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We study a generalization of the Skyrme model with the inclusion of a sixth-order term and a generalized

mass term. We first analyze the model in a regime where the nonlinear � and Skyrme terms are switched to

zero, which leads to well-behaved analytical Bogomol’nyi-Prasad-Sommerfeld–type solutions. Adding

contributions from the rotational energy, we reproduce the mass of the most abundant isotopes to rather

good accuracy. These BPS-type solutions are then used to compute the contributions from the nonlinear

sigma and Skyrme terms when these are switched on. We then adjust the four parameters of the model using

two different procedures and find that the additional terms only represent small perturbations to the system.

We finally calculate the binding energy per nucleon and compare our results with the experimental values.
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I. INTRODUCTION

The Skyrme model [1] is nowadays one of the strongest
candidates for a description of the low-energy regime of
QCD. Developed in the beginning of the 60’s by T.H.R.
Skyrme, it consists of a nonlinear theory of mesons where
its main feature is the presence of topological solitons as
solutions. Each of these solutions is associated with a
conserved topological charge, the winding number, which
Skyrme interpreted as the baryon number, thus leading him
to state that the solitons are baryons emerging from a
meson field. The 1

NC
expansion of QCD introduced by

t’Hooft [2] in the mid-70’s and the later connection from
Witten [3] with the model developed by Skyrme brought
some support to this interpretation.

Since its original formulation, the Skyrme model has
been able to predict the properties of the nucleon within a
precision of 30%. Several modifications to the model have
been considered to improve these predictions, from the
generalization of the mass term [4–6] to the explicit addi-
tion of vector mesons [7,8], aside from higher order terms
in derivatives of the pion field [4]. Unfortunately, the
analysis of these models has been hampered by their non-
linear nature and the absence of analytical solutions.
Indeed, all the solutions rely on numerical computation
at some point, whether one uses the rational map ansatz
[9], which turns out to be a rather good approximation of
the angular dependence, or a full fledge numerical algo-
rithm, like simulated annealing [10,11], to find an exact
solution of the energy functional. Clearly, even a prototype
model with analytical solutions would allow going deeper
in the investigation of the properties and perhaps identify-
ing novel features of the Skyrmions.

In a recent study, Adam, Sanchez-Guillen, and
Wereszczynski (ASW) [12] obtained an analytical solution
by considering a model consisting only of a term of order
six in derivatives and a potential, which correspond to the
customary mass term for pions in the Skyrme model [13].
Their calculations lead to a compacton-type solution with

size growing as n1=3, where n the winding number is
identified with the baryon number, a result in general
agreement with experimental observations. Another im-
portant remark on their study is that their solutions are of
BPS-type, i.e. they saturate a Bogomol’nyi’s bound. Even
though physical nuclei do not saturate such a bound, the
small value of the binding energy may be one of the
motivations for solution of this type. Let us also mention
that recently Sutcliffe [14] found that BPS-type Skyrmions
emerge from models when a large number of vector me-
sons are added to the Skyrme model. However, the analysis
of ASW neglects rotational or isorotational energies of
nuclei, and perhaps the oddest feature of the model is
that it does not contain any of the terms that Skyrme
originally introduced in his model, the nonlinear � and
so-called Skyrme terms which are of order 2 and 4 in
derivatives, respectively. Being an effective theory of
QCD, there is nevertheless no reason to omit such contri-
butions. In their work, ASW further suggest that their
analytical solutions found could be used to compute the
contributions from the terms of the original Skyrme la-
grangian assuming they are small and do not affect sig-
nificantly the overall solutions. Unfortunately the nature of
the solution leads to singularities in the computation of the
energies related to the nonlinear � and Skyrme terms.
In this work, we find analytical BPS-type solutions for a

Lagrangian similar to the one in [12], which allows
considering contributions from the original Skyrme
Lagrangian as small perturbations. The analysis also in-
cludes contributions for (iso)rotational energies providing
a more realistic description of nuclei. The paper is divided
as follows: in Sec. II, we introduce the general form of this
generalized Skyrme model and find expressions for the
static energies. Next, we quantify semiclassically the
zero modes of the Skyrmions, which will allow computing
rotational contributions to the total energy coming from the
spin as well as the isospin of the nuclei. In Sec. IV, we
choose an adequate potential (or mass term) and switch off
the nonlinear � and Skyrme terms. We then find a simple
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analytical form of the BPS-type solutions for the remaining
Lagrangian. It turns out that all the properties of the nuclei
can be calculated analytically. In Sec. V, we use the solu-
tion to compute the properties of the full Lagrangian.
Fitting the different parameters of the model with nuclear
mass data [15], we verify that the contributions from the
nonlinear � and Skyrme terms remain small and that the
analytical solution is a good approximation.

