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We present a detailed study of the two-parton light-cone distribution amplitudes for 13P2 nonet tensor

mesons. The asymptotic two-parton distribution amplitudes of twist-2 and twist-3 are given. The decay

constants fT and f?T defined by the matrices of nonlocal operators on the light-cone are estimated using

the QCD sum rule techniques. We also study the decay constants for f2ð1270Þ and f02ð1525Þ based on the

hypothesis of tensor meson dominance together with the data of �ðf2 ! ��Þ and �ðf02 ! K �KÞ and find

that the results are in accordance with the sum rule predictions.
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I. INTRODUCTION

In the past few years, BABAR and Belle have measured
several charmless B decay modes involving light tensor
mesons in the final states [1]. These decays play a comple-
mentary role, compared with e.g., B ! VV, VA, AA chan-
nels (V is a vector and A is an axial-vector meson) [2,3],
since the tensor meson T can be produced neither from the
local (axial-)vector current nor from the local tensor current
which is relevant only to new physics. The polarization
studies for B ! TV, TA, TT decays can further shed light
on the underlying helicity structure of the decay mecha-
nism, recalling that the longitudinal polarization dominance
observed in the decay Bþ ! �K�

2ð1430Þþ is quite different
from the polarization measurement in B ! �K� which
indicates a large fraction of transverse polarization [4].

In the quark model, the JPC ¼ 2þþ tensor meson can
be modeled as a constituent quark-antiquark pair with the
angular momentum L ¼ 1 and total spin S ¼ 1. The
observed tensor mesons f2ð1270Þ, f02ð1525Þ, a2ð1320Þ,
and K�

2ð1430Þ form an SU(3) 13P2 nonet. The q �q content
for isodoublet and isovector tensor resonances are
obvious.1 Nevertheless, in full QCD field theory, the tensor
meson is represented by a set of Fock states, each of which
has the same quantum number as the meson. In this work,
we present the study for two-parton asymptotic light-cone

distribution amplitudes (LCDAs) of lowest-lying tensor
mesons with quantum numbers JPC ¼ 2þþ because, in
the treatment of exclusive B decay processes in QCD, the
Fock states of the energetic meson can be further repre-
sented in terms of LCDAs. The LCDAs are governed by the
special collinear subgroup SLð2;RÞ of the conformal group
[6,7] and can be expanded as a series of partial waves,
where the rotational invariance is characterized by the
conformal spin j and the concept of ‘‘collinear twist’’ is
equivalent to the ‘‘eigen-energy’’ in quantum mechanics.
Because of the G-parity of the tensor meson, according

to our definition, both the chiral-even and chiral-odd two-
parton LCDAs of the tensor meson are antisymmetric
under the interchange of momentum fractions of the quark
and antiquark in the SU(3) limit. The asymptotic LCDAs
are relevant to the first Gegenbauer moment of the leading-
twist distribution amplitudes,�k and�?. In analogy to the
cases of axial-vector mesons [3,8], the sizable Gegenbauer
term containing the first Gegenbauer moment could have a
large impact on B decays involving a tensor meson.
The present paper is organized as follows. In Sec. II we

define the LCDAs for the tensor mesons. A slightly differ-
ent definition for chiral-even LCDAs is given in [9]. The
detailed properties of LCDAs are given in Sec. III. Results
for the decay constants are presented in Sec. IV and in
Sec. V we come to our conclusion.

II. DEFINITION

For a tensor meson, the polarization tensors �
��
ð�Þ with

helicity � can be constructed in terms of the polarization
vectors of a massive vector state moving along the
z-axis [10]

"ð0Þ�� ¼ ðP3; 0; 0; EÞ=mT;

"ð�1Þ�� ¼ ð0;�1;þi; 0Þ= ffiffiffi
2

p
;

(1)

and are given by

�
��
ð�2Þ � "ð�1Þ�"ð�1Þ�; (2)

