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We study the phase diagram of strongly interacting matter in the framework of a nonlocal SU(2) chiral

quark model which includes wave function renormalization and coupling to the Polyakov loop. Both

nonlocal interactions based on the frequently used exponential form factor, and on fits to the quark mass

and renormalization functions obtained in lattice calculations are considered. Special attention is paid to

the determination of the critical points, both in the chiral limit and at finite quark mass. In particular, we

study the position of the critical end point as well as the value of the associated critical exponents for

different model parametrizations.
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I. INTRODUCTION

At low temperatures and densities strongly interacting
matter is believed to be in a phase in which chiral symme-
try is broken and the quarks are confined. However, as the
temperature (T) and/or the chemical potential (�) increase
some kind of transition to a chiral restored and/or decon-
fined phase is expected to happen. The detailed under-
standing of this phenomenon has become an issue of
great interest in recent years, both theoretically and experi-
mentally [1]. From the theoretical point of view, even if a
significant progress has been made in the development of
ab initio calculations such as lattice QCD [2–4], these are
not yet able to provide a full understanding of the QCD
phase diagram, due to the well-known difficulties of deal-
ing with small current quark masses and finite chemical
potentials. Thus, it is important to develop effective models
that show consistency with lattice results and can be ex-
trapolated into regions not accessible by lattice calculation
techniques. Among them, the local Nambu-Jona-Lasinio
(NJL) has been widely used to describe the behavior of
strongly interacting matter at finite temperature and den-
sity [5]. In recent years an extension of the NJL model
has been proposed in which the coupling of the quarks
to the Polyakov loop is included. This so-called
Polyakov–Nambu-Jona-Lasinio model [6–12] allows us
to study the chiral and deconfinement transitions in a
common framework. As an improvement over local mod-
els, the study of the phase diagram of chiral quark models
that include nonlocal interactions [13] has been undertaken
[14–16]. These theories can be viewed as nonlocal exten-
sions of the NJL model. In fact, nonlocality arises naturally
in the context of several successful approaches to low-
energy quark dynamics as, for example, the instanton
liquid model [17] and the Schwinger-Dyson resummation
techniques [18]. Lattice QCD calculations [19,20] also

indicate that quark interactions should act over a certain
range in momentum space. In addition, several studies [21–
24] have shown that nonlocal chiral quark models provide
a satisfactory description of hadron properties at zero
temperature and density. The aim of the present work is
to extend previous studies of the chiral and deconfinement
transitions in the framework of nonlocal chiral models with
coupling to the Polyakov loop [25–27] by considering
more general quark interactions. Following Refs. [28,29],
we will adopt as the basic ingredient a reliable description
of the T ¼ � ¼ 0 quark propagator as given from funda-
mental studies, such as lattice QCD. In this sense, it should
be noticed that most of the finite T and/or � calculations
performed so far in the context of nonlocal chiral quark
models have used exponential regulators and neglected the
wave function renormalization in the quark propagator.
Recent lattice QCD calculations suggest, however, that
the wave function renormalization can be of the order of
30% (or even more) at zero momentum [19,20]. Moreover,
these calculations also show that the quark masses tend to
their asymptotic values in a rather soft way. Thus, it is
important to perform a detailed study of the impact of the
incorporation of these features on the predictions for the
phase diagram and associated quantities. The Lagrangian
we will use is the minimal extension which allows us to
incorporate the full momentum dependence of the quark
propagator, through its mass and wave function renormal-
ization. Using such a model we will investigate the phase
diagrams corresponding to different parametrizations, in-
cluding one based on fits to the quark mass and renormal-
ization functions obtained in lattice calculations, both in
the chiral limit and for finite quark mass. The position of
the critical points as well as the value of the associated
critical exponents will be also studied.
This article is organized as follows. In Sec. II we provide

a description of the model and its parametrizations. In
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Sec. III we present and discuss the results obtained in the
chiral limit, while those corresponding to finite values of
the quark mass are given and analyzed in Sec. IV. In Sec. V
we present a summary of our main results and conclusions.
Finally, we include two appendices. In Appendix A we
provide some details concerning the derivation of the
Landau expansion associated with our model in the chiral
limit, while in Appendix B we describe the formalism used
to determine the position of the critical end point.

II. THE MODEL AND ITS PARAMETRIZATIONS

We consider a nonlocal SU(2) chiral quark model which
includes quark couplings to the color gauge fields. The
corresponding Euclidean effective action is given by

SE ¼
Z

d4x

�
�c ðxÞð�i��D� þ m̂Þc ðxÞ

�GS

2
½jaðxÞjaðxÞ � jPðxÞjPðxÞ� þUð�½AðxÞ�Þ

�
; (1)

where c is the Nf ¼ 2 fermion doublet c � ðu; dÞT , and
m̂ ¼ diagðmu;mdÞ is the current quark mass matrix. In
what follows we consider isospin symmetry, that is m ¼
mu ¼ md. The fermion kinetic term includes a covariant
derivative D� � @� � iA�, where A� are color gauge

fields and the operator ��@� in Euclidean space is defined

as ~� � ~rþ �4
@
@� , with �4 ¼ i�0. The nonlocal currents

jaðxÞ, jPðxÞ are given by

jaðxÞ ¼
Z

d4zgðzÞ �c
�
xþ z

2

�
�ac

�
x� z

2

�
;

jPðxÞ ¼
Z

d4zfðzÞ �c
�
xþ z

2

�
i 6@$
2�p

c

�
x� z

2

�
:

(2)

Here, �a ¼ ð1; i�5 ~�Þ and uðx0Þ@$vðxÞ ¼ uðx0Þ@xvðxÞ �
@x0uðx0ÞvðxÞ. The functions gðzÞ and fðzÞ in Eq. (2), are
nonlocal covariant form factors characterizing the corre-
sponding interactions. The four standard quark currents
jaðxÞ require the same gðzÞ form factor to guarantee chiral
invariance. The term G

2 jPðxÞjPðxÞ is self-invariant under

chiral transformations. The scalar-isoscalar component of
the jaðxÞ current will generate the momentum dependent
quark mass in the quark propagator, while the ‘‘momen-
tum’’ current, jPðxÞ, will be responsible for a momentum
dependent wave function renormalization of this propaga-
tor. For convenience, we take the same coupling parameter,
GS, for both interaction terms. Note, however, that the
relative strength between both interaction terms will be
controlled by the mass parameter �p introduced in Eq. (2).

