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In a previous work regarding the interaction of two �ð770Þ resonances, the f2ð1270Þ (JPC ¼ 2þþ)
resonance was obtained dynamically as a two-�molecule with a very strong binding energy, 135 MeV per

� particle. In the present work we use the �� interaction in spin 2 and isospin 0 channel to show that the

resonances �3ð1690Þ (3��), f4ð2050Þ (4þþ), �5ð2350Þ (5��), and f6ð2510Þ (6þþ) are basically molecules

of increasing number of �ð770Þ particles. We use the fixed center approximation of the Faddeev equations

to write the multibody interaction in terms of the two-body scattering amplitudes. We find the masses of

the states very close to the experimental values and we get an increasing value of the binding energy per �

as the number of � mesons is increased.
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I. INTRODUCTION

In the last decade, the chiral unitary approach has shown
that many hadronic resonances can be obtained dynami-
cally from the interaction of hadrons. This has been done
through the implementation of unitarity in coupled chan-
nels using a lowest order chiral Lagrangian, to the point
that these resonances can be interpreted as meson-meson
or meson-baryon molecules [1–10], and it has shed new
light into the issue of the nature of the scalar mesons,
among others. The interaction of pseudoscalar mesons
among themselves and meson-baryon interaction has given
way recently to the interaction of vector mesons among
themselves [11–13] and the interaction of vector mesons
with baryons [14,15], where the interaction is evaluated
within the techniques of the chiral unitary approach start-
ing from a lowest order hidden gauge symmetry
Lagrangian [16–19]. In Ref. [11] it was found that the
interaction of two �ð770Þ mesons in isospin I ¼ 0 and
spin S ¼ 2 was strong enough to bind the �� system into
the f2ð1270Þ (JPC ¼ 2þþ) resonance. The nature of this
resonance as a �ð770Þ�ð770Þ molecule has passed the tests
of radiative decay into �� [20], the decay of J=� into
!ð�Þ and f2ð1270Þ (together with other resonances gen-
erated in [12]) [21], and J=� into � and f2ð1270Þ (and the
other resonances of [12]) [22].

The f2ð1270Þ obtained in Ref. [11] as a �� quasibound
state or molecule implies a very large binding energy per �
meson, about 135 MeV. This occurs only for spin S ¼ 2,
where the two spins of the � are aligned in the same
direction. In view of this strong �� interaction, some
natural questions arise: (i) Is it possible to obtain bound
systems with increasing number of � mesons as building
blocks? These systems with many �’s with their spins

aligned in the same direction would make a condensate,
with features similar to a ferromagnet; (ii) If so, is there a
limit in the number of �’s or, even more interesting, does
the mass of the multi-� system saturate at some number of
� mesons? In this latter case then it would be energetically
‘‘free’’ to introduce new � mesons into the system.
The condensates made out of mesons have been advo-

cated sometimes, and concretely, the issue of pion con-
densates was popular for some time [23] and kaon
condensation has also attracted much attention [24].
Regarding the question (i), in the PDG [25] there are

intriguing mesons with large spin, of the � and f0 type,
whose quantum numbers match systems made with 3, 4, 5,
and 6� mesons with their spins aligned. These are the
�3ð1690Þ (3��), f4ð2050Þ (4þþ), �5ð2350Þ (5��), and
f6ð2510Þ (6þþ) resonances. If these resonances were
essentially multi-� meson molecules, they would have a
binding energy per � of about 210, 260, 305, and 355MeV,
respectively. This increasing value as more �’s are added to
the system connects with question (ii).
The main aim of the present work is to address these

questions. Technically, we would have to solve the
Faddeev equations [26] for a state of three �’s to start
with. Systems of three mesons, concretely K �K�, have
been addressed recently with Faddeev equations [27].
States of two mesons and one baryon have also received
recent attention [28–31]. In the three � mesons state, the
fact that the two � meson system with S ¼ 2 is so bound,
makes it advisable to use the fixed center approximation to
the Faddeev equations (FCA) [32–35] in order to obtain the
scattering amplitudes of one � with the f2ð1270Þ state.
The FCA requires the knowledge of the wave function of
the bound state of the target. This information can be
obtained using a recent method that connects, in an easy
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and practical way, the wave functions with the scattering
matrices of the chiral unitary approach [36]. Proceeding by
iterations we build up states with an extra �meson starting
from the former state. In this way the multi-� resonances
are generated, which show up as prominent bumps in the
different scattering amplitudes. The iterative method sug-
gests a way to extrapolate to many � states and we develop
an analytical method to evaluate the mass of the n-� state
for very large n if only the single-scattering contribution is
considered in the Faddeev equations, which should be
viewed only as suggestive of what might happen in the
limit of a large number of � mesons.

II. UNITARIZED �� INTERACTION

The most important ingredient in the calculation of the
multi-� scattering is the two-� interaction. In this section
we briefly summarize the model of Ref. [11] to obtain the
unitary �� scattering amplitude. (We refer to [11] for
further details).

The �� potential is obtained from the hidden gauge
symmetry Lagrangian [16–19] for vector mesons, which,
up to three and four vector fields, reads as follows:

L ð4VÞ ¼ g2

2
hV�V�V

�V� � V�V�V
�V�i; (1)

L ð3VÞ ¼ ighðV�@�V� � @�V�V
�ÞV�i; (2)

where V� is the SUð3Þ matrix containing the vector-meson
fields and the coupling constant g is g ¼ MV=2f with
f ¼ 93 MeV, the pion decay constant. The Lagrangian of
Eq. (1) gives rise to a four-vector-meson contact term and
that of Eq. (2) to a four-vector-meson interaction through
the exchange of an intermediate vector meson in the t and u
channels (the s-channel gives rise to a p-wave that we do
not consider, only the important s-wave part is studied).