1Just as the �-�0 mixing in the pseudoscalar case, the isoscalar
tensor states f2ð1270Þ and f02ð1525Þ also have a mixing, and their
wave functions are defined by

f2ð1270Þ ¼ 1ffiffiffi
2

p ðfu2 þ fd2 Þ cos�f2 þ fs2 sin�f2 ;

f02ð1525Þ ¼
1ffiffiffi
2

p ðfu2 þ fd2 Þ sin�f2 � fs2 cos�f2 ;

with fq2 � q �q. Since �� is the dominant decay mode of
f2ð1270Þ whereas f02ð1525Þ decays predominantly into K �K
(see Ref. [1]), it is obvious that this mixing angle should be
small. More precisely, it is found that �f2 ¼ 7:8� [5] and ð9�
1Þ� [1]. Therefore, f2ð1270Þ is primarily a ðu �uþ d �dÞ= ffiffiffi

2
p

state,
while f02ð1525Þ is dominantly s�s.
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�
��
ð�1Þ �

ffiffiffi
1

2

s
½"ð�1Þ�"ð0Þ� þ "ð0Þ�"ð�1Þ��; (3)

���
ð0Þ �

ffiffiffi
1

6

s
½"ðþ1Þ�"ð�1Þ� þ "ð�1Þ�"ðþ1Þ��

þ
ffiffiffi
2

3

s
"ð0Þ�"ð0Þ�: (4)

The polarization �ð�Þ�� can be decomposed in the frame
formed by the two lightlike vectors, z� and p� � P� �
z�m

2
T=ð2pzÞ with P� and mT being the momentum and the

mass of the tensor meson, respectively, and their orthogo-
nal plane [11,12]. The transverse component that we use
thus reads

�ð�Þ?��z
� ¼ �ð�Þ��z� � �ð�Þk��

z�

¼ �ð�Þ��z� � �ð�Þ	�z	z�

pz

�
p� � m2

T

2pz
z�

�
: (5)

The polarization tensor �ð�Þ	
, which is symmetric and trace-

less, satisfies the divergence-free condition �ð�Þ	
P

 ¼ 0 and

the orthonormal condition �ð�Þ��ð�ð�0Þ��Þ� ¼ ���0 . Therefore,

hTðP; �ÞjV�j0i ¼ a��ð�Þ�� P� þ b��ð�Þ��P� ¼ 0; (6)

hTðP; �ÞjA�j0i ¼ "���
P
���
�ð�Þ ¼ 0; (7)

and hence the tensor meson cannot be produced from the
local V � A current and likewise from the tensor current.
The completeness relation readsX

�

�ð�Þ��ð�ð�Þ�
Þ� ¼ 1

2
M��M�
 þ 1

2
M�
M�� � 1

3
M��M�
;

(8)

where M�� ¼ g�� � P�P�=m
2
T .

In what follows, we consider matrix elements of bilocal
quark-antiquark operators at a lightlike separation, 2z�,

with z2 ¼ 0. In analogy with those of vector and axial-
vector mesons [11–14], we can define chiral-even light-
cone distribution amplitudes of a tensor meson2:

hTðP; �Þj �q1ðzÞ��q2ð�zÞj0i

¼ fTm
2
T

Z 1

0
dueiðu� �uÞpz

�
p�

�ð�Þ�	
 z	z


ðpzÞ2 �kðuÞ

þ �ð�Þ�?�	z
	

pz
gvðuÞ � 1

2
z�

�ð�Þ�	
 z	z


ðpzÞ3 m2
Tg3ðuÞ

�
; (9)

hTðP; �Þj �q1ðzÞ���5q2ð�zÞj0i
¼ fTm

2
T

Z 1

0
dueiðu� �uÞpz"��	
z

�p	��
�ð�Þ z�
1

pz
gaðuÞ;