In what follows it is convenient to Fourier transform gðzÞ
and fðzÞ into momentum space. Note that Lorentz invari-
ance implies that the Fourier transforms gðpÞ and fðpÞ can
only be functions of p2.

To proceed we perform a standard bosonization of the
theory. Thus, we introduce the bosonic fields �1;2ðxÞ and

�aðxÞ, and integrate out the quark fields. In what follows,
we work within the mean-field approximation (MFA), in
which these bosonic fields are replaced by their vacuum
expectation values �1;2 and �a ¼ 0. Since we are inter-

ested in studying the characteristics of the chiral phase
transition we have to extend the so obtained bosonized
effective action to finite temperature T and chemical po-
tential �. In the present work this is done by using the
Matsubara formalism. Concerning the gluon fields we will
assume that they provide a constant background color field
A4 ¼ iA0 ¼ ig��0G

�
a �a=2, where G�

a are the SU(3) color

gauge fields. Then the traced Polyakov loop, which is taken
as order parameter of confinement, is given by � ¼
1
3 Tr expði	=TÞ, where 	 ¼ iA0. We will work in the so-

called Polyakov gauge, in which the matrix 	 is given a
diagonal representation 	 ¼ 	3�3 þ	8�8. This leaves
only two independent variables, 	3 and 	8. At vanishing
chemical potential, owing to the charge conjugation prop-
erties of the QCD Lagrangian, the mean-field traced
Polyakov loop is expected to be a real quantity. Since 	3

and 	8 have to be real-valued [30], this condition implies
	8 ¼ 0. In general, this need not be the case at finite �
[31–33]. As in, e.g., Refs. [10,30,34,35] we will assume
that the potential U is such that the condition 	8 ¼ 0 is
well satisfied for the range of values of � and T inves-
tigated here. The mean-field traced Polyakov loop is then
given by � ¼ �� ¼ ½1þ 2 cosð	3=TÞ�=3.
Within this framework the mean-field thermodynamical

potential �MFA is

�MFA ¼ � 4T

�2

X
c

Z
p;n

ln

�ð
c
n; ~pÞ2 þM2ð
c

n; ~pÞ
Z2ð
c

n; ~pÞ
�

þ �2
1 þ �2

p�
2
2

2GS

þUð�; TÞ: (3)

Here, the shorthand notation
R
p;n ¼

P
n

R
d3 ~p=ð2�Þ3 has

been used, and MðpÞ and ZðpÞ are given by

MðpÞ ¼ ZðpÞ½mþ �1gðpÞ�;
ZðpÞ ¼ ½1� �2fðpÞ��1:

(4)

In addition, we have defined

ð
c
n; ~pÞ2 ¼ ½ð2nþ 1Þ�T � i�þ	c�2 þ ~p2; (5)

where the quantities 	c are given by the relation 	 ¼
diagð	r;	g;	bÞ. Namely, 	c ¼ c	3 with c ¼ 1, �1, 0
for r, g, b, respectively.
To proceed we need to specify the explicit form of the

Polyakov loop effective potential. Following Ref. [10] we
consider

Uð�; TÞ ¼
�
� 1

2
aðTÞ�2 þ bðTÞ

� lnð1� 6�2 þ 8�3 � 3�4Þ
�
T4; (6)
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where the coefficients are parametrized as

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
;

(7)

and the values of T0, ai, and b3 are fitted to QCD lattice
results.

�MFA turns out to be divergent and, thus, needs to be
regularized. For this purpose we use the same prescription
as in e.g. Ref. [15]. Namely,

�MFA
reg ¼ �MFA ��free þ�free

reg þ�0; (8)

where�free is obtained from Eq. (3) by setting �1 ¼ �2 ¼
0 and �free

reg is the regularized expression for the quark

thermodynamical potential in the absence of fermion in-
teractions,

�free
reg ¼ �4T

Z d3 ~p

ð2�Þ3
X
c

�
ln

�
1þ exp

�
�Ep ��þ i	c

T

��

þ ln

�
1þ exp

�
�Ep þ�þ i	c

T

���
; (9)

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. Finally, note that in Eq. (8) we have

included a constant�0 which is fixed by the condition that
�MFA

reg vanishes at T ¼ � ¼ 0.

The mean-field values �1;2 and� at a given temperature

or chemical potential, are obtained from a set of three
coupled ‘‘gap’’ equations. This set of equations follows
from the minimization of the regularized thermodynamical
potential, that is

@�MFA
reg

@�1

¼ @�MFA
reg

@�2

¼ @�MFA
reg

@�
¼ 0: (10)

Once the mean-field values are obtained, the behavior of
other relevant quantities as a function of temperature and
chemical potential can be determined. Here, we will be
particularly interested in the chiral quark condensate h �qqi
and the quark density 
 defined by

h �qqi ¼ @�MFA
reg

@m
; 
 ¼ �@�MFA

reg

@�
; (11)

as well as their corresponding susceptibilities, i.e., the
chiral susceptibility �ch and the quark number susceptibil-
ity �q, defined by

�ch ¼ @h �qqi
@m

; �q ¼ @


@�
: (12)

Finally, the specific heat CV , is expressed as

CV ¼ �T
@2�MFA

reg

@T2
: (13)