II. LAGRANGIAN OF THE SKYRME MODEL

The model proposed by ASW is based on the Lagrangian
density

L ¼ L6 ��2V

¼ � 3

2

�2

162
Trð½L�; L��½L�; L��½L�; L��Þ

� 1

2
�2 Tr½1�U� ; (1)

where U ¼ �0 þ i�i�i is the SUð2Þ matrix representing
the meson fields, and L� ¼ Uy@�U is the left-handed

current. The model leads to BPS-type solitons. The con-
stants � and � are the only free parameters of the model,
with units MeV�1 and MeV2, respectively. Using scaling
arguments, one can show that the term of order 6 in field
derivatives L6 prevents the soliton from shrinking to zero
size while the second term, often called the mass term,
stabilizes the solution against arbitrary expansion.

On the other hand, the original Skyrme model consists of
the two completely different terms

L ¼ Lnl� þLSk (2)

with

L nl� ¼ �Tr½L�L
��; LSk ¼ �Trð½L�; L��2Þ; (3)

the nonlinear � and so-called Skyrme terms, which are of
order 2 and 4 in derivatives, respectively. Here ½�� ¼
MeV2 and � is a dimensionless constant.

We shall consider here a model containing the four terms
i.e. an extension of the Skyrme model with a sixth order
term in derivatives and generalized mass term. The
Lagrangian density reads

L ¼ ��2VðUÞ � �Tr½L�L
�� þ �Trð½L�; L��2Þ

� 3

2

�2

162
Trð½L�; L��½L�; L��½L�; L��Þ : (4)

We are interested in the regimewhere� and� are small, so
thatLnl� andLSk can be considered as small perturbations
to (1). Usually, the potential VðUÞ is chosen such that it
reproduces the mass term for pions when small fluctuations
of the fields are considered

U ¼ e2i�ið	i=F	Þ � 1þ 2i�i
	i

F	

; (5)

where F	 ¼ 4
ffiffiffiffi
�

p
is interpreted as the pion decay constant.

Since U is a SUð2Þ matrix, the meson fields obey the
condition

�2
0 þ�2

i ¼ 1 ; (6)

which limits the number of degrees of freedom to three.
The boundary condition at infinity must be Uðr ! 1Þ ¼
constant. Any constant matrix could be used since they are
all related by a global isorotation. We chose by conve-
nience

Uðr ! 1Þ ¼ I2�2 (7)

with I2�2 the two-dimensional unit matrix. This ensures
that each solution for the Skyrme field falls into a topo-
logical sector characterized by a conserved topological
charge

B ¼ � 
ijk

48	2

Z
d3xTrðLi½Lj; Lk�Þ: (8)

The static energy can then be calculated using

Estat ¼ �
Z

d3xLstat: (9)

We may conveniently write a general solution as

U ¼ ein��F ¼ cosFþ in � � sinF ; (10)

where n̂ is the unit vector

n̂ ¼ ðsin� cos�; sin� sin�; cos�Þ
or

�a ¼ ðcosF; sinF sin� cos�; sinF sin� sin�; sinF cos�Þ:
Following ASW [12], we consider solutions that saturate
the Bogomol’nyi’s bound for (1) using the form

F ¼ FðrÞ; � ¼ �; � ¼ n� ; (11)

where n is an integer. The static energy (4) becomes

Estat ¼ �
Z

d3xLstat

¼ 4	
Z

r2dr

�
�2V þ 9�2

16
n2F02 sin

4F

r4

þ 2�

�
F02 þ ðn2 þ 1Þ sin

2F

r2

�

þ 16�
sin2F

r2

�
ðn2 þ 1ÞF02 þ n2

sin2F

r2

��
; (12)

where F0 ¼ @F=@r, and the topological charge is simply
B ¼ n.
In order to represent physical nuclei, we have to quantize

the solitons using a semiclassical method described in the
next section. Using the appropriate spin and isospin num-
bers, we then calculate the total energy for each nucleus.
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III. QUANTIZATION

Because the topological solitons occupy a spatial
volume that is nonzero, usual quantization procedures are
no longer available. We therefore have to use a semiclas-
sical quantization method by adding explicit time depen-
dence to the zero modes of the Skyrmion. Performing
time-dependent (iso)rotations on the Skyrme field by
SUð2Þ matrix AðtÞ and BðtÞ yield

~Uðr; tÞ ¼ AðtÞUðRðBðtÞÞrÞAðtÞ ; (13)

where RijðBðtÞÞ ¼ 1
2 Tr½�iB�jBy� is the associated SOð3Þ

rotation matrix. Upon insertion of this ansatz in the time-
dependent part of (4), we write the rotational Lagrangian as

L rot ¼ 1

2
aiUijaj � aiWijbj þ 1

2
biVijbj ; (14)

with Uij, Vij, and Wij the inertia tensors

Uij ¼ �
Z

d3x

�
2�TrðTiTjÞ þ 4�Trð½Lk; Ti�½Lk; Tj�Þ

þ 9�2

162
Trð½Ti; Lk�½Lk; Ln�½Ln; Tj�Þ

�
; (15)

Vij ¼ �
ikl
jmn

Z
d3xxkxm

�
2�TrðLlLnÞ

þ 4�Trð½Lp; Ll�½Lp; Ln�Þ þ 9�2

162
Trð½Ll; Lp�

� ½Lp; Lq�½Lq; Ln�Þ
�
; (16)

