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Two-loop soft anomalous dimensions for single top quark associated production witha W~ or H™
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I present results for the two-loop soft anomalous dimensions for associated production of a single top
quark with a W boson or a charged Higgs boson. The calculation uses expressions for the massive cusp
anomalous dimension, which are presented in different forms, and it allows soft-gluon resummation at
next-to-next-to-leading-logarithm (NNLL) accuracy. From the NNLL resummed cross section I derive
approximate NNLO cross sections for bg — tW™ and bg — tH~ at LHC energies of 7, 10, and 14 TeV.
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I. INTRODUCTION

The Large Hadron Collider (LHC) will produce top
quarks via a top-antitop pair or single top quark processes
with relatively large cross sections. Given the importance
of the top quark [1] to electroweak and Higgs physics, and
the observation of single top events at the Tevatron [2—4], it
is crucial to have a good theoretical understanding of top
quark production cross sections. An interesting channel to
study is associated production of a top quark with a
W boson, bg — tW~, which is sensitive to new physics
and allows a direct measurement of the V,, Cabibbo-
Kobayashi-Maskawa matrix element. This process is very
small at the Tevatron but has the second highest cross
section among single top processes at the LHC. A related
process is associated production of a top quark with a
charged Higgs boson, bg — tH ™. Charged Higgs bosons
appear in the minimal supersymmetric standard model
(MSSM) and other two-Higgs-doublet models. In the
MSSM there are two Higgs doublets, one giving mass to
the up-type fermions and the other to the down-type fer-
mions. Among the extra Higgs particles in the MSSM are
two charged Higgs bosons, H* and H ™, and the associated
production of a top quark with a charged Higgs is a process
that the LHC has good potential to observe. Since a central
mission of the LHC is to find the Higgs boson and another
is to look for supersymmetry, the associated production of
a charged Higgs with a top quark is an important channel to
study.

The next-to-leading order (NLO) corrections to bg —
tW~ were calculated in [5] and to bg — tH™ in [6-8].
These processes are very similar with respect to QCD
corrections and they have the same color structure. Soft-
gluon emission is an important contributor to higher-order
corrections, particularly near partonic threshold. The soft-
gluon corrections can be formally resummed to all orders
in perturbation theory. The resummation follows from the
factorization of the cross section into a hard-scattering
function H and a soft function S that describes noncol-
linear soft-gluon emission in the process [9,10]. The re-
normalization group evolution of the soft function is
controlled by a process-dependent soft anomalous dimen-
sion I'. The calculation of I's is performed in the eikonal
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approximation, which describes the emission of soft gluons
from partons in the hard scattering and leads to modified
Feynman rules in diagram calculations. At next-to-leading-
logarithm (NLL) accuracy these corrections were re-
summed for W~ production at the Tevatron and at the
LHC in [10-12], while the corrections for tH~ production
were presented in [13,14]. These results involved the cal-
culations of the one-loop soft anomalous dimension for
these processes.

Recent developments in two-loop calculations [15-17]
have now made possible the resummation of next-to-next-
to-leading-logarithm (NNLL) corrections for QCD pro-
cesses. Here we begin by calculating the two-loop soft
(cusp) anomalous dimension for two massive quarks, and
then using these results in the limit when one quark is
massive (top quark) and one is massless (bottom quark),
we calculate the diagrams for associated single top quark
production. Since there are three colored partons in the
partonic processes bg — tW™ and bg — tH™ there are
many diagrams to consider but the end result for the two-
loop soft anomalous dimension for these processes can be
written in a simple formula. We then use those results to
calculate approximate next-to-next-to-leading order
(NNLO) cross sections for tW~ and tH~ production at
the LHC.

II. TWO-LOOP SOFT (CUSP) ANOMALOUS
DIMENSION FOR A HEAVY QUARK-ANTIQUARK
PAIR

We begin by presenting the calculation of the two-loop
cusp anomalous dimension, which is the soft anomalous
dimension for ete™ — 17 [15,16].