In order to fully specify the model under consideration
we have to fix the model parameters as well as the form
factors gðqÞ and fðqÞ which characterize the nonlocal

interactions. Here, following Ref. [29] we consider two
different types of functional dependencies for these form
factors. The first one corresponds to the often used expo-
nential forms,

gðqÞ ¼ expð�q2=�2
0Þ; fðqÞ ¼ expð�q2=�2

1Þ: (14)

Note that the range (in momentum space) of the nonlocal-
ity in each channel is determined by the parameters�0 and
�1, respectively. Fixing the current quark mass and chiral
quark condensate at T ¼ � ¼ 0 to the reasonable values

m ¼ 5:7 MeV and h �qqi1=3 ¼ 240 MeV, the rest of the
parameters are determined so as to reproduce the empirical
values f� ¼ 92:4 MeV and m� ¼ 139 MeV, and Zð0Þ ¼
0:7 which is within the range of values suggested by recent
lattice calculations [8,10]. In what follows this choice of
model parameters and form factors will be referred to as
parametrization Set B. The second type of form factor
functional forms we consider is given by

gðqÞ ¼ 1þ �z

1þ �zfzðqÞ
�mfmðqÞ �m�zfzðqÞ

�m �m�z

;

fðqÞ ¼ 1þ �z

1þ �zfzðqÞ fzðqÞ;
(15)

where

fmðqÞ ¼ ½1þ ðq2=�2
0Þ3=2��1;

fzðqÞ ¼ ½1þ ðq2=�2
1Þ��5=2:

(16)

As shown in Ref. [29], taking m ¼ 2:37 MeV, �m ¼
309 MeV, �z ¼ �0:3, �0 ¼ 850 MeV, and �1 ¼
1400 MeV one can very well reproduce the momentum
dependence of mass and renormalization functions ob-
tained in lattice calculations as well as the physical values
of m� and f�. In what follows this choice of model
parameters and form factors will be referred to as parame-
trization Set C. Finally, in order to compare with previous
studies where the wave function renormalization of the
quark propagator has been ignored we consider a third
parametrization (Set A). In such a case we take ZðpÞ ¼ 1
[i.e. fðpÞ ¼ 0] and an exponential parametrization for
gðpÞ. Such a model corresponds to the ‘‘Scheme II’’ dis-

TABLE I. Set parameters and chiral condensates for T ¼ � ¼
0.

Set A Set B Set C

mc MeV 5.78 5.70 2.37

Gs�
2
0 20.650 32.030 20.818

�0 MeV 752.20 814.42 850.00

�P GeV � � � 4.180 6.034

�1 MeV � � � 1034.5 1400.0

�1 MeV 424 529 442

�2 � � � �0:43 �0:43
�hq �qi1=3 MeV 240 240 326
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cussed in Ref. [24], from where we take the parameters

corresponding to h �qqi1=3 ¼ 240 MeV. The values of the
model parameters for each of the chosen parametrizations
are summarized in Table I.

III. PHASE DIAGRAM IN THE CHIRAL LIMIT

In order to investigate the details of the phase diagram of
the nonlocal models under study it is convenient to con-
sider first the chiral limit m ¼ 0. In this limit, general
considerations imply that for sufficiently small values of
chemical potential the chiral restoration transition is of
second order with the transition temperature Tc decreasing
as � increases. At a certain value of � ¼ �TCP the tran-
sition becomes of first order. The point in the T-� plane
defined by ðTTCP; �TCPÞ corresponds to the so-called ‘‘tri-
critical point’’ (TCP). For values of �>�TCP the corre-
sponding Tc continues to decrease until it reaches zero.
This marks the end of the critical line, �cð0Þ being the
corresponding critical chemical potential.

In the following we will concentrate on the second order
transition region. In such a region, for a given chemical
potential �, the condensate h �qqi goes to zero when the
temperature T approaches from below the critical value
Tcð�Þ, above which h �qqi ¼ 0 and the chiral symmetry is
restored. Thus, for T � Tcð�Þ the thermodynamical poten-
tial admits an expansion in powers of the order parameter
(in this case the quark condensate). As discussed in detail
in Appendix A, in the chiral limit such expansion reads

�MFA
reg ¼ �̂ð�; T;�c; �2cÞ þ Ach �qqi2 þ Cch �qqi4

þOðh �qqi6Þ; (17)

where the explicit expressions of �̂ and the coefficients Ac

and Cc are given in Eqs. (A3) and (A11), respectively.
Having established the Landau expansion in terms of the
chiral condensate as a single independent variable, we can

now analyze the characteristics of the phase transition
following the standard textbook methods. For Cc > 0 the
system undergoes a second order phase transition at a
critical temperature Tc. For each value of �, this critical
temperature can be obtained by solving a set of coupled
equations given by the condition Ac ¼ 0 supplemented by
Eqs. (A7). The values of Tcð�Þ so obtained define a second
order transition curve in the ðT;�Þ plane. As already
mentioned, such a curve is a decreasing function of �
which starts at the critical temperature corresponding to
the vanishing chemical potential Tcð0Þ and ends up at the
tricritical point. The position of TCP can be determined by
imposing the additional condition Cc ¼ 0. Namely, to
obtain it one has to solve the set of coupled equations
given by Ac ¼ Cc ¼ 0 together with Eqs. (A7).
To analyze the critical line beyond the TCP it is conve-

nient to take T as an independent variable and consider
�cðTÞ. For T < TTCP, the transition turns out to be discon-
tinuous (i.e. first order). In this case, for each value of T,
there is a region of values of � for which three different
solutions of the full gap equations, Eqs. (10), exist. Two of
them correspond to minima of the grand potential and the
third one to a maximum. In the chiral limit considered in
the present section, one of the minima has�1 ¼ 0, while in
the other �1 takes a finite (in general, non-negligible)
value. Then, �c corresponds to the chemical potential at
which the pressure associated with these two minima
coincide.
The phase diagrams corresponding to our three parame-

trizations are displayed in Fig. 1 while the position of the
characteristic points are given in Table II. In Fig. 1 the
dotted line indicates the second order chiral transition line,
the full line that of first order, and the dashed lines corre-
spond to the deconfinement transition (the lower and upper
lines correspond to � ¼ 0:3 and � ¼ 0:5, respectively).
We see that as� increases there appears a region where the
system remains in its confined phase (signalled by �

FIG. 1 (color online). Phase diagrams in the chiral limit for the three parametrizations considered. Set B and Set C include quark
wave function renormalization while Set A does not. Set A and Set B correspond to exponential form factors while Set C corresponds
to lattice motivated form factors. The dotted line corresponds to the second order chiral transition and the full line to that of first order
one. The dashed lines correspond to the deconfinement transition (the lower and upper lines being for � ¼ 0:3 and � ¼ 0:5,
respectively).
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smaller than ’ 0:3) even though chiral symmetry has been
restored. This corresponds to the recently proposed quar-
kyonic phase [36]. We observe that the general shape of the
three diagrams is very similar with values of the critical
temperatures at � ¼ 0 differing by less than 4 MeV. In the
case of the critical chemical potential at T ¼ 0 the differ-
ence between the three sets is somewhat larger. Comparing
the result of Set A with that of Set B we see that the
inclusion of the wave function renormalization implies a
decrease of about 10 MeV in the value of�cð0Þ. The use of
the softer form factors involved in the lattice inspired
parametrization Set C leads to a further decrease of
�10 MeV. The feature of the phase diagram that turns
out to be most sensitive to the model parametrization is the
position of the TCP. In fact, although the three values of
TTCP are in a range of about 10 MeV, the value of �TCP

increases by about a factor 2 when the wave function
renormalization is included (i.e. when one goes from
Set A to Set B) and by an extra factor �3=2 when the
lattice inspired parametrization Set C is used (i.e. when one
goes from Set B to Set C).

As it is well known, in the region of the second order
phase transition the behavior of several relevant thermo-
dynamical quantities in the vicinity of the phase transition
is determined by the critical exponents. In the case of the
chiral and quark number susceptibilities, �ch and �q re-

spectively, and the specific heat CV , they are usually de-

fined by

�ch ¼ jh� hcj��ch ; �q ¼ jh� hcj��q ;

CV ¼ jh� hcj��;
(18)

where jh� hcj is the distance to the critical point in the
ð�; TÞ plane. Note that in the chiral limit only trajectories
approaching the transition from the chirally broken phase
are relevant. In the present case, given the Landau expan-
sion obtained above, one expects to have the usual mean-
field exponents. For trajectories which are not asymptoti-
cally tangential to the critical line they are

�ch ¼ 1; �q ¼ 0; � ¼ 0; (19)

for all points except for the TCP where

�ch ¼ 1; �q ¼ 1=2; � ¼ 1=2: (20)

As a test of consistency we have determined them numeri-
cally by studying the asymptotic behavior of the corre-
sponding quantities for our three sets of parameters. As an
example of a typical result of such studies we show in the
left panel of Fig. 2 the behavior of �ch for Set C as we
approach an arbitrary point in second order transition line,
i.e., a point different from the TCP, at constant � (for
definiteness we consider � ¼ 10 MeV). The right panel
in Fig. 2 displays the results of a equivalent study for � ¼
�TCP. The values of the critical exponents extracted from
this type of analysis for Set C are given in Table III. Very
similar results are found for Set A and Set B. We see that in
all cases the numerically obtained values are in very good
agreement with the mean-field ones given above.
We finish this section by clarifying the role played by the

Polyakov loop in enhancing the critical temperature at a
given value of �, at least in the region where the transition
is of second order. For simplicity we consider the parame-
trization Set A where there is no wave function renormal-

FIG. 2 (color online). Dependence of the chiral susceptibility �ch as a function of T for constant� in the vicinity of an arbitrary point
(taken to correspond to � ¼ 10 MeV) in the 2nd order transition line (left panel) and the TCP (right panel) in the chiral limit for
parametrization Set C.

TABLE II. Position of some characteristic points of the phase
diagrams in the chiral limit. All values are in MeV.

Set A Set B Set C

Tcð0Þ 206.6 205.9 209.7

�TCP 46.2 86.1 125.7

TTCP 204.8 199.2 194.6

�cð0Þ 297.6 285.5 268.2
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ization. The condition Ac ¼ 0 implies 1=8G ¼ S21 (see
Appendix A). However, following similar steps as those
described in Appendix B of Ref. [15], it is possible to show
that for T, �� �0 one has

S21 ’ Sapp21

¼ 3

8�2

�
�2

0

4
�
�
�2

3
� 2

3

�
arccos

�
3�� 1

2

��
2
�
T2��2

�
:

(21)

In fact, we have checked numerically that in the relevant
regions T 	 210 MeV and � 	 50 MeV, Eq. (21) is veri-
fied with an accuracy higher than 15% for � 	 0:3.
Therefore, the condition Ac ¼ 0 leads to

Tcð�Þ ’ TðpqÞc ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

�2 ðarccos½3�c�1
2 �Þ2

q ; (22)

where

TðpqÞc ð�Þ ¼
ffiffiffi
3
p

�0

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2

3GS�
2
0

� 4�2

�2
0

s
: (23)

T
ðpqÞ
c ð�Þ provides a good approximation to the critical

temperature corresponding to the pure quark (pq) nonlocal
model, i.e., the model with no coupling to the Polyakov
loop (PL), for the exponential regulator considered in
parametrization Set A (see Ref. [15] for details). Of course,
in the presence of PL-quark interactions the value of�c in

