the gluon propagator scales
as ��2, the light-quark and top-quark propagator as ��1,
and the infinitesimal volume element d4q as �4. Thus,
Eq. (3.8) is suppressed compared to the leading amplitude

by �s � �4 � ��2��1��1 � �1=2, as expected.
The remaining QCD diagrams in Fig. 2 can be expanded

in the soft region analogously to diagram 2(d). As a con-
sequence of the simple structure of the quark-gluon vertex
in the soft limit, Eq. (3.7), the soft corrections factorize in
terms of scalar functions and the leading tree-level ampli-

tude, Að3;0Þ
ð�1Þ. The contributions of the different diagrams in

Fig. 2 read as follows [ ~�2� � e��E�2�=ð4�Þ� with� being
the renormalization scale]:

Að3;2ÞS
ð�1Þ;a ¼

�
�16�i�sCF ~�

2� m
2
t

�t

Z ddq

ð2�Þd
1

q2
1

�t � 2pt �q
�
Að3;0Þ
ð�1Þ ¼

�sCF

2�

�
1

�
þ 2

��
� �t

�mt

��2�
Að3;0Þ
ð�1Þ;

Að3;2ÞS
ð�1Þ;c ¼

�
�16�i�sCF ~�

2�ðp1 �p3Þ
Z ddq

ð2�Þd
1

q2
1

ð�2p1 �qÞ
1

ð�2p3 �qÞ
�
Að3;0Þ
ð�1Þ ¼ 0;

Að3;2ÞS
ð�1Þ;d ¼

�
�16�i�sCF ~�

2�ðp2 �ptÞ
Z ddq

ð2�Þd
1

q2
1

ð�2p2 �qÞ
1

�t � 2pt �q
�
Að3;0Þ
ð�1Þ

¼ �sCF

2�

�
1

2�2
þ 5

24
�2

��
� �t

�mt

��2�
Að3;0Þ
ð�1Þ;

Að3;2ÞS
ð�1Þ;e ¼

�
�16�i�sCF ~�

2�ðp4 �ptÞ
Z ddq

ð2�Þd
1

q2
1

ð�2p4 �qÞ
1

�t � 2pt �q
�
Að3;0Þ
ð�1Þ

¼ �sCF

2�

�
1

2�2
þ 5

24
�2

��
� �t

�mt

��2�
Að3;0Þ
ð�1Þ;

Að3;2ÞS
ð�1Þ;f ¼

�
�16�i�sCF ~�

2�ðp2 �p4Þ
Z ddq

ð2�Þd
1

q2
1

ð�2p2 �qÞ
1

ð�2p4 �qÞ
�t

�t � 2pt �q
�
Að3;0Þ
ð�1Þ

¼ �sCF

2�

�
� 1

�2
� 1

�
ln

�ðs2t �m2
t Þðs4t �m2

t Þ
m2

t s24

�
þLi2

�
1�ðs2t �m2

t Þðs4t �m2
t Þ

m2
t s24

�
� 5

12
�2

��
� �t

�mt

��2�
Að3;0Þ
ð�1Þ: (3.8)

In the soft limit, diagram 2(c) reduces to a scaleless integral
that vanishes in dimensional regularization. This is a conse-
quence of the fact that the upper quark line of the tree-level

diagram 1(a) does not carry any information about the off-
shellness of the intermediate top-quark propagator, and is thus
not sensitive to the soft scale,mt�. The total soft correction is
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Að3;2ÞS
ð�1Þ ¼ X

i

Að3;2ÞS
ð�1Þ;i ¼ �VSAð3;0Þ

ð�1Þ;

�VS ¼ �sCF

2�

�
� �t

�mt

��2�

�
�
1

�

�
1� ln

�ðs2t �m2
t Þðs4t �m2

t Þ
m2

t s24

��
þ 2

þ Li2

�
1� ðs2t �m2

t Þðs4t �m2
t Þ

m2
t s24

��
: (3.9)

In the hard region, the loop momentum scales as q� 1 and
cannot be neglected in the numerator or denominator of
Eq. (3.2). In this case, however, p2

t �m2
t � � is much

smaller than any other invariant and one can expand the
integrand of Eq. (3.2) in Dt. The leading hard contribution
for diagram 2(d) then reads

Að3;2ÞH
ð�1Þ;d¼�sCF

Z ddq

ð2�Þd

� ...ðp6 t�mtÞ��ðp6 t�q6 �mtÞ...ðp6 2�q6 Þ��uðp2Þ
q2ðq2�2pt �qÞðq2�2p2 �qÞ

:

(3.10)

As for the soft region, the expansion in � leads to a
significant simplification of the integrand. Note that, in
the hard region, there is no resummation of self-energy
insertions, since by assumption q2 � 2pt � q�m2

t .
Furthermore, at leading order in �, the hard part of (3.2)
coincides with the one-loop vertex correction to the on-shell
single-top production process uðp1Þbðp2Þ ! dðp3ÞtðptÞ,

with p2
t ¼ m2

t . In the effective-theory language this is
equivalent to the statement that the hard matching coeffi-
cients are obtained from the computation of fixed-order on-
shell matrix elements. Strictly speaking, in this context the
term ‘‘on-shell’’ would imply p2

t ¼ �2
t . However, this

condition must be satisfied only order-by-order in �2
s �

�ew � �, and for an Oð�Þ calculation we can simply set
p2
t ¼ m2

t in the leading hard contributions. Using the count-
ing scheme (2.6) we can again determine the scaling
behavior of Eq. (3.10), which is, in this case, �s � 1� 1�
�1=2, since all momenta scale as �1. This is confirmed by
the explicit result given below in Eq. (3.12).
Applying the hard-region expansion to

diagrams 2(c)–2(f) we obtain

Að3;2ÞH
ð�1Þ;c ¼ �VH

13A
ð3;0Þ
ð�1Þ;