Wij ¼ 
jkl
Z

d3xxk

�
2�TrðTiLlÞ þ 4�Trð½Lp; Tj�

� ½Lp; Ln�Þ þ 9�2

162
Trð½Ti; Lm�½Lm; Ln�½Ln; Ll�Þ

�
;

(17)

and Ti ¼ iUy½�i2 ; U�. Assuming a solution of the form (10),

all inertia tensors become diagonal. Furthermore, one can
show thatU11 ¼ U22 � U33 and that similar identities hold
for the Vij andWij tensors. Finally the general expressions

for the moments of inertia coming from each pieces of the
Lagrangian read

U11 ¼ 4	

3

Z
r2drsin2F

�
8�þ 16�

�
4F02 þ ð3n2 þ 1Þ

� sin2F

r2

�
þ 9�2

4

ð3n2 þ 1Þ
4

F02 sin
2F

r2

�
; (18)

V11 ¼ 4	

3

Z
r2drsin2F

�
2ðn2 þ 3Þ�þ 16�

�
ðn2 þ 3ÞF02

þ 4n2
sin2F

r2

�
þ 9�2

4
n2F02 sin

2F

r2

�
; (19)

and the expression for U33 can be obtained by setting
n ¼ 1 in the integrand of (18). It turns out that expressions
(15)–(17) lead toW11 ¼ W22 ¼ 0 for jnj � 2 and n2U33 ¼
nW33 ¼ V33. Otherwise, for jnj ¼ 1, where the solution
has spherical symmetry, we get

W11 ¼ 4	

3

Z
r2drsin2F

�
8�þ 16�

�
4
sin2F

r2
þ 4F0

�

þ 9�2

4
F02 sin

2F

r2

�
: (20)

Following Houghton and Magee [11], we now write the
rotational Hamiltonian as

Hrot ¼ 1

2

�ðL1 þW11
K1

U11
Þ2

V11 � W2
11

U11

þ ðL2 þW22
K2

U22
Þ2

V22 � W2
22

U22

þ ðL3 þW33
K3

U33
Þ2

V33 � W2
33

U33

þ K2
1

U11

þ K2
2

U22

þ K2
3

U33

�
; (21)

with (Ki) Li the body-fixed (iso)rotation momentum can-
onically conjugate to ai and bi, respectively. The expres-
sion for the rotational energy of the nucleon has been
obtained in [11] and reads, for a spherical symmetry,

EN
rot ¼

3

8U11

: (22)

For the deuteron, the rotational energy has been calculated
assuming an axial symmetric solution [16]

ED
rot ¼ 1

2V11

þ 1

2V22

; (23)

which reduces to

ED
rot ¼ 1

V11

(24)

for the axial ansatz (10). It is also easy to calculate
the rotational energies for nuclei with winding number
jnj � 3. The axial symmetry of the solution imposes the
constraint L3 þ nK3 ¼ 0, which is simply the statement
that a spatial rotation by an angle � about the axis of
symmetry can be compensated by an isorotation of �n�
about the �3 axis. It also implies that n2U33 ¼ nW33 ¼
V33. Then, recalling that W11 ¼ W22 ¼ 0 for these values
of n, the rotational Hamiltonian reduces to

Hrot ¼ 1

2

�
L2

V11

þ K2

U11

þ
�
1

U33

� 1

U11

� n2

V11

�
K2

3

�
: (25)

These momenta are related to the usual space-fixed isospin
I and spin J by the orthogonal transformations

Ii ¼ �RðA1ÞijKj; (26)

Ji ¼ �RðA2ÞTijLj: (27)
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According to (26) and (27), we see that the Casimir invar-
iants satisfyK2 ¼ I2 ¼ IðI þ 1Þ andL2 ¼ J2 ¼ JðJ þ 1Þ,
so the rotational Hamiltonian is given by

Hrot ¼ 1

2

�
JðJ þ 1Þ

V11

þ IðIþ 1Þ
U11

þ
�
1

U33

� 1

U11

� n2

V11

�
K2

3

�
:

(28)

IV. BPS-TYPE SOLUTIONS

Let us consider a model similar to [12] composed of the
term of order six in derivatives plus a potential by setting
�, � ¼ 0,

L ¼ � 3

2

�2

162
Trð½L�; L��½L�; L��½L�; L��Þ ��2VðUÞ:

(29)

Using the results of Sec. II, the static energy is

Estat ¼ 4	
Z

dr

�
9�2n2

4

sin4F

4r2
F02 þ�2VðUÞ

�
: (30)

The minimization of the static energy of the soliton, leads
to the differential equation for F

9�2n2

4

sin2F

2r2
@r

�
sin2F

r2
F0
�
��2VF ¼ 0: (31)

A change of variable z ¼ 2
ffiffi
2

p
�r3

9n� allows (31) to be written in

a simple form

sin 2F@z½sin2Fð@zFÞ� ��2 @V

@F
¼ 0: (32)

This last equation can be integrated

1

2
sin4FðFzÞ2 ¼ V (33)

and, inserting the expression for z, provides an expression
which amounts to a statement of equipartition of the en-
ergy, i.e. the term of order 6 in derivatives and the potential
contribute equally to the total energy. ASW has shown that
a solution of (33) saturates the Bogomol’nyi’s bound [12].
From (33), we obtain the following useful relation between
the function F and the potential:

Z
dF

sin2Fffiffiffiffiffiffiffi
2V

p ¼ �ðz� z0Þ (34)

with z0 an integration constant.
Now comes the time to choose a specific potential. The

choice for mass term of the Skyrme is not unique and
indeed has been the object of several discussions
[4,6,13]. The usual mass term V ¼ 1� cosF was consi-
dered in [12]. Solving (34) for F led to

FðrÞ ¼
�
2 arccosð�r3Þ for r 2 ½0; ��ð1=3Þ�
0 for r � ��ð1=3Þ ; (35)

where � ¼ �
18n� is a constant depending on the parameters

�,�, and n. Note that F0 diverges as r ! ��ð1=3Þ. Since this
solution saturates the Bogomol’nyi’s bound, the static
energy is proportional to the baryon number B ¼ n.
A question arises as to how would the nonlinear � and

Skyrme term affect the energy of such Skyrmions.
Switching them on slowly by moving � and � away
from zero could give an estimate of their contributions.
Unfortunately, it turns out that simply substituting the
solution (35) in the expression for energy associated with
the full Lagrangian leads to divergences. So, however
small the parameters � and � are, these BPS solutions
cannot be considered as appropriate approximations of the
solutions for (4).
Yet, it could be interesting to analyze the full Lagrangian

(4) in a regime close to a BPS Skyrmion. For this purpose,
we propose to write the potential in the form of the gener-
alized mass term introduced by [4]

V ¼ �X1
k¼1

Ck Tr½Uk þUyk � 2�

¼ �4	
X1
k¼1

Z
r2dr8Cksin

2

�
k�

2

�
: (36)

The main motivation for this choice is that the potential can
be written in a simple form in terms of pion fields.
Furthermore, this particular framework insures that one
recovers the chiral symmetry breaking pion mass term
� 1

2m
2
		. 	 in the limit of small pion field fluctuations

provided

X1
k¼1

k2Ck ¼ �m2
	F

2
	

16
: (37)

For practical purposes, one requires (i) an expression of
the potential that is simple enough to allow the analytical
integration of the left-hand side of Eq. (34), (ii) that the
results lead to an invertible function to be able to write the
chiral profile F as a function of r, and finally (iii) that FðrÞ
is well behaved. A most convenient choice is

V ¼ sin2
�
F

2

�
cos6

�
F

2

�
: (38)

Expanding the expression (38), the coefficients Ck are

C1 ¼ � �2

128
; C2 ¼ �2

128
; C3 ¼ �2

128
;

C4 ¼ �2

512
; Ck>4 ¼ 0:

(39)

Integrating (34), we get the general solution

FðrÞ ¼ 2 arccosðe��ðr3�r3
0
ÞÞ (40)

with � ¼ �
18n� . In order that the baryon number corre-

sponds to jBj ¼ n, one must require that

Fð1Þ � Fð0Þ ¼ �	
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for B positive or negative, respectively. Accordingly,
we choose the boundary conditions Fð0Þ ¼ 0 and Fð1Þ ¼
�	, which sets the integration constant r0 to zero and
leads to

FðrÞ ¼ �2j arccosðe��r3Þj ; (41)

where we use the absolute value to dispose of the sign
ambiguity of the arccos function. Note that here, contrary
to [12], we do not get a compacton-type solution but a well-
behaved function, with a continuous first derivative. All
calculations regarding energy can be performed analyti-
cally, i.e. static energy and the moments. For example, the
baryon density is given by the radial function

BðrÞ ¼ 2�

3	2�
e�ð�r3=6n�Þð1� e�ð�r3=9n�ÞÞ ;

which upon integration leads to baryon number B ¼ n.
Experimentally, the size of the nucleus is known to behave
as

R ¼ R0B
1=3 ¼ ð1:25 fmÞB1=3 ;

where R0 ¼ 1:25 fm. It is interesting to note that the
baryon number distribution is zero at r ¼ 0 but has maxi-

mum value
ffiffi
3

p
�

8	2�
independent of n, which is positioned at

rmax ¼
�
9�

�
ln

�
4

3

��
1=3

B1=3 m ; (42)

where rmax here is in units ofMeV�1. Accordingly the size

of the nucleus rmax is proportional to B
1=3 with R0 depend-

ing only on the ratio �=�. Similarly, expressions can be
obtained for energy and moment of inertia densities. Using
(40), they yield

E ¼ 2n	��

V11 ¼ n2U33 ¼ 4n2

ð3n2 þ 1ÞU11

¼ 2	

�
�n

3�

�
5=3

�2�

�
2

3

�
ð16 � 31=3 � 9 � 22=3Þ ;

(43)

where �ðxÞ is the gamma function. Combining these results
in (28)

Hrot ¼ 1

2U11

�
JðJ þ 1Þ ð3n

2 þ 1Þ
4n2

þ IðI þ 1Þ � K2
3

�
:

(44)

