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We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic field. To compute the

finite temperature effective potential, we use the Polyakov extended Nambu–Jona-Lasinio model with

eight-quark interactions taken into account. The bare quark mass is adjusted in order to reproduce the

physical value of the vacuum pion mass. Our results show that the dressed Polyakov loop is very sensitive

to the strength of the magnetic field, and it is capable to capture both the deconfinement crossover and the

chiral crossover. Additionally, we self-consistently compute the phase diagram of the model. We find a

tiny split of the two aforementioned crossovers as the strength of the magnetic field is increased.

Concretely, for the largest value of magnetic field investigated here, eB ¼ 19m2
�, the split is of the order

of 10%. A qualitative comparison with other effective models and recent lattice results is also performed.
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I. INTRODUCTION

The nature of the Quantum Chromodynamics (QCD)
vacuum is one of the most intriguing aspects of modern
physics. Additionally, it is very hard to get a full under-
standing of its properties, because its most important
characteristics, namely, chiral symmetry breaking and
color confinement, have a nonperturbative origin, and the
use of perturbative methods is useless. One of the best
strategies to overcome this problem is offered by lattice
QCD simulations at zero chemical potential (see [1–4] for
several examples and see also references therein). At
vanishing quark chemical potential, it is almost established
that two crossovers take place at nearly the same tempera-
ture: one for quark deconfinement, and another one for the
(approximate) restoration of chiral symmetry. It is still
under debate whether two crossovers should occur at
exactly the same temperature; see, for example, the report
in [2].

An alternative approach to the physics of strong inter-
actions, which is capable of capturing some of the non-
perturbative properties of the QCD vacuum while at the
same time being easy to manage mathematically, is the
Nambu–Jona-Lasinio (NJL) model [5] (see also . [6] for
reviews). In this model, the QCD gluon-mediated interac-
tions are replaced by effective interactions among quarks,
which are built in order to respect the global symmetries of
QCD. Since dynamical gluons are absent in this model, it is
not a gauge theory. However, it shares the global symme-
tries of the QCD action; moreover, the parameters of the
NJL model are fixed to reproduce some phenomenological
quantity of the QCD vacuum: in its simplest version, the
pion decay constant, the vacuum pion mass, and the vac-
uum chiral condensate are reproduced. Therefore, it is

reasonable that the main characteristics of its phase dia-
gram represent, at least qualitatively, those of QCD.
Critically speaking, the worst aspect of the NJL model is

that it lacks confinement: massive quark poles of the quark
propagator are present at any temperature and/or chemical
potential. It is well known that color confinement can be
described in terms of the center symmetry of the color
gauge group and of the Polyakov loop [7], which is an
order parameter for the center symmetry. Motivated by this
property, the Polyakov extended Nambu–Jona-Lasinio
model (P-NJL model) has been introduced [8,9], in which
the concept of statistical confinement replaces that of the
true confinement of QCD, and an effective interaction
among the chiral condensate and the Polyakov loop is
achieved by a covariant coupling of quarks with a back-
ground temporal gluon field. In the literature, there are
several studies about various aspects of the P-NJL model.
Its phase structure with two flavors and symmetric quark
matter has been investigated in [10–13]; a P-NJL model
with a Van der Monde term has been considered in [14];
phase structure with 2þ 1 flavors has been studied in [15];
possible realization of the quarkyonic phase [16] has been
discussed in [15,17]; mass dependence of the phase dia-
gram, and a possible emergence of the quarkyonic phase, is
investigated in [18]; phase diagram with imaginary chemi-
cal potential has been studied in [19,20]; dual quark con-
densate has been computed in [21]; neutral phases have
been investigated in [22]; phase diagram with asymmetric
quark matter have been studied in [23]; nonlocal extension
has been introduced in [24]; role of eight-quark inter-
actions in the P-NJL context has been elucidated in [25].
The modification of the QCD vacuum—and of its ther-

mal excitations as well—under the influence of external
fields is an attractive topic. Firstly, it is extremely interest-
ing to understand how an external field can modify the
main characteristics of confinement and spontaneous chiral
symmetry breaking. Lattice studies on the response to
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external magnetic fields can be found in [26–28]. QCD in
chromomagnetic fields has been investigated on the lattice
in [29,30]. Previous studies of QCD in magnetic fields, and
of QCD-like theories as well, can be found in [31–34].
Self-consistent model calculations of magnetic catalysis
and of deconfinement pseudocritical temperature in mag-
netic field have been performed firstly in [35] within the P-
NJL model, and then in [36] using the Polyakov extended
quark-meson model. Effective models in chromomagnetic
fields have been considered in [37]. Additionally, strong
magnetic fields with order of magnitude between eB � m2

�

and eB � 15m2
� might be produced in the very first mo-

ments of the noncentral heavy ion collisions [38,39]. In this
case, it has been argued that the nontrivial topological
structure of thermal QCD gives rise to the chiral magnetic
effect (CME) [38,40,41].