From these Lagrangians, a potential V can be obtained to
which the contact and �-exchange terms contribute. For
the present work only the spin S ¼ 2 and isospin I ¼ 0,
I ¼ 2, are necessary:

VðI¼0;S¼2ÞðsÞ ¼ �4g2 � 8g2
�
3s

4m2
�

� 1

�
��20g2;

VðI¼2;S¼2ÞðsÞ ¼ 2g2 þ 4g2
�
3s

4m2
�

� 1

�
� 10g2;

(3)

where the last terms are the approximate values at thresh-
old in order to give an idea of the weight and sign of the
interaction. The �� S ¼ 2, I ¼ 0 is strongly attractive.
This is the most important reason to obtain a bound ��
state with these quantum numbers as we explain below.

Further contributions to the previous potential were
considered in Ref. [11], out of which only the box diagram,
which accounts for the two-pion decay mode, was relevant,
and only for the imaginary part of the potential. Explicit

expressions can be found in Ref. [11]. The consideration of
the box diagram is an efficient way to account for the ��
channel in the process without taking it as a coupled
channel. The fact that the real part of this diagram was
found very small in Ref. [11] was interpreted as indicating
the minor role of this channel in the building up of the
resonance. The imaginary part is, however, relevant, be-
cause of the large phase space available for the two pions in
the resonance decay. The consideration of this diagram in
the approach of Ref. [11] does not change the mass of the
resonance but provides it with a moderate width, obviously
much larger than that for decay into �� (considering the
width of the �) which is considerably reduced by phase
space considerations, despite the large coupling of the
resonance to ��. In short, the �� amplitudes that are
used in the present work contain the effect of the ��
components in the f2ð1270Þ wave function.
The work of Ref. [11] considering only �� components

was extended in Ref. [12] including all possible vector-
vector coupled channels within SUð3Þ. For the case of the
f2ð1270Þ, several other channels are also allowed, K� �K�,
!!,!�, and��, out of which theK� �K� has the strongest
coupling to the f2ð1270Þ after the ��, and the other ones
have negligible couplings [12]. The numerical values of the
�� and K� �K� couplings are 10 889 MeV and 4733 MeV,
respectively. This is, however, not a direct measure of the
size of the component in the f2ð1270Þ wave function.
Indeed, in Refs. [36,37] it was shown that the relevant
part for strong reactions, of short range, was the wave
function at the origin, which is given by the product of
the coupling and the G function, the loop function of the
two meson intermediate states, Eq. (4) below. In this case
the product of the coupling times G is about 4 times larger
for the �� than for the K� �K� in the region of the f2ð1270Þ,
which in terms of probability is about a factor 16 times
larger for finding the �� component at short distances.
This reverts into minor effects of the K� �K�, as was already
discussed in [12]. This minor contribution can also be seen
in Fig. 4 of Ref. [12]. On the other hand, the effect of the
K� �K� on the mass of the f2ð1270Þ is also small, and one
must keep in mind that for channels for which the threshold
is far away from the mass of the state that one is consid-
ering, the contribution of these channels can be effectively
taken into account by a small change of the subtraction
constant in the dispersion relation used, or equivalently in
the cutoff. Thus, when a fine-tuning of this cutoff is done to
get the mass of the resonance at the right energy, with only
the �� channel, one is getting the same results for the ��
scattering amplitudes as including explicitly the K� �K� in
addition. Therefore, in the present work we follow the
approach of Ref. [11] using only the �� channel.
With this potential the total �� scattering amplitude can

be obtained. In order to extend the range of applicability of
the interaction to the resonance region, the implementation
of exact unitarity is mandatory. In this case, we use the
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Bethe-Salpeter equation where the kernel is the potential V
described above:

T ¼ V

1� VG
; (4)

for each spin-isospin channel. In Eq. (4), G is the unitary
bubble or the �� loop function [2,3]

GðsÞ ¼ i
Z d4p

ð2�Þ4
1

p2 �m2
� þ i�

1

ðQ� pÞ2 �m2
� þ i�

;

(5)

withQ ¼ ð ffiffiffi
s

p
; ~0Þ. This loop function can be regularized by

means of dimensional regularization or using a three-
momentum cutoff, pmax � �:

Gðs;m1; m2Þ ¼
Z �

0

p2dp

ð2�Þ2

� !1 þ!2

!1!2½ðQ0Þ2 � ð!1 þ!2Þ2 þ i�� ;
(6)

where !i ¼ ð ~p2
i þm2

i Þ1=2.
In order to consider the width of the � particles inside

the loop, a convolution with the two � meson spectral
functions is done to Eq. (6):

GðsÞ ¼ 1

N 2

Z ðm�þ2�ONÞ2

ðm��2�ONÞ2
ds1

�
Z ðm�þ2�ONÞ2

ðm��2�ONÞ2
ds2Gðs; ffiffiffiffiffi

s1
p

;
ffiffiffiffiffi
s2

p ÞS�ðs1ÞS�ðs2Þ; (7)

where S�ðsiÞ is the � meson spectral function

S�ðsiÞ ¼ � 1

�
Im

�
1

si �m2
� þ im���ð ffiffiffiffi

si
p Þ

�
; (8)

with ��ð
ffiffiffi
s

p Þ the �-meson energy dependent width

��ð
ffiffiffi
s

p Þ ¼ �ON

�
s� 4m2

�

m2
� � 4m2

�

�
3=2

(9)

and �ON the on-shell � meson width. In Eq. (7) N is a
normalization factor given by

N ¼
Z ðm�þ2�ONÞ2

ðm��2�ONÞ2
dsS�ðsÞ: (10)

The cutoff � is the only free parameter in the whole
model and is chosen such as to produce the peak of jTj2
at the experimental mass of the f2ð1270Þ. This implies
� ’ 875 MeV, which is of a natural size [8], about 1 GeV.

In Fig. 1, the modulus squared of the S ¼ 2, I ¼ 0

scattering amplitude, TðI¼0;S¼2Þ, is plotted. The resonance
structure of the f2ð1270Þ resonance is clearly visible.

