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Starting from the QCD sum rules with nonlocal condensates for the pion distribution amplitude, we

derive another sum rule for its derivative and its ‘‘integral derivatives’’—defined in this work. We use this

new sum rule to analyze the fine details of the pion distribution amplitude in the endpoint region x� 0.

The results for endpoint-suppressed and flattop (or flatlike) pion distribution amplitudes are compared

with those we obtained with differential sum rules by employing two different models for the distribution

of vacuum-quark virtualities. We determine the range of values of the derivatives of the pion distribution

amplitude and show that endpoint-suppressed distribution amplitudes lie within this range, while those

with endpoint enhancement—flat-type or Chernyak-Zhitnitsky like—yield values outside this range.
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I. INTRODUCTION

Many of the theoretical and phenomenological analyses
of QCD processes rely upon the factorization of the under-
lying dynamics into a short-distance dominated part, ame-
nable to QCD perturbation theory, and a large-distance part
that has to be taken from experiment or be determined by
nonperturbative methods. Among such processes, the pion
form factors (electromagnetic and transition) play the role
of a theoretical laboratory to test various ideas and tech-
niques. The key ingredient in these descriptions is the pion
distribution amplitude (DA) ’�ðxÞ which represents the
pion bound state. At leading twist two it is defined in terms
of a nonlocal axial current and reads [1]

h0j �dðzÞ���5½z; 0�uð0Þj�ðPÞijz2¼0

¼ if�P
�
Z 1

0
dxeixðz�PÞ’ðt¼2Þ

� ðx;�2
0Þ; (1.1)

where x ( �x � 1� x) is the longitudinal momentum frac-
tion carried by the valence quark (antiquark) in the pion,
and the path-ordered exponential, i.e., the lightlike gauge
link

½z; 0� ¼ P exp

�
�ig

Z z

0
dy�taAa

�ðyÞ
�
; (1.2)

ensures gauge invariance.
The pion DA has an expansion in the basis of the

Gegenbauer polynomials which constitute the eigenfunc-
tions of the one-loop meson evolution equation. At a
typical hadronic scale �2

0, which serves as a normalization

scale, one then has [2]

’ðt¼2Þðx;�2
0Þ ¼ ’asðxÞ½1þ a2ð�2

0ÞC3=2
2 ð2x� 1Þ

þ a4ð�2
0ÞC3=2

4 ð2x� 1Þ þ . . .� ; (1.3)

where ’asðxÞ ¼ 6x �x is the asymptotic pion DA. By virtue
of the leptonic decay � ! �þ��, one obtains the normal-

ization
R
1
0 dx’

ðt¼2Þ
� ðx;�2

0Þ ¼ 1, which fixes a0 ¼ 1.
Rather than try to derive the pion DA as a whole, one

attempts to reconstruct it from its first few moments

h�Ni� �
Z 1

0
dxð2x� 1ÞN’�ðxÞ; (1.4)

where � � 2x� 1. The values of the moments may be
determined by means of QCD sum rules (SR)s with local
[3] or nonlocal condensates [4–7] or be computed by
numerical simulations on the lattice [8–10]. Once they
are known, one can use them to reverse engineer the pion
DA, with a precision depending upon the influence of the
magnitude of the discarded higher-order moments. It was
shown in Ref. [11] that, using QCD sum rules with non-
local condensates, one can de facto resort to the first two
Gegenbauer coefficients a2, a4, while ai with i ¼ 6, 8, 10
turn out to be negligible. Once the shape of the pion DA has
been determined at some (low) normalization scale �2

around 1 GeV2, one can evolve the Gegenbauer coeffi-
cients to higher values of the momentum scale using the
Efremov-Radyushkin-Brodsky-Lepage [2] evolution equa-
tion which is determined by means of QCD perturbation
theory.
It turns out that another quantity which is intertwined

with the form factors of the pion is its inverse moment

hx�1i� ¼
Z 1

0
dx

1

x
’�ðxÞ: (1.5)

This quantity is one of the key ingredients of the pion-
photon transition form factor, a process that has attracted
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the continuous attention of theorists [11–27] and experi-
mentalists [28–30]. Actually, the most recent measurement
of this observable by the BABAR Collaboration [30] has
provided controversial results. At moderate values of the
momentum transfer, up to 10 GeV2, the new high-
precision BABAR data agree well with the previous
CLEO data [29] and can be best described by pion DAs
that have their endpoints strongly suppressed [27,31,32]—
as the Bakulev-Mikhailov-Stefanis (BMS) model [11] de-
rived from QCD sum rules with nonlocal condensates. By
contrast, the high-Q2 BABAR data show an unexpected
growth with Q2, which cannot be understood on the basis
of collinear factorization and calls for pion DAs that have
their endpoints strongly enhanced [33,34]. This intriguing
behavior provides the basic motivation for the present
investigation, though we will not attempt to describe any
data.

We shall employ in this work the method of QCD SRs
with nonlocal condensates (NLC)s with the aim to estimate
the slope of the pion DA in the region x� 0, trying to
understand the fine structure of the pion DA in this region
vs the ansatz for the quark-virtuality distribution in the
nonperturbative QCD vacuum. Our main interest will be in
the behavior of pion DAs with distinct endpoint character-
istics. QCD SRs were mainly proposed with the purpose of
studying the integral characteristics of the pion DA. To
overcome this restriction, we shall design an operator for
defining integral derivatives of the pion DA. These will
supplement the results obtained with SRs which employ
the standard derivative of the pion DA. In this latter case,
we will use in our analysis not only a delta-function ansatz
for the vacuum-quark-virtuality distribution but also a
refined model which describes the large-distance regime
more accurately.

The paper is organized as follows. In Sec. II, we briefly
discuss the main features of the nonperturbative QCD
vacuum in terms of the scalar-quark condensate. We also
give the corresponding SRs and recall their main ingre-
dients. Section III is devoted to the calculation of the slope
of the pion DA in the endpoint region employing two
different techniques: integral SRs and differential SRs.
Finally, Sec. IV contains our conclusions, while some
important technical details are given in four appendices.