We expand the soft (cusp) anomalous dimension as
Ts = (a,/mT + (a,/7)*TP + - - - The one-loop soft
anomalous dimension, F(SI), can be read off the coefficient
of the ultraviolet (UV) poles of the one-loop diagrams in
Fig. 1.

In the eikonal approximation, as the gluon momen-
tum goes to zero, the quark-gluon vertex reduces to
g T5v* /v - k, with g the strong coupling, v a dimension-
less velocity vector, k the gluon momentum, and 7§ the
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FIG. 1.
lines.

One-loop cusp diagrams with heavy-quark eikonal

generators of SU(3) in the fundamental representation. For
example, the integral for the diagram in Fig. 1(a) is given
by
ﬁ] — 2 d"k (_l)g,uv U;L (_U;))
e Qm" K vk (- k)

2.1)

where i labels the quark and j the antiquark. The quark and

antiquark velocity vectors obey the relations v; - v; =

j
(1+p%/2 and v} = v? =(1—pB%)/2, where B=

V1 —4m?/s with m the heavy-quark mass and s the
center-of-mass energy squared. The eikonal diagrams are
calculated in dimensional regularization with n =4 — €
using Feynman gauge in momentum space.

We find the one-loop soft (cusp) anomalous dimension

W _ (1+ 8 ( ) ]
T CF[ s is) ) 2.2)
where Cr = (N? — 1)/(2N,) with N, = 3 the number of

colors. This result can also be written in terms of the
cusp angle y = In[(1 + B)/(1 — B)], with cothy = (1 +

B?)/(2B), as
I\ = Cp(ycothy — 1), (2.3)

in agreement with [18,19].
We now continue with the two-loop diagrams. In Fig. 2
we show graphs with vertex corrections and in Fig. 3

< < ¢
<]

(e) ()
FIG. 2. Two-loop cusp vertex diagrams with heavy-quark ei-
konal lines.
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FIG. 3. Two-loop cusp self-energy diagrams with heavy-quark
eikonal lines.

graphs with heavy-quark self-energy corrections. The
dark blobs in Figs. 2(c) and 3(b) denote quark, gluon,
and ghost loops. The black blob in Fig. 3(a) denotes three
kinds of corrections shown in Fig. 4. We do not show
graphs with gluon loops involving four-gluon vertices
and graphs involving three-gluon vertices with all three
gluons attaching to a single eikonal line since such graphs
have vanishing contributions. For each diagram we include
the appropriate one-loop counterterms for the divergent
subdiagrams. The calculations are challenging because of
the presence of the heavy-quark mass. Dimensionally
regularized integrals needed in the calculation are shown
in Appendix A. Using the results in Appendix A, the UV
poles of the integrals for each diagram are provided in
Appendix B.

Combining the kinematic results in Appendix B with
color and symmetry factors, the contribution of the dia-
grams in Figs. 2 and 3 to the two-loop soft (cusp) anoma-
lous dimension is

Cilly + Ly + 2y + 2Ly, + I3y + Ly + I3.]

1 1
+ CFCAI:_EI% t Ly — ey — e = I3 — §I3a2:|
1
+ ECF[Ich + I3,
I woye, Bor_ 1o
_F@g P Ty =5 Ty, (2.4)

where I, denotes the integral for diagram k, e.g. I,, is the
integral for Fig. 2(d). Also I, and I3;, denote the quark-
loop contribution in Figs. 2(c) and 3(b), respectively, while
I, and I, denote the gluon-loop plus ghost-loop con-
tributions to the respective diagrams. /3,; denotes the sum
of the graphs 3(ali) and 3(alii) detailed in Fig. 4 while /5,
is the integral for the last graph in Fig. 4. On the right-hand
side of Eq. (2.4) in addition to the two-loop soft anomalous
dimension, F(SZ), which appears in the coefficient of the 1/€
pole, there also appear terms from the exponentiation of

e

(3alii)

e
s

FIG. 4. Detail of the black blob of Fig. 3(a).
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the one-loop result and the running of the coupling which
account for all the double poles of the graphs. Here B, =
(11/3)C4 — 2ny/3, with C4 = N, and n; the number of
light-quark flavors. From Eq. (2.4) we solve for the two-

loop soft (cusp) anomalous dimension:
|

(1+ pB?)? 1-

MB:% % 2 (ilﬁ)‘ 832

[+ &

)]