Note that this last result only holds for � ¼ � ¼ 0 and the
solution (40). The last term in Hrot is either zero or nega-
tive. Depending on the dimension of the spin and isospin
representation, the diagonalization of this Hamiltonian will
lead to a number of possible eigenstates. We are interested
in the lowest eigenvalue of Hrot, which points towards the
eigenstate ji; i3; k3ijj; j3; l3i with the largest possible ei-
genvalue k3. Since K2 ¼ I2 and L2 ¼ J2, the state with
highest weight is characterized by k3 ¼ i and l3 ¼ j and,
since nuclei are built out of B fermions, we must have

j 	 B=2. On the other hand, the axial symmetry of the
solutions implies that k3 ¼ �l3=n. We recall that these
solutions are approximations. Then for even B nuclei, the
integer part of jl3=nj is

0 	 jk3j ¼
���������

l3
n

��������
�
	

���������
j

n

��������
�
	

���������
B

2n

��������
�
¼ 0 ;

so it leads to jk3j ¼ 0. Similarly, for half-integer spin
nuclei,

1

2
	 jk3j 	

��������
j

n

��������	
��������
B

2n

��������¼
1

2
:

So we shall assume for simplicity that the largest possible
eigenvalue k3 is

 ¼ maxðjk3jÞ ¼
�
0 for B ¼ even
1
2 for B ¼ odd

:

Then, lowest possible rotational energy is given by

Erot ¼ 1

2U11

�
jðjþ 1Þ ð3n

2 þ 1Þ
4n2

þ iðiþ 1Þ � 2

�
: (45)

It remains to fix the values of the parameters � and�. In
order to do so, we choose as input parameters the experi-
mental mass of the nucleon and, for simplicity, a nucleus X
with zero (iso)rotational energy (i.e. a nucleus with zero
spin and isospin). The total energy of these two states are

EN ¼
�
Eþ 3

8U11

���������n¼1

¼ 2	��þ 1

�2

�
3�

�

�
5=3 3

16	�ð23Þð16 � 31=3 � 9 � 22=3Þ
(46)

EX ¼ Ejn¼B ¼ 2B	�� : (47)

Solving for � and � we get

�¼ 3 �31=4
ðEXÞ1=4

ffiffiffiffi
	

p ððEX�nENÞð9 �22=3�16 �31=3Þ�ð53ÞÞ3=4
�

¼ðEXÞ5=4ððEX�nENÞð9 �22=3�16 �31=3Þ�ð53ÞÞ3=4
24 �31=4 ffiffiffiffi

	
p :

(48)

As an example, we choose the nucleus X to be the helium-
4, the first doubly magic number nucleus. The mass of the
helium-4 nucleus has no (iso)rotational parts, since it has
zero spin and isospin. Setting the mass of the nucleon as
the average mass of the proton and neutron i.e. EN ¼
938:919 MeV and the mass of the helium nucleus to
EHe ¼ 3727:38 MeV, we obtain the numerical values � ¼
0:00491505 MeV�1 and � ¼ 30174:2 MeV2. We shall
refer to this set of parameters as Set Ia.
Experimentally, the size of the nucleus is known to

behave as

R ¼ R0B
1=3
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with R0 ¼ 1:25 fm. We get a similar behavior for rmax in
(42)

rmax ¼ ð1:4798 fmÞB1=3 : (49)

Combining (48) with (12) and (45), the mass of any
nucleus can be expressed as an analytical function of the
input parameters EN and EHe. In general, it depends on the
baryon number as well as the spin and the isospin of the
isotope. The spin of the most abundant isotopes are known.
The isospins are not so well known, so we resort to the
usual assumption that the most abundant isotopes corre-
spond to states with lowest isorotational energy, i.e. states
where the isospin I has the lowest value that the conserva-
tion of the third component of isospin I3 allows.
Accordingly,

I ¼ jI3j ¼ 1

2
j# of proton� # of neutronj ¼

��������
A

2
� Z

�������� :

(50)

Table I shows the relative deviation of the predictions with
regard to experimental values of nuclear masses of a few
isotopes. The predictions are accurate to 0.4% or better
even for heavier nuclei. Part of this accuracy is probably
due to the fact that the static energy of a BPS-type solution
is proportional to B, so if it dominates, the nuclear masses
should follow approximately the same pattern. However,
the predictions remain surprising good, even though our
calculations include rotational energy, and the model in-
volves only to two free parameters � and �:

The computations were repeated using as input parame-
ter X ¼ 16O and 40Ca, two other doubly magic nuclei (also
shown in Table I, Set Ib and Set Ic, respectively). These
set the parameters to � ¼ 0:00449295 MeV�1 and � ¼
32977:0 MeV2 and to � ¼ 0:00426504 MeV�1 and � ¼
34717:8 MeV2, respectively. Using these heavier

elements as input parameters changes slightly the overall
predicting accuracy. Whereas, the best overall accuracy is
achieved using 16O parametrization in Set Ib, the lightest
isotopes are best described by choosing 4He as input (Set
Ia). Note that the lightest nuclei have lower moments of
inertia and get relatively large rotational contribution to
their mass. Consequently, their masses are expected to be
more sensitive to the parameters affecting rotational en-
ergy. Likewise, since the ratio �=� decreases for X ¼ 16O
and 40Ca, the size of the nucleus also decreases with R0 ¼
1:3943 fm and 1.3470 fm, respectively.
Given this relative accuracy, one may wonder how

switching on the nonlinear � and Skyrme terms can im-
prove or affect these results. Indeed, the last results suggest
that these contributions need not be very large. This aspect
is analyzed in the next section.