(10)

and chiral-odd LCDAs to be

hTðP; �Þj �q1ðzÞ
��q2ð�zÞj0i
¼ �if?T mT

Z 1

0
dueiðu� �uÞpz

�
½�ð�Þ�?�	z

	p� � �ð�Þ�?�	z
	p��

� 1

pz
�?ðuÞ þ ðp�z� � p�z�Þ

m2
T�

ð�Þ�
	
 z	z


ðpzÞ3 htðuÞ

þ 1

2
½�ð�Þ�?�	z

	z� � �ð�Þ�?�	z
	z�� m2

T

ðpzÞ2 h3ðuÞ
�
; (11)

hTðP; �Þj �q1ðzÞq2ð�zÞj0i

¼ �if?T m3
T

Z 1

0
dueiðu� �uÞpz �

ð�Þ�
	
 z	z


pz
hsðuÞ; (12)

where u and �u � 1� u are the respective momentum
fractions carried by q1 and �q2 in the tensor meson. For
nonlocal operators on the light-cone, the path-ordered
gauge factor connecting the points z and �z is not explic-
itly shown here.
In Eqs. (9)–(12)�k,�? are leading-twist-2 LCDAs, and

gv, ga, ht, hs are twist-3 ones, while g3 and h3, which will
not be considered further in this paper, are of twist-4.
Throughout the paper we have adopted the conventions
D	 ¼ @	 þ igsA

a
	�

a=2 and �0123 ¼ �1.

III. PROPERTIES

In SU(3) limit, due to the G-parity of the tensor meson,
�k, �?, gv, ga, ht, hs, g3, and h3 are antisymmetric under

the replacement u ! 1� u. Let us take the case of the a2
tensor meson to illustrate the properties of LCDAs. The

G-parity operator for SU(2) symmetric cases is Ĝ ¼ Ĉi�2,

where Ĉ is a charge-conjugation operator and �2 the Pauli
spinor acting on the isospin space. Because, under the
G-party transformations

Ĝ �uðzÞ��dð�zÞĜy ¼ �Ĉ �dðzÞ��uð�zÞĈy

¼ �uð�zÞ��dðzÞ; (13)

Ĝ �uðzÞ���5dð�zÞĜy ¼ � �uð�zÞ���5dðzÞ; (14)

2Our LCDA ga differs from that defined by Braun and Kivel
[9]:

hTðP; �Þj �q1ðzÞ���5q2ð�zÞj0i

¼ fTm
2
T

Z 1

0
dueiðu� �uÞpz"��	
z

�p	��
�ð�Þ z�
1

ðpzÞ2 g
BK
a ðuÞ:

They are related by gaðuÞ ¼ 2
R
u
0 g

BK
a ðvÞdv. Note that the vari-

able t used in [9] is related to u through the relation t ¼ 2u� 1.
Our ga is defined in the same manner as the LCDA gðaÞ? in the
vector meson case or gðvÞ? as in the case of the axial-vector
meson. This definition is more convenient for studying the
relevant Wandzura-Wilczek relation and the helicity projection
operator.
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Ĝ �uðzÞ
��dð�zÞĜy ¼ �uð�zÞ
��dðzÞ; (15)

Ĝ �uðzÞdð�zÞĜy ¼ � �uð�zÞdðzÞ; (16)

for the nonlocal operators and

ha2jĜy ¼ ha2jð�1Þ; (17)

for the state, we therefore have,

ha2j �uðzÞ��dð�zÞj0i ¼ ha2jĜyĜ �uðzÞ��dð�zÞĜyĜj0i
¼ �ha2j �uð�zÞ��dðzÞj0i; (18)

ha2j �uðzÞ���5dð�zÞj0i ¼ ha2j �uð�zÞ���5dðzÞj0i; (19)

ha2j �uðzÞ
��dð�zÞj0i ¼ �ha2j �uð�zÞ
��dðzÞj0i; (20)

ha2j �uðzÞdð�zÞj0i ¼ ha2j �uð�zÞdðzÞj0i: (21)

Notice that on the right-hand side of the equations, the
momentum fraction carried by the up quark given by
‘‘1� u’’ is equivalent to the momentum fraction carried
by the anti-down quark on the left-hand side. Therefore, in
the SU(2) limit we have �k;?ðuÞ ¼ ��k;?ð �uÞ, gv;a;3ðuÞ ¼
�gv;a;3ð �uÞ, and ht;s;3ðuÞ ¼ �ht;s;3ð �uÞ. This is also true for

the isosinglets f2ð1270Þ and f02ð1525Þ which have even
G-parity quantum numbers and for the isodoublet
K�

2ð1430Þ which is odd under the G-parity transformation
in SU(3) limit.