Eq. (22) has to be obtained by simultaneously solving the
corresponding gap equation, i.e., the second equation in
Eq. (A7) in the present case. However, we clearly see that
for any value of �c < 1 we have Tcð�Þ> Tpq

c ð�Þ. For
example, at � ¼ 0 one typically has �c ’ 0:2 which im-
plies Tcð0Þ=Tpq

c ð0Þ 
 1:66. Since for the parametrization
Set Awe have T

pq
c ð0Þ ¼ 126 MeV for the pure quark non-

local model in the chiral limit, we see that the coupling to
the PL is expected to raise this value up to Tc � 209 MeV
which is in very good agreement with the numerically
found value listed in Table II. As it is clear from Eqs.
(22) and (23) a similar enhancement of the critical tem-
perature can be obtained at (low) finite �. On the other
hand, it should be noticed that in order to apply the present
type of analysis to relate the values of �cðTÞ predicted in
models with and without PL one must have a common
range of temperatures for which the transition is of second
order. However, for the parametrizations considered here
this is not possible since they always lead to TTCP > Tpq

c ð0Þ.
For example, from Table II we see that Set A leads to
TTCP ¼ 204:8 MeV to be compared with the value
T
pq
c ð0Þ ¼ 126 MeV quoted above.

IV. PHASE DIAGRAM FOR FINITE QUARK MASS

We start by analyzing the behavior of some mean-field
quantities as functions of T and �. Since the results ob-
tained for our three different parametrizations are qualita-
tively quite similar we only present explicitly those
corresponding to the parametrization Set C. They are given
in Fig. 3 where we plot �1, �2, and� as functions of T for
some representative values of the chemical potential. The
left panel of Fig. 3 shows that at � ¼ 0 there is a certain
value of T at which �1 drops rapidly, signalling the exis-
tence of a chiral symmetry restoration crossover transition.
At basically the same temperature the Polyakov loop �
increases which can be interpreted as the onset of the
deconfinement transition. As � increases there is a certain
value of � ¼ �CEP above which the transition starts to be
discontinuous. At this precise chemical potential the tran-
sition is of second order. This situation is illustrated in the

TABLE III. Critical exponents in the chiral limit for Set C.

�ch �q �

Point in �! 1.00(1) 0.00(1) 0.00(1)

2nd order T " 1.00(1) 0.00(1) 0.00(1)

critical line MF exponent 1 0 0

�! 1.00(1) 0.51(1) 0.50(1)

TCP T " 1.00(1) 0.51(1) 0.50(1)

MF exponent 1 1=2 1=2

FIG. 3. Mean fields �1, �2, and � as functions of T at three representative values of chemical potentials for parametrization Set C.
Note that the scale to the left corresponds to �1 while that to the right corresponds to �2 and �. Since �2 turns out to be negative we
plot ��2.
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central panel of Fig. 3. The corresponding values
ðTCEP; �CEPÞ define the position of the so-called ‘‘critical
end point’’ (CEP) which, as explained in Appendix B, can

be found by solving a system of equations formed by the
gap equations, Eqs. (10), supplemented by two additional
equations of the following type: (B3) and (B4). As dis-
played in the right panel of Fig. 3, for �>�CEP the
transition becomes discontinuous, i.e., of first order.
Finally, for chemical potentials above �cðT ¼ 0Þ ’
310 MeV the system is in the chirally restored phase for
all values of the temperature. It is important to note that
although �2 appears to be rather constant in Fig. 3, at
higher values of T it does go to zero as expected.
The different nature of the chiral transition in each of the

three regions of Fig. 3 is even more clearly observed in the
behavior of the corresponding response functions. In Fig. 4
we display the specific heat CV as well as the chiral and
quark number susceptibilities, �ch and �q, as a function of

the temperature for parametrization Set C and the three
different values of � used in Fig. 3. The dotted line
corresponds to � ¼ 0. We observe that all the response
functions show a rather broad peak of finite height at
basically the same value of T. Such a value of T corre-
sponds to the temperature at which the crossover transition
occurs. The dashed-dotted line corresponds to � ¼ �CEP

which indicates that all the response functions display a
sharp and narrow divergent peak. Such a behavior signals
the second order nature of the chiral transition at the CEP.
Finally, the full line corresponds to �>�CEP. In all cases
we observe a discontinuity in the response functions which
indicates that the associated transition is of first order.
The phase diagrams corresponding to our three different

parametrizations are given in Fig. 5. Here the dotted line
represents the line of crossover chiral transition while the
full line represents that of first order. The dashed lines are
associated to the deconfinement transition (the lower and
upper lines correspond to � ¼ 0:3 and � ¼ 0:5, respec-
tively). The position of the most relevant points in the
phase diagrams are tabulated in Table IV. As in the chiral
case, we observe that the main difference appears in the

FIG. 4. Behavior of the specific heat CV , the chiral suscepti-
bility �ch, and the quark number susceptibility �q as functions of

T at three representative values of chemical potentials for
parametrization Set C.