Beside the Polyakov loop, it has been suggested [42] that
another observable which is an order parameter for the
center symmetry, and hence for confinement, is the dressed
Polyakov loop. From the mathematical point of view, the
dressed Polyakov loop is built from the canonical (called
thin) Polyakov loop, by dressing it with higher order loops,
which wind once around the compact temporal direction.
In this context, the order of a loop is given by its length; the
thin Polyakov loop corresponds to the shortest one. The
dressing becomes more important when quark masses are
finite (the Polyakov loop is an exact order parameter for
confinement-deconfinement only in the ideal case of static
quarks with infinite masses). In [43], the dressed Polyakov
loop has been computed within the scheme of truncated
Schwinger-Dyson equations, with a model for resummed
quark-gluon vertex and in-medium gluon propagator com-
puted on the lattice. Within the NJL model, in which the
QCD interaction among quarks is replaced by a contact
four-fermion interaction, �1 has been computed at finite
temperature and chemical potential in [44]. Finally, the
dressed Polyakov loop has been computed within the
P-NJL model in [21] at finite temperature.

In this article, we compute the phase structure and the
dressed Polyakov loop of hot massive two-flavor quark
matter at zero chemical potential in an external magnetic
field. To compute the effective potential, we rely on the
P-NJL model of strongly interacting quarks. We will limit
ourselves to the one-loop approximation (saddle point),
which is enough to draw a phase structure. The novelty
of the present article is manyfold. Firstly, we introduce the
eight-quark interaction [45–48] in the P-NJL model in an
external magnetic field (previous studies of the P-NJL
model in magnetic and chromomagnetic fields neglected
this kind of interaction). Within the NJL model, it has been
shown that the eight-quark interactions naturally lower the
pseudocritical temperature for (approximate) chiral sym-
metry restoration. Magnetic catalysis in the NJL model
with multiquark interactions has been investigated in [48].
However, in those studies, the computation of quantities

relevant for deconfinement crossover is lacking. On the
other hand, in [25], the P-NJL model with multiquark
interaction has been investigated, but without magnetic
field. It is of interest, then, to study the response of quark
matter to magnetic fields in the framework of the P-NJL
model with eight-quark interaction. In doing this, we will
consider quarks with finite values of bare mass, fixed to
reproduce the vacuum pion mass, while in a previous study
[35] this problem was studied only in the chiral limit.
Moreover, we compute the dressed Polyakov loop, �1,

in a magnetic field. Along this line, we anticipate one of
our results, namely, that the dressed Polyakov loop, �1, is
capable of feeling both the Polyakov loop and the chiral
condensate crossovers, whatever the strength of the mag-
netic field is. This occurs despite the tiny split of the two
crossovers, which we observe at sufficiently strong mag-
netic field strength. Therefore, in view of an effective
theory for finite temperature QCD in terms of just one
order parameter, our results are encouraging.
The plan of the paper is as follows. In Sec. II, we present

the model we use. In Sec. III, we show and discuss our
numerical results. Finally, in Sec. IV, we draw our
conclusions.

II. DRESSED POLYAKOV LOOP IN THE
EFFECTIVE MODEL

In this article, we model two-flavor quark matter by the
following Lagrangian density:

