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We calculate the scattering lengths of Nambu-Goldstone bosons interacting with D mesons in a

covariant formulation of chiral perturbation theory, which satisfies heavy-quark spin symmetry and

analytical properties of loop amplitudes. We compare our results with previous studies performed using

heavy-meson chiral perturbation theory and show that recoil corrections are sizable in most cases.
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I. INTRODUCTION

In recent years, studies of charmonium and open-charm
systems have witnessed a renaissance. This was mainly led
by the experimental discoveries of various new particles,
either the still largely mysterious X, Y, Z particles or the
new open-charm states. Many of these states cannot be
easily understood in conventional quark models without
introducing new degrees of freedom in addition to their
basic q �q structure, notably multiquark components, i.e.,
qq �q �q .

An interesting resonance in this context is theD�
s0ð2317Þ

with a mass of 2317:8� 0:6 MeV and a small width of
several MeV (�< 3:8 MeV) [1]. The D�

s0ð2317Þ was first
observed by the BABAR collaboration in the inclusive
Dþ

s �
0 invariant mass distribution from eþe� annihilation

data at energies near 10.6 GeV [2] and later confirmed by
Belle [3] and CLEO [4]. The nature of this state has been
extensively discussed in the literature [5–17]. All studies
seem to agree that the coupling of the D�

s0ð2317Þ to the

nearby DK threshold cannot be ignored. From this per-
spective, it is particularly interesting to note that the
D�

s0ð2317Þ can be ‘‘dynamically’’ generated in coupled-

channel unitary approaches with interaction kernels pro-
vided by either chiral perturbation theory (�PT) [15,16] or
a SU(4) Lagrangian [17]. Such approaches have provided
many interesting results in the past few years, e.g., in
explaining the nature of some low-lying hadronic states
such as the f0ð600Þ and the �ð1405Þ (for a comprehensive
list of references, see Ref. [18]). In this dynamical picture
of the D�

s0ð2317Þ, the interactions of DK and coupled

channels play a decisive role. A quantity that characterizes
the strength of such an interaction at low energies is the
scattering length. Although it cannot be measured directly
given the short lifetime of the D mesons, it can never-
theless be studied on the lattice [19,20]. The s-wave DK
scattering lengths have recently been computed by several
authors [21,22]. In Ref. [21], the calculation was per-
formed using a covariant formulation of �PT up to next-
to-leading order (NLO) and its unitarized version. In

Ref. [22], the calculation was performed using the heavy-
meson �PT (HM�PT) [23–27] in the heavy-quark limit up
to next-to-next-to-leading order (NNLO), where recoil
effects have been neglected. The authors cautioned, how-
ever, that since the D mesons are not heavy enough, recoil
corrections may not be small and have to be studied.
To our knowledge, recoil corrections have so far not

been systematically studied in �PT describing the inter-
actions between heavy-light mesons and Nambu-
Goldstone bosons. They have been, however, studied quite
extensively in the one-baryon sector with three flavors: u,
d, and s. There these corrections were found to be fairly
large and play an important role in the studies of many
physical observables [28–31]. Because of the large baryon
mass that does not vanish in the chiral limit, covariant
baryon �PT often faces the so-called power-counting-
breaking (PCB) problem [32]. This problem has been
traditionally dealt with using a dual expansion in terms
of both p=�� and 1=MB, where p is a generic small

quantity, MB the baryon mass, and �� ¼ 4�f� the chiral

symmetry breaking scale. This is the celebrated heavy
baryon �PT [33,34]. Though very successful in describing
many observables, this approach is not covariant and modi-
fies the analyticity of loop amplitudes. More importantly,
from a practical point of view it suffers from slow con-
vergence, particularly in the 3-flavor sector. To overcome
these problems, several other approaches to deal with the
PCB problem have been proposed, which among others
include the infrared (IR) [35] and extended-on-mass-shell
(EOMS) [36,37] renormalization schemes. While the IR
scheme was found to introduce artificial cuts in certain
cases (see, e.g., Ref. [38]), the EOMS approach is fully
covariant and conserves the analytical properties of loop
amplitudes. In a series of applications [28–31], it has been
shown that the EOMS approach also improves the conver-
gence behavior of SU(3) baryon �PT.
The main purpose of the present work is to study the

scattering lengths of Nambu-Goldstone bosons (�) inter-
acting withDmesons in a covariant formulation of �PT by
using the EOMS scheme to remove the PCB terms induced
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by the large D meson masses. Given the fact that the D
meson mass (� 1:9 GeV) is much larger than the nucleon
mass, it is anticipated that the recoil corrections should be
smaller than those in the nucleon case. Nevertheless, such
recoil corrections may still be sizable as we will show in
this work.