We have written the two-loop result F(Sz) in Eq. (2.5) in the
form of a term which i 1s a multiple of the one-loop soft
anomalous dimension F , Eq. (2.2), plus a set of addi-
tional terms which have been denoted as Mg. Here {, =

m*/6 and &3 = 1.2020569 - - - . The well-known two-loop
constant K [20] is given 2§{K C4(67/18 — £5) — 5nz/9.
The color structure of F involves only the factors CrCy
and Cpny. Note that as ﬁ =1, Mz—(1—-{)/2.

The result in Eq. (2.5) can be written in terms of the cusp
angle vy as

y Ko fz
L Y (2
- ECOth Y| - Ly — 3 yLiy(e™*?)
1
~Lis(e )] = oty & + &y + 7

3

+ % +2yIn(l — e~27) — Liz(e*ZV):”, 2.7)
and is in agreement, but in a simpler and more explicit
form, with the result for the cusp anomalous dimension of
Ref. [19] (light-quark loop contributions were not included
in [19] but were later added in [21]). Specifically, Ref. [19]
included uncalculated integrals (a later expression in [22]
contained one uncalculated integral) while our result,
Eq. (2.7), is written explicitly in terms of logarithms,
dilogarithms, and trilogarithms.

III. TWO-LOOP SOFT ANOMALOUS DIMENSION
AND NNLL RESUMMATION FOR bg — tW~ AND
bg—tH™

We now turn our attention to processes that involve a
bottom quark, a gluon, and a top quark as the colored
particles in the hard scattering, namely, tW~ and tH™
production. The leading-order diagrams for bg — tW~
are shown in Fig. 5; if one replaces the W~ by an H~
the graphs describe bg — tH~. We treat the bottom quark
as massless [13]. In this section we calculate the two-loop

1+ 3
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K
re = Erg” + CrCyMy, (2.5)

where

) (i) 1 5 57)

()] - e - (i) < (i) - g () 2w ) )
N (et

(2.6)

soft anomalous dimension that will allow us to resum the
soft-gluon contributions to NNLL accuracy.

In Fig. 6 we show the one-loop eikonal diagrams for
these processes. Calculating the integrals associated with
these diagrams we find the one-loop soft anomalous di-
mension for bg — tW™:

Z—-n 17 C u
o)1) ) o
S an,\/E 2 2nm,2t()
where s = (p, + po)% 1= (p, — p)* u=(p, — p)%
and m, is the top quark mass. The expression for hg —
tH™ is identical. This result is slightly different from the
result in Refs. [10,13] because the axial gauge was used in

b t b w
R AV AV AV AN
EEREEED

8 w 8 t

FIG. 5. Leading-order diagrams for bg — tW™.
b b
8 8
b b
§ ; t ; @ t
8 8

FIG. 6. One-loop eikonal diagrams with bottom quark-gluon-
top quark vertex.
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those papers, while the result in Eq. (3.1) is calculated in
Feynman gauge. Of course these differences are compen-
sated by other terms in the resummed formula and the final
result for the cross section is independent of the choice of
gauge.

To find the two-loop soft anomalous dimension we
calculate the diagrams shown in Figs. 7-9, plus diagrams
involving the top quark self-energy as in Figs. 3 and 4.

Since they are three colored partons, with one of them
|

CZ
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massive, we calculate diagrams that contribute to the cusp
anomalous dimension for each pair of partons using the
results in the previous section in the limit when one or both
partons are massless. Note that diagrams that involve
gluons attached to all three eikonal lines either vanish or
do not contribute to the two-loop result [23], and hence we
do not show them. Combining the kinematic results for the
integrals from Appendix B with color and symmetry fac-
tors we have

TA[Iza + 2Ly, + 2Dy + 20, — 2Lply + Cillay + Ly + 21y + 20, + Iy, + Iy,

3

1 1

C 1
+ CFCA[_IZa - 5121; =Dy = Iy = 2Ly, + Ly — I35 — 513112 - 5130]17 - —4A [Loeqlor + ECF[IZW + Lypg L
t

c o c C,
+ T[lza = 2y + 2D + 20545 + T[IZC(]]bg + T[IZa = 2y + 2D + 2054 ]y + T[Ich]