II. NONPERTURBATIVE QCD VACUUM WITH
NONLOCAL CONDENSATES

The basic idea underlying the NLC approach is that the
vacuum condensates possess a correlation length which
endows the vacuum quarks with a nonzero average virtual-
ity hk2qi (see, for instance, [35]). To analyze the nonlocality
of the vacuum condensate, it is useful to parameterize the
lowest one1 h �qð0Þ½0; z�qðzÞi � MSðz2Þ with the help of the

vacuum distribution function fSð�Þ:

MSðz2Þ ¼ h �qqi
Z 1

0
fSð�Þe�z2=4d� (2.1)

that describes the distribution of the vacuum-quark virtual-
ity � [4]. Assuming fSð�Þ ¼ �ð�� �2

q=2Þ that takes into
account only a fixed virtuality �2

q of the vacuum quarks

leads to the simplest Gaussian model

h �qð0ÞqðzÞi ¼ h �qð0Þqð0Þie�jz2j�2
q=8 (2.2)

for the scalar-quark condensate [4].
The parameter �2

q represents the typical quark momen-

tum in the vacuum and is given by

hk2qi ¼ h �qð0Þr2qð0Þi
h �qð0Þqð0Þi � �2

q: (2.3)

In this work, we use the value �2
q ¼ 0:4 GeV2, which is

supported by several analyses, though values within the
interval ½0:35� 0:45� GeV2 are still acceptable (see
[11,22,36] and references cited therein).
The QCD SRs with nonlocal condensates for the pion

DA were first proposed in [4] and were significantly im-
proved in [11] from which we quote

f2�’�ðxÞþ f2A1
’A1

ðxÞe�m2
A1
=M2 þ

Z 1

s0

	pertðxÞe�s=M2
ds

¼
Z 1

0
	pertðxÞe�s=M2

dsþ��Gðx;M2Þ
þ ½��Sðx;M2Þþ��Vðx;M2Þþ��Tðx;M2Þ�Q: (2.4)

Here, ’A1
is the A1-meson DA, whereas f� and fA1

are,

respectively, the decay constants of the A1 and the �
meson. The A1-meson state is an effective state that col-
lects the �0 and the a1 meson. The nonperturbative ingre-
dients in the theoretical part of the SR are the gluon-
condensate term ��Gðx;M2Þ and the quark-condensate
contribution ½. . .�Q. This latter contribution contains the

vector-condensate term (V), the mixed quark-gluon con-
densate term (T), and the scalar condensate term (S). The
explicit expressions for the nonperturbative contributions

and the NLO spectral density 	ðNLOÞ
pert ðxÞ are given in

Appendices A and C, respectively. It turns out that in the
endpoint region, the first radiative correction in the spectral
density, which is of Oð�sÞ, is too large, thus overshadow-
ing the zeroth order perturbative contribution and the non-
perturbative contribution. For that reason, we use in this

work the leading-order (LO) approximation 	ðLOÞ
pert ðxÞ ¼

3x �x=2�2. In order to include radiative corrections into
the spectral density—when analyzing the endpoint re-
gion—one would have to resum all radiative corrections,
a formidable task outside the scope of the present
investigation.

1In this work we use the gauge z�A� ¼ 0. Therefore, one has
½0; z� ¼ 1.
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III. SLOPE OF THE PION DA

As already mentioned in the Introduction, the endpoint
region of the pion DA turns out to be of particular impor-
tance for a variety of pion observables—see [16,37,38] for
an in-depth discussion of this issue. For example, in the
case of the pion-photon transition form factor, one finds
that in order to comply with the CLEO data—and those
BABAR data close to them—one needs endpoint-
suppressed pion DAs, while the high-Q2 BABAR data can
only be described with flat-type pion DAs. Therefore, it is
crucial to explore the fine details of the pion DA in a region
around the origin x� 0. One way to study the endpoint
regime of the pion DA is provided by the inverse moment
hx�1i� [39]. In Fig. 1, we show the values of

hx�1ðyÞi ¼ 1

�

Z yþ�

y


�ðxÞ
x

dx (3.1)

with � ¼ 0:05 for some pion DA models with a character-
istic behavior in the endpoint region. From this figure one
sees that the BMS pion DA (dashed green line), derived
with the aid of nonlocal condensates [11], exhibits an
evident endpoint suppression, while all other models
have more (flattop—dashed-dotted-dotted red line, and
CZ—dashed-dotted green line) or less (asymptotic DA)
endpoint enhancement. The considered models of the
pion DA and their parameters are given in Appendix B.
In the present work, we will probe the endpoint region of
the pion DA also by another means, namely, the integral
derivative which will be defined next.

A. Integral sum rules

We introduce now the integral derivatives in order to
discuss the slope of the pion DA.We define these quantities

in terms of a set of operators DðnÞ given by

½Dð0Þ’�ðxÞ ¼ ’0ðxÞ; ½Dð1Þ’�ðxÞ ¼ ’ðxÞ=x;

½Dð2Þ’�ðxÞ ¼ 1

x

Z x

0

’ðyÞ
y

dy:
(3.2)

Then, assuming ’ð0Þ ¼ 0, we get the iterative formula

½Dðnþ1Þ’�ðxÞ ¼ 1

x

Z x

0
dy½DðnÞ’�ðyÞ: (3.3)

Thus, each higher derivative within the set of the differen-

tial operators DðnÞ is stronger averaged with respect to x
than the previous one. The usefulness of these derivatives
derives from the fact that they can be applied to QCD sum
rules which in general contain on their right-hand side
singular contributions. In Appendix D, we elaborate on

DðnÞ so that here we can focus our attention on the main

properties of these derivatives. First, it is obvious that DðnÞ
acts on a linear function as a differentiation operator, i.e.,

DðnÞax ¼ a. Second, assuming that the Taylor expansion
of ’ðxÞ at x ¼ 0 exists, one finds from (3.5)

½Dð�þ2Þ’�ðxÞ ¼ ’0ð0Þ þ ’00ð0Þ x

2!2�þ1
þO

�
x2

3�þ1
’ð3Þ

�
;

(3.4)

which is valid for any real �, as we explain in Appendix D.
From the above equation, one can see that the defined

operator Dð�Þ reproduces at small x and/or large � the
derivative of ’ðxÞ at the origin x ¼ 0. Strictly speaking,

using (3.4), one obtains limx!0½Dð�þ2Þ’�ðxÞ ¼ ’0ð0Þ (at
fixed � 2 R), and, using (3.5) and (D4), one gets

lim�!1½Dð�þ2Þ’�ðxÞ ¼ ’0ð0Þ (at fixed x). For this reason,
we may appeal to Eq. (3.3) and call the variation range of

the operator Dð�þ2Þ the integral derivative of ’. Having
defined this operator, we can derive the following expres-
sion

FIG. 1 (color online). Graphical representation of hx�1ðyÞi, integrated in the region y to yþ � for different pion DAs. Left panel:
Solid blue line—asymptotic; dashed green line—BMS [11]. Right panel: Dashed-dotted green line—CZ [3]; dashed-dotted-dotted red
line—flattop DA [Eq. (B1) with � ¼ 0:1].
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½Dð�þ2Þ’�ðxÞ ¼ 1

x

Z x

0
’ðyÞfðy; �; xÞdy; (3.5)

where

fðy; �; xÞ ¼ �ðx� yÞ
�ð�þ 1Þy

�
ln
x

y

�
�

(3.6)

for any real � (see Appendix D). As it is seen from
Eq. (3.5), the function fðy; �; xÞ acts as a ‘‘smooth projec-
tor’’ onto the vicinity of the origin of y, as one can
appreciate from Fig. 10 in Appendix D.