L ¼ �qði��D� �m0Þqþ g�½ð �qqÞ2 þ ð �qi�5�qÞ2�
þ g8½ð �qqÞ2 þ ð �qi�5�qÞ2�2; (1)

which corresponds to the NJL Lagrangian with multiquark
interactions [45]. The covariant derivative embeds the
quark coupling to the external magnetic field and to the
background gluon field as well. In Eq. (1), q represents a
quark field in the fundamental representation of color and
flavor (indices are suppressed for notational simplicity); �
is a vector of Pauli matrices in flavor space; m0 is the bare
quark mass, which is fixed to reproduce the pion mass
m� ¼ 139 MeV in the vacuum. Our interaction in
Eq. (1) consists of a four-quark term, whose coupling g�
has inverse mass dimension two, and an eight-quark term,
whose coupling constant g8 has inverse mass dimension
eight.
The evaluation of the bulk thermodynamic quantities

requires that we compute the quantum effective action of
the model. This cannot be done exactly. Hence, we rely
upon the one-loop approximation for the partition function,
which amounts to taking the classical contribution plus the
fermion determinant. In order to couple the Polyakov loop
to the quark fields, it is customary, in the P-NJL model, to
introduce a background temporal, static, and homogeneous
Euclidean gluon field, A4, in terms of which the Polyakov
loop is given by
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P ¼ 1

3
P exp

�
i
Z �

0
A4d�

�
: (2)

Here, � ¼ 1=T, and T corresponds to the temperature of
the bath in which the system lives. A4 is coupled to the
quarks via the covariant derivative [see Eq. (1)]; as a
consequence, a coupling among the quark fields and the
Polyakov loop arises naturally when the integration over
fermion fields in the partition function is performed.

We work in the Landau gauge, and take the mag-
netic field to be homogeneous, static, and aligned with
the positive z axis. The one-loop thermodynamic po-
tential of quark matter in external fields has been
discussed in [35,37], in the case of canonical anti-
periodic boundary conditions; following [21], it is
easy to generalize it to the more general case of
twisted boundary conditions:

� ¼ UðP; �P; TÞ þ �2

g�
þ 3�4g8

g4�
� X

f¼u;d

jqfeBj
2�

X
k

�k

Z þ1

�1
dpz

2�
g�ðpz; kÞ!kðpzÞ

� T
X

f¼u;d

jqfeBj
2�

X
k

�k

Z þ1

�1
dpz

2�
logð1þ 3Pe��E� þ 3 �Pe�2�E� þ e�3�E�Þ

� T
X

f¼u;d

jqfeBj
2�

X
k

�k

Z þ1

�1
dpz

2�
logð1þ 3 �Pe��Eþ þ 3Pe�2�Eþ þ e�3�EþÞ: (3)

In the previous equation, � ¼ g�h �qqi ¼ 2g�h �uui; k is a
non-negative integer which labels the Landau level; �k ¼
�k0 þ 2ð1� �k0Þ counts the degeneracy of the kth Landau
level. We have put

!kðpzÞ2 ¼ p2
z þ 2jqfeBjkþM2; (4)

with M ¼ m0 � 2�� 4�3g8=g
3
�. The arguments of the

thermal exponentials are defined as

E � ¼ !kðpzÞ � ið’� �Þ
�

; (5)

with ’ defined in Eq. (10).
The vacuum part of the thermodynamic potential,

�ðT ¼ 0Þ, is ultraviolet divergent. This divergence is
transmitted to the self-consistent equations which deter-
mine the chiral condensate and the expectation value of the
Polyakov loop. In this article, we use a smooth regulariza-
tion procedure by introducing a form factor g�ðpÞ in the
diverging zero-point energy. Our choice of g�ðpÞ is

g�ðpÞ ¼ �2N

�2N þ ðp2
z þ 2jqfeBjkÞN

; (6)

we choose two values of N, namely N ¼ 5 and N ¼ 7.
The potential termU½P; �P; T� in Eq. (3) is built by hand

in order to reproduce the pure gluonic lattice data [10].
Among several different potential choices [49], we adopt
the following logarithmic form [9,10]:

U½P; �P; T� ¼ T4

�
� aðTÞ

2
�PPþ bðTÞ ln½1� 6 �PP

þ 4ð �P3 þ P3Þ � 3ð �PPÞ2�
�
; (7)

with three model parameters (one of four is constrained by
the Stefan-Boltzmann limit),

aðTÞ¼a0þa1

�
T0

T

�
þa2

�
T0

T

�
2
; bðTÞ¼b3

�
T0

T

�
3
: (8)

The standard choice of the parameters reads [10]

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75: (9)