1
+ CrCy E[I3c]gt + I3 jine
Bo

4€2

1 (1 (1) 2)
- g(rs,tW‘)z + FS,tW_ - _FS,IW"

where I5_j;,. denotes the terms involving gluons attached
to all three lines that do not contribute at two loops and
[154]p;, for example, stands for the Fig. 2(d)-type diagram
in Fig. 8 involving the b and ¢ quarks.

We thus find the two-loop soft anomalous dimension for
bg — tW~

K (1—-¢&)
I‘(Sz,ZW* = EF.(S‘I,EW’ + CrCy 73 3.3)
b b
8 g
b b
t t
8 g

b b
i t § Q’;; t
8 g
FIG. 7. Two-loop eikonal diagrams involving the bottom quark
and gluon eikonal lines.

gt

(3.2)

where F(Sl 2W7 is given in Eq. (3.1). The result for bg — tH™
is the same.

With the two-loop soft anomalous dimension at hand we
are now ready to resum the soft-gluon corrections at NNLL
accuracy. For tW™ production the resummed partonic
cross section in moment space (with N the moment vari-

b b

~
~

~
~

~
~

8 8

FIG. 8. Two-loop eikonal diagrams involving the bottom quark
and top quark eikonal lines.
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b b

t 1
8 8
b b

t 1
8 8
b b

t t
8 8

FIG. 9. Two-loop eikonal diagrams involving the gluon and
top quark eikonal lines.

able) is given by [9,10,17,24]
G"(N) = explE,(N,) + E,(N,)]
Vs d -
< exp] 2 [ iy W, ()
we M
= Yars W (@) [ (@, (45)

X 8P~ (o (Vfs/N)

Vs/N' d
X exp[z [ frsmas(m)]

s

(3.4)

and similarly for tH~ production.

The first exponent [25,26] in the above expression re-
sums soft and collinear corrections from the incoming
partons

12Nl — 1 ra-2dA
E/N,;) = [ P { f PO 4 (1))
0 1—z 1 A

+ D (1 - z>2s>]}, 35)

where i stands for the incoming bottom quark (i = ¢) or
the incoming gluon (i = g). Here N, = N[(m}, — u)/m}]
and N, = N[(m}, — 1)/m7], where my, is the W-boson
mass. The quantity A; has a perturbative expansion, A; =
3 (a,/m)"A" Here A = Cpand AP = CrK /2, while
AV =, and AP = C,K/2.

Also D; = ¥, (a,/m)"D", with D) = D{" =0, and
(27]
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101
Dsiz) = CFCA(_ =i

1. 7 74
54 +g§2+zf3>+cﬂlf< —)

27 3
(3.6)

and DY = (C,/Cr)DY.

In the second exponent 7, ; is the moment-space anoma-
lous dimension of the MS parton density ¢; /i and it con-
trols the factorization scale, up, dependence of the
cross section. We have y;; = —A; InN; + y;, where A;
was defined above, N; = N;e"t with 7y, the Euler

constant, and the parton anomalous dimension vy; =
S (ay/m)"y", where y) = 3Cp/4 and v} = By/4.

H"$='W i5 the hard-scattering function while S?~W is
the soft function describing noncollinear soft-gluon emis-
sion [9,10]. The evolution of the soft function is controlled
by the soft anomalous dimension I'g,y-. Here N' =
N(s/m?) with N = Nez.

For tH™ production the resummed formula is essentially
the same. The only difference, apart from the obvious use
of the appropriate hard-scattering function for this process,
is the definition of Nq7 and N P In this case, Nq =
N[(m}- — u)/m}-]and N, = N[(m}- — 1)/m3}-], where
mpy- is the charged Higgs mass.