By applying the operator ½Dð�þ2Þ� on both sides of the
QCD SR given by (2.4), we obtain a new SR, viz.,

f2�½Dð�þ2Þ’��ðxÞ þ f2A1
e
�m2

A1
=M2½Dð�þ2Þ’A1

�ðxÞ
þ

Z 1

s0

½Dð�þ2Þ	pert�ðxÞe�s=M2
ds

¼
Z 1

0
½Dð�þ2Þ	pert�ðxÞe�s=M2

dsþ ½Dð�þ2Þ��G�ðx;M2Þ
þ ½Dð�þ2Þ��V�ðx;M2Þ þ ½Dð�þ2Þ��T�ðx;M2Þ
þ ½Dð�þ2Þ��S�ðx;M2Þ: (3.7)

In order to achieve a better stability of this SR, we take into
account an effective A1-meson state that embodies the �0
and the a1 mesons and has the decay constant fA1

¼
0:227 GeV and the mass m2

A1
¼ 1:616 GeV2. For the

pion-decay constant and the continuum threshold, we use
f� ¼ 0:137 GeV and sNLO0 ¼ 2:25 GeV2, respectively.

These values were derived before from the corresponding
two-point QCD SRs with nonlocal condensates, see
Ref. [11]. However, because in our SR— cf. (3.7)—we
have to resort to the LO expression for the spectral density
(because the first radiative correction is too large), we
adopt a somewhat larger value of the threshold parameter:
s0 � sNLO0 ð1þ �S=�Þ ¼ 2:61 GeV2. This is done for both

the integral as well as the differential SRs, the reason being
that we want to preserve the correct normalization of the
pion DA.2

As usual, we study the SRs in the fiducial interval of the
Borel parameter M2 2 ½M2

min;M
2
max�, where both terms,

the continuum contribution and the nonperturbative one,
each contributes about 1=3 to the whole SR (2.4). This
induces an uncertainty of the order of ð1=3Þ2 ! 10%.
Moreover, the quantities to be calculated with the SR
(the integral derivatives) should not (crucially) depend on
the Borel parameter. Therefore, we should take care that
this dependence is minimized. To achieve this goal, we
attempt to minimize the root-mean-square deviation by

varying the ½Dð�þ2Þ’A1�ðxÞ contribution in the fiducial
Borel interval. On this account, we can average the M2

dependence of the pion DA contribution [first term in
Eq. (3.7)] in order to get a more reliable form of the SR.

Therefore, we write

½Dð�þ2Þ’SR
� �ðxÞ ¼ h½Dð�þ2Þ’��ðx;M2Þi

� 1

M2
max �M2

min

�
Z M2

max

M2
min

dM2½Dð�þ2Þ’��ðx;M2Þ: (3.8)

In Fig. 2, we show the M2 dependence of ½Dð3Þ’��ðx;M2Þ,
obtained from SR (3.7), for different values of ½Dð3Þ’A1�ðxÞ
and evaluating it for x ¼ 0:5. The average value in the

fiducial interval is ½Dð3Þ’SR
� �ð0:5Þ ¼ 4:8	 0:5.

We discuss now the integral sum rules and their appli-
cations. The main contribution from the singularities in the

SR for ½Dð�þ2Þ’��ðx;M2Þ stems from the x region around
� � �2

q=ð2M2Þ. This is because we used a delta-ansatz

model [cf. (A1) and (A2)] for the condensates, which
implies that the nonperturbative contributions have
delta-function and Heaviside-function behaved terms
(A3)–(A8). Therefore, in order to take into account all
NLC contributions, we should analyze the region x * 0:4
and use M2

min 
 0:6 GeV2, which corresponds to � �
1=3< x. Moreover, the image of the operator Dð�þ2Þ for
� 
 4 is numerically very close to the result obtained with
the differentiation method (see next subsection) for any x.
Thus, the integral SR (3.7) becomes close to the differential
SR, which we will consider in the next section. For these
reasons, we analyze the constructed SR (3.7) for � ¼ 0, 1,
2, 3, 4, and x > 0:4 and present the results in Fig. 3 by the
solid line that is inside the light gray strip bounded by the
short-dashed lines. For the sake of comparison, the pre-
dictions for the asymptotic DA (dashed-dotted line) and the
BMS DA bunch—obtained in the NLC SR analysis of
Ref. [11]—(shaded band limited by long-dashed lines)

0.5 1.0 1.5 2.0 2.5 3.0
3.0

3.5

4.0

4.5

5.0

5.5

6.0

FIG. 2 (color online). Dependence of ½Dð3Þ’��ðx;M2Þ on the
auxiliary Borel parameter M2 for x ¼ 0:5. The solid blue line
corresponds to ½Dð3Þ’A1�ðxÞ ¼ 6:4, whereas the dashed lines
refer to ½Dð3Þ’A1�ðxÞ ¼ 6:7 (upper curve) and ½Dð3Þ’A1�ðxÞ ¼
7:1 (lower curve), using in all cases x ¼ 0:5. The two vertical
lines delimit the fidelity region M2 2 ½M2

min;M
2
max�.2We thank A. P. Bakulev for useful remarks on this point.
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are also shown. From this figure, we see that our SR

estimates for ½Dð�þ2Þ’SR
� �ðxÞ agree fairly well with the

BMS model—see also Table I. This table shows estimates
for the third-order integral derivative of the pion DA for
x ¼ 0:5, using (i) the sum rule given by Eq. (3.7) and
(ii) the pion DA models we discussed above, and also
flat-type DAs which we consider below.