Using the QCD equations of motion [11,12], the two-
parton distribution amplitudes gv, ga, ht, and hs can be
represented in terms of �k;? and three-parton distribution

amplitudes. Neglecting the three-parton distribution am-
plitudes containing gluons and terms proportional to light
quark masses, twist-3 LCDAs ga, gv, ht, and hs are related
to twist-2 ones through the Wandzura-Wilczek relations:

gWW
v ðuÞ ¼

Z u

0
dv

�kðvÞ
�v

þ
Z 1

u
dv

�kðvÞ
v

;

gWW
a ðuÞ ¼ 2 �u

Z u

0
dv

�kðvÞ
�v

þ 2u
Z 1

u
dv

�kðvÞ
v

;

hWW
t ðuÞ ¼ 3

2
ð2u� 1Þ

�Z u

0
dv

�?ðvÞ
�v

�
Z 1

u
dv

�?ðvÞ
v

�
;

hWW
s ðuÞ ¼ 3

�
�u
Z u

0
dv

�?ðvÞ
�v

þ u
Z 1

u
dv

�?ðvÞ
v

�
: (22)

The leading-twist LCDAs �k;?ðu;�Þ can be expanded

as

�k;?ðu;�Þ ¼ 6uð1� uÞX1
‘¼1

ak;?‘ ð�ÞC3=2
‘ ð2u� 1Þ; (23)

where� is the normalization scale and the multiplicatively
renormalizable coefficients (or the so-called Gegenbauer
moments) are

ak;?‘ ð�Þ ¼ 2ð2‘þ 3Þ
3ð‘þ 1Þð‘þ 2Þ

Z 1

0
duC3=2

‘ ð2u� 1Þ�k;?ðu;�Þ;
(24)

which vanish with even ‘ in the SU(3) limit due toG-parity

invariance. The Gegenbauer moments akl renormalize

multiplicatively:

ðfð?Þakð?Þ
‘ Þð�Þ ¼ ðfð?Þakð?Þ

‘ Þð�0Þ
�
	sð�0Þ
	sð�Þ

���kð?Þ
‘

=b
; (25)

where b ¼ ð11Nc � 2nfÞ=3 and the one-loop anomalous

dimensions are [15]

�k
‘ ¼ CF

�
1� 2

ð‘þ 1Þð‘þ 2Þ þ 4
X‘þ1

j¼2

1

j

�
; (26)

�?
‘ ¼ CF

�
1þ 4

X‘þ1

j¼2

1

j

�
; (27)

with CF ¼ ðN2
c � 1Þ=ð2NcÞ.

In the present study, the distribution amplitudes are
normalized to beZ 1

0
duð2u� 1Þ�kðuÞ ¼

Z 1

0
duð2u� 1Þ�?ðuÞ ¼ 1: (28)

Consequently, the first Gegenbauer moments are fixed to

be ak1 ¼ a?1 ¼ 5
3 . Moreover, we have

3
Z 1

0
duð2u� 1ÞgaðuÞ ¼

Z 1

0
duð2u� 1ÞgvðuÞ ¼ 1; (29)

2
Z 1

0
duð2u� 1ÞhsðuÞ ¼

Z 1

0
duð2u� 1ÞhtðuÞ ¼ 1; (30)

which hold even if the complete leading-twist DAs and
corrections from the three-parton distribution amplitudes
containing gluons are taken into account. The asymptotic
wave function is therefore

�as
k;?ðuÞ ¼ 30uð1� uÞð2u� 1Þ; (31)

and the corresponding expressions for the twist-3 distribu-
tions are

gasv ðuÞ ¼ 5ð2u� 1Þ3; gasa ðuÞ ¼ 10uð1� uÞð2u� 1Þ;
hast ðuÞ ¼ 15

2 ð2u� 1Þð1� 6uþ 6u2Þ;
hass ðuÞ ¼ 15uð1� uÞð2u� 1Þ:

(32)

IV. DECAY CONSTANTS

A tensor meson cannot be produced through the usual
local V � A and tensor currents, but it can be created
through these currents with covariant derivatives (see
below). This feature allows us to study its decay constants
fT and f?T .
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A. fT

The decay constant fT , which itself involves the
Gegenbauer first moment, can be defined through the
matrix element of the following operator3:

hTðP; �Þjj��ð0Þj0i ¼ fTm
2
T�

ð�Þ�
�� ; (33)

where

j��ð0Þ ¼ 1
2ð �q1ð0Þ��iD

$
�q2ð0Þ þ �q1ð0Þ��iD

$
�q2ð0ÞÞ; (34)

and D
$

� ¼ ~D� �DQ � with ~D� ¼ ~@� þ igsA
a
	�

a=2 and

DQ � ¼ @Q� � igsA
a
	�

a=2. Its value has been estimated using

QCD sum rules for the tensor mesons f2ð1270Þ [16] and
K�

2ð1430Þ [17]4:
ff2ð1270Þð� ¼ 1 GeVÞ ’ 0:08mf2ð1270Þ ¼ 102 MeV;

fK�
2
ð1430Þð� ¼ 1 GeVÞ ’ ð0:10� 0:01ÞmK�

2
ð1430Þ

¼ ð143� 14Þ MeV:

(35)

We shall reanalyze the fT sum rules in the next subsection.
Several authors [16,20,21] have extracted ff2ð1270Þ from

the measurement of �ðf2 ! ��Þ by assuming that the
matrix element h�þ��j���j0i with ��� being the

energy-momentum tensor is saturated by the f2 meson
under the tensor-meson-dominance hypothesis, namely,

h�þðpÞ��ðp0Þj���j0i
	 h�þðpÞ��ðp0Þjf2ihf2j���j0i

¼ ff2gf2��mf2

ðpþ p0Þ2 �m2
f2

ðp� p0Þ�ðp� p0Þ�; (36)

where gf2�� is the coupling constant defined by

h�þðpÞ��ðp0Þjf2i ¼
gf2��
mf2

�
��
ð�Þ ðp�p0Þ�ðp�p0Þ�: (37)

The decay rate reads

�ðf2 ! �þ��Þ ¼ 4

15�m2
f2

�
gf2��
mf2

�
2
p5
c; (38)

with pc being the center-of-mass momentum of the
pion. From the measured width �ðf2 ! ��Þ ¼
ð156:9þ4:0

�1:2Þ MeV [1] and the normalization condition

h�ðpÞj�00j�ðpÞi ¼ 2m2
� [20], we obtain

ff2ð1270Þ ’ ð0:085� 0:001Þmf2ð1270Þ ¼ ð108� 1Þ MeV;

(39)

which is in agreement with [21]. By the same token, if the
matrix element hKþK�j���j0i is assumed to be saturated

by f02ð1525Þ which is s�s dominated, we will have

ff0
2
ð1525Þ ’ ð0:089� 0:003Þmf0

2
ð1525Þ ¼ ð136� 5Þ MeV;

(40)

where use of the experimental value �ðf02 ! K �KÞ ¼
ð65þ5

�4Þ MeV [1] has been made.