III. MULTIBODY INTERACTION

We are going to use the fixed center approximation of
the Faddeev equations in order to obtain the interaction of a
number of � mesons larger than 2.
We will illustrate the process for the interaction of three

mesons and will give the expression obtained analogously
for other numbers of mesons. For the three � system, we
will consider that two of the � mesons are clusterized
forming an f2ð1270Þ resonance, given the strong binding
of the f2ð1270Þ system. This allows us to use the FCA to
the Faddeev equations.
The FCA to Faddeev equations is depicted diagrammati-

cally in Fig. 2. The external particle, the � in this case,
interacts successively with the other two � mesons which
form the �� cluster. The FCA equations are written in
terms of two partition functions T1, T2, which sum up to the
total scattering matrix T, and read

T1 ¼ t1 þ t1G0T2;

T2 ¼ t2 þ t2G0T1;

T ¼ T1 þ T2;

(11)

where T is the total scattering amplitude we are looking
for, Ti accounts for all the diagrams starting with the
interaction of the external particle with particle i of the
compound system, and ti represent the �� unitarized scat-
tering amplitude of a �þ with any of the other � in the
I ¼ 0 �� system. The schematic representation is depicted
in Fig. 2.
Figure 2(a) represents the single-scattering contribution

and Fig. 2(b) the double-scattering. The contributions of
Fig. 2(a) and 2(b) are the two first contributions of the
Faddeev equations.
In the present case, since both 1 and 2 are � mesons, we

have T1 ¼ T2 an thus the system of equations is just
reduced to a single equation
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FIG. 1. Modulus squared of the �� scattering amplitude with
total spin S ¼ 2 and isospin I ¼ 0.

DESCRIPTION OF THE f2ð1270Þ, . . . PHYSICAL REVIEW D 82, 054013 (2010)

054013-3



T1 ¼ t1 þ t1G0T1; T ¼ 2T1: (12)

A. Single-scattering contribution

The amplitude corresponding to the single-scattering
contribution of Fig. 2(a) comes just from the t1 term of
Eq. (12), T ¼ 2t1.
In order to write this expression in terms of the I ¼ 0

and I ¼ 2 unitarized amplitudes ðtðI¼0Þ
�� ; tðI¼2Þ

�� Þ of Eq. (4),
let us consider a cluster of two � mesons in isospin I ¼ 0,
the constituents of which we call mesons 1 and 2. The other
� meson will be meson number 3. The two � mesons
forming the f2 are in an I ¼ 0 state

j��iI¼0 ¼ � 1ffiffiffi
3

p j�þ�� þ ���þ þ �0�0i

¼ 1ffiffiffi
3

p ðjð1;�1Þi þ jð�1; 1Þi � jð0; 0ÞiÞ; (13)

where the brackets in the last member indicate the Iz
components of the 1 and 2 particles, jðIð1Þz ; Ið2Þz Þi. We take

the � meson number 3 in the state jðIð3Þz Þi

j�þi ¼ �jðþ1Þi: (14)

The scattering potential in terms of the two-body poten-
tials V31, V32 is

T ¼
�
�hðþ1Þj � 1ffiffiffi

3
p ðhðþ1;�1Þ þ ð�1;þ1Þ � ð0; 0ÞjÞ

�
ðV31 þ V32Þ

�
�jðþ1Þi � 1ffiffiffi

3
p ðjðþ1;�1Þ þ ð�1;þ1Þ � ð0; 0ÞiÞ

�

¼ 1

3

�
ðð2þ 2Þ;�1Þ þ

�
1ffiffiffi
6

p ð20Þ þ 1ffiffiffi
2

p ð10Þ þ 1ffiffiffi
3

p ð00Þ; 1
�
�

�
1ffiffiffi
2

p ð2þ 1Þ þ 1ffiffiffi
2

p ð1þ 1Þ; 0
���������V31

��������ðð2þ 2Þ;�1Þ

þ
�
1ffiffiffi
6

p ð20Þ þ 1ffiffiffi
2

p ð10Þ þ 1ffiffiffi
3

p ð00Þ; 1
�
�

�
1ffiffiffi
2

p ð2þ 1Þ þ 1ffiffiffi
2

p ð1þ 1Þ; 0
��

þ 1

3

��
1ffiffiffi
6

p ð20Þ þ 1ffiffiffi
2

p ð10Þ þ 1ffiffiffi
3

p ð00Þ; 1
�

þ ðð2þ 2Þ;�1Þ �
�
1ffiffiffi
2

p ð2þ 1Þ þ 1ffiffiffi
2

p ð1þ 1Þ; 0
���������V32

��������
��

1ffiffiffi
6

p ð20Þ þ 1ffiffiffi
2

p ð10Þ þ 1ffiffiffi
3

p ð00Þ; 1
�
þ ð2þ 2Þ;�1

�

�
�
1ffiffiffi
2

p ð2þ 1Þ þ 1ffiffiffi
2

p ð1þ 1Þ; 0
��

; (15)

where the notation followed in the last term for the states is
hðItotalItotalz ; Ikz ÞjVijji, where Itotal means the total isospin of
the ij system and k � i, j (the spectator �).

This leads, in terms of the I ¼ 0 and I ¼ 2 unitarized

amplitudes ðtðI¼0Þ
�� ; tðI¼2Þ

�� Þ, to the following amplitude for
the single-scattering contribution:

t1 ¼ 2
9ð5tðI¼2Þ

�� þ tðI¼0Þ
�� Þ; (16)

where we have added an extra 2 factor in order to match the
unitary normalization of Ref. [11] in tI��.

It is worth noting that the argument of the function TðsÞ
is the total invariant mass energy s, while the argument of

t1 is s
0, where s0 is the invariant mass of the � meson with

momentum k and the �meson inside the f2 resonance with
momentum p1 and is given by

s0 ¼ ðkþ p1Þ2 ¼ 1
2ðsþ 3m2

� �M2
f2
Þ: (17)

For latter applications, let us write the general expres-
sion of s0 for the interaction of a particle Awith a molecule
B with n equal building blocks b. Then, s0 represents the
invariant mass of the particle A and a particle b of the B
molecule and is given by

s0 ¼ 1

n
ðs�M2

B �M2
AÞ þM2

A þm2
b; (18)

1
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ρ+

ρ ρ
2

f

f

2
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ρ ρ
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. . .++
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x x’