This paper is organized as follows. In Sec. II, we in-
troduce the relevant effective Lagrangians and explain
briefly the EOMS renormalization scheme. In Sec. III,
we show the numerical results and compare them with
those of earlier studies by paying special attention to the
recoil corrections. A short summary follows in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we introduce the chiral Lagrangians
relevant to the present study up to NNLO and explain
briefly the EOMS renormalization scheme used to remove
the PCB pieces appearing in the covariant loop calculation.

A. Chiral Lagrangians

To introduce the chiral effective Lagrangians, one must
specify a power-counting rule. In the present case the light
meson masses m� and the field gradients @�� are counted

as OðpÞ, while @�P, @�P
�
�, mP, and mP� are counted as

Oð1Þ, where � denotes the Nambu-Goldstone bosons, and
P ¼ ðD0; Dþ; Dþ

s Þ and P�
� ¼ ðD�0; D�þ; D�þ

s Þ� are the D

and D� meson fields. The Nambu-Goldstone boson
propagator, i

q2�m2
�

, is counted as Oðp�2Þ, while the

heavy-light pseudoscalar and vector meson propagators,
i

q2�m2
P

and i
q2�m2

P�
ð�g�� þ q�q�

m2
P�
Þ, are counted as Oðp�1Þ.

The leading order chiral Lagrangian describing the self-
interaction of Nambu-Goldstone bosons has the standard
form:

L ð2Þ ¼ 1

48f20
hðð@��Þ���@��Þ2 þM�4i; (1)

where � collects the pseudoscalar octet fields

� ¼ ffiffiffi
2

p
�0
ffiffi
2

p þ �ffiffi
6

p �þ Kþ

�� � �0
ffiffi
2

p þ �ffiffi
6

p K0

K� �K0 � 2ffiffi
6

p �

0

B
B
@

1

C
C
A; (2)

M ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ is the mass matrix, and f0
is the pseudoscalar decay constant in the chiral limit. Here
and in the following, h� � �i always denotes the trace in the
respective flavor space.

The lowest-order chiral Lagrangian for the heavy-light
pseudoscalar and vector mesons is1

Lð1Þ ¼ hD�PD�Pyi �m
� 2
DhPPyi � hD�P

��D�P�y
� i

þm
� 2
DhP��P�y

� i þ ighP�
�u

�Py � Pu�P�y
� i

þ g

2m
� hðP�

�u�@�P
�y
� � @�P

�
�u�P

�y
� Þ	����i; (3)

where D�Pa ¼ @�Pa � �ba
� Pb and D�Py

a ¼ @�Py
a þ

�
�
abP

y
b with a (b) the SU(3) flavor index, g is the heavy-

light pseudoscalar-vector coupling constant of dimension

1, and m
�
is the mass of the heavy-light meson in the chiral

limit. The vector and axial-vector currents, �� and u�, are

defined as

�� ¼ 1
2ðuþ@�uþ u@�u

þÞ and

u� ¼ iðuy@�u� u@�u
yÞ

(4)

with u2 ¼ U ¼ expði�f0 Þ. The numerical value of g can be

fixed by reproducing the D�þ ! D0�þ decay width.
Using the PDG average, �D�þ ¼ 96� 22 keV and
BRD�þ!D0�þ ¼ ð67:7� 0:5Þ% [1], one obtains
�D�þ!D0�þ ¼ 1

12� ðg2=f2�Þðjq�j3=m2
D�þÞ ¼ 65� 15 keV

and accordingly g ¼ 1177� 137 MeV.
The NLO Lagrangian relevant to our study is2

Lð2Þ ¼ �2½c0hPPyih�þi � c1hP�þPyi � c2hPPyihu�u�i
� c3hPu�u�Pyi�; (5)

where �� ¼ uyMuy � uMu. Here we have adopted a
convention consistent with that of Ref. [22] for the purpose
of later comparison. In general, there are more terms
contributing to �P scattering, e.g., h@�P@�Pyihu�u�i,
h@�Pu�u�@�Pyi, h@�Pu�u�@�Pyi. However, at the �P

threshold, it can be easily shown that these terms lead to
the same structure as those proportional to c2 and c3 and
therefore can be neglected. The low-energy constant (LEC)
c1 can be determined from the mass splitting between
strange and nonstrange heavy-light mesons within the
same doublet, i.e.,