The parameter T0 in Eq. (7) sets the deconfinement scale in
the pure gauge theory, i.e. Tc ¼ 270 MeV.
Before going ahead, we comment on the natural equality

of h �uui and h �ddi which arises in this model, even in the
presence of an external magnetic field. In principle, one
could expect the two condensates to be different when
eB � 0, because B couples in a different way to u and d
quarks. However, because of the interaction in Eq. (1), the
thermodynamic potential depends only on h �uui þ h �ddi
even if B � 0. Therefore, only the sum of the two con-
densates determines the ground state energy, the difference
being undetermined. For this reason, we chose h �ddi ¼ h �uui
at any value of temperature and magnetic field. We suppose
that one way to remove this ambiguity is to introduce a
different coupling constant for the anomalous and the non-
anomalous interaction in Eq. (1). We leave this interesting
investigation to a future work.
Following [42], in order to define the dressed Polyakov

loop, we work in a finite Euclidean volume with tempera-
ture extension � ¼ 1=T. We take twisted fermion bound-
ary conditions along the compact temporal direction,

qðx; �Þ ¼ e�i’qðx; 0Þ; ’ 2 ½0; 2��; (10)

while for spatial directions, the usual periodic boundary
condition is taken. The canonical antiperiodic boundary
condition for the quantization of fermions at finite tem-
perature is obtained by taking ’ ¼ � in the previous

equation. The dual quark condensate, ~�n, is defined as
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~� nðm;VÞ ¼
Z 2�

0

d’

2�

e�i’n

V
h �qqiG; (11)

where n is an integer. The expectation value h�iG denotes
the path integral over gauge field configurations. An im-
portant point is that in the computation of the expectation
value, the twisted boundary conditions act only on the
fermion determinant; the gauge fields are taken to be
quantized with the canonical periodic boundary condition.

Using a lattice regularization, it has been shown in [42]
that Eq. (11) can be expanded in terms of loops which wind
n times along the compact time direction. In particular, the
case n ¼ 1 is called the dressed Polyakov loop; it corre-
sponds to a sum of loops winding just once along the time
direction. These correspond to the thin Polyakov loop (the
loop with shortest length) plus higher-order loops, the
order being proportional to the length of the loop. Each
higher-order loop is weighed by an inverse power of the
quark mass. Because of the weight, in the infinite quark
mass limit, only the thin Polyakov loop survives; for this
reason, the dressed Polyakov loop can be viewed as a
mathematical dressing of the thin loop by virtue of longer
loops, the latter being more and more important as the
quark mass tends to smaller values.

If we denote by z an element of the center of the color

gauge group, then it is easy to show that ~�n ! zn ~�n. It
then follows that, under the center of the symmetry group
Z3, the dressed Polyakov loop is an order parameter for the
center symmetry, with the same transformation rule of the
thin Polyakov loop. Since the center symmetry is sponta-
neously broken in the deconfinement phase and restored in
the confinement phase [7] (in the presence of dynamical
quarks, it is only approximately restored), the dressed
Polyakov loop can be regarded as an order parameter for
the confinement-deconfinement transition as well.

For later convenience, we scale the definition of the
dressed Polyakov loop in Eq. (11), and introduce

�1 ¼ �2�g�
Z 2�

0

d’

2�
e�i’h �qqiG;

¼ �
Z 2�

0
d’e�i’�ð’Þ; (12)

where �ð’Þ corresponds to the expectation value of the �
field computed, keeping twisted boundary conditions for
fermions.

III. NUMERICAL RESULTS

In this section, we show our results. The main goal to
achieve numerically is the solution of the gap equations,

@�

@�
¼ 0;

@�

@P
¼ 0: (13)

This is done by using a globally convergent algorithm with
backtrack [50]. From the very definition of the dressed
Polyakov loop [42], the twisted boundary condition,

Eq. (10), must be imposed only on the Dirac operator;
the ensemble averages have to be computed using the
canonical antiperiodic boundary conditions. Therefore,
we first compute the expectation value of the Polyakov
loop and to the chiral condensate, taking ’ ¼ �. Then, in
order to compute the dressed Polyakov loop using Eq. (12),
we compute the ’-dependent chiral condensate using the
first of Eq. (13), keeping the expectation value of the
Polyakov loop fixed at its value at ’ ¼ � [21].
In this study, we report results obtained using the UV