V. NONLINEAR � AND SKYRME TERMS

Let us now consider the full Lagrangian in (4), assuming
that the contribution the nonlinear� and Skyrme terms can
be set arbitrarily small so that (40) represents a good
approximation to the exact solution. Inserting the solution
in (12) and in the expression for the various moments of
inertia, one get additional contributions proportional to �
and �

Estat ¼ 2n	��þ 16	�

�
n�

3�

�
1=3

�

�
1

3

�

�
�
ð2� 22=3Þðn2 þ 1Þ þ 2�

�
7

3

��

þ 128	�

3

�
3�

n�

�
1=3

�

�
�
2

3

�
ðð8ð2 � 31=3 � 22=3Þ � 7 � 21=3Þn2 þ 21=3Þ

(51)

and

Erot ¼ 1

2

�
jðjþ 1Þ
V11

þ iðiþ 1Þ
U11

þ
�
1

U33

� 1

U11

� n2

V11

�
2

�
;

(52)

with  ¼ 0 or 1
2 for even and odd B, respectively and

U11¼64	�

�
n�

�

�
þ512	�

9

�
3n�

�

�
1=3

�

�
�
1

3

�
ð121=3þð3n2þ1Þð�4þ61=3ð1þ21=3ÞÞÞ

þ2	

�
�n

3�

�
5=3

�2�

�
2

3

�
ð16 �31=3�9 �22=3Þð3n

2þ1Þ
4n2

(53)

TABLE I. Relative deviation from experimental nuclear
masses.

B Nucleus

EX�Eexp

Eexp
Eexp

Set Ia Set Ib Set Ic (MeV)

1 nucleon input input input 938.919

2 2H �0:0032 �0:0037 �0:0041 1875.61

3 3H �0:0040 �0:0047 �0:0052 2808.92

4 4He input �0:0010 �0:0016 3727.38

6 6Li �0:0017 �0:0026 �0:0032 5601.52

7 7Li �0:0014 �0:0023 �0:0029 6533.83

9 9Li �0:0006 �0:0015 �0:0022 8392.75

10 10B �0:0004 �0:0013 �0:0019 9324.44

16 16O 0.0010 input �0:0006 14895.1

20 20Ne 0.0010 0.0001 �0:0006 18617.7

40 40Ca 0.0016 0.0006 input 37214.7

56 56Fe 0.0018 0.0008 0.0002 52089.8

238 238U 0.0004 �0:0006 �0:0012 221696

ERIC BONENFANT AND LUC MARLEAU PHYSICAL REVIEW D 82, 054023 (2010)

054023-6



U33 ¼ 64	�

�
n�

�

�
þ 512	�

9

�
3n�

�

�
1=3

�

�
�
1

3

�
ð121=3 þ 4ð�4þ 61=3ð1þ 21=3ÞÞÞ

þ 2	

�
�n

3�

�
5=3

�2�

�
2

3

�
ð16 � 31=3 � 9 � 22=3Þ 1

n2
(54)

V11 ¼ 64	�

�
n�

�

� ðn2 þ 3Þ
4

þ 128	�

9

�
3n�

�

�
1=3

�

�
�
1

3

�
ððn2 þ 3Þ121=3 þ 16n2ð�4þ 61=3ð1þ 21=3ÞÞÞ

þ 2	

�
�n

3�

�
5=3

�2�

�
2

3

�
ð16 � 31=3 � 9 � 22=3Þ (55)

and as aboveW11 ¼ �n;1U11 otherwiseW11 ¼ W22 ¼ 0 for
jnj � 2. Again due to the axial symmetry of the ansatz,
U11 ¼ U22 � U33, while nondiagonal elements of Uij are

zero. Similar identities also hold for the Vij and Wij ten-

sors. Furthermore, we have n2U33 ¼ nW33 ¼ V33.
Relations (51)–(55) bring a clear understanding of the
dependence of the masses of the nuclei on the various
parameters B ¼ n, �, �, �, and �, as long as � and �
remain relatively small.

In order to estimate the magnitude of the parameter �
and� in a real physical case, we perform two more fits: Set
II optimizes the four parameters �, �, �, and � to repro-
duce the best fit for the masses of the nuclei, and Set III is
done with respect to the ratio of the binding energy (B.E.)
over atomic number, B:E:=A. More precisely, we use only a
subset of table of nuclei [15] composed of the most abun-
dant 144 isotopes (see Fig. 1). This is compared to Set I
which was determined in the previous section using the
masses of the nucleon and 4He and assuming � ¼ � ¼ 0.
The results are presented in Fig. 1 in the form of B:E:=A, as
a function of the baryon number for Sets Ia, II, III,
and experimental values. The optimal values of the pa-
rameters are presented in Table II.