� 8c1ðm2
K �m2

�Þ ¼ ðm2
Ds

�m2
D þm2

D�
s
�m2

D� Þ=2: (6)

Using the masses given in Table I, we obtain c1 ¼ �0:225.
At NNLO one has3

Lð3Þ ¼ � i

2

h@�Pðx��ÞPy � Pðx��Þ@�Pyi

þ �0

2
h@�P��P

y � P��@
�Pyih�þi

þ �1h@�P�þ��Py � P���þ@�Pyi
þ �2hD�PPy � PD�PyihD��þi; (7)

1Because of heavy-quark spin symmetry, the pseudoscalar and
vector mesons can be assigned to the same multiplet.

2D� mesons in NLO and NNLO Lagrangians do not contribute
to the NNLO D� scattering lengths and therefore will not be
explicitly shown in this work.

3In Ref. [22] only one such term, that proportional to 
, was
considered.
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where x�� ¼ ½��; u��. Although the number of relevant

LECs at NNLO is considerably smaller than that present in
meson-baryon scattering processes [42,43], it is still rela-
tively large considering the scarcity of lattice data.
Therefore in the present study we follow the approach
adopted in Refs. [44,45] in studies of meson-baryon scat-
terings and put the NNLO LECs to zero. This is acceptable
in the present work because we focus on the recoil correc-
tions and not on the absolute values of the scattering
lengths.

B. Power-counting restoration and the EOMS
renormalization scheme

In a covariant formulation of �PT describing the inter-
actions between heavy-light mesons and Nambu-
Goldstone bosons, one has to face the PCB problem.
That is to say, in the calculation of a loop diagram one
may find terms with a chiral order lower than that deter-
mined by the naive power counting as prescribed in the
previous subsection. Such analytical PCB terms can be
removed, just as in baryon �PT, by using the heavy-meson
expansion, the IR, or the EOMS renormalization prescrip-
tions. The essence of the EOMS approach lies in the fact
that �PT, by construction, contains all the structures al-
lowed by symmetry. Therefore, the PCB pieces appearing
in a loop calculation can always be removed by redefining
the corresponding LECs. This is equivalent to removing
the finite PCB pieces directly from the loop results. In
practice, this can be achieved in two slightly different
ways: (1) one can first perform the loop calculation analyti-
cally, and then remove the PCB terms, or (2) one can first
perform an expansion in terms of the inverse heavy-meson
mass, 1=mH, calculate the PCB terms, and then subtract
them from the full results. It should be noticed that the
second prescription is different from the heavy-meson
(baryon) expansion because in general integration and
expansion may not commute. But since the PCB terms

are finite and analytical, the second prescription should
always work.
In the present study, we have explicitly checked that all

the PCB terms appearing in our loop calculation can be
removed by redefining the LECs introduced in the previous
subsection.

III. RESULTS AND DISCUSSION

Figure 1 shows the tree-level diagrams contributing to
the (dimensionless) threshold T matrices at LO [Figs. 1(a)–
1(c)], NLO [Fig. 1(d)], and NNLO [Fig. 1(e)]. Among the
three LO diagrams, the contact term [Fig. 1(a)] yields the
following results:

Tð1Þ
1 ¼ �m

�
DmK

f20
; Tð1Þ

2 ¼ 0; Tð1Þ
3 ¼ 0;

Tð1Þ
4 ¼ 2m

�
DmK

f20
; Tð1Þ

5 ¼ 0; Tð1Þ
6 ¼ �m�m

�
D

f20
;

(8)

Tð1Þ
7 ¼ 2m�m

�
D

f20
; Tð1Þ

8 ¼ 0; Tð1Þ
9 ¼ m

�
DmK

f20
;

Tð1Þ
10 ¼ �m

�
DmK

f20
; Tð1Þ

11 ¼ m
�
DmK

f20
;