We turn now our attention to flat-type DAs. First, we
compare the QCD SR result, obtained in (3.8), with what
one finds with the flattop model ’flat

ðB1ÞðxÞ � ðxð1� xÞÞ�
given in Appendix B. For this model, one has

½Dð�þ2Þ’flat
ðB1Þ�ðxÞ � ½Dð�þ2Þ’as�ðxÞ * ½Dð�þ2Þ’SR

� �ðxÞ
for �< 0:1

for any real � 2 þR and 0< x< 1. For the value� ¼ 0:1,

we find ½Dð3Þ’flat
ðB1Þ�ð0:5Þ ¼ 227, which is much larger and

far outside the range of values extracted from our SR.
Second, we consider a particular flat-type pion DA,

which is provided by the anti-de Sitter/QCD correspon-
dence in the holographic approach—see, for instance,
Refs. [40–43]. In that case, one has � ¼ 0:5 yielding

½Dð3Þ’hol�ð0:5Þ ¼ 14.
Third, we study an alternative flatlike pion DA which

results from the Gegenbauer expansion of unity by retain-

ing only the first few harmonics. One obtains

’flat
ð3:9ÞðxÞ ¼ 6x �x

X3
n¼0

C3=2
2n ð2x� 1Þ 2ð4nþ 3Þ

3ð2nþ 1Þð2nþ 2Þ
(3.9)

with a profile shown in Fig. 4 in comparison with the
models already mentioned: BMS—solid line; CZ—long-
dashed blue line; flattop DA given by Eq. (B1)—dotted red
line; flatlike DA given by Eq. (3.9)—dashed-dotted green
line.
It is interesting to notice that using the pion DA given by

expression (3.9) to calculate the pion-photon transition
form factor according to Radyushkin’s expression (24) in
Ref. [33], one actually reproduces the gross features of his
results. This proves that the inclusion of the first few
Gegenbauer polynomials in (3.9) does not affect the
result obtained with ’ðxÞ ¼ 1 in the momentum range
Q2 � 40 GeV2 in a crucial way. This type of DA, i.e.,
(3.9), yields for the integral derivative the value

½Dð3Þ’flat
ð3:9Þ�ð0:5Þ ¼ 22:5, which is much larger than the

range of values determined via our SR. This holds true
also for the other two flat-type DAs considered above.
Recalling that the leading-order QCD sum rules with the
minimal Gaussian model for the nonlocal condensates

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

6

8

FIG. 3 (color online). We show the x dependence of ½Dð�þ2Þ’��ðxÞ for the BMS bunch of pion DAs [11] (shaded green band within
long-dashed lines) in comparison with the SR result (3.8) (narrow gray strip) in all three panels. The left panel shows the predictions
for � ¼ 0, whereas those for � ¼ 1, and � ¼ 4 are shown in the middle and the right panel, respectively. The dashed-dotted line
represents the asymptotic result ½Dð�þ2Þ’as�ðxÞ ¼ 6� 3x=2�.

TABLE I. Results for the third-order integral derivative for x ¼ 0:5 and the (usual) derivative
of the pion DA, using different SR approaches (first three rows) and pion DA models (six last
rows).

Approach/Model Integral derivative ½Dð3Þ’��ð0:5Þ Derivative ’0
�ð0Þ

1 Integral SR (3.7) 4:7	 0:5 5:5	 1:5
2 Differential SR (3.14) � � � 5:3	 0:5
3 SR with smooth NLC (3.18) � � � 7:0	 0:7

4 BMS bunch [11] 5:7	 1:0 1:7	 5:3
5 Asymptotic DA 5.25 6

6 CZ DA [45] 15.1 26.2

7 DA from [44] 14 0

8 Flat-type DA, Eq. (3.9) 22.5 72

9 flattop DA [Eq. (B1), � ¼ 0:1] 227 � 6
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provide much smaller values of the integral derivative of
the pion DA, one may conclude that it is very difficult to
reconcile flat-type pion DAs with SR (3.7).

On the other hand, the CZ model also yields third-order
integral derivatives which are incompatible with the values
derived from our SR (3.7)—see Table I. Note that a similar
statement also applies to the pion DA proposed in [44],
which employs a Brodsky-Huang-Lepage ansatz for the
k? dependence of the pion wave function—see Table I.
The upshot of this table is that the SR for the integral
derivative of the pion DA is fulfilled by the BMS bunch,
whereas flat-type DAs have no overlap with the estimated
range of values. The same is true for the CZ model.

We close this subsection by considering the usual de-
rivative ’0

�ð0Þ of the pion DA, which encapsulates the key
characteristics of the pion DA at small x. This quantity can
be extracted from Fig. 3, where we have plotted the results

for ½Dð�Þ’SR
� �ðxÞwe obtained with the SR (3.7) for different

values of �. To determine ’0
�ð0Þ one can use expansion

(3.4)

½Dð�þ2Þ’SR
� �ðxÞ � ’0

�ð0Þ þ ’00
�ð0Þ x

2!2�þ1
(3.10)

and subtract the second derivative for which the asymptotic
value ’00

�ð0Þ ¼ �12ð6Þ is used. The involved error	6 was
estimated by varying (3.10) within the narrow grey strip in
Fig. 3. To be more specific, one obtains

’0
�ð0Þ � ½Dð�þ2Þ’SR

� �ðxÞ � ’00
�ð0Þ x

2!2�þ1

� ½Dð�þ2Þ’SR
� �ðxÞ þ 3x

2�
¼ 5:5	 1:5 (3.11)

for any 0:4< x and 0 � � � 4. The error in (3.11) is a

combination of the uncertainties originating from SR (3.7)
and the error in the determination of ’00

�ð0Þ.
The above finding can be compared with what one

obtains for the BMS and the CZ model (displayed in
Table I)

’0
�ð0Þ ¼ 6½1þ 6aBMS

2 þ 15aBMS
4 � ¼ 1:07þ5:87

�4:68

¼ �3:61� 6:95 (3.12)

and

’0
�ð0Þ ¼ 6½1þ 6aCZ2 � ’ 26:2; (3.13)

respectively, using in both cases the normalization scale
�2 ’ 1 GeV2. Quite analogously to the integral derivative,
the CZ model yields also for the standard derivative much
larger values than those estimated in (3.11). By contrast,
the pion DA model proposed in [44]—though it provides a
similarly large integral derivative like the CZ DA—has an
usual derivative at the origin, which is zero due to the
strong exponential suppression of this DA in the vicinity
of the origin.