The resummed cross section, Eq. (3.4), can be expanded
in the strong coupling, «,, and inverted to momentum
space, thus providing fixed-order results for the soft-gluon
corrections. The NLO expansion of the resummed cross
section after inversion to momentum space is

50 — 03@{%9@4) + oDyl (B

where o8 is the Born term for the process and uy is the
renormalization scale. We use the notation Dj(s,) =
[In*(s,/m?)/s4], in tW~ production and D(s,) =
[In*(sy/m32,-)/s4]+ in tH™ production for the plus distri-
butions involving logarithms of a kinematical variable s,
that measures distance from threshold (s, = O at thresh-
old). For bg — tW~, s4 = s + t + u — m? — m},, while
for bg — tH™, s, = s + t + u — m?> — m%-. The coeffi-
cient of the leading term is

ey =240 + AY). (3.8)
The coefficient of the next-to-leading term, c,, can be
written as ¢, = ¢§ + T, with ¢} denoting the terms in-

volving logarithms of the scale and T, denoting the scale-
independent terms. For bg — tW~

2
= —(AY + Afgl))ln(%) 3.9)

t

and
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2 2
g My T MY (M T
T2 = 2Aq IH(T%) 2Ag ln(th)

— (AP + AW In ( ) + 2, (3.10)
For bg — tH™ replace both my, and m, in the above two
equations by mp-.

As discussed in [10,13] the expansion can also deter-
mine the terms involving logarithms of the factorization
and renormalization scales in the coefficient, c¢;, of the
8(s4) terms. If we denote these terms as ¢/’ then for W~

PHYSICAL REVIEW D 82, 054018 (2010)

2 2
a0 (MW T U W (My — 1 () )
CIIL = [Aq 111(7’,”1g ) + Ag hl( mtz ) y ’YE ]
“ In ( 2) /301 (MR)

m; 4 m,

while for bg — tH™ replace both my, and m, in the above
equation by mg-. The full virtual terms are not derivable
from resummation, which addresses soft-gluon contribu-
tions, but can be taken from the complete NLO calculation.

The NNLO expansion of the resummed cross section for

(3.11)

production bg — tW™ after inversion to momentum space is
. (/L ) 3 B
o? = K { 3D;(s4) + [ €36y — 003]Dz(s4)
m? 4
2
+ [C361 + c% — §2c§ — %TQ + @C’;l (M—§> + 2A(q2) + 2A§2)]D1(s4)
1
2 m2 — ¢ 2 _
+ [6261 beyey + 3+ &cz ln<ﬂ) 'BOA(DI 2<72 u) 'BOA(I)I (—2 )— 2A(qz) ln(—mw 5 u)
s my m; mj

2
— 249 1n<—mW

ny

For bg — tH™ again replace both my, and m, by my- in
the above equation. It is important to note that all NNLO
soft-gluon corrections are derived from the NNLL re-
summed cross section, i.e. the coefficients of all powers
of logarithms in s, are given in Eq. (3.12), from Ds(s,)
down to Dy(s,). In Refs. [10,13,14], where NLL accuracy
was attained, only the coefficients of Dj;(s4) and D, (s4)
were fully determined. Thus, at NNLL accuracy the theo-
retical improvement over NLL is significant. As discussed
in [10,14] additional 8(s4) terms involving the factoriza-
tion and renormalization scales are also computed.

IV. NNLO APPROXIMATE CROSS SECTIONS FOR
tW~ AND tH~ PRODUCTION AT THE LHC

We now use the results of the previous section to calcu-
late approximate NNLO cross sections for bg — tW™ and
bg — tH™ at the LHC.

We begin with tW™ production. As has been shown in
[10,11] the NLO expansion of the resummed cross section
approximates well the complete NLO result for both
Tevatron and LHC energies. In fact when damping factors
are used to limit the soft-gluon contributions far away from
threshold, as was also used for ¢ production [28] and
s-channel single-top production [17], then the approxima-
tion is excellent. This shows that soft-gluon corrections are
dominant for this process.

In Table I we provide numerical values for the tW™ cross
section at the LHC for energies of 7, 10, and 14 TeV and a
range of top quark masses from 170 to 175 GeV. The
NNLO approximate corrections increase the NLO cross

t 2 2
) + D + DY + %(Agn + Ag,”)an(ﬂ) — (AP +AD) 1n<ﬁ) + 2F<S23W7]Do(s4)}. (3.12)
N N :

|
section by ~8%. We note that the cross section for bg —
W is identical.