(9)

where 1; � � � 11 denote the DsK, DKð1Þ, Ds�, DKð0Þ,
Ds�, D�ð3=2Þ, D�ð1=2Þ, D�, Ds

�K, D �Kð1Þ, and D �Kð0Þ
channels, respectively. In labeling the 11 channels, we have
explicitly shown their isospin in parentheses whenever
necessary. In the above results, f0 is the Nambu-
Goldstone boson decay constant in the chiral limit. The
contributions given by Figs. 1(b) and 1(c) also count as
OðpÞ, but at threshold they are in fact Oðp2Þ and have the
same structure as those provided by the NLO Lagrangians
and therefore can be effectively taken into account by

FIG. 1. Tree-level contributions at LO [(a), (b), (c)], NLO (d), and NNLO (e).

TABLE I. Numerical values of (isospin-averaged) masses [1] and decay constants [39] (in
units of MeV) used in the present study. The fK=f� ratio is consistent with the latest
determination [40], while the f�=f� ratio is in agreement with that determined in a number

of other approaches (see, e.g., Ref. [41]). The eta meson mass is calculated using the Gell-Mann-
Okubo mass relation: m2

� ¼ ð4m2
K �m2

�Þ=3.
m
�
D mD�

s
mD� mDs

mD m� mK m� f� fK f�

1972.1 2112.3 2008.6 1968.5 1867.2 138.0 495.6 566.7 92.4 1:22f� 1:31f�
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redefining the LECs C1 and C0 (see below). Hence we will
not calculate them explicitly in the present work.
Following the same arguments, we will also neglect similar
diagrams at NNLO with one of the LO vertices replaced by
a NLO vertex.

Lagrangian (5) provides the NLO tree-level contribu-
tions [Fig. 1(d)],4

Tð2Þ
1 ¼ C1m

2
K

f20
; Tð2Þ

2 ¼ ðC0 þ C1Þm2
K

2f20
;

Tð2Þ
3 ¼ ðC0 þ C1Þm2

�

2f20
; Tð2Þ

4 ¼ ð3C1 � C0Þm2
K

2f20
;

(10)

Tð2Þ
5 ¼ ð7C1 � C0Þm2

� � 16c1ðm2
� �m2

�Þ
6f20

;

Tð2Þ
6 ¼ C1m

2
�

f20
; Tð2Þ

7 ¼ C1m
2
�

f20
;

(11)

Tð2Þ
8 ¼ 4c1ðm2

� �m2
�Þ þ ðC0 þ 2C1Þm2

�

3f20
;

Tð2Þ
9 ¼ C1m

2
K

f20
; Tð2Þ

10 ¼ C1m
2
K

f20
; Tð2Þ

11 ¼ C0m
2
K

f20
;

(12)

where we have introduced two combinations of the
4 LECs: C1 ¼ 4ð2c0 � c1 þ 2c2 þ c3Þ and C0 ¼ 4ð2c0 þ
c1 þ 2c2 � c3Þ.
The NNLO loop contributions can be separated into two

groups: those that survive in the infinite heavy-meson mass
(mH ! 1) limit (Fig. 2) and those that vanish in themH !
1 limit (Fig. 3). For the first group, our results recover
those of Ref. [22] in the mH ! 1 limit. For the second
group, our calculation shows that they indeed vanish in the
mH ! 1 limit but are not negligible in a covariant calcu-
lation, as shown below. It should be noted that all the loop
contributions can be calculated analytically except the box
diagrams [Fig. 3(l) and its crossed counterpart]. However,
the analytical results are quite involved and therefore we
refrain from showing them explicitly. As explained earlier,
in the present work we are going to neglect all the NNLO
counterterms. Accordingly we have removed from our
loop results all the NNLO analytical terms. Therefore our
loop results contain only NNLO nonanalytical and higher-
order terms. This way the differences between our cova-
riant loop results and those of HM�PT are strictly recoil
corrections.
The s-wave scattering lengths are related to the thresh-

old T-matrix elements through

a ¼ 1

8�ðm� þmPÞTthr ¼ m
�
D

8�ðm� þmPÞ
~Tthr; (13)

where m� is the Nambu-Goldstone mass induced by ex-

FIG. 2. NNLO loop contributions that survive in the infinite heavy-meson mass (mH ! 1) limit.

4These results are the same as those of Ref. [22] except that
there the expression for Tð2Þ

4 is incorrect [46].