1 2

1 2
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FIG. 2. Diagrammatic representation of the fixed center
approximation to the Faddeev equations. Diagrams (a) and (b)
represent the single- and double-scattering contributions,
respectively.
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where MAðBÞ is the mass of the AðBÞ system and mb is the

mass of every building block of the B molecule.
Let us consider the wave functions of the incident and

outgoing � particles being plane waves normalized inside a
box of volume V and let us call ’i the wave functions of
the �mesons inside the f2 resonance. The S-matrix for the
process of Fig. 2(a) is written as

Sð1Þ ¼
Z

d4x
1ffiffiffiffiffiffiffiffiffiffiffi
2!p1

p e�ip0
1
x0’1ð ~xÞ 1ffiffiffiffiffiffiffiffiffiffiffi

2!p0
1

q eip
00
1
x0’1ð ~xÞ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kV

q e�ikx 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0

kV
q eik

0xð�it1Þ; (19)

which we can multiply by the identity

Z
d3 ~x0’2ð ~x0Þ’2ð ~x0Þ ¼ 1: (20)

The integration of the time component x0 provides the
energy conservation at the interaction point x:

Z
dx0e�ip0

1
x0eip

00
1
x0e�ik0x0eik

00x0 ¼ 2��ðp0
1þk0�p00

1 �k00Þ
� 2��ðk0þEf2 �k00�E0

f2
Þ; (21)

where in the last step we have assumed p0
2 ¼ p00

2 , as it
corresponds to having the second particle as spectator
(impulse approximation). We can take

’1ðxÞ’2ðx0Þ ¼ 1ffiffiffiffiffiffi
V

p ei
~Kf2

� ~R�f2ð ~rÞ; (22)

with �f2 the wave function of the f2ð1270Þ cluster and

~R ¼ ~xþ ~x0

2
; ~r ¼ ~x� ~x0; (23)

and then we get for the spatial integrals

Z
d3Rei

~Kf2
� ~Re�i ~K0

f2
� ~Rei ~k� ~Re�i ~k0� ~R

¼ ð2�Þ3�ð ~kþ ~Kf2 � ~k0 � ~K0
f2Þ (24)

and

Z
d3r�f2ð~rÞ�f2ð~rÞei ~k�ð ~r=2Þe�i ~k0�ð~r=2Þ ¼ Ff2

� ~k� ~k0

2

�
’ Ff2ð0Þ ¼ 1; (25)

where Ff2 is the f2ð1270Þ form factor normalized to unity

neglecting the ~k, ~k0 momenta, which we take equal.
Hence the S-matrix for the single scattering term is

given by

Sð1Þ ¼ �it1
1

V 2

1ffiffiffiffiffiffiffiffiffiffiffi
2!p1

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

1

q 1ffiffiffiffiffiffiffiffiffi
2!k

p

� 1ffiffiffiffiffiffiffiffiffi
2!0

k

q ð2�Þ4�ðkþ Kf2 � k00 � K0
f2
Þ (26)

and recall we must sum t1 þ t2 ! 2t1.

B. Double-scattering and resummation contribution

We are going to evaluate the amplitude of the double-
scattering contribution [Fig. 2(b)] in a similar way as in the
case of the kaon deuteron interaction in [35,38].
The S-matrix can be written as

Sð2Þ ¼
Z

d4x
Z

d4x0
1ffiffiffiffiffiffiffiffiffiffiffi
2!p1

p e�ip0
1
x0’1ð ~xÞ

� 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

1

q eip
00
1
x0’1ð ~xÞ 1ffiffiffiffiffiffiffiffiffiffiffi

2!p2

p e�ip0
2
x00’2ð ~x0Þ

� 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

2

q eip
00
2
x00’2ð ~x0Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kV

q e�ikx 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!0

kV
q eik

0x0i
Z d4q

ð2�Þ4

� eiqðx�x0Þ

q2 �m2
� þ i�

ð�it1Þð�it1Þ (27)

The integrations of the time components x0 and x00
provide the energy conservation at the two interaction
points x and x0:Z

dx0e�ip0
1
x0eip

00
1
x0e�ik0x0eiq

0x0

¼ 2��ðp0
1 þ k0 � p00

1 � q0Þ;Z
dx00e�ip0

2
x00eip

00
2
x00eik

00x00e�iq0x00

¼ 2��ðp0
2 þ q0 � p00

2 � k00Þ:

(28)

We implement now the change of variables ð ~x; ~x0Þ !
ð ~R; ~rÞ of Eq. (23). The R integral gives the same expression
as in Eq. (24), and the ~r integral gives rise toZ

d3r�f2ð ~rÞ�f2ð~rÞei ~k�ð ~r=2Þei ~k
0�ð ~r=2Þe�i ~q� ~r

¼
Z

d3re�ið ~q�ð ~kþ ~k0Þ=2Þ� ~r�f2ð~rÞ2 � Ff2

�
~q�

~kþ ~k0

2

�
;

(29)

where Ff2ð ~q� ð ~kþ ~k0Þ=2Þ is the f2ð1270Þ form factor

introduced above.
The final expression for the S-matrix for the double-

scattering process is
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Sð2Þ ¼ �ið2�Þ4�ðkþ Kf2 � k0 � K0
f2
Þ 1

V 2

1ffiffiffiffiffiffiffiffiffi
2!k

p 1ffiffiffiffiffiffiffiffiffi
2!0

k

q
� 1ffiffiffiffiffiffiffiffiffiffiffi

2!p1

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2!p2

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

2

q Z d3q

ð2�Þ3 Ff2ðqÞ

� 1

q02 � ~q2 �m2
� þ i�

t1t1; (30)

and we will take q0 at the f2 rest frame, q0 ¼ ðs�m2
� �

M2
f2
Þ=ð2Mf2Þ, where we have considered p0

1 ¼ p00
1 and

p0
2 ¼ p00

2 which is true on average. In Eq. (30) we have

also taken into account that ð ~kþ ~k0Þ=2 ¼ 0 on average.
For the evaluation of the form factor of the f2 resonance

we follow the approach of [36]. In this work it is shown that
the use of a separable potential in momentum space of the
type