B. f?
T

Using the QCD sum rule technique, we proceed to
estimate the value of f?T [22]. To determine the magnitude
and the relative sign of f?T with respect to fT , we consider
the nondiagonal two-point correlation function,

ið2�Þ4�4ðq� pÞ����	
ðqÞ
¼ i2

Z
d4xd4yeiðqx�pyÞh0jT½j?y

���ðxÞj	
ðyÞ�j0i; (41)

with

����	
ðqÞ ¼ i

2
½ðg	�g
�þg	�g
�Þq�

�ðg	�g
�þg	�g
�Þq���ðq2Þþ . . . : (42)

The interpolating current j?y
���ð0Þ ¼ �q2ð0Þ
��iD

$
�ð0Þq1ð0Þ

satisfies the relation

h0jj?y
���ð0ÞjTðP; �Þi ¼ if?T mTð�ð�Þ��� P� � �ð�Þ��� P�Þ: (43)

Here we are only interested in the Lorentz invariant con-
stant �ðq2Þ which receives the contribution from tensor
mesons but not from vector or scalar mesons.
To simply the calculation of �ðq2Þ, we will apply the

translation transformation to the current j	
ðyÞ
j	
ðyÞ ¼ eiP̂ðy�zÞj	
ðzÞe�iP̂ðy�zÞ; (44)

where P̂ is a translation operator, and then recast
Eq. (41) to

ið2�Þ4�4ðq� pÞ����	
ðqÞ
¼ i2ð2�Þ4�4ðq� pÞ

Z
d4x0eiqðx0�zÞ

� h0jT½j?y
���ðx0Þj	
ðzÞ�j0ijz!0: (45)

The covariant derivative D
$


ðzÞ in �q1ð0Þ�	iD
$


q2ðzÞ then
becomes

D
$


ðzÞ ¼
~@

@z

� @Q

@z

þ igs�

aAa

ðzÞ

¼ ~@

@z

� @Q

@z

þ 1

2
igs�

az�Ga
�
ðzÞ þ 
 
 
 ; (46)

in the fixed-point gauge (or the so-called Schwinger-Fock
gauge) [22]

3The dimensionless decay constant fT defined in [16,17]
differs from ours by a factor of 2mT . The factor of 2 comes
from a different definition of D

$
� there.

4The decay constants for f2ð1270Þ and f02ð1525Þ had also
been estimated in [18] using QCD sum rules. The results quoted
from [19] are ff2ð1270Þ ¼ ð132� 184Þ MeV and ff0

2
ð1525Þ ¼ð112� 152Þ MeV.
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z
Aa

ðzÞ ¼ 0 with Aa


ðzÞ ¼
Z 1

0
dttz�G�
ðtzÞ: (47)

Consequently, D
$


ðzÞ is reduced to the usual derivative
~@=@z
 � @Q=@z
 in the z ! 0 limit and hence the contribu-
tions from the diagrams in Fig. 1 with the soft gluons
emerging from the left vertex vanish. Likewise, the uses

of the translation transformation for j?y
���ðxÞ

j?y
���ðxÞ ¼ eiP̂ðx�zÞj?y

���ðzÞe�iP̂ðx�zÞ; (48)

and the corresponding relation for the nondiagonal two-
point correlation function

ið2�Þ4�4ðq� pÞ����	
ðqÞ
¼ i2ð2�Þ4�4ðq� pÞ

Z
d4y0e�iqðy0�zÞ

� h0jT½j?y
���ðzÞj	
ðy0Þ�j0ijz!0 (49)

will imply that the diagrams with the soft gluons emerging
from the right vertex vanish. Note that one can apply either
Eq. (45) or (49) to compute the two-point correlation
function �ðq2Þ; the results should be the same. In this
work we shall use the former to evaluate the operator-
product expansion (OPE) of �ðq2Þ.

The resulting�OPE, which is the OPE result of�ðq2Þ up
to dimension-7 at the quark-gluon level (see Fig. 1), reads

�OPEðq2Þ ffi � 1

4
ðh �q1q1i þ h �q2q2iÞ � 7

12q2
ðh �q1gs
Gq1i

þ h �q2gs
Gq2iÞ þ 1

96q4
ðh �q1q1i þ h �q2q2iÞ

� hg2sG2i �mq1 þmq2

32�2
q2½lnð�q2=�2Þ � 1�;