As suspected, the new sets of parameters are very close to
Set Ia. The nonlinear� and Skyrme parameters� and� are
very small, but in order to compare, it is best to rescale the

static energy with the change of variable u ¼ ð4�=3�Þ1=3r,
such that the relative weight of each term is more app-
arent. Then the static energy takes the form

Estat ¼ 4	

�
3��

4

�Z
u2du

�
V þ 2�

�
4

3��2

�
2=3

�
�
F02 þ ðn2 þ 1Þ sin

2F

u2

�
þ 16�

�
16

9�2�

�
2=3

� sin2F

u2

�
ðn2 þ 1ÞF02 þ n2

sin2F

r2

�
þ n2F02 sin

4F

u4

�
;

(56)

where F0 ¼ @F=@u and the energy can be expressed in

units of 3��
4 . For example for Set II (Set III), the nonlinear

� term is proportional to �ð 4
3��2Þ2=3 ¼ 3:73524� 10�7

(1:43418� 10�6) and the Skyrme term to �ð 16
9�2�

Þ2=3 ¼
�1:3263� 10�6 (� 9:2355� 10�6), while the remaining

terms are of order one. Furthermore, the overall factor 3��
4

remains approximately the same for all the sets. Looking at
the numerical results, we observe nonetheless that these
two terms are responsible for corrections of the order of
0.01%. Clearly, the small magnitude of these contributions
provides support to the assumption that (40) is a good
approximation to the exact solution.
Comparing Set II to the original Skyrme Model with a

pion mass term, we may identify

F	 ¼ 4
ffiffiffiffi
�

p ¼ 0:364474 MeV

ðExperiment: F	 ¼ 186 MeVÞ e2 ¼ 1

32�
¼ �57019

ðe ¼ 4:84 for massive pion Skyrme ModelÞ

m	 ¼ 2
ffiffiffiffi
�

p
�

¼ 231591 MeV

ðExperiment: m	 ¼ 138 MeVÞ :
Set III leads to similar values for F	, e

2, andm	, which are
orders of magnitude away for the usual values obtained for
the Skyrme model. This was to be expected due to the
nature of our approximation since we assumed � and �
were relatively small, so that the nonlinear � and Skyrme
terms could be treated as perturbations. Of course here
these perturbative terms do not play a significant role in the
stabilization of the soliton as they do in the Skyrme Model.
Indeed the Skyrme term even has the wrong sign, so it
would destabilize the soliton against shrinking if it was not
for the contribution of order six in derivatives. The size of
the soliton is instead determined by the relative magnitude

TABLE II. Value of parameters for different fits.

Nucleus Set Ia Set II Set III

� (MeV2) 30174.2 29841.2 29475.7

� (MeV2) 0 0.00830341 0.0316869

� (dimensionless) 0 �5:48285� 10�7 �4:01085� 10�7

� (MeV�1) 0.00491505 0.00496265 0.00503994
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of� and �, so there is no need for F	 andm	 to be close to
the nucleon mass scale as for the original Skyrme Model.
Perhaps the explanation for such a departure is that the
parameters of the model are merely bare parameters, and
they could differ significantly from their renormalized

physical values. Yet, the original Skyrme Model esta-
blished a link between pion physics with realistic values
for F	 and m	 and baryon masses. On the other hand, the
model in (4) (in the regime where � and � are small)
improved prediction of nuclear masses, but the link to pion
physics is more obscure.
We note also that the B> 1 solutions of the Skyrme

Model display a totally different structure compared to the
BPS-type solution analyzed here. It is well known that the
lowest-energy B ¼ 2; 3; 4; . . . solutions of the Skyrme
Model exhibit, respectively, toroidal, tetrahedral, cubic,
. . . baryon density configurations. Such solutions are con-
veniently represented by an ansatz based on rational maps
[9]. The model at hand here leads to spherically symmetric
baryon density, at least in the regime of small � and �,
where solution (40) can apply. So it seems that the regime
dominated by the � and � terms leads to spherical con-
figurations, whereas the regime dominated by the nonlinear
� and Skyrme terms shows totally different baryon density
distributions. In the absence of a complete analysis, we can
only conjecture that the change in configuration is related
to which of the four terms are responsible for the stabiliza-
tion of the soliton and at some critical values of the
parameters there is a transition between configurations.
Let us now look more closely at the numerical results

presented in Fig. 1. These are in the form of the ratio of the
binding energy (B.E.) over the atomic number A as a
function of A, which corresponds to the baryon number.
The experimental data (black circles) are shown along with
predicted value (lines) for parametization of (a) Set Ia,
(b) Set II, and (c) Set III, respectively. Clearly Set Ia is
less accurate when it comes to reproduce the full set of
experimental data but is somewhat successful for the light-
est nuclei. This to be expected since the fit relies on the
masses of the nucleon and 4He. Yet, all predicted nuclear
masses are found to be within a 0.4% precision. In fact, the
ratio B:E:=A is rather sensitive to small variation of the
nuclear masses so the results in general are surprisingly
accurate. On the other hand, Set II, based on the nuclear
masses, overestimates the binding energies of the lightest
nuclei, while it reproduces almost exactly the remaining
experimental values. In Fig. 1(b), the predicted values for
large B coincide almost exactly with experimental data.
The least square fit based on B:E:=A, Set III, is the best fit
overall, but in order to better represent the features of the
lightest nuclei, it abdicates some of the accuracy found in
Set II for B> 30.
This apparent dichotomy between the description of the