At 7 TeV with m, = 173 GeV the approximate NNLO
cross section from NNLL resummation is

NNLO approx (

o m, = 173 GeV,7 TeV) = 7.8 = 0.2+03 pb.

.1

The first uncertainty is from a scale variation between m, /2
and 2m, and the second is from the MSTW2008 NNLO pdf
at 90% C.L. At 10 TeV, again with m, = 173 GeV, the
cross section is 19.4 + 0.5*]0 pb, and at 14 TeV we find
41.8 = 1.0713 pb.

In Fig. 10 we plot the bg — W~ NNLO approximate
cross section from NNLL resummation at the LHC versus
top quark mass for energies of 7, 10, and 14 TeV.

TABLE I. The bg — tW™ production cross section in pb in pp
collisions at the LHC with +/S = 7, 10, and 14 TeV, with mo=m,
and using the MSTW2008 NNLO pdf [29]. The approximate
NNLO results are shown at NNLL accuracy.

NNLO approx (NNLL) tW™ cross section (pb)

m, (GeV) LHC 7 TeV LHC 10 TeV LHC 14 TeV
170 8.24 20.3 43.6
171 8.09 20.0 43.0
172 7.94 19.7 424
173 7.80 19.4 41.8
174 7.66 19.1 41.2
175 7.53 18.7 40.6
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bg->tW  at LHC NNLO approx (NNLL) U=m,

60 ———————————— T

— 14 TeV| {
r ——- 10TeV| A
b == 7TeV |
40\
2 | ]
& 3L ]
: - ]
20: ——————————————————————————— ]
Ok N

0- L L L ! | L 1 1 L 1 L L . .
165 170 175 180

m, (GeV)

FIG. 10 (color online). The cross section for tW~ production
at the LHC with /S =7, 10, and 14 TeV, and MSTW2008
NNLO pdf.

Next we consider the process bg — tH ™. The ratio of
the vacuum expectation values, v,, v, for the two Higgs
doublets is tan8 = v,/v,, and the value of the cross
section depends on the choice of this undetermined pa-
rameter. However, the overall percentage enhancement of
the cross section from the higher-order soft-gluon correc-
tions is independent of the value of tang.

In Fig. 11 we plot the bg — tH~ NNLO approximate
cross section from NNLL resummation at the LHC versus
charged Higgs mass for energies of 7, 10, and 14 TeV,
using a value of tanf8 = 30. The NNLO approximate cor-
rections increase the NLO cross section by ~15% to
~20% for the range of charged Higgs masses shown. We
note that the cross section for bg — FH™ is identical
(assuming the underlying model is CP conserving).

bg->tH at LHC NNLO approx (NNLL) tanB=30 p=m,

G (pb)

0.001 ~ .

L1
600
m (GeV)

200 400

FIG. 11 (color online). The cross section for tH ™~ production at
the LHC with \/E =17, 10, and 14 TeV, and MSTW2008 NNLO
pdf.
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V. CONCLUSION

The cross sections for associated production of a single
top quark with a W boson or with a charged Higgs boson
receive large contributions from soft-gluon corrections.
These contributions were resummed in this paper to
NNLL accuracy, thus extending previous NLL results.
Attaining this accuracy requires the calculation of two-
loop soft anomalous dimensions from the UV poles of
dimensionally regularized integrals of two-loop eikonal
diagrams. First the two-loop cusp anomalous dimension
was calculated, which is an essential ingredient to all
NNLL resummations for QCD processes, and then the
result was used to calculate the two-loop soft anomalous
dimensions for bg — tW~ and bg — tH . From the
NNLL resummed formula approximate NNLO cross sec-
tions were derived and numerical predictions made for
tW™ and tH~ production at LHC energies. These approxi-
mate NNLO corrections enhance the NLO cross section for
tW~ production by ~8% and for tH~ production by
~15% to ~20%.
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APPENDIX A: DIMENSIONALLY REGULARIZED
EIKONAL INTEGRALS