B. Differential sum rules

Another way to study the behavior of the pion DA in the
small-x region is provided by the differentiation of the SR
(2.4), which yields

f2�’
0
�ð0;M2Þ ¼ 3

2�2
M2ð1� e�s0=M

2Þ þ 18AS�
0

� f2A1
’0

A1
ð0Þe�m2

A1
=M2

: (3.14)

We shall evaluate this SR for the threshold value s0 ¼
2:61 GeV2, recalling that we employing a LO expression
for the spectral density.
Using the simplest delta-ansatz model for the conden-

sates [cf. (A2)], only one nonperturbative term survives,
namely, the four-quark condensate

�0 ¼ 1

18AS

d

dx
��Sðx;M2Þjx¼0; (3.15)

where ��Sðx;M2Þ is represented by Eq. (A9)—see
Appendix A. The vector-quark condensate (V) and the
gluon condensate (G)—recall Eq. (2.4)—give zero contri-
butions in the region x < �, where � ¼ �2

q=ð2M2Þ> 0

with �2
q ¼ 0:4 GeV2. On the other hand, the antiquark-

gluon-quark condensate (T) amounts to a vanishing con-
tribution in the region x <minf�; 1� 2�g. For M2 >
0:4 GeV2 (or equivalently �< 1=2) this contribution can
also be neglected.
Even if we assume a behavior of the various condensates

differing from the delta-ansatz model, using, for instance, a
smooth model like (3.18) for the scalar-quark condensate
(which implies a decay at large distances not slower than
the exponential decay—see further below), the (V), (G),
and (T) terms give only a small nonzero contribution in the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 4 (color online). Comparison of selected pion DA mod-
els. Solid blue line—central line of the BMS bunch [11]; long-
dashed blue line—CZ model [3]; dashed-dotted green line—
flatlike model given by (3.9), dotted red line—flattop DA from
Eq. (B1) with � ¼ 0:1. All DAs are normalized at the same scale
�2

0 ’ 1 GeV2 with or without evolution [11].
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small-x region. Therefore, these terms can be neglected in
first approximation in both mentioned models. In this
section, we shall study the differential SR (3.14) using
the mentioned models for the scalar condensate.

The calculation of the nonlocal version of the four-
quark-condensate contribution involves only the scalar-
quark condensate. The four-quark contribution
��Sðx;M2Þ was obtained in [4] and can be used with
various types of vacuum-quark distributions fSð�Þ.
Accordingly, the probability of finding vacuum quarks
with very large virtualities is very small, as one can see
from Fig. 5. Therefore, the distribution function fSð�Þ ’ 0
diminishes in the region �>M2, the latter region corre-
sponding to the values M2 >M2

min 
 0:6 GeV2 of the

Borel parameter. On the basis of this result, one [46] can
use the method of Ref. [4] to obtain the model-independent
expression (A9). Then, one finds for the four-quark-
condensate contribution to the SR (3.14) the following
expression:

�0 ¼
Z 1

0
d�

fSð�Þ
�2

¼ h �qqi�1
Z 1

0
z2MSðz2Þdz2: (3.16)

We see from this equation that the nonperturbative contri-
bution to the SR is mainly due to the scalar-quark conden-
sate at large and moderate distances z2 � 4=hk2qi.

For the concrete evaluation of the differential SR, we
again employ the same criteria as already used in the
integral SR for both the continuum and the nonperturbative
terms. Applying these criteria, the low boundary for the
Borel parameter turns out to be very small, viz., M2

min ¼ð0:3–0:4Þ GeV2. Though this low value is consistent with
the applied criteria, it is not in good agreement with
standard QCD sum-rule approaches in which a higher
minimum Borel-parameter value is used. Therefore, we
use M2

min ¼ 0:6 GeV2, a value also employed in the

QCD SR for the pion DA in Ref. [11] in connection
with the moments of the pion DA. Keep also in mind that

using a lower value of the Borel parameter would cause the
decrease of the first derivative of the pion DA at the
endpoints. To continue, we define the derivative ’0

�ð0Þ ¼
h’0

�ð0;M2Þi in terms of the mean value in the fiducial
interval M2 2 ½M2

min;M
2
max� following the definition on

the RHS of (3.8). This helps minimizing the sensitivity of
’0

�ð0Þ on the choice of the Borel parameter by means of the
variation of the A1 contribution ’0

A1
ð0Þ.

The delta-ansatz fSð�Þ ¼ �ð�� �2
q=2Þ leads to a sim-

ple expression for the nonperturbative contribution to SR
(3.14), notably,

�0 ¼ �0
delta ¼

4

�4
q

: (3.17)

Note that we defined the A1-meson contribution ’0
A1
ð0Þ ¼

6:7 by means of the minimum of the root-mean-square
deviation. On the other hand, the dependence of ’0

�ð0;M2Þ
on the Borel parameter M2 for the delta-ansatz model is
controlled by Eq. (3.14) and is shown in the left panel of
Fig. 6. Thus, the average value of the pion DA derivative in
the fiducial Borel interval is ’0

�ð0Þ ¼ 5:3ð5Þ—see Table I.
We go forward and discuss the consequences of the

smooth model for the quark-virtuality distribution in the
differential SR.
Though the delta-ansatz model is useful, because of its

simplicity, there is an indication from the heavy-quark
effective theory [47] that in reality the quark-virtuality
distribution fS should be parameterized in a different
way so as to ensure that the scalar condensate decreases
exponentially at large distances. Moreover, in order that
the vacuum matrix element h �qðD2ÞNqi exists, the quark-
virtuality distribution fSð�Þ should decrease faster than
any power 1=�Nþ1 as � ! 1 [4]. For this reason, the
authors of [36,48] suggested a two-tier model for fS which
has a smooth dependence on the quark virtuality �,
namely,

fSð�; �; n; �Þ ¼ ð�=�Þn
2Knð2��Þ�

n�1e��2=����2
; (3.18)

where KnðzÞ is the modified Bessel function. This model,
the so-called ‘‘smooth model’’, depends on two parameters
� and � that parameterize, respectively, the long- and
short-distance behavior of the nonlocal condensates [36].