two regions B 	 30 and B> 30may find an explanation in
the (iso)rotational contribution to the mass. Indeed light
nuclei have smaller sizes and moments of inertia so that
their rotational energy contributes to a larger fraction of the
total mass as the spins and isospins remain relatively small.

On the other hand, the size of heavy nuclei grows as B1=3

and their moments of inertia increase accordingly. The spin
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FIG. 1. Ratio of the binding energy (B.E.) over the atomic
number A (or baryon number) as a function of A. The experi-
mental data (black circles) are shown along with predicted
values (lines) for parametization of (a) Set Ia, (b) Set II and
(c) Set III, respectively.
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of the most abundant isotopes are relatively small, while
isospin can have relatively large values due to the growing
disequilibrium between the number of protons and the
number of neutrons in heavy nuclei [see Eq. (50)].
Despite these behaviors, our numerical results show that
the rotational energy is less than 1 MeV for B> 10 for any
of the Sets considered, and its contribution to B:E:=A
decreases rapidly as B increases. On the contrary, for B<
10, the rotational energy is responsible for large part of the
binding energy, which means that B:E:=A should be very
sensitive to the way the rotational energy is computed. In
our case, we approximated the nucleus as a rigid rotator.
One may argue that if rotational deformations due to
centrifugal effects were to be considered, it would lead to
larger moments of inertia and lower rotational energies.
This would predominantly affect the binding energy of the
lightest nuclei since this is where rotational energy is most
significant. Allowing for such deformation would in gen-
eral require the full numerical computation of the solution.
An easier way to check for deformation is by allowing the
ratio of the parameters � ¼ �=� in the solution (40) to
vary independently from the � and � in the model (4) and
by repeating the fit with respect to five parameters instead
of the four previous ones. This procedure allows for a
further adjustment of the size of the soliton in terms of �
with respect to a given choice of model parameters �, �,
�, and � and would lead to partial deformation of the
solution. Such a parametrization is expected to increase
both the size and the moments of inertia of the soliton and
decrease the total mass of the lightest nuclei, which would
be an improvement over the four parameters fit. We eval-
uated such correction for the nucleon whose relative con-
tribution to mass from rotation is the largest using the
parameters of Set II, and we obtained a modest decrease
of the mass of the order of 0.16%. Since the rotational
energy accounts for much less than 1% of the total energy
in most of the nuclei, deformations are not generally ex-
pected to be very significant.

VI. CONCLUSION

We have proposed a 4-terms model as a generalization
of the SkyrmeModel. In the regime where two of the terms
are negligible, i.e. � ¼ � ¼ 0, we find well-behaved ana-
lytical solutions for the static solitons. These saturate the
Bogomol’nyi’s bound with consequence that the static

energy is directly proportional to the baryon number B.
They differ from those obtained by ASW in an important
way: their model leads to compactons at the boundary of
which the gradient of the solution is infinite, and so the
solution could not be used to approximate the energies in
the regime where �, � � 0. Furthermore, one of the major
features of our model is that the form of the solutions
allows to compute analytically the static and rotational
energy and expresses them as a function of the model
parameters and B. Fixing the remaining parameters of
the model � and � leads to rather accurate predictions
for the mass of the nuclei.
We then used these BPS-type solutions to compute the

mass of the nuclei in the regime where � and � are small
but not zero. Indeed, fitting the model parameters to pro-
vide the best description of the nuclear mass data leads to
that particular regime where the values of � and � turn out
to be very small. Yet, we find a noticeable improvement in
the size and B:E:=A predictions with respect to those for
the � ¼ � ¼ 0 regime. Even though our 4-term model can
be considered a simple extension of the massive pion
Skyrme Model (different mass term and an additional
term with six derivatives in pion fields) the solution leads
to spherically symmetric baryon densities, as opposed
to more complex configurations for B> 1 standard
Skyrmions (e.g. toroidal, tetrahedral, cubic, . . .). These
results suggest that nuclei could be considered as near
BPS Skyrmions.
On the other hand, our results are somewhat puzzling:

Considering the nonlinear � and Skyrme terms as pertur-
bations constrained the values of pion decay constant F	

and pion mass m	 to values which differ by 2 orders of
magnitude from that of the Skyrme Model or their experi-
mental values. As we improved predictions for nuclear
masses, we seem to have lost the link established by the
original Skyrme Model between pion physics and baryons
with realistic values for F	 and m	 and baryon masses. It
remains an open question as to which set of parameters in
our model (or more generally which extension of the
Skyrme Model) would give the best description of both
pion physics and nuclear properties.
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