GENG et al. PHYSICAL REVIEW D 82, 054022 (2010)

054022-4



plicit chiral symmetry breaking and mP is the D meson
mass of a particular channel. It should be noted that
although in the calculation of Tthr we have used the average
D meson mass, in evaluating the scattering lengths
[Eq. (13)] we use the physical masses as given in Table I.
We also use the physical decay constants instead of the
chiral limit ones since the differences between them are of
higher order. Furthermore, we have introduced ~T with
dimension of a length for a more transparent comparison
with the HM�PT results of Ref. [22].

The unknown low-energy constants, C1 and C0, could in
principle be fixed by reproducing data, which are however
not yet available. As in Ref. [22], one can fix them by
reproducing the preliminary lattice QCD data (in units of
fm): aD�ð3=2Þ ¼ �0:16ð4Þ, aD �Kð1Þ ¼ �0:23ð4Þ, aDs� ¼
0:00ð1Þ, and aDsK ¼ �0:31ð2Þ.

In Table II, we list the T-matrix elements order by order

( ~Tð1Þ for LO and ~Tð2Þ for NLO) and the scattering lengths
for the 11 independent (strangeness, isospin) channels
computed in the mH ! 1 limit. Since we have neglected
the NNLO counterterms, we have denoted the NNLO

results by ~Tð3Þ
L stressing the fact that they contain only

loop contributions. We have fixed the LECs C1 and C0

by a least-squares fit of the four lattice points [20]. We
obtain a �2=dof ¼ 5:0 and the following values for the
LECs: C1 ¼ 0:4� 1:2 and C0 ¼ 9:6� 10:4 at the 95%
confidence level. Clearly, the four lattice data do not con-
strain well the two LECs.
In Table III, we show the values of the T-matrix

elements and scattering lengths found in the covariant
approach. The fit yields a �2=dof ¼ 4:5 and the
following values for the two LECs: C1 ¼ 2:0� 1:2 and

FIG. 3. NNLO loop contributions that vanish in themH ! 1 limit. Their crossed counterparts are not shown here but are included in
the calculation.
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C0 ¼ 4:0� 10:4. Comparing the relativistic and nonrela-
tivistic results, one can easily see that the recoil corrections

are sizable. For instance, ~Tð3Þ
L for DsK changes from

�1:9 fm to�5:1 fm, and ~Tð3Þ
L forDs� changes from 0:1þ

9:7i fm to �4:4þ 5:8i fm when going from HM�PT to
covariant �PT.

In obtaining the numbers shown in Tables II and III, we
have removed the ultraviolet divergences5 by the modified

minimal subtraction (gMS) renormalization scheme and
have set the renormalization scale � to 4�f�. In the

covariant �PT, there are two heavy scales, �� and m
�
D.

We have checked that our results would remain qualita-

tively the same if we had set � to m
�
D.

In Table IV, the loop contributions ~Tð3Þ
L calculated in

covariant �PT are decomposed into three parts: part

A comes from Figs. 2(a)–2(f); part B comes from
Figs. 2(g)–2(l); part C comes from Fig. 3. It is clear that
Figs. 2(a)–2(f) provide the most important contributions,
while those from Fig. 3 are similar in size to those from
Figs. 2(g)–2(l), which is different in HM�PT, where the
contributions from Fig. 3 vanish.
It should be pointed out that since we have neglected all

the NNLO counterterm contributions, we are not in a
position to comment on the convergence behavior of either
the covariant or the HM�PT results. Furthermore, because
of the nearby resonance D�

s0ð2317Þ, a pure �PT calcula-

tion, such as ours, in the DKð0Þ and Ds� channels should
be taken with care, where coupled-channel unitarity may
play an important role (for a relevant discussion, see
Ref. [21]).

IV. SUMMARY

We have studied the scattering lengths of Nambu-
Goldstone bosons interacting with D mesons using a co-
variant formulation of �PT. In particular, we have studied
the recoil corrections by comparing the relativistic with the

TABLE III. Same as Table II, but with the threshold T-matrix elements and scattering lengths calculated in relativistic �PT.