Að3;2ÞH
ð�1Þ;d ¼ �VH

2tA
ð3;0Þ
ð�1Þ þ

gew
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ½52�h46ih3j2j1�
ðs13 þM2

WÞ�t

� �sCF

2�

m2
t

2m2
t � s2t

ln

�
s2t �m2

t

m2
t

�
;

Að3;2ÞH
ð�1Þ;e ¼ �VH

4tA
ð3;0Þ
ð�1Þ þ

gew
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ½12�h43ih6j4j5�
ðs13 þM2

WÞ�t

� �sCF

2�

m2
t

2m2
t � s4t

ln

�
s4t �m2

t

m2
t

�
;

Að3;2ÞH
ð�1Þ;f ¼ 0; (3.11)

where the three scalar functions �VH
13, �V

H
2t , �V

H
4t are given

by

�VH
13 ¼

�sCF

2�

�
� 1

�2
þ 1

�

�
ln

�
s13
�2

�
� 3

2

�
� 1

2
ln2

�
s13
�2

�
þ 3

2
ln

�
s13
�2

�
� 4þ xsc

2
þ �2

12

�
;

�VH
2t ¼

�sCF

2�

�
� 1

2�2
þ 1

�

�
ln

�
s2t �m2

t

mt�

�
� 1

2

�
þ Li2

�
1� m2

t

s2t �m2
t

�
� 2þ xsc

2
� �2

24
� 1

2
ln2

�
s2t �m2

t

mt�

�
þ 1

8
ln2

�
m2

t

�2

�

þ s2t �m2
t

4ð2m2
t � s2tÞ

ln

�
m2

t

�2

�
þ ln

�
s2t �m2

t

mt�

��
1� s2t �m2

t

2ð2m2
t � s2tÞ

� 1

2
ln

�
m2

t

�2

���
;

�VH
4t ¼ �VH

2t js2t!s4t : (3.12)

The expressions in Eq. (3.12), once renormalized as ex-
plained in the next section, agree with the results available
in the literature [see, e.g,. Eq. (19) of Ref. [9] and Eq. (9) of
Ref. [18] ]. This is expected, since the leading hard con-
tributions must coincide with the corresponding correc-
tions to the on-shell top production process. The value of
the parameter xsc in Eq. (3.12) depends on the particular
version of dimensional regularization used for the calcu-
lation (see, e.g., Ref. [51]), and is given by xsc ¼ 0 in the ’t
Hooft-Veltman scheme and xsc ¼ 1 in the four-
dimensional helicity scheme. As anticipated in Sec. II B,

the Oð�s�
1=2Þ hard contribution of diagram 2(f) vanishes

since the intermediate top-quark propagator is off-shell by
an amount �m2

t . This leads to a further suppression in �
compared to the other one-loop QCD diagrams shown in
Fig. 2. In a strict effective-theory approach, the contribu-
tion of diagram 2(f) would be encoded in an effective
higher-dimensional bWþ ! bWþ vertex.
The expansion of the self-energy diagram 2(a) in the

hard region presents some subtleties. Let us consider the
leading (fixed-order) top-quark propagator, iðp6 t þmtÞ=Dt,
and the QCD self-energy correction to the propagator,
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iðp6 t þmtÞ
Dt

�
�4��sCF ~�

2�
Z ddq

ð2�Þd

� ��ðp6 t � q6 þmtÞ��

q2ðq2 � 2pt � qþDtÞ
�
iðp6 t þmtÞ

Dt

: (3.13)

By applying our counting to Eq. (3.13), one expects the
leading hard contribution of the QCD self-energy correc-

tion to scale as�s�
�2 � ��3=2, i.e., it is enhanced by ��1=2

with respect to the leading-order propagator, which scales
as ��1. Hence, in this case we have to push the expansion
by regions one order further to include all the terms sup-

pressed by �1=2 compared to the leading tree-level contri-
bution. Thus, the expansion of Eq. (3.13) in Dt, up to the
relevant order, is

�sCF

2�

�
3

2�
þ 2þ xsc

2

��
m2

t

�2

���
�
2im2

t ðp6 t þmtÞ
D2

t

þ imt

Dt

� iðp6 t þmtÞ
Dt

�
: (3.14)

As anticipated, the first term in Eq. (3.14) is ‘‘superlead-
ing’’ and in a generic renormalization scheme has to be
resummed in the top-quark propagator. However, in the on-
shell scheme adopted in this paper, the superleading bit is
cancelled exactly by the top-quark mass counterterm, as
shown in Sec. III C.

As pointed out at the beginning of this section, only the
hard part of the electroweak self-energy diagram 2(b) is
relevant to our calculation since a soft contribution would

scale as �1=2�ew � �3=2. In this case, the dominant hard
correction to the propagator scales as �ew�

�2 � ��1 and is
resummed, while higher-order terms are beyond the target
accuracy pursued here and can be neglected. In principle,
diagrams analogous to 2(b), but with a photon or a Z boson
in the loop, should also be resummed. As we will see in the
next section, in the on-shell scheme only the imaginary
part of the one-loop two-point function is effectively re-
summed in the propagator, and diagram 2(b) is therefore
sufficient.