For large distances jzj ¼
ffiffiffiffiffiffiffiffiffi
�z2

p
this model leads to the

asymptotic form

h �qð0ÞqðzÞi !jzj!1h �qqijzj�ð2nþ1Þ=2e��jzj 2
ð2n�1Þ=2 ffiffiffiffi

�
p

�nffiffiffiffi
�

p
Knð2��Þ :

(3.19)

It is instructive to consider a purely exponential decay of
the quark-virtuality distribution and study its influence on
the quark condensate. This can be realized in the model of
[36,48] by choosing n ¼ 1, whereas the second parameter
� ¼ 0:45 GeV can be taken from the QCD SRs for the

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

FIG. 5 (color online). The distribution of vacuum-quark vir-
tualities in the smooth model (3.18) for a particular choice of the
intrinsic parameters as explained in the text.
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heavy-light meson in heavy-quark effective theory—see
[47,49]. The two parameters n and � are responsible for
the large-z behavior of the scalar-quark condensate, cf.
Equation (3.19). The third parameter �2 ¼ 10 GeV�2 is
defined in terms of the parameters n, �, and �2

q via the

following equation:

Z 1

0
�fSð�; �; n; �Þd� ¼ �

�

Knþ1ð2��Þ
Knð2��Þ ¼ �2

q

2
; (3.20)

which we evaluate for the value of the nonlocality parame-
ter �2

q ¼ 0:4 GeV2. The main effect of using a smooth

model for the quark-virtuality distribution relative to the
Gaussian form, fSð�Þ ¼ �ð�� �2

q=2Þ, is the induced in-

crease of the nonperturbative contribution to the SR, so that

�0
smooth ¼

Z 1

0
d�

fSð�; �; n; �Þ
�2

¼ �2

�2

Kn�2ð2��Þ
Knð2��Þ >�0

delta: (3.21)

We analyzed the SR (3.14) for this model using a par-
ticular choice of its parameters, notably, fSð�; � ¼
0:45 GeV; n ¼ 1; �2 ¼ 10 GeV�2Þ and determined the
dependence of ’0

�ð0;M2Þ on the Borel parameter M2.
The result is shown graphically in the right panel of
Fig. 6. The average value of the derivative ’0

�ð0;M2Þ in
the fiducial Borel interval is ’0

�ð0Þ ¼ 7:0ð7Þ. Thus, the
nonperturbative contribution �0

smooth, obtained from the

smooth model, is approximately 2 times larger than the
analogous contribution�0

delta in the delta ansatz:�
0
smooth �

2:3�0
delta. In addition to this result, marked by a black dot,

we show in Fig. 7 the dependence of ’0
�ð0Þ on the choice

parameters n and� of the smooth model. From this picture
and the relation (3.16), we may come to the conclusion

that, choosing a model for the condensate that has a slower
decay at large distances (small n or �), may cause an
increase of the nonperturbative contribution to the SR
(2.4) and entail also an increase of the value ’0

�ð0Þ. On
the other hand, choosing a model for the condensate with a
faster decay at large distances (large n or�), may lead to a
decrease of the nonperturbative contribution to the SR (2.4)
and therefore to a decrease of the value ’0

�ð0Þ.
In the last column of Table I, we collect the values of the

(usual) pion DA derivative at x ’ 0, using different SR
approaches (first three rows) and pion DA models (last
six rows).
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FIG. 6 (color online). Left panel: The solid curve shows the M2 dependence of ’0
�ð0;M2Þ in the SR with the A1-meson contribution

’0
A1
ð0Þ ¼ 6:7. The broken lines represent ’0

�ð0;M2Þ for ’0
A1
ð0Þ ¼ 6:1 (lower line) and ’0

A1
ð0Þ ¼ 7:5 (upper line). Right panel: The

solid curve illustrates theM2 dependence of ’0
�ð0;M2Þ in the SR which employs the smooth quark-condensate model with a A1-meson

contribution given by ’0
A1
ð0Þ ¼ 6:8. The broken lines denote ’0

�ð0;M2Þ at ’0
A1
ð0Þ ¼ 6:1 (lower line) and ’0

A1
ð0Þ ¼ 7:5 (upper line).
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FIG. 7 (color online). Dependence of the derivative ’0
�ð0Þ on

the parameter n of the smooth scalar condensate model (3.18) for
� ¼ 0:3 GeV (dashed-dotted red line), � ¼ 0:45 GeV (solid
blue line), and � ¼ 1 GeV (dashed green line). Here, we
show only the central value of the derivative ’0

�ð0Þ we obtained
from the SR analysis (3.14). The black dot symbol marks the
position, which corresponds to the model parameters n ¼ 1,
� ¼ 0:45 GeV, and ’0

�ð0Þ ¼ 7:0ð7Þ, that corresponds to the
third row in Table I.
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IV. CONCLUSIONS

The current investigation was partly motivated by the
recent results obtained by the BABAR Collaboration [30]
on the pion-photon transition form factor which indicate an
unexpected growth of this quantity with Q2 above
�10 GeV2 up to the highest momentum value of
40 GeV2 measured. As it was pointed out in [27] (see
also [31,32]), such behavior is impossible for endpoint-
suppressed pion DAs and brings into play a flat-type profile
for the pion DA, as proposed in Refs. [33,34]. Therefore, it
appears to be of crucial importance to have a theoretical
tool in our hands able to reveal the particular character-
istics of pion DAs precisely in the kinematic endpoint
region.

The method mostly used in the past to extract such
information employs the inverse moment hx�1i�—exten-
sively discussed in [11,22,23,25,37]. In the present work,
we proposed another, more direct, way to access the end-
point characteristics of the pion DA, which makes use of its
derivatives. The first step was to define the notion of

integral derivatives ½Dð�Þ’��ðxÞ by means of an appropriate

operator Dð�Þ [cf. (3.5)]. Next, we formulated an integral
sum rule, Eq. (3.7), for these quantities by taking into
account an effective A1-meson contribution. Using this
sum rule, we determined the range of values of the integral
derivatives and displayed it in the first entry of the second
column of Table I showing it also graphically in Fig. 3. We
also calculated the integral derivative for different charac-
teristic pion DA models and listed its value in the same
Table. The list of pion DAs includes the BMS, the CZ, the
asymptotic, and two options for flat-type DA models, one
given by Eq. (B1) with � ¼ 0:1—‘‘flattop’’ model—the
other being a flatlike model parameterized in terms of
Eq. (3.9). We also analyzed the usual derivative of the
pion DA in the vicinity of the origin. This procedure is
helpful in revealing the fine details of the pion distribution
amplitude in the endpoint region—see Table I for the
results.