FIG. 5 (color online). Phase diagrams for the three parametrizations considered. Set B and Set C include quark wave function
renormalization while Set A does not. Set A and Set B correspond to exponential form factors while Set C corresponds to lattice
motivated form factors. The dotted line corresponds to the line of crossover chiral transition and the full line to that of first order chiral
transition. The dashed lines correspond to the deconfinement transition (the lower and upper lines being for � ¼ 0:3 and � ¼ 0:5,
respectively).
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position of the point at which the first order transition line
ends. Comparing the results of Set A and Set B we see that
the main effect of the wave function renormalization term
is to shift the location of the CEP towards lower values of T
and higher values of �. Concerning the lattice motivated
parametrization Set C we observe that it leads to even
lower values of TCEP and higher values of �CEP.
Comparing with the results obtained in the chiral limit
we note that the variation of TCEP between different sets
is larger in this case. Moreover, considering each parame-
trization separately we observe that while the effect of
introducing a finite quark mass on the values of the Tcð0Þ
and �cð0Þ is quite small (approximately þ5 MeV and
þ30 MeV, respectively), the position of the CEP is much
more sensitive to the value of the current quark mass m,
especially in the case of parametrization Set C. This is
clearly seen in Fig. 6 where we plot TCEP and �CEP as a
function of m. In all the cases we note a sharp decrease
(increase) of TCEP (�CEP) for low values of m. In the case
of the exponential parametrization Set A and Set B, atm�
4 MeV this variation tends to disappear and the position of
the CEP remains rather stable up to the maximum value of
m we have considered. On the other hand, for the lattice
motivated parametrization the situation is somewhat differ-
ent. In fact, the variation is rather large for basically all the
values of m considered. In particular we see that, after the
initial sharp decrease, at about 4 MeV the value of TCEP

starts to increase in a rather pronounced way. It is interest-

ing to note that the behavior of the position of the CEP as a
function of m close to m ¼ 0 (i.e. close to the TCP) can be
analytically investigated [37]. General arguments imply
that

�TCEP ¼ TCEPðmÞ � TTCP ¼ �cm2=5 þOðm4=5Þ;
��CEP ¼ �CEPðmÞ ��TCP ¼ þdm2=5 þOðm4=5Þ;

(24)

where c and d are definite positive constants. To verify that
our results do satisfy these relations we have numerically
studied in detail the variation of TCEP and �CEP as a
function of m close to the chiral limit. Results for the
parametrization Set C are shown in Fig. 7 where the
power-law behavior of both �TCEP and ��CEP is clearly
seen as a straight line in the corresponding log-log plot.
Performing a linear fit we obtain that the slope of both
straight lines is 0:40� 0:01 in very good agreement with
the exponents in Eq. (24).
Finally, we consider the behavior of the response func-

tions close to the CEP. As already mentioned, the chiral
phase transition at this point is of second order. Thus, a
critical behavior with critical exponents defined as in
Eq. (18) is expected. Within the approximations used in
this work these exponents should take the mean-field val-
ues �ch ¼ �q ¼ � ¼ 2=3 when one approaches the CEP

using trajectories which are not asymptotically parallel to
the first order transition line. As mentioned in Sec. III,
these exponents can be numerically obtained by analyzing
the asymptotic behavior of the response functions close to
the critical point. In Fig. 8 we show a typical result of this
type of numerical study. There, we display a log-log plot of
the specific heat CV corresponding to the parametrization
Set C as a function of the relative temperature departure
jT � TCEPj=TCEP for trajectories that approach the CEP at
constant � ¼ �CEP both from below (i.e. T < TCEP) and
from above (i.e. T > TCEP). We observe that a single
straight line behavior is obtained up to relative departure
as large as 10�3 after which nonlinear effects start to show

TABLE IV. Position of some characteristic points of the phase
diagrams for finite quark mass. All values are in MeV.

Set A Set B Set C

Tcð0Þ 210.0 209.8 214.5

�CEP 132.5 182.3 234.8

TCEP 197.8 181.6 154.2

�cð0Þ 321.5 311.6 298.1

FIG. 6 (color online). Position of the CEP in the ðT;�Þ plane as a function of the current quark mass m for the three model
parametrizations used in this work. The left panel displays the dependence of TCEP while the right panel displays that of �CEP. Values
corresponding to the chiral limit m ¼ 0 and to the ‘‘physical’’ current quark masses given in Table I for each parameter set are
indicated by fat dots.
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up. This result is particularly interesting since there have
been claims [37,38] that in some cases there might be a
‘‘two straight lines’’ behavior, namely, that two different
critical exponents are needed in order to describe the
critical behavior of the CV close to the CEP. In fact, this
feature has been interpreted as an influence of the TCP
critical properties on the CEP ones. As displayed in Fig. 8
no sign of this type of effect is found in our case. Results
similar to those presented in this figure have been obtained
for the chiral and quark number susceptibilities. The cor-
responding values of the critical exponents for different
kind of trajectories are listed in Table V. Note that in all
cases the agreement with the mean-field values of the
exponents is very good. The same type of results has
been found for the other two parametrizations, i.e., the

exponential parametrizations Set A and Set B. It should
be stressed that in order to obtain numerically the critical
exponents with a good accuracy it is important to know the
position of the CEP with very good precision. We have
checked that even an error of 0.5 MeV in TCEP and/or�CEP

translates into an important uncertainty in the critical ex-
ponents. In this sense, the method for the determination of
the CEP discussed in Appendix B is of great help.

V. SUMMARYAND CONCLUSIONS

In this work we have studied the behavior of strongly
interacting matter at the finite temperature and chemical
potential using a nonlocal chiral quark model which in-
cludes wave function renormalization and coupling to the
Polyakov loop. This type of model can be understood as a
nonlocal extension of the local Polyakov–Nambu-Jona-
Lasinio model, and represents a step toward a more real-
istic modeling of the QCD interactions that could allow a
simultaneous description of the deconfinement and chiral
phase transition. The nonlocal interactions have been de-
scribed by considering not only the frequently used expo-
nential form factors, but also a parametrization based on
fits to the quark mass and renormalization functions ob-
tained in lattice calculations. In this framework, we have
studied the corresponding phase diagrams and associated

FIG. 8 (color online). Dependence of the specific heat CV as a function of T for constant � in the vicinity of the CEP for
parametrization Set C. The left panel displays the dependence as one approaches the CEP from below while the right panel displays the
one when the approach is done from above.

TABLE V. Critical exponents at the CEP for Set C.