C. Renormalization and resummation
of finite-width effects

We now discuss the renormalization of the one-loop
amplitudes computed in Sec. III B. In this paper we adopt
the on-shell scheme (see, e.g., Refs. [52,53]). In this
scheme, the wave-function counterterms for external mass-
less particles vanish identically, i.e., �Zi ¼ 0 for i ¼
1; . . . ; 6. Furthermore, the electroweak coupling, gew, is
not renormalized at Oð�sÞ. Thus, the only counterterm
relevant for our calculation is the top-quark mass counter-
term, �mt. This induces a renormalization of the top-quark
propagator, which is

iðp6 t þmtÞ
Dt

ð�i�mtÞ iðp6 t þmtÞ
Dt

¼ �mt

mt

�
2im2

t ðp6 t þmtÞ
D2

t

þ imt

Dt

�
; (3.15)

with the Oð�sÞ mass counterterm given by

�mt

mt

¼ ��sCF

2�

�
3

2�
þ 2þ xsc

2

��
m2

t

�2

���
: (3.16)

Comparing Eqs. (3.14) and (3.15), it is clear that the super-
leading terms (and part of the subleading ones) arising
from the self-energy correction are cancelled by the coun-
terterm. Rewriting Eqs. (3.14) and (3.15) as contributions
to the amplitude, one obtains

Að3;2ÞH
ð�1Þ;a þ Að3;2Þ;ren

ð�1Þ ¼ �sCF

2�

�
� 3

2�
� 2� xsc

2

�

�
�
m2

t

�2

���
Að3;0Þ
ð�1Þ: (3.17)

In an arbitrary renormalization scheme, which in the
following we will denote by r, there is, in general, no
exact cancellation of the superleading contributions in
Eqs. (3.14) and (3.15), and these terms are resummed
inside the complex pole of the top-quark propagator,�2

t �
m2

t � imt�t. Consider the renormalized top-quark two-
point function,

�� tðp6 Þ � p6 �mt;r þ ��t;rðp6 Þ; (3.18)

where mt;r is the renormalized mass in the generic scheme

r and ��t;r represents the renormalized top-quark self-

energy. The complex pole, �t, is defined as the solution
for p6 at which Eq. (3.21) vanishes (see, e.g., Ref. [54]).
Since �t � �, Eq. (3.18) must include all contributions to
��t;r up to Oð�Þ, i.e., the one-loop QCD (��s � �1=2) and

electroweak (��ew � �) top-quark self-energies, and the
two-loop QCD contribution (��2

s � �). Other corrections

to ��t;r can be included perturbatively and need not to be

resummed.
In the following we will adopt the notation of Ref. [53]

and parametrize the top-quark self-energy as

�� t;rðp6 Þ ¼ ��L
t;rðp2Þp6 PL þ ��R

t;rðp2Þp6 PR þ ��S
t;rðp2Þmt;r:

(3.19)

The renormalized quantities in Eq. (3.19) are related to the
unrenormalized ones by

�� L
t;rðp2Þ ¼ �L

t ðp2Þ þ �ZL
t;r;

��R
t;rðp2Þ ¼ �R

t ðp2Þ þ �ZR
t;r;

��S
t;rðp2Þ ¼ �S

t ðp2Þ � �mt;r

mt;r

� �ZL
t;r þ �ZR

t;r

2
;

(3.20)
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where �mt;r and �ZL=R
t;r denote the mass and wave-

function counterterms, in the scheme r, respectively.
Equation (3.18) can be rewritten in a form more suitable
to the extraction of the pole by inserting identity matrices,
in the form I ¼ ðp6 �mt;rÞðp6 þmt;rÞ=ðp2 �m2

t;rÞ, at both
sides of ��t;r and expanding the quantity ðp6 þmt;rÞ ��t;rðp6 þ
mt;rÞ around p2 ¼ m2

t;r. This leads to

��tðp6 Þ ¼ p6 �mt;r þm2
t;r

��t;rðp2Þ p6 �mt;r

p2 �m2
t;r

þm2
t;r½2 ��L

t;rðp2Þ þ 2 ��R
t;rðp2Þ þ ��t;rðp2Þ�

� ðp6 �mt;rÞ3
ðp2 �m2

t;rÞ2
þ . . . ; (3.21)

where the ellipsis indicates terms that are suppressed be-
yond Oð�Þ and, thus, are irrelevant to the calculation
presented here. For later convenience, in Eq. (3.21) we

have introduced the function ��t;r ¼ ��L
t;r þ ��R

t;r þ 2 ��S
t;r.

The complex mass, �t, is obtained by solving the

equation ��tð�tÞ ¼ 0, and reads

�t ¼mt;r�mt;r

2
��t;rðm2

t;rÞþmt;r

4
��t;rðm2

t;rÞ

�
�
��L
t;rðm2

t;rÞþ ��R
t;rðm2

t;rÞþ2m2
t;r

@ ��t;r

@p2
ðm2

t;rÞ
�
: (3.22)

Equation (3.22) can be further expanded in �s and �ew. To
this end, we introduce a decomposition of the self-energies
analogous to Eq. (2.7)

�� S
t;r ¼ �s

��S;ð0;2Þ
t;r þ �2

s
��S;ð0;4Þ
t;r þ �ew

��S;ð2;0Þ
t;r ;

��L=R
t;r ¼ �s

��V;ð0;2Þ
t;r þ �2

s
��V;ð0;4Þ
t;r þ �ew

��L=R;ð2;0Þ
t;r :

(3.23)