Our findings can be summarized as follows. First, at the
end of Sec. III A, we applied the result for the integral

derivatives ½Dð�þ2Þ’��ðxÞ in order to reproduce the usual
derivative of ’�ðxÞ at the origin x ¼ 0. The result’0

�ð0Þ ¼
5:5	 1:5 is shown in the third column of Table I in
comparison with some characteristic models for the pion
DA. Second, in Sec. III B, we studied the derivative of the
pion DA ’0

�ð0Þ in terms of the differentiation of the SR
(2.4) that leads to the differential SR (3.14). It turns out that
the only nonperturbative content in this SR is mainly
defined by the scalar-quark condensate. The nonperturba-
tive contribution is proportional to the second inverse mo-
ment (3.16) of the distribution fSð�Þ of the vacuum-quark
virtualities and is defined by the behavior of the quark
condensate at large and moderate distances between the
vacuum quarks. The results for the derivative of the pion
DA ’0

�ð0Þ are shown in Table I for the delta-ansatz model

(A1) and also for the two-tier smooth model (3.18) with the
model parameters n ¼ 1, � ¼ 0:45 GeV. The dependence
of the derivative of the pion DA ’0

�ð0Þ on the choice of the
model parameters n and � is illustrated in Fig. 7.
As we see from Table I, the results from the differential

(3.14) and the integral SRs (3.7) agree with each other. The
integral derivative of the pion DA, based on a new SR
derived in this work, remains smaller than the asymptotic
value and overlaps with the range of values determined
with the BMS bunch of pion DAs, while there is no
agreement with the CZ DA and the flat-type models con-
sidered. The same conclusions can be drawn also for the
usual derivative of the pion DA, which follows from the
differential SR (3.14). It is worth mentioning that, employ-
ing the integral and the differential sum rules, we found
that the leading-order QCD sum rules (2.4), which employ
the minimal Gaussian model for the nonlocal condensates,
cannot be satisfied by flat-type pion distribution
amplitudes.
Given that an increasing behavior of the scaled pion-

photon transition form factor can only be achieved with
flat-type pion DAs, the independent experimental confir-
mation of this effect, e.g., by the BELLE Collaboration,
becomes extremely crucial for our theoretical understand-
ing of basic QCD exclusive processes. From a broader
perspective, the BABAR effect is a further indication that
exclusive processes may be inaccessible to perturbative
QCD, as pointed out many years ago by Isgur and
Llewellyn-Smith [52].
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APPENDIX A: EXPRESSIONS FOR THE
NONLOCAL CONTRIBUTIONS TO THE SUM

RULES

In Secs II and III, we used the following expressions for
the vacuum distribution functions:

fSð�Þ ¼ �ð�� �2
q=2Þ; fVð�Þ ¼ �0ð�� �2

q=2Þ;
(A1)
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fTi
ð�1; �2; �3Þ ¼ �ð�1 � �2

q=2Þ�ð�2 � �2
q=2Þ

� �ð�3 � �2
q=2Þ: (A2)

The meaning of these expressions and their connection to
the initial NLCs has been discussed in detail in Refs. [4,7].
The contributions to the QCD SR (2.4), with nonlocal
condensates ���ðx;M2Þ associated with these expres-
sions, are shown below (see Fig. 8). Here, and in what

follows, we use � � �2
q=ð2M2Þ, �� � 1��.

Then we obtain

��Sðx;M2Þ ¼ AS

M4

18
���2

f�ð �x > �> xÞ �x½xþ ð�� xÞ lnð �xÞ� þ ð �x ! xÞ þ �ð1>�Þ�ð�> x> ��Þ½ ��þ ð�� 2�xxÞ lnð�Þ�g;
(A3)

��Vðx;M2Þ ¼ AS

M4
ðx�0ð �x� �Þ þ ð �x ! xÞÞ; (A4)

��Tðx;M2Þ ¼ ��T1
ðx;M2Þ þ ��T2

ðx;M2Þ þ��T3
ðx;M2Þ;

��T1
ðx;M2Þ ¼ � 3AS

M4

�
½�ðx� 2�Þ � �ðx� �Þ�

�
1

�
� 2

�
�ð1> 2�Þ þ �ð2�> xÞ�ðx >�Þ�ðx > 3�� 1Þ �x��

�
�
3x

�
� 6� 1þ �x

��

��
þ ð �x ! xÞ; (A5)

��T2
ðx;M2Þ ¼ 4AS

M4
�x

�
�ðx� 2�Þ

�
�ð1> 2�Þ � �ð2�> xÞ�ðx > �Þ�ðx > 3�� 1Þ 1þ 2x� 4�

���2

�
þ ð �x ! xÞ; (A6)

��T3
ðx;M2Þ ¼ 3AS �x

M4 ���

�
�ð2�> xÞ�ðx >�Þ�ðx > 3�� 1Þ

�
2� �x

��
��

��

��
þ ð �x ! xÞ; (A7)

��Gðx;M2Þ ¼ h�sGGi
24�M2

ð�ðx��Þ þ ð �x ! xÞÞ: (A8)

In the above equations, we used the abbreviation AS ¼
8��S

81 h �qqi2, while for the quark and the gluon condensates
the standard estimates [50] �Sh �qqi2 ¼ 1:83� 10�4 GeV6,
h�SGGi
12� ¼ 0:0012 GeV4, and �2

q ¼ h �qðig���G
��Þqi

2h �qqi ¼
0:4 GeV2, normalized at �2 � 1 GeV2, have been
adopted. In Sec. III B, we applied not only the delta ansatz,

discussed above, but also the smooth model, proposed in
Refs. [48,51], which is based on an exponential decay of
the condensate (3.19). For this reason, we use the model-
independent expression for the four-quark contribution
[4,46] to obtain Eq. (3.16)

��Sðx;M2Þ ¼ 18AS

M4

Z 1

0

Z 1

0
d�1d�2fSð�1ÞfSð�2Þ x�ð�1 � �xÞ

�2
1�2

��2
1

�
�x�2

��1 þ ln

�
x�1

��2

x�1 � ð�1 � �xÞ�2

�
�1ð�1 � �xÞ ��2

�

þ ð �x ! xÞ; (A9)

where �i � �i=M
2, ��i � 1� �i, and �x � 1� x.

APPENDIX B: MODELING THE PION DA

In our work, we compared the results following from the differential SR (3.14) for the usual derivative of the pion DA

’0
�ð0Þ with those obtained with the help of the integral derivative ½Dð�Þ’��ðxÞ, i.e., (3.7), evaluating them for the BMS DA

bunch, the CZ model, and a couple of flat-type pion DAs.