regulator specified in Eq. (6) with N ¼ 5 and N ¼ 7. As
expected, there is no qualitative difference among the
pictures that the two regularization schemes lead to. As a
consequence, concrete results are shown only for the case
N ¼ 5; for what concerns the case N ¼ 7, we collect the
pseudocritical temperatures in Table II. We have also
checked that the results are qualitatively unchanged if we
use a hard cutoff scheme instead of the smooth UV regu-
lator. The parameter set for both cases is specified in
Table I. In the case N ¼ 5, they are obtained by the
requirements that the vacuum pion mass is m� ¼
139 MeV, the pion decay constant f� ¼ 92:4 MeV, and
the vacuum chiral condensate h �uui � ð�241 MeVÞ3. In
this case, the chiral and deconfinement pseudocritical tem-
peratures at zero magnetic field are T

	
0 ¼ TP

0 ¼ 175 MeV.
Similarly, for the caseN ¼ 7, the chiral and deconfinement
pseudocritical temperatures at zero magnetic field are
T
	
0 ¼ 176 MeV and TP

0 ¼ 175 MeV, respectively; the

zero temperature chiral condensate at zero magnetic field
strength is fixed to h �uui � ð�246 MeVÞ3.
We remark that the main effect of the eight-quark inter-

action in Eq. (1) is to lower the pseudocritical temperature
of the crossovers. This has been already discussed several
times in the literature [45,46], in the context of both the
NJL and the P-NJL models. Therefore, it is not necessary
to discuss it further here, while at the same time we prefer
to stress the results that have not yet been discussed.
In order to identify the pseudocritical temperatures, we

have defined the effective susceptibilities as

	A ¼ ðm�Þg
��������
dA

dT

��������; A ¼ �;P;�1: (14)

Strictly speaking, the quantities defined in the previous
equation are not true susceptibilities. Nevertheless, they
allow us to represent faithfully the pseudocritical region,
that is, the range in temperature in which the various
crossovers take place. Therefore, for our purposes it is
enough to compute these quantities. In Eq. (14), the

TABLE I. Parameters of the model for the two choices of the
UV regulator.

� (MeV) m0 (MeV) g� ðMeVÞ�2 g8 ðMeVÞ�8

N ¼ 5 588.657 5.61 5� 10�6 6� 10�22

N ¼ 7 603.475 5.61 4:92� 10�6 6:8� 10�22
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appropriate power of m� is introduced just for a matter of
convenience, in order to have a dimensionless quantity;
therefore, g ¼ 0 if A ¼ �;�1, and g ¼ 1 if A ¼ P.

A. Condensates and dressed Polyakov loop

From now on, we fix N ¼ 5 unless specified. The results
for this case are collected in the form of three-dimensional
plots in Fig. 1 (for the case N ¼ 7, the plots do not differ
qualitatively). In the left panel, we plot the chiral conden-

sate h �uui1=3, the expectation value of the Polyakov loop,
and the dressed Polyakov loop �1 as functions of tempera-
ture and magnetic field. In the right panel, we show the
contour plots of the raw data of the effective susceptibili-
ties. The lighter the color, the higher the susceptibility. In
the contour plots, the vertical axes correspond to tempera-
ture (measured in MeV); the horizontal axes represent the
magnetic field eB=m2

�.
We slice the three-dimensional plots in Fig. 1 at fixed

value of the magnetic field strength and show the results in

Fig. 2, where we plot the chiral condensate S ¼ jh �uuij1=3
(upper panel), the Polyakov loop (middle panel), and �1

(lower panel) as a function of temperature, for several
values of the applied magnetic field strength, measured
in units of m2

�. In the right panel, we plot fits of the
effective susceptibilities in the critical regions, as a func-
tion of temperature. The fits are obtained from the raw
data, using Breit-Wigner–like fitting functions. The details
of the fitting procedure are not relevant for the present
discussion. For graphical reasons, in Fig. 1 we plot the
chiral condensate with its sign; on the other hand, in Fig. 2
we take the absolute value of this quantity.

The qualitative behavior of the chiral condensate, and of
the Polyakov loop as well, are similar to that found in a
previous study within the P-NJL model in the chiral limit
[35]. Quantitatively, the main difference with the case of
the chiral limit is that in the latter, the chiral symmetry
restoration at large temperature is a true second-order
phase transition (in other model calculations, it has been
reported that the phase transition might become of the first
order at very large magnetic field strengths [34]). On the
other hand, in the case under investigation, chiral symme-
try is always broken explicitly because of the bare quark
masses; as a consequence, the second-order phase transi-
tion is replaced by a smooth crossover.