Note that the pure QCD part of the self-energy does not

have an axial component, and ��L;ð0;nÞ
t;r ¼ ��R;ð0;nÞ

t;r � ��V;ð0;nÞ
t;r

for n ¼ 2, 4. Using Eqs. (3.22) and (3.23) one can easily
obtain the following results for the pole mass and width:

mt � Re½�t�
¼ mt;r � �smt;rð ��V;ð0;2Þ

t;r þ ��S;ð0;2Þ
t;r Þ � �2

smt;rð ��V;ð0;4Þ
t;r

þ ��S;ð0;4Þ
t;r Þ þ �2

smt;rð ��V;ð0;2Þ
t;r þ ��S;ð0;2Þ

t;r Þ

�
�
��V;ð0;2Þ
t;r þ 2m2

t;r

�
@ ��V;ð0;2Þ

t;r

@p2
þ @ ��S;ð0;2Þ

t;r

@p2

��

� �ew

mt;r

2

�
Re½ ��L;ð2;0Þ

t;r � þ ��t;r þ 2 ��S;ð2;0Þ
t;r

�
;

�t � �2 Im½�t� ¼ �ewmt;r Im½ ��L;ð2;0Þ
t;r �; (3.24)

where we have used the information that only ��L;ð2;0Þ
t;r has a

nonvanishing imaginary part, and all the functions are
evaluated at p2 ¼ m2

t;r.

In the on-shell scheme (os), Eq. (3.24) assumes a
particularly simple structure:

mt ¼ mt;os; �t ¼ �ewmt;os Im½�L;ð2;0Þ
t ðm2

t;osÞ�: (3.25)

The result (3.25) follows from the particular form of the
mass and field counterterms in this scheme [53]:

�mt;os ¼ mt;os

2
Re½�L

t þ �R
t þ 2�S

t �;

�ZL;R
t;os ¼ �Re

�
�L=R

t þm2
t;os

�
@�L

t

@p2
þ @�R

t

@p2
þ 2

@�S
t

@p2

��
:

(3.26)

Thus, at the level of accuracy we are interested in, the pole
mass, mt, can be identified with the on-shell mass, mt;os.

3

Furthermore, as anticipated at the end of Sec. III B, only
the imaginary part of the one-loop electroweak self-energy
is effectively resummed in the propagator. In particular, in
Eq. (3.25) the dependence from the one-loop (and two-
loop) QCD contributions, which are responsible for the
superleading terms in Eqs. (3.14) and (3.15), cancels com-
pletely. The imaginary part of the complex pole is given, as
expected, by the on-shell top decay width

�t ¼ GF

8�
ffiffiffi
2

p m3
t

�
1�M2

W

m2
t

�
2
�
1þ 2

M2
W

m2
t

�
: (3.27)

The residue of the propagator at the complex pole, �Rt,
which enters Eq. (2.5), can be easily extracted from
Eq. (3.21) and expanded in �s and �ew up to the required
accuracy. Here we only mention the fact that in a generic

scheme �Rt;r � �s þ . . . , and the term �Rt;rA
ð3;0Þ
ð�1Þ is para-

metrically of the same order as the one-loop QCD correc-
tions computed in Sec. III B. Thus, it also contributes to the
amplitude at order �. However, in the on-shell scheme, the
expansion of �Rt;os starts at order �ew and contributes a

correction to the amplitude which is beyond the accuracy
pursued here.
We would like to conclude this section with a remark on

how a ‘‘bad’’ choice of renormalization scheme can lead to
a breakdown of the effective-theory counting scheme,
Eq. (2.6). Throughout this paper we assumed the scalings
Dt � p2

t �m2
t;r � � and �t � p2

t ��2
t � � for the bare

and resummed top-quark propagator. This is consistent in
the on-shell scheme as �2

t �m2
t;os ¼ �2

t �m2
t � �.

However, in a generic renormalization scheme the two

conditions are incompatible since �2
t �m2

t;r � �s �
ffiffiffiffi
�

p
.

This is a problem well known in the context of applying
effective-theory methods to quarkonium physics. Thus,
while in principle one could choose an arbitrary renormal-

ization scheme (e.g., MS), in practice this can lead to
complications and loss of transparency in the expansion
in �. In other words, the effective-theory approach adopted
here naturally identifies a class of ‘‘good’’ renormalization
schemes defined by the condition mt;r �mt � �, of which
the on-shell scheme represents a particular example.

3It is well known that the relation (3.25) is corrected by terms
of order �2

ew, which are, however, beyond the accuracy pursued
here.
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D. Real corrections

The last class of Oð�1=2�sÞ contributions to the
amplitude we have to consider are represented by real
gluonic corrections to the tree-level process (2.1), i.e.,
uðp1Þbðp2Þ ! dðp3Þbðp4Þlþðp5Þ�lðp6Þgðp7Þ. The relevant
Feynman diagrams are shown in Fig. 3. The (leading) real-
emission amplitude can be written as

A real
ð�1Þðg	7 Þ ¼ �24T

a7
31g

3
ewgsA

ð3;1Þ
½31� ðg	7 Þ

þ �13T
a7
42g

3
ewgsA

ð3;1Þ
½42� ðg	7 Þ; (3.28)

where g	7 denotes the two possible helicity states of the

emitted gluon, and Að3;1Þ
½31� and Að3;1Þ

½42� represent the contribu-

tion of diagrams with a gluon attached to the upper or
lower fermion line, respectively. The helicity amplitudes
for the upperline emission read

Að3;1Þ
½31� ðgþ7 Þ¼gew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ffiffiffi
2

p h46ih3jð4þ6Þj5�h3jð7�1Þj2�
ðs137þM2

WÞ�th17ih37i
;

Að3;1Þ
½31� ðg�7 Þ¼�gew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ffiffiffi
2

p h46i½12�½1jð3þ7Þjð4þ6Þj5�
ðs137þM2

WÞ�t½17�½37�
;

