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We find the deep inelastic scattering (DIS) structure functions at strong coupling by calculating

R-current correlators on a finite-size shock wave using AdS/CFT correspondence. We improve on the

existing results in the literature by going beyond the eikonal approximation for the two lowest orders in

graviton exchanges. We argue that since the eikonal approximation at strong coupling resums integer

powers of 1=x (with x the Bjorken-x variable), the noneikonal corrections bringing in positive integer

powers of x cannot be neglected in the small-x limit, as the noneikonal order-x correction to the (nþ 1)st

term in the eikonal series is of the same order in x as the nth eikonal term in that series. We demonstrate

that, in qualitative agreement with the earlier DIS analysis based on calculation of the expectation value of

the Wilson loop in the shock wave background using AdS/CFT, after inclusion of noneikonal corrections

DIS structure functions are described by two momentum scales: Q2
1 ��2A1=3=x and Q2

2 ��2A2=3, where

� is the typical transverse momentum in the shock wave and A is the atomic number if the shock wave

represents a nucleus. We discuss possible physical meanings of the scales Q1 and Q2.

DOI: 10.1103/PhysRevD.82.054011 PACS numbers: 13.60.Hb

I. INTRODUCTION

Over the past two decades there has been significant
progress in our theoretical understanding of the physics of
parton saturation/color glass condensate (CGC) [1–27].
The Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) [12–19] and Balitsky-Kovchegov
(BK) [20–24] evolution equations have been constructed,
which unitarize the linear Balitsky-Fadin-Kuraev-Lipatov
(BFKL) [28,29] evolution equation for deep inelastic scat-
tering (DIS) on a nucleus. The phenomenological suc-
cesses of the CGC physics in describing the data from
both the DIS experiments at HERA [30–33] and from
heavy ion collision experiments at RHIC [34–37] allows
one to believe that CGC physics correctly captures some
of the main features of QCD dynamics in high energy
scattering.

In recent years, a number of research efforts have been
aimed at sharpening the quantitative predictive power of
CGC/saturation physics. Running coupling corrections to
JIMWLK and BK evolution equations have been calcu-
lated in [38–41] and led to a marked improvement in the
agreement between CGC predictions and the experimental
data [37,42]. Subleading-Nc corrections to BK evolution
were analyzed in [43] and were found to be very small,
though some DIS observables were shown to be sensitive
to the difference in [44]. Next-to-leading order logarithmic
(NLO) corrections to the BK evolution equation have been
calculated in [45,46]: the corrections were found to be in
agreement with the NLO BFKL calculation of [47,48] and,
therefore, numerically large for linear evolution. While it is
not clear whether NLO corrections are large in the solution
of the full nonlinear NLO BK equation, since such a

solution is yet to be obtained, it is important to estimate
the size of higher-order corrections to the JIMWLK and
BK evolution equations beyond the running coupling cor-
rections found in [38–41]. The assessment of the size of
higher-order correction may happen by performing explicit
higher-order calculations of the BK kernel obtaining a
(presumably numerical) solution of the BK equation at
each order.
Alternatively, to estimate the size of higher-order cor-

rections in the extreme large-coupling limit, one may use
the anti-de Sitter space/conformal field theory (AdS/CFT)
correspondence [49–52] to study DIS. Indeed, AdS/CFT
correspondence is a duality between N ¼ 4 super Yang-
Mills (SYM) theory and type-IIB string theory, and as such
does not apply directly to QCD. Still since N ¼ 4 SYM
theory is a QCD-like gauge theory, i.e., it contains gluody-
namics as a part of the theory, there is hope that many of its
qualitative features and, possibly, some quantitative ones
would apply to QCD. Certainly, on the perturbative side,
the leading-order (LO) (pure-glue) BFKL equation is iden-
tical in QCD and in N ¼ 4 SYM, with many similarities
at NLO [53] as well.
High energy scattering in general, and DIS, in particular,

in the context of AdS/CFT correspondence has been
studied by many groups [54–73]. In those works, the
pomeron intercept at large ’t Hooft coupling � ¼ g2Nc

has been calculated [54,63,65,67], though some disagree-
ment still exists about its precise value [74,75]. Another
important quantity for elucidating higher-order corrections
to saturation/CGC physics is the saturation scale Qs, a
momentum scale below which, in the perturbative frame-
work, the nonlinear saturation effects become important
[25–27]. In CGC, approaches based on LO, BK, or
JIMWLK evolution the saturation scale grows as an inverse
power of Bjorken-x variable and as a power of the nuclear*yuri@mps.ohio-state.edu
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atomic number A for DIS on a nucleus, Q2
s �

A1=3ð1=xÞconst �s , with �s the strong-coupling constant. In
the AdS/CFT framework the saturation scale has been
calculated in [65,66] for DIS on an infinite thermal
medium with the result that Q2

s � 1=x2 at large �. In
[65,66], following [55,56], electromagnetic current of the
standard model was replaced by the R current in N ¼ 4
SYM theory. The hadronic tensor of DIS was then replaced
by a correlator of two R currents, which was calculated at
large ’t Hooft coupling using the methods of AdS/CFT
correspondence. Generalization of the method of [65,66] to
the case of DIS on a finite-size medium (modeling a proton
or a nucleus) was done in [70,71]. The saturation scale

obtained in [70,71] scaled as Q2
s � A1=3=x.

An alternative approach to DIS was suggested in [67]: in
QCD it is well known that DIS at small x can be viewed as
virtual photon splitting into a quark-antiquark pair with the
pair interacting with the proton/nucleus [20,27]. Since only
the interaction of the quark dipole with the proton/nucleus
is described by strong interactions, only this part of the DIS
cross section can be strongly coupled and should be mod-
eled using AdS/CFT. In [67], the forward scattering
amplitude of a dipole on a nucleus has been calculated
modeling the ultrarelativistic nucleus by a shock wave in
AdS5. Expectation value of the corresponding Wilson loop
in the shock wave background was then calculated using
the AdS/CFT prescription [76]. The dipole scattering
amplitude obtained in [67] allowed for successful descrip-
tions of some of the HERA DIS data [68,77], albeit in a
limited region of small photon virtuality Q2 where QCD
coupling constant should be large. While the shock wave
considered in [67] had a finite longitudinal extent, as we
will show below the results of [67] can be easily general-
ized to an infinite-size shock wave, giving the saturation
scale Q2

s � 1=x2, in agreement with [65,66]. However, the
saturation scale for the interesting and realistic case of a

finite-size shock wave found in [67] scales as Qs �
A1=3ð1=xÞ0 � A1=3, in disagreement with the results of
[69–71] (though in apparent agreement with [78], where
a similar method of inserting a fundamental string in the
bulk was used, though for the purpose of jet quenching
studies).

The goal of the present paper is to attempt to reconcile
the results of [67] with that of [69–71] and/or to elucidate
the origin of the discrepancy. We will try to perform
R-current DIS calculation without employing the eikonal
approximation used in [69–71]. Our motivation is the
following. The eikonal series of graviton exchanges in
AdS/CFT sums up powers of 1=x on the gauge theory
side. If x is small, this is a series in powers of a large
number 1=x, and, as such, is susceptible to corrections.
Namely, order-x noneikonal correction to the (nþ 1)st
term in the series is ð1=xÞnþ1 � x ¼ ð1=xÞn, i.e., it is of
the same order as the nth term in the series. Since the
coefficients in the eikonal series are functions of Q2, the

condition of noneikonal corrections being small translates
into a bound on Q2. Below we will show that the eikonal
approach of [69–71] is valid only for Q2 * ðQ1Þ2 with

ðQ1Þ2 � A1=3=x the candidate for the saturation scale
found in [69–71]. The breakdown of eikonal approxima-
tion is due to the presence of another scale in the problem,

Q2 � A1=3, which corresponds to the candidate for the
saturation scale found in [67]. Our conclusion is that
R-current DIS is a two-scale problem and that the
exact solution of the problem should determine which of
the scales, Q1 and Q2, is the saturation scale in strong-
coupling DIS.
The paper is structured as follows. We start in Sec. II by

defining all the main concepts and quantities used in the
calculation. In Sec. III A we construct general exact
expressions for the hadronic tensor modeled in AdS/CFT.
The expressions for two independent components of the
hadronic tensor are given in Eqs. (3.21) and (3.33) below.
As these expressions appear to be too complicated to be
evaluated precisely analytically, here we first evaluate
them using the eikonal approximation of [69–71,79] in
Sec. III B. In the process we find the applicability
region of the eikonal approximation: Q2 * ðQ1Þ2
(see Sec. III B 2). To solidify this conclusion we evaluate
Eqs. (3.21) and (3.33) exactly order-by-order in graviton
exchanges to the first nontrivial order in Sec. III C and
show explicitly when the noneikonal corrections become
comparable to the eikonal terms. We summarize the results
of our calculations in Sec. III D. Finally, in Sec. IV we
conclude by outlining some of the possible physical inter-
pretations of the scales Q1 and Q2.