V ¼ v	ð�� qÞ	ð�� q0Þ; (31)

where� is the cutoff used in the theory for the scattering of
two particles and q, q0 are the modulus of the momenta,
leads to the same on-shell prescription for the scattering
matrix as is used in the chiral unitary approach. The on-
shell prescription converts the coupled integral equations
for the scattering matrix into algebraic equations, and
similarly, the wave functions can be easily obtained in
terms of an integral. The wave function in momentum
space is written as

h ~pjc i ¼ v
�ð�� pÞ

E�!�ð ~p1Þ �!�ð ~p2Þ
Z
k<�

d3kh ~kjc i; (32)

where !�ð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

�

q
, and in coordinate space as

h ~xjc i ¼
Z d3p

ð2�Þ3=2 e
i ~p�: ~xh ~pjc i: (33)

The final expression for the form factor of Eq. (29) is
then given by

Ff2ðqÞ ¼
1

N

Z
p<�

j ~p� ~qj<�

d3p
1

Mf2 � 2!�ð ~pÞ

� 1

Mf2 � 2!�ð ~p� ~qÞ ; (34)

where the normalization factor N is

N ¼
Z
p<�

d3p
1

ðMf2 � 2!�ð ~pÞÞ2
: (35)

In Fig. 3 we show the form factor of the f2 resonance.
The condition j ~p� ~qj<� implies that the form factor is
exactly zero for q > 2�. Therefore, the dj ~qj integration in
Eq. (30) has an upper limit of 2�.

We must now face the issue of normalization in our
formalism. We use Mandl-Shaw [39] normalization for
the fields and hence the S-matrix for �f2 scattering is
written as

S ¼ �iT�f2ðsÞ
1

V 2

1ffiffiffiffiffiffiffiffiffi
2!k

p 1ffiffiffiffiffiffiffiffiffiffi
2!k0

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!f2

p
� 1ffiffiffiffiffiffiffiffiffiffiffi

2!f02

q ð2�Þ4�ðkþ Kf2 � k00 � K0
f2
Þ; (36)

but this should be compared with expressions Eq. (26) for
the single scattering and Eq. (30) for double scattering.
Summing the two partitions T1 and T2 we find that

T�f2 ¼ 4ðt1 þ t1t1G0Þ; (37)

where we have made the assumption that in the f2 rest
frame, where we evaluate the amplitude, 2!� ’ Mf2 , and

G0 is given by

G0 � 1

Mf2

Z d3q

ð2�Þ3 Ff2ðqÞ
1

q02 � ~q2 �m2
� þ i�

: (38)

In Fig. 4 we show the real and imaginary parts of the G0

function. Note that close to the threshold it has the typical
shape of a two meson loop function, �f2 in this case, but it
is smoothed towards zero at higher energies due to the form
factor.
Equation (37) represents the two first terms of the series

expansion of 4t1=ð1� t1G0Þ. Actually, if we consider fur-
ther number of scatterings in the expansion of T�f2 of the

FCA (see diagrams d in Fig. 2), we get

T�f2 ¼4ðt1þ t1G0t1þ t1G0t1G0t1þ t1G0t1G0t1G0t1þ . . .Þ
¼ 4t1
1�G0t1

¼ 4

t�1
1 �G0

¼4

�
t�1
1 ðs0Þ� 1

Mf2

�
Z d3q

ð2�Þ3Ff2ðqÞ
1

q02� ~q2�m2
�þ i�

��1
; (39)

where s0 is given in Eq. (17).
One should, in principle, consider also other compo-

nents of the wave function for the f2ð1270Þ, like the ��
component, as explained in the paragraph after Eq. (3).
Diagrammatically, this would mean that we would have to
consider diagrams like in Fig. 2, where now the 1 and 2
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FIG. 3. Form factor of the f2ð1270Þ resonance.
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components of the f2ð1270Þ would be two pions instead of
two �. However, we already noted that the component of
the resonance in this channel was small. Furthermore,
when considering the propagation of the � between the
two � components, we would now have the �� amplitudes
instead of the �� ones. In the range of energies involved in
the process, comparison of the two amplitudes, looking at
Fig. 1 of the present work and Fig. 8 of Ref. [40], where the
unitarized �� amplitude was evaluated, shows that the ��
amplitude is about a factor 10 larger than that of the ��.
These two facts together render the contribution of these
�� components very small. Similarly, the nondiagonal
transition from the �� initial component [1 and 2 in Fig. 2
(b)] to final �� components, now exchanging a pion, also
implies the small �� component, the �� amplitude, and a
pion propagator for a pion far off shell, which again
renders this diagram negligible.

Note that in the absence of these extra components, the
FCA always involves the elastic scattering of the external
particle with one of the components of the bound state, and
this external component is the one that travels from one
component to the other of the bound state in the multiple
scattering process of Fig. 2. Thus, for instance, when we
study f2ð1270Þ scattering against f2ð1270Þ to obtain the
f4ð2050Þ, one of the f2ð1270Þ scatters with the � compo-
nent of the other f2ð1270Þ and propagates from one � to the
other of this latter state in the multiple scattering process.

C. Larger number of � mesons

For the interaction of up to 6� mesons we can follow a
similar procedure as in the previous subsections but con-
sidering the interaction of two different clusters. For the
interaction of 4�meson we can calculate the interaction of
2f2ð1270Þ resonances given the strong tendency of two �
mesons to clusterize into an f2. Advancing some results
that we will show later, this four � state gives rise to the f4
resonance. Thus, analogously, for 5� we can consider the

interaction of one � meson with an f4. And for 6� we can
consider the interaction of an f4 with an f2.
Therefore, the amplitude for the interaction of a cluster

A with a cluster B made of two equal components b is
given by

tðs;A;BÞ ¼ 4½t�1ðs0ðs;A;bÞ;A;bÞ�G0ðs;A;BÞ��1; (40)

where

G0ðs;A; BÞ ¼ 1

MB

Z d3q

ð2�Þ3 Fðq;BÞ

� 1

q0ðs;A; BÞ2 � ~q2 �M2
A þ i�

; (41)

Fðq; BÞ ¼ 1

N

Z
p<�0

j ~p� ~qj<�0
d3p

1

MB � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

b

q
� 1

MB � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~p� ~qj2 þm2

b

q ; (42)