(3.29)

where s137 ¼ s13 þ s17 � s37. For the lower-line emission
we obtain

Að3;1Þ
½42� ðgþ7 Þ ¼ �gew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ffiffiffi
2

p h46i
ðs13 þM2

WÞ�t

�
�h3jð4þ 6Þj5�h4jð7� 2Þj1�

h27ih47i þ ½12�
h47i

� h3jð1þ 2Þj7�h4j6j5� ��2
t h34i½57�

�t7

�
;

Að3;1Þ
½42� ðg�7 Þ ¼ �gew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

MW�W

s ffiffiffi
2

p ½12�
ðs13 þM2

WÞ�t7

�
�h3jð1þ 2Þj5�h6jð4þ 7Þj2�

½27�½47� � h46i
½27�

� h3j1j2�h7jð4þ 6Þj5� þ�2
t h37i½25�

�t

�
;

(3.30)

with�t7 ¼ ðpt þ p7Þ2 ��2
t . The complexmass,�t, in the

numerator of Eq. (3.30), which follows from the on-shell
matching condition, p2

t ¼ �2
t , guarantees that QCD Ward

identities are satisfied exactly. As already pointed out for
the hard virtual corrections computed in Sec. III B, the
matching condition needs to be satisfied only order-by-
order in �, and one could equally well replace�t withmt in
the numerator of Eq. (3.30). This would lead to a gauge-
invariance violation proportional to �t=mt � �, which is a
higher-order effect in our counting scheme.

Besides the process ub ! dblþ�lg, at order �
1=2�s the

gluon-initiated processes ug ! dblþ�l
�b and gb !

dblþ�l �u also contribute to the amplitude for single-top
production. The corresponding helicity amplitudes can
easily be obtained from the crossing of Eqs. (3.29) and
(3.30).

E. Comparison of various approximations

The results presented in this section have been obtained
by making kinematic approximations to the virtual and real
corrections. Because real and virtual corrections are infra-
red divergent, we have to make sure that the approxima-
tions are consistent in that the real and virtual soft and
collinear singularities still cancel. Since, in Sec. IV, we will
be comparing our results to previous calculations, it is
instructive to discuss the cancellation of infrared singular-
ities and the relation between successive approximations to
t-channel single-top production.
The first approximation we consider is to treat the top as

a stable particle [7–10,26]. We will call this the stable-top
calculation and denote the process by ub ! dt. Within this
approximation, the renormalized virtual corrections read

Avirt
ub!dt ¼ Atree

ub!dt

�
�VH

13 þ �VH
2t þ

�mt

2mt

�
þ finite; (3.31)

where Atree
ub!dt is the corresponding tree-level amplitude;

�VH
13, �V

H
2t , and �mt=mt are given in Eqs. (3.12) and (3.16),

and ‘‘finite’’ represents nonsingular terms that cannot be
factorized in terms of the leading-order amplitude. Thus,
the virtual corrections in Eq. (3.31) are precisely the lead-
ing hard corrections of diagrams 2(c) and 2(d) in Fig. 2
without the top decay, plus the renormalization of the
external top-quark line, �Zt=2 ¼ �mt=ð2mtÞ. The corre-
sponding infrared singularities are cancelled, in the usual
way, by the real corrections due to the process ub ! dtg.
The next approximation we consider is the calculation

presented in Ref. [18], which we call the on-shell calcu-
lation and denote by ub!t dbW. In this computation, the
production of an on-shell top quark is combined with the
decay of an on-shell top. This leads to additional singular-
ities in the virtual matrix element, which is given by

Avirt
ub!t dbW ¼ Atree

ub!t dbW

�
�VH

13 þ �VH
2t þ �VH

4t þ
�mt

mt

�
þ finite: (3.32)

The additional contribution, �VH
4t [given in Eq. (3.12)],

corresponds to the one-loop correction to the top decay,
while �mt=mt ¼ 2� �mt=ð2mtÞ accounts for the renor-
malization of the top-quark legs in the production and
decay vertices. In order to match this with the real correc-
tions, the latter have to be treated with some care. In
particular, the interference between real gluon radiation
from the production part of the process with the decay part
has to be neglected. However, real corrections restricted to
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either the production or decay part are taken into account
and the corresponding singularities cancel those of the
virtual corrections, Eq. (3.32).

In the calculation presented in this paper we move from
on-shell top production to resonant-top production, indi-

cated by a star, ub!t� dbW. As discussed in the previous
section, this involves a whole tower of additional contri-
butions. However, to the accuracy we are aiming for, the
only additional contribution is due to the (leading) soft part
of the diagrams in Fig. 2, given in Eq. (3.8). Thus, we have
additional virtual singularities, given in Eq. (3.9), and we
obtain

Avirt

ub!t�dbW ¼ Atree

ub!t�dbW

�
�VH

13 þ �VH
2t þ �VH

4t

þ �mt

mt

þ �VS

�
þ finite; (3.33)

with Atree ¼ Að3;0Þ
ð�1Þ. The new contribution, �VS, exactly

cancels the single poles in Eq. (3.32) due to soft emission
off a massive top-quark leg. Thus, Eq. (3.33) contains only
singularities corresponding to collinear or soft emission off
massless legs, as it should for a process with only massless
external states. The additional poles in �VS are to be
cancelled by real singularities which essentially corre-
spond to those neglected in the process ub!t dbW, i.e.,
the interference between real radiation from the production
and decay of the top. From a more formal point of view,
one has to compute the real matrix element squared of the
process ub ! dbWg and expand it in �. Because we only
need the leading term in �, it is sufficient to consider the
diagrams of Fig. 3. Taking the amplitude squared corre-
sponding to these diagrams, integrating over the phase
space and expanding the result in � leads to real singular-
ities that precisely cancel those of the virtual corrections to

the process ub!t� dbW.
We stress once more that the calculation presented here

is only meaningful if the top is nearly on-shell. If we are
interested in the process ub ! dbW with no constraint on
the invariant mass of the final state particles, we have to
compute the full virtual and real corrections, i.e., also take
into account the diagrams that have been omitted in Figs. 2
and 3. Needless to say, such a computation is considerably
more involved, but the cancellation of real and virtual
singularities works in a straightforward way.