�ch �q �

�! 0.67(1) 0.67(1) 0.66(1)

� 0.66(1) 0.66(1) 0.67(1)

T " 0.67(1) 0.67(1) 0.66(2)

T # 0.66(1) 0.66(1) 0.67(1)

MF exponent 2=3 2=3 2=3

FIG. 7 (color online). Position of the CEP in the ðT;�Þ plane as a function of the current quark mass m close to the chiral limit for
parametrization Set C.
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quantities, both in the chiral limit and at finite values of the
current quark mass, paying particular attention to the ac-
curate determination of the critical points. In fact, in both
cases we have been able to obtain a set of coupled equa-
tions for the position of the corresponding critical point,
i.e., the TCP in the chiral limit and the CEP for finite quark
mass. Our numerical results indicate that some of the
features of the phase diagrams are not very much depen-
dent on the different parametrizations we used. For ex-
ample, for the finite quark mass the critical temperatures at
� ¼ 0 are within the range 210–215 MeV, while the
critical chemical potentials at T ¼ 0 are in the range of
298–322 MeV. On the other hand, the position of the
critical point turns out to be very sensitive to both the
parametrization and the value of the current quark mass
m. Comparing the results corresponding to the exponential
parametrization with and without quark wave function
renormalization we find that the main effect of the presence
of this term is to shift the location of the CEP towards
lower values of T and higher values �. Concerning the
lattice motivated parametrization we observe that it leads
to even lower values of TCEP and higher values of�CEP. As
for the dependence on m we have verified that for small
values of m (i.e. close to the TCP) the position of the CEP
displays in all cases a power-law behavior, as expected. For
the exponential parametrizations at m� 4 MeV this initial
variation tends to disappear and the position of the CEP
remains rather stable up to the maximum value of m we
have considered. On the other hand, for the lattice moti-
vated parametrization the situation is somewhat different.
In fact, the dependence on m is rather strong for basically
all the values considered. In particular, after an initial sharp
decrease, atm� 4 MeV the value of TCEP starts to increase
in a rather pronounced way. Finally, we have analyzed
numerically the critical behavior around the TCP and the
CEP determining the critical exponents associated with the
chiral and quark number susceptibilities as well as the heat
capacity. In all cases, we find that the obtained exponents
agree with their predicted mean-field values to a rather
good degree of accuracy. In particular, no influence of the
TCP properties on the CEP critical exponents has been
found.
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APPENDIX A: DERIVATION OF THE LANDAU
EXPANSION

To derive the Landau expansion, Eq. (17), we start by
assuming that the chemical potential � is such that, in the
chiral limit, the chiral condensate vanishes at a critical

temperature Tcð�Þ. Since in that situation the mean-field
value �1 also vanishes, for T � Tcð�Þ it is possible to
perform a double expansion of �MFA

reg , Eq. (8), in powers

of �1 and m. We obtain

�MFA
reg ð�; T;�; �2; �1Þ
¼ �̂ð�; T;�; �2Þ þ 4

�
1

8G
� S21ð�; T;�; �2Þ

�
�2

1

þ 2S42ð�; T;�; �2Þ�4
1 � 8m�1½S11ð�; T;�; �2Þ

� S32ð�;T;�; �2Þ�2
1� þOð�6

1; m�5
1; m

2�2
1Þ; (A1)

where

Sjkð�; T;�; �2Þ ¼
X
c

Z
p;n

gjð
c
n; ~pÞ

�Z2ð
c
n; ~pÞ

ð
c
n; ~pÞ2

�
k
; (A2)

and �̂ð�; T;�; �2Þ is the MFA thermodynamical potential
in the chiral limit for vanishing �1. Namely,

�̂ð�; T;�; �2Þ ¼ 8T

�2

X
c

Z
p;n

lnZð
c
n; ~pÞ þ

�2
p�

2
2

2GS

þUð�; TÞ þ�free
reg þ�0: (A3)

Using Eq. (11) the corresponding expression for the chiral
condensate can be readily obtained. In the chiral limit we
get

h �qqi ¼ 8�1½S11ð�; T;�; �2Þ � S32ð�; T;�; �2Þ�2
1�

þOð�5
1Þ: (A4)

Inverting this equation and replacing in Eq. (A1) we finally
get

�MFA
reg ð�; T;�; �2; h �qqiÞ
¼ �̂ð�; T;�; �2Þ þ Að�; T;�; �2Þh �qqi2
þ Cð�; T;�; �2Þh �qqi4 þOðh �qqi6Þ: (A5)

Here, the coefficients A and C are given by

Að�; T;�; �2Þ ¼ 1

4S211ðT;�;�; �2Þ
�

�
1

8G
� S21ðT;�;�; �2Þ

�
;

Cð�; T;�; �2Þ ¼ S42ðT;�;�; �2Þ
128S411ðT;�;�; �2Þ
� S32ðT;�;�; �2Þ

32S511ðT;�;�; �2Þ
�

�
1

8G
� S21ðT;�;�; �2Þ

�
:

(A6)

The expansion Eq. (A5) looks very similar to Eq. (15) of
Ref. [15] where nonlocal models in the absence of wave
function renormalization and coupling to the Polyakov
loop were analyzed. In principle, following similar ideas,
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explicit equations for the second order transition line as
well as the position of the TCP point might be determined.
However, the fact that in the present case the coefficients A
and C depend on the mean-field values �2 and � introdu-
ces further complications. In fact, slightly below Tc (for a
given value of�) the nonvanishing value of the condensate
induces departures of ð�; �2Þ from the critical values
ð�c; �2;cÞ obtained as solutions of the set of equations

@�̂ð�;Tcð�Þ;�; �2Þ
@�2

���������c;�2;c

¼ @�̂ð�; Tcð�Þ;�; �2Þ
@�

���������c;�2;c

¼ 0: (A7)

Those departures can be obtained using the gap equations
resulting from Eq. (A5). To quadratic order in the conden-
sate, we obtain