N ¼
Z
p<�0

d3p
1

ðMB � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

b

q
Þ2
; (43)

q0ðs;A; BÞ ¼ s�M2
A �M2

B

2MB

(44)

and, from Eq. (18),

s0ðs;A; bÞ ¼ 1
2ðs�M2

B �M2
AÞ þM2

A þm2
b: (45)

Note that it is not necessary that the cutoff �0 be the
same in all the cases as the � used for the f2 case. The
cutoff � used in Eq. (6) for the �� loop function, which is
the same appearing in the momentum integral to get the f2
form factor in Eq. (34) [36], can be interpreted as the
typical maximum momentum that each � can reach inside
the f2 molecule. For the f4 case we can argue that the
maximum value would be like in the f2 case but scaled by
the typical momentum of the f2 components inside the f4
molecule. The typical three-momentum of the components
of the f4, �4 is of the order of

�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

4
þMf2B

s
; B ¼ Mf4 � 2Mf2 ; (46)

where B is the binding energy of the f4 and analogously for
the f2:

�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

4
þm�B

s
; B ¼ Mf2 � 2m�: (47)

This gives for the cutoff of the f4

�0jf4 ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���������4

�2

��������
s

’ 1500 MeV: (48)
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FIG. 4. Real and imaginary parts of the G0 function, Eq. (38).
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While this is just a very rough estimation, it gives us an
idea of the order of �0. In any case this only affects the
evaluation of the 5� and 6� system. In the numerical
evaluation we will consider the range �0 �
875–1500 MeV to have an idea of the uncertainties from
this source. But, advancing some results, the dependence
of the mass of the systems with this cutoff is small.

D. Arbitrary number of � mesons in
single-scattering approximation

For any arbitrary number of � mesons, it is possible to
obtain a simple analytic expression for the mass of the
multi-� system if only the single-scattering mechanism is
considered, which is the first order mechanism. Of course,
this is just a toy approximation since, as we will see in the
results section, the multiple scattering is important, but it
serves to make some interesting qualitative arguments.

In the single-scattering approximation, Eq. (40) takes
the form

tðs;A; BÞ ’ 4tðs0ðs;A; bÞ;A; bÞ: (49)

That means that, for instance, the amplitude t�f2 is just

proportional to the t�� amplitude but evaluated at an en-

ergy s0 shifted with respect to s due to the fact that one of
the �’s involved in the �� scattering is bound into an f2
system. In general, the interaction amplitude of a number
n� of �mesons is proportional to the �� amplitude with an

energy obtained considering that one of the � mesons is
bound into an (n� � 1) molecule. Therefore, one can ob-

tain recursively the amplitude for the n� system. Because

of that, the shape of jtðs;A; BÞj2 is the same as that of
jt��ð~sÞj2 but at a shifted energy. The ~s value at which

jt��ð~sÞj2 has the maximum is precisely M2
f2
. The value of

s appearing in tðs;A; BÞ of Eq. (49) is the value that we can
assign to the mass of the n� system, Mðn�Þ. Therefore,
applying recursively the above condition one can obtain a
general expression for Mðn�Þ in the single-scattering

approximation:

Mðn�Þ2 ¼ 1
2n�ðn� � 1ÞM2

f2
� n�ðn� � 2Þm2

�: (50)

We can also define a binding energy per � as

Eðn�Þ ¼
n�m� �Mðn�Þ

n�
; (51)

which will be used for later discussions.

IV. RESULTS

In Fig. 5 we show the modulus squared of the amplitudes
for different numbers of � mesons considering only the
single-scattering mechanisms (dotted line) and the full
model (solid and dashed lines). The difference between
the solid and dashed lines is the value of �0jf4 of Eq. (48)
needed in the evaluation of the 5� and 6� meson systems

(1500 MeV in the solid line, 875 MeV in the dashed one).
The dotted and dashed curves have been normalized to the
peaks of the corresponding full result for the sake of
comparison of the position of the maximum. The differ-
ence between the dashed and solid lines can be considered
as an estimate of the error but the variation in the position
of the maximum is small.
We clearly see that the amplitudes show pronounced

bumps which we associate with the resonances labeled in
the figures. The position of the maxima can be associated
with the masses of the corresponding resonances.
In Table I the values of the masses of our generated

multi-� systems are shown in comparison with the
experimental values at the PDG [25]. The two values for
the �5 and f6 masses in the full model column correspond
to the different values in �0jf4 as explained above. In

the last column the binding energy per � meson, Eðn�Þ ¼
ðn�m� �Mðn�ÞÞ=n�, is also shown.

In Fig. 6 we show graphically the results for the masses
of Table I.
We can see from the results that the single-scattering

mechanism produces qualitatively the resonances but the
positions of the masses do not agree with the experimental
values by differences ranging from about 60 MeV for the
�3 to 700 MeV for the f6. The situation is drastically
improved when the multiple scattering is considered. In
this case, the agreement with the experimental values of
the masses is remarkable. Quantitatively, the full model is
essentially compatible with the experimental values within
errors except for the f6 where the discrepancy is about
150 MeV, which is still quite remarkable, given the high
mass and width of the resonance. The typical discrepancy
with the experimental masses is of the order of 1%, (5% for
the f6).
It is worth stressing the simplicity of our approach and

the absence of parameters fitted in the model. To be more
precise, only the value � ¼ 875 MeV of the cutoff of the
�� loop function was chosen in Ref. [11] to agree with
the experimental f2 pole position. No further adjustments
have been done in the present work.
In principle, the widths of the bumps can be associated

with the widths of the resonances if they were Breit-
Wigner like shapes, which is clearly not the case. This
means that the amplitudes contain much nonresonant back-
ground which our model generates implicitly through the
nonlinear dynamics involved in the unitarization proce-
dure. That means that the extraction of the widths of the
resonances from our amplitudes is just very qualitative:
200, 350, 900, and 1500 MeV for �3, f4, �5, and f6,
respectively. The order of magnitude agrees with the ex-
perimental value of the PDG [25], 161	 10, 237	 18,
400	 100, and 255	 40, respectively, except for the two
heaviest states. However, it is worth noting that, by looking
at Fig. 5, in these heaviest states much of the strength
of the amplitude off the peak could be interpreted as a
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background, as would be the case in an experimental
analysis of a distribution like the one obtained in Fig. 5,
in which case the actual width of the resonance would be
significantly reduced.