IV. RESULTS

The results for the three approximations outlined in the

previous section, ub ! dt, ub!t dbW, and ub!t� dbW
have been implemented using Monte Carlo integration,
allowing us to calculate numerical values for both cross
sections and kinematical distributions. In this section we
present a selection of these results and include compari-
sons to existing results where available. For simplicity,
throughout this section the cross sections calculated using

the three approximations will be referred to as �prod, �t,

and �t� for the stable-top production, on-shell production
followed by decay, and resonant-top calculations,
respectively.

A. Total cross sections

We begin by presenting a comparison of our results,
obtained using the three approximations, to those for the
production of a single, stable-top quark as presented in
Ref. [26]. We compare the results for an LHC run at a
center of mass energy

ffiffiffi
s

p ¼ 10 TeV, and use MSTW2008
PDFs [55] and the corresponding strong coupling.
Renormalization and factorization scales are set to be equal
to a value ofmt=2. The other input parameters used for this
calculation are shown in Table I. In the top-quark propa-
gator, we use the tree-level decay width for the LO cross
section and the �s-corrected width for the NLO calcula-
tion. This ensures that, at leading order, we obtain agree-
ment between the stable-top production cross section and
that of on-shell production plus decay, after integration
over the fully inclusive decay of the top quark and W

boson, (i.e., �
decay
0 ¼ �LO

t ). The results of our calculations

using these parameters are shown in Table II. We include
the results for on-shell production taken from Table 5 of
Ref. [26] for ease of comparison.
The agreement with the existing results at both leading

and next-to-leading order is very good when we perform
the calculation for the production of a stable top. When
we also include the subsequent decay of the on-shell top
we still have good agreement at LO, but we no longer agree
at NLO. This discrepancy is due to the use of the improved
narrow width approximation for the on-shell top. We can
see from

�t
0 ¼

�prod
0 �decay

0

�LO
t

¼ �prod
0 �LO

t

�LO
t

¼ �
prod
0 (4.1)

that at LO the dependence on the decay width of the top
quark cancels. However, at NLO there is no full cancella-
tion and we are left with a residual dependence on the
width,

TABLE I. Input parameters used for calculating the cross
sections shown in Table II.

mt ¼ 172 GeV �W ¼ 2:05141 GeV
MW ¼ 80:4 GeV �LO

t ¼ 1:46893 GeV
�ew ¼ 0:03402 �NLO

t ¼ 1:32464 GeV

TABLE II. Comparison of total cross sections, calculated us-
ing our three methods, to those of Campbell et al. [26] at leading
order and next-to-leading order.

Ref. [26] �prod �t �t�

LO (pb) 76.6 76.62(1) 76.62(1) 77.36(5)

NLO (pb) 84.4 84.41(1) 84.91(2) 86.3(3)
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�t ¼ �
prod
0 �NLO

t þ �
prod
1 �LO

t

�NLO
t

¼ �prod þ �
prod
1

�LO
t � �NLO

t

�NLO
t

: (4.2)

The difference between �t and �prod is formally a higher-

order correction, since �
prod
1 ð�LO

t � �NLO
t Þ � �2

s , but leads
to a visible numerical effect. From the resonant-top calcu-
lation (last column in Table II), it is clear that taking into
account the nonfactorizable corrections causes a small,
but noticeable increase of the cross section at both LO
and NLO.

We now move on to discuss the comparison of our
results to those in Ref. [18] for the on-shell production of
a single-top-quark followed by its decay. We compare the
results for an LHC run with center of mass energy

ffiffiffi
s

p ¼
14 TeV. The input parameters can be found in Table IVof
Ref. [18]. For this comparison we set the renormalization
and factorization scales equal tomt and use the MRST2002
NLO PDFs [56] and the corresponding �s value. The
results are shown in Table III. The total cross section in
the stable-top production case is obtained by multiplying
the production cross section, �prod, by the leading-order
branching ratio for the top-quark decay, Bt!be� ¼ 0:1104.

As in the first comparison, we obtain good agreement
between our results and the existing results for the stable-
top production and on-shell production plus decay calcu-
lations. The inclusion of the nonfactorizable corrections

again has the effect of increasing the cross sections by a
modest amount at both LO and NLO.
Finally, we look at the total cross section for our minimal

realistic setup, described in Sec. II A. For illustration, jets
are constructed using a standard k? cluster algorithm with
the resolution parameter set toDres ¼ 0:7, but any other jet
definition could also be used. We assume that we can
always identify Jb, the jet containing the b quark. We
apply cuts on pTðJbÞ and pTðeÞ, the transverse momenta
of Jb and the positron, respectively, and on the transverse
missing energy, E6 T . In addition, we require that the invari-
ant top mass, which is defined as

minv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpðJbÞ þ pðeÞ þ pð�ÞÞ2

q
; (4.3)

be close to the top-quark resonance. We perform the cal-
culation for an LHC run with

ffiffiffi
s

p ¼ 7 TeV and use the
MSTW2008 NLO PDFs. The renormalization and factori-
zation scales are set to mt=2. A full list of the input
parameters and cuts can be found in Table IV. We use
NLO PDFs and the NLO top decay width at all times to
accentuate the off-shell effects by ensuring that the correc-
tions are not coming from the change of PDF or width. As
we now apply cuts to the decay products of the top quark, it
is no longer possible to include the stable-top production
calculation, as this requires fully inclusive decays.
The results for the total cross section are shown in

Table V. With the introduction of the cuts, the effects of
the nonfactorizable corrections become more pronounced.
Instead of increasing the cross sections, as was the case in
the earlier comparisons (Tables II and III), the cross sec-
tions are now decreased by the inclusion of these correc-
tions. The relative size of the off-shell contributions also
increases from �1% to a few percent.