We list independently derived results for several dimen-
sionally regularized integrals needed in the calculation of
the two-loop soft anomalous dimension (related expres-
sions can be found in [19,22,30,31]):

d'k i
e — —1—(e/2) 2—(5/2)23+3(5/2)
[k2v<'kv<~k e( ) 7

€ 1 €3
XT(1+2),F |51 +25%; 2),
( 2)2 1(2 22[3

(A
where , F| is the Gauss hypergeometric function.
d"k i
- 1—(e/2) 2*(6/2)23“‘3(6/2)
[kz(v,»-k)2 6( ) 7
X (1 - 32)-1-<f/2>r(1 + g) (A2)
j d"k
(k)1 kv, - k
i (=)'«
= 5 227271 + ¢) E
1 —
X [(1 - ,8)_52F1<—e, 1+e€1—c¢ 5 B)
1+
—(1+ B)’EzFl(—e, 1+e€l1—c¢ 7 'B):I (A3)
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[ d"k
kZ(Ui . )1+e ok

i€/ 2+(9¢/2) 1-(3¢/2) 2\—1-(3¢/2)
2 € 1 € 1_ €
= T g ) )

xr(1+36) !

I'l + ¢
3e 3e 2B —2,8]
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where F| is the Appell hypergeometric function.
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APPENDIX B: UV POLES OF THE INTEGRALS
FOR EIKONAL ONE-LOOP AND TWO-LOOP
DIAGRAMS FOR THE SOFT (CUSP) ANOMALOUS
DIMENSION

Here we present the UV poles of the integrals for the
one-loop eikonal diagrams in Fig. 1 and the two-loop
eikonal diagrams in Figs. 2 and 3.

First we list the integrals for the one-loop diagrams:

B 1+ ,82) 1 1-p
I]a— ZB ;1n(1+ﬁ) (Bl)
and
1
Iy, =~ (B2)
€

Then we list the integrals for the two-loop diagrams:

(1+B%? (—1)
57 & o° (1 n 5) (B3)

b= () (i)

<[l ) - o]+ i) - )

Ly + 1, =

(B4)
2eg = 25—4 u ;'82) I:é - %] ln(1 " §> (B6)

P ) )

_ 2

() (g
R
b = =1y, (B8)

b )
<[5 (i) 1]
2

- 1+25 (gt (B2
L, = —%‘i‘i, (B10)
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1 1
Ly,=———, B11
3a2 62 e ( )
nel1 5
L3, = ?f[? - a] (B12)
571 31
B = | =~ 2c) (B13)
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In terms of the cusp angle
v v+ (v )P — viu?
y = ln( ey ’), (B15)
v2u?
i
and
v; " vj
cothy = s (B16)

2_ 2.2
\/(v,- “v))° — vivg

the previous results for the integrals can be written as

1
I]a = _E')/COth’y, (B17)
1
12a + 1217 = — —zyzcothzy, (B18)
2e
I P b
I, = 5—coth V{V[le(e N+ o)+
2€ 3
+ Lis(e™%) — 53}, (B19)
b, = 3 ycothy[— o + é:l (B20)
5 31
L,=|——+— thy, B21
28 [ 1262 726]700 Y (B21)
1 1 1792
Ly = 3 cothy{—zy + —[77 —y+yIn(l —e %)
€ €
| R g
— St + 2]} (822)
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1 1 1
Ly = —{_ Z[zfz + y*[—ycothy + 1] - 67’3 COth')’}’
€
(B23)
1
I3C = - ’}/COth’y (B24)
€

The above expressions simplify when one of the quarks
is massless. In that case cothy = 1 and

2v; - v;

f). (B25)

/2 2
viv;

The integrals listed before then take simpler forms:

y=ln<

L, = —é% (B26)

Ly, + L, = — 2—2272, (B27)

b, = i[? + &y — 53], (B28)
be, n3f 7[— 612 655]’ (B29)
by = [— % + %]7 (B30)
12d=$y+i|:’y72—y+%i|, (B31)
L = év (B33)
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