Another interesting aspect, observed also in the chiral
limit [35], is that the Polyakov loop crossover temperature
is less sensitive to the strength of the magnetic field than

the same quantity computed for the chiral condensate. It is
useful, for illustrative purposes, to quantify the net shift of
the pseudocritical temperatures for the largest value of
magnetic field we have studied, eB ¼ 19m2

�. In this case,
if we take N ¼ 5 ( the results are similar for N ¼ 7), then
the two crossovers occur simultaneously at eB ¼ 0, at
the temperature T

	
0 ¼ TP

0 ¼ 175 MeV; for eB ¼ 19m2
�,

we find T	 ¼ 219 MeV and TP ¼ 190 MeV. Therefore,

the chiral crossover is shifted approximately by 25.1%, to
be compared with the more modest shift of the Polyakov
loop crossover, which is � 8:6%.
The split of the two critical temperatures at so large a

value of magnetic field strength is only 15%; on the lattice,
no split is observed [26], and a modest increase of the
critical temperature is measured. Therefore, we are in
partial agreement with the lattice results, in the sense that
the raising of the critical lines is observed also in our model
calculation; for what concerns the split of the two cross-
overs, we can take our Oð10%Þ split as a consequence of
the crudeness of the model at hand. On the lattice, the
smaller pion mass used is of the order of 200MeV [26]. We
have verified that our qualitative picture is unchanged if we
artificially increase the vacuum pion mass up to this value.
In passing, we notice that, using a running coupling (as in
[51]) but at the same time adding two further free parame-
ters in the model, we expect a better agreement with the
lattice. The reason is that in [51], the coupling g� is a
function of the Polyakov loop, and it decreases as P is
increased. As a consequence, near the Polyakov loop cross-
over temperature, the strength of the interaction is lowered,
and a partial suppression of the chiral condensate is
expected. Quantitatively, it is not clear a priori if the
suppression is enough to rejoin the two crossovers; only
a detailed numerical study can give the answer. We leave
this important investigation to a future study.
The tiny decoupling of the two crossovers found within

the P-NJL model, both in the chiral limit [35] and in the
case of physical pion mass considered here, is observed
also within the Polyakov quark-meson model [36]; when in
the latter, the zero-point energy is considered (if the vac-
uum energy is subtracted, then the Polyakov loop and the
chiral crossovers occur always simultaneously, but the
pseudocritical temperature is a decreasing function of eB,
which seems in disagreement with the recent lattice results
[26]; see also [52] for a recent discussion of the role of the
vacuum energy within the quark-meson model). Since the
Polyakov loop is coupled to quarks in the same manner
both in the P-NJL and in the PQM model, the tiny split of
the two crossovers as eB is increased does not appear as an
artifact of the P-NJL model; instead, it seems to be a
consequence of the link among the chiral condensate and
the Polyakov loop, which is common in the two kinds of
models.
In the lower panels of Figs. 1 and 2, we plot the dressed

Polyakov loop as a function of temperature, for several

TABLE II. Coefficients of the fit function defined in Eq. (15).

a � T0 (MeV) "

T	, N ¼ 5 2:4� 10�3 1.85 175 0.21

TP, N ¼ 5 2:1� 10�3 1.41 175 0.08

T	, N ¼ 7 7:8� 10�3 1.29 176 0.19

TP, N ¼ 7 3:9� 10�3 1.08 176 0.01
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values of eB. Our definition, Eq. (12), differs from the
canonical one [42] for an overall factor, which gives mass
dimension one to our �1. For small values of eB=m2

�, the
behavior of �1 as temperature is increased is qualitatively
similar to that at eB ¼ 0, which has been discussed within
effective models in [21,44]. In particular, the dressed
Polyakov loop is very small for temperatures below the

pseudocritical temperature of the simultaneous crossover.
Then, it experiences a crossover in correspondence of the
simultaneous Polyakov loop and chiral condensate cross-
overs. It eventually saturates at very large temperature (for
example, in [21], the saturation occurs at a temperature of
the order of 0.4 GeV, in agreement with the results of [44]).
However, we do not push up our numerical calculation to
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FIG. 1 (color online). Left panel. Chiral condensate, Polyakov loop, and dressed Polyakov loop as a function of temperature
and magnetic field, for the case N ¼ 5. Right panel. Contour plots of the raw data of the effective susceptibilities. The lighter the color,
the higher the susceptibility. Vertical axes correspond to temperature (in MeV); horizontal axes represent magnetic field eB=m2

�. For
the dressed Polyakov loop susceptibility, the bifurcation of the critical region is evident.
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such a high temperature, because we expect that the effec-
tive model in that case is well beyond its range of validity.