Let us address again the problem of an arbitrary large
number of �mesons. A natural question looking at Fig. 6 is
if the curve of the masses saturates for a large enough
number of � mesons. That would imply that it would be
energetically free to add an extra � meson to the system.

For the single-scattering case we can analyze the problem
with the help of Eq. (50). The saturation would occur for

n�jsat ¼
m2

� �M2
f2
=4

m2
� �M2

f2
=2

; (52)

which never happens for the actual � and f2 masses, since
n�jsat of Eq. (52) gives a negative value. However, it is

worth noting in Fig. 6 that the single scattering is just a

TABLE I. Results for the masses of the dynamically generated states.

n� Mass, PDG [25] Mass, only single scatt. Mass, full model Eðn�Þ
2 f2ð1270Þ 1275	 1 1275 1285 133

3 �3ð1690Þ 1689	 2 1753 1698 209

4 f4ð2050Þ 2018	 11 2224 2051 263

5 �5ð2350Þ 2330	 35 2690 2330–2366 302–309

6 f6ð2510Þ 2465	 50 3155 2607–2633 337–341
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FIG. 5. Modulus squared of the unitarized multi-� amplitudes. Solid line: full model �0jf4 ¼ 1500 MeV; dashed line: full model
�0jf4 ¼ 875 MeV; dotted line: only single-scattering contribution. (The dashed and dotted lines have been normalized to the peak of

the solid line for the sake of comparison of the position of the maxima).
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bound limit and that the multiple scatterings tend to de-
crease importantly the mass of an n� system. If such

decrease is enough to eventually reach the saturation
condition cannot be answered with certainty within the
present model since we do not go beyond n� ¼ 6.

However, it is worth noting the large value of the binding
energy per �;, see last column of Table I. Already for
n� ¼ 6, it is almost half the value of the � meson mass.

That means that the creation of the 6�meson system gives
back half the mass of all the particles involved which is
quite a lot of energy.

The binding energy per � evaluated using the single-
scattering approximation, Eq. (51), tends asymptotically to

lim
n�!1Eðn�Þ ¼ m� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f2

2
�m2

�

s
’ 315 MeV: (53)

However, this value is already reached at n� ¼ 6 if the

multiple scattering mechanisms are considered.
If the �� interaction were a little bit stronger, such that

Mf2 �
ffiffiffi
2

p
m� ¼ 1096 MeV, then the saturation would be

reached already considering only the single scattering.
And, in order to get saturation for n� ¼ 6 with only single

scattering, the mass of the f2 resonance should be just

slightly smaller, � ffiffiffiffiffiffiffiffiffiffiffiffiffi
20=11

p
m� ¼ 1056 MeV. Of course

this is just a qualitative reasoning since the width of the
system would eventually increase with the number of �
mesons, making the system fade away rapidly. The former
discussion is obviously rough and speculative of what
might happen for large n� systems. What remains as

quantitative results from the present study is the fact that
the f2ð1270Þ, �3ð1690Þ, f4ð2050Þ, �5ð2350Þ, and f6ð2510Þ
can be essentially considered as multi-� molecules with
increasing number of � mesons.

V. CONCLUSIONS

In the present work, we claim for the first time that the
�3ð1690Þ, f4ð2050Þ, �5ð2350Þ, and f6ð2510Þ resonances
can be interpreted as multi-� states of 3, 4, 5, and 6�
mesons, respectively, with their spins aligned. The main
idea stems from the fact that in Ref. [11] it was found that
the interaction of two �ð770Þ mesons in isospin I ¼ 0 and
spin S ¼ 2 is very strong, to the point to bind the two �
mesons forming the f2ð1270Þ resonance. This elementary
�� interaction is obtained implementing unitarity, using
the techniques of the chiral unitary approach, with a
potential obtained from a hidden gauge symmetry
Lagrangian for the interaction of two vector mesons. For
the multi-� systems we evaluate the scattering amplitudes
for the interactions of two clusters made up of �-mesons.
To this purpose we use the fixed center approximation to
the Faddeev equations which considers the multiple scat-
tering steps in addition to the single process where each �
meson interacts with all the rest of � mesons within the
cluster.
The position of the maximum in the modulus squared of

the amplitudes can be associated with the masses of the
corresponding resonances. It is worth noting that the model
has no free parameters once a cutoff is chosen in Ref. [11]
to obtain the experimental mass of the f2ð1270Þ resonance.
The values of the masses that we obtain are in very good

agreement with the experimental values of the masses of
the resonances considered in the present work, the
�3ð1690Þ, f4ð2050Þ, �5ð2350Þ, and f6ð2510Þ. This is a
remarkable fact given the simplicity of the underlying idea.
The states obtained have an increasing binding energy

per particle which induces one to speculate on the possi-
bility that for a given number of � mesons it would cost no
energy to produce a new � meson inside the meson con-
densate state. However, simultaneously we observe that the
width of the new systems also increases with the number of
� mesons, to the point that for n� ¼ 6 the width is already

very large. It might as well be that one has reached an
experimental threshold and that new multi � states, that in
principle could be created, have such a large width that
they escape present detection techniques. In any case, the
claim made here—that the already observed states up to
J ¼ 6 correspond to multi � states—is a novel idea worth
consideration. New studies with different formalisms and
different points of view would be most welcome, as well as
possible experimental tests which could help unveil the
real nature of these states.
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3452 (1998); Phys. Rev. D 59, 074001 (1999).

[4] J. A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999).
[5] N. Kaiser, Eur. Phys. J. A 3, 307 (1998).
[6] E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998).
[7] J. Nieves and E. Ruiz Arriola, Nucl. Phys. A679, 57

(2000).
[8] J. A. Oller and U.G. Meissner, Phys. Lett. B 500, 263

(2001).
[9] C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, and M. J.