B. Distributions

Partial results for kinematical distributions computed
with the method presented here have been shown in
Ref. [57]. In this section we will consider the minimal
realistic setup described in the previous subsection, and
use the parameters and cuts given in Table IV.
The first distribution we present is that of the transverse

mass of the top, defined as

m2
T ¼ jpTðJbÞj2 þ jpTðeÞj2 þ jpTð�Þj2 � ð ~pTðJbÞ þ ~pTðeÞ

þ ~pTð�ÞÞ2: (4.4)

TABLE III. Comparison of total cross sections, calculated using our three methods, to those of
Campbell et al. [18] at leading order (�0) and next-to-leading order (�).

�
prod
0 Bt!be� �prodBt!be� �t

0 �t �t�
0 �t�

Ref. [18] (pb) 17.69(1) 17.05(2) 17.69(1) 16.98(2) N/A N/A

Our results (pb) 17.71(1) 17.04(1) 17.71(1) 16.98(1) 17.94(1) 17.33(8)

TABLE IV. Input parameters used for calculating the cross
sections shown in Table V.

mt ¼ 172 GeV MZ ¼ 91:2 GeV
MW ¼ 80:4 GeV pTðJbÞ> 20 GeV
�ew ¼ 0:03394 pTðeÞ> 25 GeV
�W ¼ 2:14 GeV E6 T > 25 GeV
�NLO
t ¼ 1:32813 GeV 120<minv < 200 GeV

TABLE V. Comparison of leading order and next-to-leading
order total cross sections for our minimal realistic setup.

�t �t�

LO (pb) 2.6786(1) 2.519(1)

NLO (pb) 2.3079(1) 2.227(4)
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We will compare on-shell (ub!tdbW) and resonant

(ub!t�dbW) top-quark production, shown as dashed and
solid lines, respectively, in Fig. 4. To assess the importance
of higher-order corrections, we will consider LO results
(blue); full NLO results (red), including also partonic
processes with gluons in the initial state; and partial
NLO results (pNLO, green), including only one-loop cor-
rections to partonic processes that are present at LO.
Overall, the differences between the on-shell and resonant
results are small. However, the off-shell effects do signifi-
cantly change the shape of the distribution near the bound-
ary mT ¼ mt. As expected, the LO on-shell distribution
shows a sharp edge at this boundary. The on-shell pNLO
and NLO results have a contribution for mT >mt, because
the b jet, Jb, can contain gluon radiation; however, this
contribution is very small. In the resonant calculation, we
get a contribution in the region mT >mt even at LO. This
contribution is reduced at NLO but is still significantly
larger than in the on-shell result.

It can be seen from Eq. (2.8) that there are also terms
of higher order in � in the squared tree-level matrix
element. First, there are the interference terms

g6ew2ReðAð3;0Þ
ð�1Þ½Að3;0Þ

ð0Þ ��Þ; second there are the terms propor-

tional to g2ewg
4
s jAð1;2Þj2, commonly referred to as the QCD

background; and, finally, there are subleading electroweak

corrections g6ewjAð3;0Þ
ð0Þ j2. The former two are Oð�2Þ,

whereas the latter is Oð�3Þ. Therefore, parametrically,
these terms are beyond our NLO approximation.
However, they are a subset of subleading corrections that
are very easy to compute and it is useful to compare their

numerical importance with respect to the terms ofOð�3=2Þ.
Thus, the QCD background is shown separately in Fig. 4.
This contribution is actually important in the regionmT �
mt, but is insignificant when mT �mt. The subleading

electroweak terms of Oð�2Þ and Oð�3Þ are very small,
and on the scale of Fig. 4 they would show simply as a
straight line along the bottom of the plot.
We now move on to look at our second distribution, the

sum of the hadronic transverse momenta, defined as

HTðhadÞ ¼ jpTðJbÞj þ jpTðJlÞj; (4.5)

where Jl is the (non b) jet with the largest transverse
momentum. The results are shown in Fig. 5. In this case,
the corrections due to the off-shellness of the top are
relatively large. The on-shell and resonant results differ
by up to 10% in some bins. On average, the difference is
approximately 3–4%, in line with the results presented in
Table V. We have studied several similar distributions and
the effect of the off-shell corrections is typically somewhat
smaller than for HTðhadÞ. Again, the QCD background is
separately shown in Fig. 5. As for the transverse mass, it is
important only at the edge of the distribution, and the
subleading electroweak effects are again too small to be
shown.
Finally, we turn to the invariant mass of the top, as

defined in Eq. (4.3). The upper panel of Fig. 6 shows the
result at leading order for our resonant calculation, along
with the next-to-leading order results for both the on-shell
and resonant calculations. It should be noted that the
leading-order on-shell production and decay distribution
is a delta function centered at the top mass and so would
appear only as a single point at mt in the figure. Therefore,
it has been omitted.
We can see from the figure that the inclusion of NLO

effects causes a deviation from the Breit-Wigner shape of
the distribution. We also note that there is a visible differ-
ence between the NLO distributions obtained via the two
methods. This difference is particularly noticeable at
invariant-mass values greater than mt.
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pNLO: ub