ðS; IÞ ð2; 1=2Þ (1, 1) (1, 0) ð0; 3=2Þ ð0; 1=2Þ ð�1; 1Þ ð�1; 0Þ
Channels DsK DK Ds� DK Ds� D� D� D� Ds

�K D �K D �K

~Tð1Þ �7:7 0 0 15.4 0 �3:2 6.4 0 7.7 �7:7 7.7
~Tð2Þ 3.9 5.8 0.7 1.9 4.9 0.4 0.4 5.2 3.9 3.9 7.8
~Tð3Þ
L �5:1 �2:1þ 4:9i �0:7 2.5 �4:4þ 5:8i �0:6 0.3 �0:4þ 3:8i �0:9þ 4:4i �6:2 7.7

a �0:28 0:12þ 0:16i 0.00 0.66 0:02þ 0:18i �0:13 0.28 0:16þ 0:12i 0:34þ 0:14i �0:33 0.77

aðlQCDÞ �0:31ð2Þ 0.00(1) �0:16ð4Þ �0:23ð4Þ

TABLE IV. Decomposition of the relativistic NNLO threshold T-matrix elements ~Tð3Þ
L [part A from Figs. 2(a)–2(f); part B from

Figs. 2(g)–2(l); part C from Fig. 3].

ðS; IÞ ð2; 1=2Þ (1, 1) (1, 0) ð0; 3=2Þ ð0; 1=2Þ ð�1; 1Þ ð�1; 0Þ
Channels DsK DK Ds� DK Ds� D� D� D� Ds

�K D �K D �K

A �6:6 �2:1þ 4:2i �0:6 0.7 �3:5þ 6:7i �0:8 0.5 �1:8þ 3:4i �1:9þ 6:3i �7:2 6.7

B 1.9 �0:6 �0:1 1.9 0.2 0.2 �0:2 0.7 0.7 1.5 �1:8
C �0:4 0:7þ 0:8i 0.1 0.0 �1:0� 0:9i 0.0 0.0 0:7þ 0:5i 0:3� 1:9i �0:5 2.8
~Tð3Þ
L ¼ Aþ Bþ C �5:1 �2:1þ 4:9i �0:7 2.5 �4:4þ 5:8i �0:6 0.3 �0:4þ 3:8i �0:9þ 4:4i �6:2 7.7

TABLE II. Threshold T-matrix elements ~T and scattering lengths a (in units of fm) in the nonrelativistic �PT up to NNLO ( ~Tð1Þ for
LO, ~Tð2Þ for NLO, and ~Tð3Þ for NNLO including only loop contributions). The preliminary lattice QCD results [20] are denoted by
aðlQCDÞ and have been fitted to fix the two LECs C1 and C0.

ðS; IÞ ð2; 1=2Þ (1, 1) (1, 0) ð0; 3=2Þ ð0; 1=2Þ ð�1; 1Þ ð�1; 0Þ
Channels DsK DK Ds� DK Ds� D� D� D� Ds

�K D �K D �K

~Tð1Þ �7:7 0 0 15.4 0 �3:2 6.4 0 7.7 �7:7 7.7
~Tð2Þ 0.8 9.7 1.1 �8:0 �1:2 0.1 0.1 7.0 0.8 0.8 18.5
~Tð3Þ
L �1:9 �1:6þ 5:7i �1:1 3.5 0:1þ 9:7i �0:8 0.3 0:8þ 4:8i 0:2þ 8:5i �3:4 4.8

a �0:28 0:27þ 0:19i 0.00 0.36 �0:04þ 0:30i �0:15 0.26 0:25þ 0:16i 0:28þ 0:27i �0:34 1.03

aðlQCDÞ �0:31ð2Þ 0.00(1) �0:16ð4Þ �0:23ð4Þ

5They appear in both HM�PT (see also Ref. [22]) and in
covariant �PT. The HM�PT results could have been made
renormalization scale independent if we had kept the NNLO
counterterms.
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nonrelativistic results. Our studies show that the recoil
corrections are sizable, which should be kept in mind in
future studies and in using the HM�PT results. Based on
available information we cannot conclude which frame-
work is better, although in principle one should trust more
covariant results, particularly when recoil corrections are
large.

Up to now, �PT describing the interactions between
heavy-light mesons and Nambu-Goldstone bosons has
often been used in the nonrelativistic limit. With more
precise data and lattice QCD results becoming available,
one may have to study more carefully the effects of recoil

corrections. The present work should be seen as a first step
in this direction.
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