Vicente Vacas, Phys. Rev. D 67, 076009 (2003).
[10] T. Hyodo, S. I. Nam, D. Jido, and A. Hosaka, Phys. Rev. C

68, 018201 (2003).
[11] R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78,

114018 (2008).
[12] L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009).
[13] R. Molina, H. Nagahiro, A. Hosaka, and E. Oset, Phys.

Rev. D 80, 014025 (2009).
[14] S. Sarkar, B. X. Sun, E. Oset, and M. J. V. Vacas, Eur.

Phys. J. A 44, 431 (2010).
[15] E. Oset and A. Ramos, Eur. Phys. J. A 44, 445 (2010).
[16] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.

Yanagida, Phys. Rev. Lett. 54, 1215 (1985).
[17] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164,

217 (1988).
[18] M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003).
[19] U. G. Meissner, Phys. Rep. 161, 213 (1988).
[20] H. Nagahiro, J. Yamagata-Sekihara, E. Oset, S. Hirenzaki,

and R. Molina, Phys. Rev. D 79, 114023 (2009).
[21] A. Martinez Torres, L. S. Geng, L. R. Dai, B.X. Sun, E.

Oset, and B. S. Zou, Phys. Lett. B 680, 310 (2009).
[22] L. S. Geng, F. K. Guo, C. Hanhart, R. Molina, E. Oset, and

B. S. Zou, Eur. Phys. J. A 44, 305 (2010).

[23] A. B. Migdal, O.A. Markin, and I. I. Mishustin, Zh. Eksp.
Teor. Fiz. 66, 443 (1974) [Sov. Phys. JETP 39, 212
(1974)].

[24] D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57
(1986).

[25] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[26] L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov.
Phys. JETP 12, 1014 (1961)].

[27] A. Martinez Torres, K. P. Khemchandani, L. S. Geng, M.
Napsuciale, and E. Oset, Phys. Rev. D 78, 074031
(2008).

[28] A. Martinez Torres, K. P. Khemchandani, and E. Oset,
Phys. Rev. C 77, 042203 (2008).

[29] A. Martinez Torres, K. P. Khemchandani, and E. Oset,
Phys. Rev. C 79, 065207 (2009).

[30] D. Jido and Y. Kanada-En’yo, Phys. Rev. C 78, 035203
(2008).

[31] Y. Kanada-En’yo and D. Jido, Phys. Rev. C 78, 025212
(2008).

[32] R. Chand and R.H. Dalitz, Ann. Phys. (N.Y.) 20, 1
(1962).

[33] R. C. Barrett and A. Deloff, Phys. Rev. C 60, 025201
(1999).

[34] A. Deloff, Phys. Rev. C 61, 024004 (2000).
[35] S. S. Kamalov, E. Oset, and A. Ramos, Nucl. Phys. A690,

494 (2001).
[36] D. Gamermann, J. Nieves, E. Oset, and E. Ruiz Arriola,

Phys. Rev. D 81, 014029 (2010).
[37] J. Yamagata-Sekihara, J. Nieves, and E. Oset,

arXiv:1007.3923.
[38] D. Jido, E. Oset, and T. Sekihara, Eur. Phys. J. A 42, 257

(2009).
[39] F. Mandl and G. Shaw, Quantum Field Theory (Wiley-

Interscience, New York, 1984).
[40] L. Roca, E. Oset, and J. Singh, Phys. Rev. D 72, 014002

(2005).

DESCRIPTION OF THE f2ð1270Þ, . . . PHYSICAL REVIEW D 82, 054013 (2010)

054013-11

http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1016/0370-2693(95)01203-3
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevLett.80.3452
http://dx.doi.org/10.1103/PhysRevD.59.074001
http://dx.doi.org/10.1103/PhysRevD.60.074023
http://dx.doi.org/10.1007/s100500050183
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(00)00321-3
http://dx.doi.org/10.1016/S0375-9474(00)00321-3
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1103/PhysRevD.67.076009
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1103/PhysRevC.68.018201
http://dx.doi.org/10.1103/PhysRevD.78.114018
http://dx.doi.org/10.1103/PhysRevD.78.114018
http://dx.doi.org/10.1103/PhysRevD.79.074009
http://dx.doi.org/10.1103/PhysRevD.80.014025
http://dx.doi.org/10.1103/PhysRevD.80.014025
http://dx.doi.org/10.1140/epja/i2010-10956-4
http://dx.doi.org/10.1140/epja/i2010-10956-4
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevLett.54.1215
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1016/S0370-1573(03)00139-X
http://dx.doi.org/10.1016/0370-1573(88)90090-7
http://dx.doi.org/10.1103/PhysRevD.79.114023
http://dx.doi.org/10.1016/j.physletb.2009.09.003
http://dx.doi.org/10.1140/epja/i2010-10971-5
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevD.78.074031
http://dx.doi.org/10.1103/PhysRevD.78.074031
http://dx.doi.org/10.1103/PhysRevC.77.042203
http://dx.doi.org/10.1103/PhysRevC.79.065207
http://dx.doi.org/10.1103/PhysRevC.78.035203
http://dx.doi.org/10.1103/PhysRevC.78.035203
http://dx.doi.org/10.1103/PhysRevC.78.025212
http://dx.doi.org/10.1103/PhysRevC.78.025212
http://dx.doi.org/10.1016/0003-4916(62)90113-6
http://dx.doi.org/10.1016/0003-4916(62)90113-6
http://dx.doi.org/10.1103/PhysRevC.60.025201
http://dx.doi.org/10.1103/PhysRevC.60.025201
http://dx.doi.org/10.1103/PhysRevC.61.024004
http://dx.doi.org/10.1016/S0375-9474(00)00709-0
http://dx.doi.org/10.1016/S0375-9474(00)00709-0
http://dx.doi.org/10.1103/PhysRevD.81.014029
http://arXiv.org/abs/1007.3923
http://dx.doi.org/10.1140/epja/i2009-10875-5
http://dx.doi.org/10.1140/epja/i2009-10875-5
http://dx.doi.org/10.1103/PhysRevD.72.014002
http://dx.doi.org/10.1103/PhysRevD.72.014002