(50)

where � is the renormalization scale, the first term on the
right-hand side of the above equation arises from Fig. 1(a),
the second from 1(b) and 1(d), the third from 1(k) and the
right diagrams of 1(g)–1(j), and the fourth from 1(l). We
have adopted the shorthand notation h. . .i � h0j: . . . :j0i for
vacuum condensates. In the calculation the ultraviolet
divergence is regularized by using the modified minimal

substraction (MS) scheme.
To suppress the nonresonant background in the sum

rules, we take into account the dispersion relation with a
subtraction. This method was first introduced in

Refs. [23,24]. Considering ~�ðq2Þ ¼ �ðq2Þ ��pertðq2Þ,
which is finite in the limit �q2 ! 1, we then get

FIG. 1. Diagrams contributing to the OPE expansion of the two-point correlation function �ðq2Þ defined in Eqs. (45) and (42).
Diagrams (c), (f) and the left diagrams of (g), (h), (i), and (j) involving a soft gluon emitted from the left vertex do not contribute to
����	
ðqÞ, while both diagrams in (e) also make no contributions to the invariant structure of �ðq2Þ. The cross signs in (l) denote a

mass insertion.
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~�ðq2Þ ¼ ~�ð0Þ þ q2

�

Z 1

0

ds

sðs� q2Þ ½�physðsÞ

� Im�pertðsÞ�; (51)

where �phys and �tensor are the total physical and lowest-

lying tensor meson spectral densities, respectively, which
can be modeled as

�physðsÞ ¼ �tensorðsÞ þ �ðs� s0ÞIm�pertðsÞ
¼ fTf

?
T m

3
T��ðs�m2

TÞ þ �ðs� s0ÞIm�pertðsÞ:
(52)

Here s0 is the excited threshold and the imaginary part of
�pertðsÞ is

Im�pertðsÞ ¼ mq1 þmq2

32�2
s: (53)

Taking the limit �q2 ! 1 in Eq. (51), we obtain the
following relation:

~�ð0Þ ¼ � 1

4
ðh �q1q1i þ h �q2q2iÞ þ fTf

?
T mT

� 1

�

Z s0

0

ds

s
Im�pertðsÞ: (54)

After performing the Borel transformation [14,22] and
taking into account scale-dependence of each quantity,
we arrive at the sum rule:

fTf
?
T ffi 1

ðe�m2
T=M

2 � 1ÞmT

�
�
� 7

12

h �q1gs
Gq1i þ h �q2gs
Gq2i
M2

� �

48M4
ðh �q1q1i þ h �q2q2iÞh	sG

2i þmq1 þmq2

32�2

�M2

�
1� e�s0=M

2 � s0
M2

��
: (55)

In the numerical analysis, we shall use the following input
parameters at the scale 1 GeV [14]:

	sð1 GeVÞ ¼ 0:497� 0:005;

msð1 GeVÞ ¼ ð140� 20Þ MeV;

h �uui ffi h �ddi ¼ �ð0:240� 0:010Þ3 GeV3;

h�ssi ¼ ð0:8� 0:1Þh �uui;
hgs �u
Gui ffi hgs �d
Gdi ¼ �ð0:8� 0:1Þ GeV2h �uui;
hgs �s
Gsi ¼ ð0:8� 0:1Þhgs �u
Gui;

h	sG
a
��G

a��i ¼ ð0:474� 0:120Þ GeV4=ð4�Þ: (56)

The masses of u- and d-quarks can be numerically ne-
glected. For the separate determination of fT and f?T , we
next proceed to reanalyze the fT sum rule which is given
by [16,17]

f2Te
�m2

T=M
2 ffi 1

m4
T

�
3

20�2
M6

�
1�

�
1þ s0

M2
þ s20
2M4

�
e�s0=M

2

�

�2M2

9�
h	2

sG
2iþ32�	s

9
h �q1q1ih �q2q2i

þmq2h �q1gs
Gq1iþmq1h �q2gs
Gq2i
6

�
:

(57)