�2 ¼ �2;c �
ð@2���̂cÞð@�2

AcÞ � ð@2��2
�̂cÞð@�AcÞ

ð@2���̂cÞð@2�2�2
�̂cÞ � ð@2��2

�̂cÞ2
h �qqi2;

� ¼ �c �
ð@2�2�2

�̂cÞð@�AcÞ � ð@2��2
�̂cÞð@�2

AcÞ
ð@2���̂cÞð@2�2�2

�̂cÞ � ð@2��2
�̂cÞ2

h �qqi2;

(A8)

where a compact notation has been used to denote the

derivatives of �̂ and A evaluated at Tc. In this notation
we have, for example,

@�̂ð�; Tcð�Þ;�; �2Þ
@ ��

���������c;�2;c

¼ @��̂c;

@Að�; Tcð�Þ;�; �2Þ
@�2

���������c;�2;c

¼ @�2
Ac:

(A9)

Using Eqs. (A8) we can now obtain the leading corrections

to A, C, and �̂ induced by the nonvanishing value of
the condensate. Replacing the corresponding results in
Eq. (A5), and grouping in powers of h �qqi we finally obtain
Eq. (17). Namely,

�MFA
reg ¼ �̂ð�; T;�c; �2;cÞ þ Ach �qqi2 þ Cch �qqi4

þOðh �qqi6Þ; (A10)

where

Ac ¼ Að�; Tcð�Þ;�c; �2;cÞ;

Cc ¼ Cð�; Tcð�Þ;�c; �2;cÞ �
ð@2�2�2

�̂cÞð@�AcÞ2 þ ð@2���̂cÞð@�2
AcÞ2 � 2ð@2��2

�̂cÞð@�2
AcÞð@�2

AcÞ
½2ð@2���̂cÞð@2�2�2

�̂cÞ � ð@2��2
�̂cÞ2�

:
(A11)

APPENDIX B: FORMALISM TO DETERMINE THE
POSITION OF THE CEP

As discussed in Ref. [37], in the case in which the grand
potential � depends on one single variational parameter, a
set of equations that allows us to determine the position of
the CEP can be obtained. This set is formed by the corre-
sponding gap equation supplemented with the two equa-
tions that result from demanding that the second and third
total derivatives of the grand potential with respect to the
parameter also vanish. Physically, this corresponds to de-
termining the values of ðT;�Þ for which the grand potential
around its minimum is as flat as possible. The purpose of
this appendix is to give some details of the formalism
needed to generalize this idea to the case in which the
grand potential depends on more than one variational
parameter. In order to keep the derivation as general as
possible we will assume here that the grand potential
depends on N variational parameters 
1; 
2; . . . ; 
N . For
convenience, in what follows, we will distinguish 
1 from
the rest (note that there is no loss of generality in this
choice since the ordering of the parameters is completely

arbitrary), and introduce the Latin index j ¼ 2; . . . ; N.
Then, in a compact notation, the set of gap equations reads

@�

@
1

¼ 0; (B1)

@�

@
j
¼ 0: (B2)

The basic idea is now to consider the variational parame-
ters 
j as functions of 
1 with the corresponding functional

dependence determined by the solutions of the N � 1 gap
equations, Eqs. (B2). The total set of N þ 2 equations
needed to determine the CEP is then obtained by supple-
menting these N � 1 equations with those resulting from
demanding that the first, second, and third total derivatives
of the grand potential with respect to 
1 vanish. The first of
these equations turns out to be, of course, the gap equation
Eq. (B1). The other two are

@2�

@
2
1

þ 2
@2�

@
1@
j


0j þ
@2�

@
j@
k


0j
0k ¼ 0; (B3)
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@3�

@
3
1

þ 3
@3�

@
2
1@
j


0j þ 3
@3�

@
1@
j@
k


0j
0k

þ 3
@3�

@
j@
k@
l


0j
0k

0
l þ 3

@2�

@
j@
k


0j
00k þ 3
@2�

@
1@
j


00j

¼ 0: (B4)

Here, and in what follows, the sum over repeated Latin
indexes k; j; l ¼ 2; . . . ; N is understood. Note that in ob-
taining these equation some terms have been dropped
assuming that the gap equations, Eqs. (B1) and (B2), are
simultaneously satisfied. In Eqs. (B3) and (B4), 
0j, 
00j , etc.,
denote the derivatives of the corresponding parameters
with respect to 
1. They can be conveniently expressed
in terms of partial derivatives of the grand potential by
solving the two sets of linear equations resulting from
taking the first and second total derivatives of both sides
of the gap equations, Eq. (B2). We obtain


0j ¼ �ðC�1Þjk
@2�

@
1@
k

; (B5)


00j ¼ �ðC�1Þjk
�

@3�

@
2
1@
k

þ 2
@3�

@
1@
j@
k


0k

þ @3�

@
j@
k@
l


0k

0
l

�
; (B6)

where

Cjk ¼ @2�

@
j@
k

: (B7)

Therefore, once the explicit form of the grand potential
� in terms of the variational parameters is known, all the
derivatives appearing in the set of equations, Eqs. (B1)–
(B4), can be analytically determined. Then, the numerical
solution of this set of equations allows us to determine the
values of ðT;�Þ corresponding to the CEP as well as the
corresponding values of the variational parameters

1; 
2; . . . ; 
N .
Turning to the model discussed in the present work, we

note that for the parametrizations Set B and Set C we have
three variational parameters. We chose to identify them as

1 ¼ �1, 
2 ¼ �2, and 
3 ¼ �. Then, the set of five
equations needed to determine the CEP is formed by
Eqs. (10) supplemented by the two equations that result
from performing the corresponding identifications in
Eqs. (B3)–(B7). In the case of parametrization Set A the
situation is somewhat simpler since there are only two
variational parameters (
1 ¼ �1 and 
2 ¼ �) and, hence,
four equations are required to determine the CEP.
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