NLO: ij

QCD background
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FIG. 4 (color online). Transverse top mass distribution for on-
shell (dashed lines) and resonant (solid lines) top-quark produc-
tion. LO results are shown in blue/dark, pNLO results (see text
for explanation) in green/light, and full NLO results in red.
The orange line at the bottom shows the subleading QCD
contribution.
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FIG. 5 (color online). HTðhadÞ distribution for on-shell
(dashed line) and resonant (solid line) top-quark production at
LO (blue) and NLO (red). The orange line shows the subleading
QCD contribution.
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Considering the shape of the invariant-mass distribution
also helps us to understand why the inclusion of off-shell
corrections increases the total cross section when no cuts
are applied but decreases it when we apply some cuts. At
LO, the invariant-mass distribution has a delta-spike shape
in the on-shell case but a Breit-Wigner shape in the reso-
nant case. Taking into account NLO corrections, this pic-
ture is modified somewhat, but comparing the on-shell and
resonant distributions, the former still has a more promi-
nent peak at minv ¼ mt, whereas the latter is larger in the
regionminv >mt. Thus, there are two competing effects. If
the cut on minv is mild enough, the increased contribution
of the resonant result for minv >mt outweighs the larger
peak of the on-shell result, whereas for a tight cut on minv,
the on-shell result is larger.

Note, however, that we must apply a cut to the invariant
mass, otherwise our assumption that the top quark is close
to resonance is no longer valid and the � counting no
longer applies. As mentioned before, if we take our power
counting at face value we would expect our approximation
to work in a window of minv �mt � �t. However, the
effective theory actually works in a considerably larger
window. To illustrate this, let us consider the lower panel
of Fig. 6, where we compare the relative importance of the
various corrections to the full NLO resonant distribution.
The NLO corrections, �NLO (shown in red), including all

corrections of Oð�3=2Þ, are dominant in the vicinity of
minv ’ mt, as expected. They are larger than the Oð�2Þ
QCD corrections, �QCD (shown in orange), and the sub-

leading electroweak corrections, �EW (shown in azure).
However, away from resonance the formally subleading

QCD corrections actually become numerically more im-
portant than the formally leading corrections. This is a
clear indication that our power counting is no longer
applicable in this region and, therefore, the effective theory
breaks down. A similar point can be made in the case of the
subleading electroweak corrections, which have been
divided into Oð�2Þ contributions (shown as a solid
azure line) and Oð�3Þ contributions (shown as a dashed
azure line). These corrections are much smaller than our
NLO corrections. In the resonance region, the Oð�2Þ cor-
rections are larger than the Oð�3Þ corrections, but for
minv & 130 GeV this is no longer true. Once more, this
indicates the limitations of our power counting in this
region. We should also mention that for minv & 160 GeV
the NLO corrections are huge compared to the LO result
and, therefore, our result is not reliable. Finally, the off-
shell effects, defined as the difference between the full
NLO results for the resonant and on-shell calculations,
are shown in green in the lower panel of Fig. 6. These
effects are relevant near and above the resonance region,
but are very small below resonance.
We stress that the distributions presented here are only a

sample of the types of distribution that could be calculated.
In principle, any infrared-safe quantity with arbitrary cuts
on the final state particles and jets could be easily
computed.

V. CONCLUSION AND OUTLOOK

In this work we have presented a method which allows
the inclusion of off-shell effects in resonant-particle pro-
duction with a minimal amount of computation. The
method is based on a simultaneous expansion of the cross
section in the couplings and the small kinematic variable
�t=mt ’ �t=mt. It has been applied to t-channel single-top
production at the LHC. The calculation includes the first
nontrivial corrections to the narrow-width approximation,
corresponding to production-decay interference terms, and
generalizes earlier results of one-loop corrections to
t-channel single-top production.
Generally speaking, off-shell effects are small for inclu-

sive quantities. For the total cross section, for example, we
find an effect of the order of 1%. However, depending on
the cuts applied, off-shell effects can be sizeable. For most
distributions we have considered, the off-shell effects
amount to a few percent of the LO result, reaching up to
10% in more extreme cases, such as the HTðhadÞ distribu-
tion defined in Eq. (4.5). In particular, they can signifi-
cantly change the shape of distributions near phase-space
boundaries related to off-shell effects, such as the edge for
the transverse mass. This is, of course, not surprising
since sharp edges in distributions are usually related to
having particles on-shell. Thus, allowing the top quark to
become slightly off-shell can have a large impact in this
region.
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FIG. 6 (color online). Upper panel: Invariant-mass distribution
for LO (blue) and NLO (red) resonant-top production, compared
to NLO (red, dashed line) on-shell top production. Lower panel:
Ratios of various corrections [full NLO correction (red), QCD
background (orange), off-shell corrections (green), subleading
electroweak corrections (azure)] to the full NLO result.
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The calculation presented here can also be seen as a
proof of the workability of the effective-theory method. As
we have shown in this paper, the inclusion of the leading
off-shell effects is relatively straightforward, requiring in
principle only the calculation of simple soft corrections,
since the hard part of loop integrals can be easily related to
results for on-shell production and decay of the massive
particle. Furthermore, the computation of real corrections
requires only minor modifications to the standard subtrac-
tion procedure. Given the generality of the effective-theory
approach, the method can be easily applied to other pro-
cesses of phenomenological interest at the LHC. One such

process is clearly represented by top-quark pair production,
which will be intensively exploited for measurements of
the top-quark properties, and whose study we reserve for
future publications.
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