For the sum rule calculation, the decay constants and
parameters are evaluated at � ¼ 1 GeV. Changing the
scale within the range �2 ¼ ð1–2Þ GeV2 does not cause
any noticeable effect, provided that the decay constants are
also rescaled according to the renormalization group equa-
tion. Applying the differential operator M4@=@M2 to the
above equation, we obtain the mass sum rule for the tensor
meson, from which we can determine (i) the excited
threshold s0 and (ii) the working Borel window M2 where
the resulting tensor mass is well stable and in agreement
with the data. However, we note that the contribution
originating from modelling higher resonances defined by�

3

20�2
M6

�
1þ s0

M2
þ s20

2M4

�
e�s0=M

2

���
3

20�2
M6

� 2M2

9�
h	2

sG
2i þ 32�	s

9
h �q1q1ih �q2q2i

þmq2h �q1gs
Gq1i þmq1h �q2gs
Gq2i
6

�
(58)

TABLE I. Sum rule results for the decay constants fT and f?T of various tensor mesons at the scale � ¼ 1 GeV. The results for the
excited threshold s0, masses of the tensor mesons, Borel windows M2 (in units of GeV2), and fT are obtained from Eq. (57), fTf

?
T

from Eq. (55), and f?T from the combination of fT and fTf
?
T . The error for fT is due mainly to the uncertainties in vacuum

condensates, while the first error in fTf
?
T arises from the Borel mass and the second error from the rest of other input parameters.

State s0 (GeV2) Range of M2 Mass (GeV) fT (MeV) fTf
?
T (MeV2) f?T (MeV)

f2ð1270Þ 2.53 (1.0, 1.4) 1:27� 0:01 102� 6 11900� 700� 1600 117� 25
f02ð1525Þ 3.49 (1.3, 1.7) 1:52� 0:02 126� 4 8200� 300� 1100 65� 12
a2ð1320Þ 2.70 (1.0, 1.4) 1:31� 0:01 107� 6 11200� 600� 1500 105� 21
K�

2ð1430Þ 3.13 (1.2, 1.6) 1:43� 0:01 118� 5 9100� 500� 1200 77� 14
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is about 60% for M2 ¼ 1:0 GeV2 and 80% for
M2 ¼ 1:6 GeV2. The higher resonance corrections may
be a bit too large but still controllable. On the other
hand, when M2 > 1:0 GeV2, the highest OPE term at the
quark-gluon level is no more than 8% which is relatively
small.

We then estimate fT and f?T from Eqs. (57) and (55),
respectively. All the numerical results are collected in
Table I. Here we have assumed that the obtained s0 and
corresponding Borel window are applicable to both fT and
fTf

?
T sum rules. The theoretical errors are due to the

variation of the Borel mass, quark masses, and vacuum
condensates, which are then added in quadrature. For
simplicity, we do not take into account the uncertainty
in s0. In the analysis, we have neglected the possible
mixture of the quark and gluon currents for f2ð1270Þ
and f02ð1525Þ mesons. As noticed in the Introduction, we

assume that f2ð1270Þ is a ðu �uþ d �dÞ= ffiffiffi
2

p
state, while

f02ð1525Þ is predominantly made of s�s. Our results are in
good agreement with [16] for ff2ð1270Þ, but smaller than

that of [17] for fK�
2
ð1430Þ. We should note that our fTf

?
T is

obtained from the nondiagonal sum rule and hence it is
insensitive to s0. For the nondiagonal sum rule, one pos-
sible error may arise from the radiative corrections, which
are at about 10% level for each OPE term and partly
contribute to higher resonances, and can be lumped

into the uncertainties of the input parameters given in
Eq. (56).

V. CONCLUSION

We have systematically studied the two-parton light-
cone distribution amplitudes for 13P2 nonet tensor mesons.
The light-cone distribution amplitudes can be presented by
using QCD conformal partial wave expansion. We have
obtained the asymptotic two-parton distribution ampli-
tudes of twist-2 and twist-3. The relevant decay constants
have been estimated using the QCD sum rule techniques.
We have also studied the decay constants for f2ð1270Þ and
f02ð1525Þ based on the hypothesis of tensor-meson-
dominance together with the data of �ðf2 ! ��Þ and
�ðf02 ! K �KÞ. The results are in accordance with the sum
rule predictions.
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