As we increase the value of eB, as noticed previously,
we observe a tiny splitting of the chiral and the Polyakov
loop crossovers. Correspondingly, the qualitative behavior
of the dressed Polyakov loop changes dramatically: the
range of temperature in which the �1 crossover takes place
is enlarged, if compared to the thin temperature interval in
which the crossover takes place at the lowest value of eB
(compare the solid and the dotted lines in Fig. 2, as well as
the lower panel of Fig. 1).

The effective susceptibility, d�1=dT, plotted in the
lower right panel of Fig. 2, is qualitatively very interesting.
We observe a double-peak structure, which we interpret as
the fact that the dressed Polyakov loop is capable of feeling
(and, hence, describing) both the crossovers. If we were to
interpret �1 as the order parameter for deconfinement, and
the temperature with the largest susceptibility with the
crossover pseudocritical temperature, then we would ob-
tain almost simultaneous crossover even for very large
magnetic field. If this were the case, then the Polyakov

loop computed within the P-NJL model should be inter-
preted only as an indicator of statistical confinement, and
the deconfinement would be described by �1. Of course,
this picture would not contradict the well-established pic-
ture at zero magnetic field [9–11]. Indeed, in the case of
small eB, we find simultaneous crossover of chiral con-
densate, the Polyakov loop, and the dressed Polyakov loop.
In the latter case, it would just be a matter of taste which
quantity one would use to identify the deconfinement
crossover. Even if it is tempting to give this kind of in-
terpretation, which would lead to simultaneous crossover
also at finite eB, it is very hard to accept it without more
convincing microscopic arguments. Therefore, in the
prosecution of this work, we prefer to associate the
deconfinement crossover to that of the Polyakov loop.
Nevertheless, the dressed Polyakov loop is a new quantity
which is interesting to compute. In particular, the double-
peak structure in the �1 effective susceptibility, which is
produced if the magnetic field is strong enough, offers the
evidence that the dressed Polyakov loop is intimately
related to both chiral condensate and (thin) Polyakov
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FIG. 2. Left panel. Chiral condensate S ¼ jh �uuij1=3 (upper panel), Polyakov loop (middle panel), and �1 (lower panel) as a function
of temperature, for several values of the applied magnetic field strength, measured in units of m2

�. In the figures, N ¼ 5 corresponds to
the order of the UV regulator in Eq. (6). Right panel. Effective susceptibilities, defined in Eq. (14), as a function of temperature, for
several values of eB. Conventions for lines are the same as in the left panel.
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loop, and it is capable of capturing both the crossovers. The
bifurcation of the dressed Polyakov loop susceptibility in
the lower right panel of Fig. 1 is impressive.

B. Phase diagram in the eB-T plane

In Fig. 3, we collect our results on the pseudocritical
temperatures for chiral and Polyakov loop crossovers, in
the form of phase diagrams in the eB-T plane. The dashed
line denotes the Polyakov loop crossover, and the dot-
dashed line corresponds to the chiral crossover. The shaded
area is the region in the eB-T plane in which quark matter
is not statistically confined, but chiral symmetry is still
broken by the chiral condensate. Temperatures on the
vertical axes are measured in units of the pseudocritical
temperature at zero field, which is T0 ¼ 175 MeV. We fit
our data on the pseudocritical temperatures by the law

TA
c

T0

¼ 1þ a

�
eB

T0

�
�
; (15)

where A ¼ �;P. Numerical values of the coefficients in
Eq. (15) for the various observables are collected in
Table II. As an estimator of the accuracy of the various
fits, we report in Table II the percentage error defined as

" ¼ 100�X
i

�
fAðxiÞ � yi

yi

�
2
; (16)

where the sum runs over the data, ðxi; yiÞ corresponds to a
couple in the set of the data ðeB; TAÞ, and fAðxiÞ denotes the
numerical value of the fit function evaluated at the data eB.