FIG. 8. Typical diagram for the four-quark nonlocal conden-
sate ��Sðx;M2Þ encoding nonperturbative input in (2.4).
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The BMS bunch of pion DAs was obtained [11] as the
sum of the first three terms in the Gegenbauer-polynomial
expansion (1.3). Their Gegenbauer coefficients were ob-
tained from an analysis of the SR (2.4) for the h�2Ni mo-
ments (N ¼ 0, 1, 2, 3, 4, 5) with the nonlocal-condensate
contributions being presented in Appendix A. It was found
that only the two first Gegenbauer coefficients a2 and a4
give sizeable contributions to the h�2Ni moments, whereas
the higher Gegenbauer terms give merely tiny contribu-
tions. For this reason, the BMS bunch DAs are two-
parameter models. The central values of a2 and a4 for
the whole BMS bunch in the a2, a4 space are aBMS

2 ¼
0:187 and aBMS

4 ¼ �0:129 using as a normalization scale
�2 ’ 1 GeV2 [11].

On the other hand, the CZ pion DA contains only the
first nontrivial Gegenbauer polynomial corresponding to
the coefficient a2 [3]. It was derived from QCD SRs for the
h�2Ni moments (N ¼ 0, 1, 2), using local condensates. For
the sake of consistency, we use here a value of aCZ2 ¼ 0:56
obtained after evolution to the normalization scale �2 ’
1 GeV2, see for more details [22].

One of the two flat-type models considered in this paper
is defined by

’flat
ðB1ÞðxÞ ¼

�ð2ð�þ 1ÞÞ
�2ð�þ 1Þ x�ð1� xÞ�: (B1)

For this model, we find the following expressions:

½Dð2Þ’flat
ðB1Þ�ðxÞ ¼

�ð2ð�þ 1ÞÞ
�2ð�þ 1Þ Bxð�; 1þ �Þ;

½Dð�þ2Þ’flat
ðB1Þ�ðxÞ � ���½Dð2Þ’flat

ðB1Þ�ðxÞ:

These expressions can be generalized to any real differen-
tiation index � 2 þR for 0< x< 1 to get

½Dð�þ2Þ’flat
ðB1Þ�ðxÞ � ½Dð�þ2Þ’as�ðxÞ * ½Dð�þ2Þ’SR

� �ðxÞ
for � � 0:1;

227 � 5:25 * 4:7ð5Þ
for the particular values � ¼ 0:1, � ¼ 1, and x ¼ 0:5;

½Dð�þ2Þ’flat
ðB1Þ�ðxÞ> ½Dð�þ2Þ’as�ðxÞ * ½Dð�þ2Þ’SR

� �ðxÞ
for �< 1;

14> 5:25 * 4:7ð5Þ (B2)

for the particular values � ¼ 0:5, � ¼ 1, and x ¼ 0:5.
The other flat-type model, given by Eq. (3.9), was al-

ready discussed in the text.

APPENDIX C: THE SPECTRAL DENSITY

The spectral density 	pertðxÞ with NLO accuracy was

obtained in [4,7] and was found to be

	pertðxÞ ¼ 3x �x

�
1þ �s

4�
CF

�
5� �2

3
þ ln2ð �x=xÞ

��
1

2�2
:

(C1)

For our numerical calculations, which take into account
radiative corrections, we use the following function

�ð�; xÞ ¼ 100
½Dð�þ2Þ	NLO

pert �ðxÞ
½Dð�þ2Þ	LO

pert�ðxÞ
� 100: (C2)

The x dependence of the function �ð�; xÞ is illustrated in
Fig. 9 for different values of �: solid blue line—� ¼ 0,
dashed green line—� ¼ 1, and dashed-dotted red line—
� ¼ 4.

APPENDIX D: PROPERTIES OF THE INTEGRAL
OPERATOR Dð�þ2Þ

In order to ensure a weak dependence of the results on
the particular model for the condensates adopted, and in
order to include all condensate contributions, one has to
construct the SR by integrating the pion DA SR (2.4) over a
large enough interval of x. For this reason, we introduced

in Sec. III A the integral derivatives ½DðnÞ’�ðxÞ, with the
two lowest-order ones being given in terms of Eq. (3.2).
The next higher derivative reads

½Dð3Þ’�ðxÞ ¼ 1

x

Z x

0

dy

y

Z y

0

’ðtÞ
t

dt ¼ 1

x

Z x

0

’ðtÞ
t

dt
Z x

t

dy

y

¼ 1

x

Z x

0

’ðtÞ
t

ln

�
x

t

�
dt: (D1)

Assuming ’ð0Þ ¼ 0, we find

½Dðnþ1Þ’�ðxÞ ¼ 1

x

Z x

0
dy½DðnÞ’�ðxÞ: (D2)

To obtain an expression for ½Dðnþ2Þ’�ðxÞ for any n 
 0 and
n 2 N, one has to rearrange the integration order to get
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FIG. 9 (color online). x dependence of the function �ð�; xÞ for
� ¼ 0 (solid blue line), � ¼ 1 (dashed green line), and � ¼ 4
(dashed-dotted red line).
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½Dðnþ2Þ’�ðxÞ ¼ 1

x

Z x

0

dyn
yn

Z yn

0

dyn�1

yn�1

. . .
Z y2

0

dy1
y1

�
Z y1

0

’ðtÞ
t

dt

¼ 1

x

Z x

0

’ðtÞ
t

1

n!

�Z x

t

dy

y

�
n
dt: (D3)

This can be readily generalized to the expression (3.5)
using (3.6) that allows one to establish this transformation
for any real �, � 2 R. The dependence on y of the function
fðy; �; xÞ is shown in Fig. 10 for x ¼ 0:6 and � ¼ 0, 1, 4.
As one sees from Eq. (3.5), the function fðy; �; xÞ acts as a
smooth projector to the area around the origin of y.

If a Taylor expansion exists for ’ðxÞ at x ¼ 0, then by
applying (3.5) one finds

½Dkþ2’�ðxÞ ¼ ’0ð0Þ þ ’00ð0Þ x

2!2kþ1
þ X1

n¼2

’ðnþ1Þð0Þ

� xn

ðnþ 1Þ!ðnþ 1Þkþ1
: (D4)

Using (3.5) in combination with (D4), one can

obtain the following properties of the operator Dð�Þ:

limx!0½Dð�Þ’�ðxÞ ¼ lim�!1½Dð�Þ’�ðxÞ ¼ ’0ð0Þ and

Dð�Þðaxþ bx2Þ ¼ aþ 21��bx. Moreover, from (D4) it

follows that the introduced operator ½Dð�Þ’�ðxÞ reproduces
at small x and large � the derivative of ’ðxÞ at x ¼ 0.
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