The picture discussed in the previous section is made
clear by the phase diagrams in Fig. 3. We measure an

increase of both deconfinement and chiral crossovers; the
tiny split of the two critical temperatures is of the order of
10% for the largest value of the magnetic field strength
considered here.
It is instructive to compare our results with those ob-

tained in a different model. The shape of the phase diagram
drawn in Fig. 3 is similar to that drawn by the Polyakov
extended quark-meson model; see, e.g., Fig. 13 of [36]. In
that reference, an interpretation of the split in terms of the
interplay among vacuum and thermal contributions is
given. We totally agree with those arguments, which are
reproduced within the P-NJL model as well, as the final
results on critical temperatures show. In the case of the
quark-meson model, however, the picture can change even
qualitatively, depending on the fate of vacuum energy
contribution. If they are not included, then a simultaneous
first-order transition is observed at every value of eB (if eB
is very small, the transition is a smooth crossover), and the
deconfinement temperature as a function of the magnetic
field strength decreases. This picture confirms the scenario
anticipated in a previous work [34]. In the case of the
P-NJL model, we cannot reproduce the latter scenario
because of a technical reason: indeed, in our case, the
vacuum contribution cannot be subtracted (as a matter of
fact, we do not have a further effective potential term at
zero temperature, which leads to spontaneous breaking of
chiral symmetry when vacuum quark contributions are
subtracted). Therefore, we limit ourselves only to a com-
parison with the quark-meson model with vacuum contri-
butions taken into account.

IV. CONCLUSIONS

We have computed, for the first time in the literature, the
dressed Polyakov loop for hot quark matter in external
magnetic field. To compute the finite temperature effective
potential in magnetic field, we have used the Polyakov
extended Nambu–Jona-Lasinio model, with a logarithm-
effective action for the Polyakov loop. In the quark sector,
we have used both a four-quark and an eight-quark inter-
action. Bare quark masses are fixed to reproduce the physi-
cal value of the vacuum pion mass. This model allows us to
treat self-consistently both chiral symmetry breaking and
(statistical) confinement. We improve the previous work in
[35] in three ways: we set the vacuum pion mass to its
physical value; we introduce the eight-quark interaction;
finally, we compute the dressed Polyakov loop.
Our results on the dressed Polyakov loop, �1, in mag-

netic field show that this quantity is capable of describing
both Polyakov loop and chiral crossovers. This is resumed
in the double-peak structure of the effective susceptibility
d�1=dT; see Figs. 1 and 3.
The results of the pseudocritical temperatures as a func-

tion of eB are resumed in the phase diagrams in Fig. 3.
These results were anticipated in a previous work [35] in
which only the chiral limit was considered, and the
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FIG. 3 (color online). Phase diagram of the P-NJL model in
magnetic field. Dashed line denotes the Polyakov loop crossover;
dot-dashed line corresponds to the chiral crossover. The shaded
area is the region, in the eB-T plane, in which quark matter is not
statistically confined, but chiral symmetry is still broken by the
chiral condensate. Temperatures on the vertical axes are mea-
sured in units of the pseudocritical temperature at zero field,
which is T0 ¼ 175 MeV. The analytic form of the lines corre-
sponding to TP and T	 is specified by Eq. (15). The UV regulator

is that corresponding to N ¼ 5.
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eight-quark interaction was neglected. Our results agree
qualitatively with those of [36], in which a quark-meson
model coupled to the Polyakov loop is considered.

As an improvement of our results, it would be interesting
to consider the effects of nonlocality [24]. In that case,
however, the computation of the fermion spectrum in the
magnetic field is not trivial because of the nonlocal struc-
ture of the action. Another interesting possibility is the use
of Monte Carlo methods to compute the P-NJL partition
function in magnetic field, going beyond the saddle ap-
proximation. Encouraging results along this research line
in the context of the P-NJL model have been reported in
[53]. Therefore, it might be interesting to extend the com-
putation of [53] to the case of quarks in external magnetic
field. Even more, we expect that the running coupling
introduced by the Kyushu group [51] would help (at least

partly) to get closer crossovers in magnetic field. A nu-
merical investigation of this subject is left to a future study.
Finally, the extension of our calculation to finite quark
chemical potential, and to quark matter in external chro-
momagnetic fields, the latter being motivated by lattice
results [29,30], would deserve further attention.
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