II. GENERAL SETUP

Our goal is to model DIS on a shock wave at strong
coupling. For simplicity, we will consider shock waves
without transverse coordinate dependence in their profile.
In [80], using the holographic renormalization [81], the
geometry in AdS5 dual to a relativistic nucleus in the
boundary theory was suggested to be given by the follow-
ing metric

ds2 ¼ L2

z2
f�2dxþdx� þ�ðx�Þz4dx�2 þ dx2? þ dz2g:

(2.1)

Here dx2? ¼ ðdx1Þ2 þ ðdx2Þ2 is the transverse metric and

x� ¼ ðx0 � x3Þ= ffiffiffi
2

p
, where x3 is the collision axis. L is the

radius of S5 and z is the coordinate describing the 5th
dimension with the boundary of AdS5 at z ¼ 0. Equation
(2.1) is the solution of Einstein equations in AdS5 for
�ðx�Þ being an arbitrary function of x�.
According to the AdS/CFT prescription [81] the energy-

momentum tensor in the boundary gauge theory dual to the
metric (2.1) has only one nonvanishing component:
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T��ðx�Þ ¼ N2
c

2�2
�ðx�Þ: (2.2)

Thus different functions �ðx�Þ correspond to different
longitudinal profiles of the nuclear energy-momentum
tensor.

Here we take a shock wave made of homogeneous
matter with a finite longitudinal extent [79,82]

�ðx�Þ ¼ �

a
�ðx�Þ�ða� x�Þ: (2.3)

While this is a simple ansatz, it appears to be quite realistic
for a large ultrarelativistic nucleus. Indeed transverse
coordinate dependence is neglected in Eq. (2.3), but since
the relevant transverse distance scales for a DIS process
are much shorter than the length of a typical variation of
the nuclear profile in the transverse direction, we believe
neglecting transverse dependence in Eq. (2.3) does not
affect the physics in a qualitative way and is a good first
approximation for studying DIS in AdS/CFT, which can be
easily improved upon later.

The parameter � is related to the large light-cone
momentum of the nucleons in the nucleus pþ, the atomic
number A, and the typical transverse momentum scale �
by [82]

� / pþ�2A1=3: (2.4)

The longitudinal width of the nucleus is Lorentz contracted
and is given approximately by [82]

a� A1=3

pþ : (2.5)

Following [65,66] we will model an electromagnetic
current in DIS by an R current J�ðxÞ, which is a conserved
current corresponding to a Uð1Þ subgroup of the SUð4Þ R
symmetry of the N ¼ 4 SYM theory in four dimensions.
The current J�ðxÞ can be written in terms of the scalar,

spinor, and vector fields of the N ¼ 4 SYM theory. For a
systematic and pedagogical definition of the R current we
refer the reader to [83,84].

We want to calculate the retarded R-current correlator
[65,66,71,85–88]

���ðqÞ¼�2

a
i
Z
d2x?d2y?dx�dy�dðxþ�yþÞ

�e�iq�ðx�yÞ�ðx0�y0Þhpj½J�ðxÞ;J�ðyÞ�jpi; (2.6)
where all integrals run from�1 toþ1. Our metric in four
dimensions is ��� ¼ diagð�1;þ1;þ1;þ1Þ. By jpi we

denote the proton or nucleus state which is modeled in
AdS/CFT by the shock wave (2.1). The essential ingredient
of Eq. (2.6) is the retarded Green function in the coordinate
space

���ðx; yÞ ¼ i�ðx0 � y0Þhpj½J�ðxÞ; J�ðyÞ�jpi: (2.7)

Note that, as usual in DIS, current conservation and
Lorentz symmetries demand that ���ðqÞ can be written
in the following standard form:

���ðqÞ ¼
�
��� � q�q�

q2

�
�1ðx;Q2Þ þ

�
p� � p � q

q2
q�

�

�
�
p� � p � q

q2
q�

�
�2ðx;Q2Þ; (2.8)

where p is the momentum of (a nucleon in) the shock
wave,

Q2 ¼ q2; (2.9)

and the Bjorken-x variable is

x ¼ Q2

�2p � q : (2.10)

[Note again our ��� ¼ diagð�1;þ1;þ1;þ1Þ metric con-

vention.] The imaginary part of the correlator ���ðqÞ is
proportional to the DIS hadronic tensor: nevertheless, for
brevity, we will refer to���ðqÞ itself as a hadronic tensor.
To calculate the retarded Green function at strong

’t Hooft coupling using AdS/CFT correspondence, one
makes use of the fact that the R current J� is dual to a
Maxwell gauge field in the bulk [86–90]. The action of the
Maxwell gauge field in empty AdS5 space and in the space
described by the metric (2.1) is

SMaxwell ¼ � N2
c

64�2L

Z
d5x

ffiffiffiffiffiffiffi�g
p

FMNF
MN

¼ �N2
cL

4

64�2

Z
d4x

dz

z5
FMNF

MN: (2.11)

Here and throughout the paper indices M, N run from 0 to
4, while �, � run from 0 to 3.
Classical sourceless Maxwell equations in the curved

background read

@M½ ffiffiffiffiffiffiffi�g
p

gMNgRSFNS� ¼ 0: (2.12)

In AdS5 the classical Maxwell action can be written with
the help of Eq. (2.12) as [66]

SclMaxwell ¼ � N2
c

32�2

Z
d4~x

�
�
1

z
ðAþ@zA� þ A�@zAþ � Ai@zAiÞ

���������z¼0

(2.13)

with i ¼ 1, 2 denoting transverse spatial dimensions and
with summation assumed over repeated indices. In arriving
at Eq. (2.13) we have made use of Az ¼ 0 gauge, which we
will employ from now on.
In the background of the metric (2.1) with the shock

wave profile (2.3) Maxwell equations become (labeled by
component)

R-CURRENT DIS ON A SHOCK WAVE: BEYOND . . . PHYSICAL REVIEW D 82, 054011 (2010)

054011-3



EQ-TARGET;temp:intralink-;d2.14,d2.14a,d2.14b,d2.14c,d2.14d,d2.14a,d2.14b,d2.14c,d2.14d,d2.14a,d2.14b,d2.14c,d2.14d,d2.14a,d2.14b,d2.14c,d2.14d;52;747

ðþÞ ½z@þ@� þ @z � z@2z�A�ðxþ; x�; zÞ � z@2�Aþðxþ; x�; zÞ ¼ �

a
z4�ðx�Þ�ða� x�Þ½3@z þ z@2z�Aþðxþ; x�; zÞ; (2.14a)

ð�Þ ½z@þ@� þ @z � z@2z�Aþðxþ; x�; zÞ ¼ z@2þA�ðxþ; x�; zÞ; (2.14b)

ð?Þ
�
2@þ@� þ 1

z
@z � @2z

�
Aiðxþ; x�; zÞ ¼ ��

a
z4�ðx�Þ�ða� x�Þ@2þAiðxþ; x�; zÞ; (2.14c)

ðzÞ @z½@�Aþðxþ; x�; zÞ þ @þA�ðxþ; x�; zÞ� ¼ ��

a
z4�ðx�Þ�ða� x�Þ@z@þAþðxþ; x�; zÞ: (2.14d)

In arriving at Eqs. (2.14) we have assumed that the gauge
field A�ðx; zÞ is independent of the transverse coordinates
x ¼ ðx1; x2Þ. The reason for this assumption will be
explained later.

The AdS/CFT prescription for calculating this retarded
Green function (2.7) is [86–90]

���ðx; yÞ ¼ �SclMaxwell

�Ab
�ðxÞ�Ab

�ðyÞ
; (2.15)

where Ab
�ðxÞ is the value of the classical Maxwell gauge

field at the boundary of AdS5. However, the correlator one
would obtain from Eq. (2.15) in the background of the
metric given by Eqs. (2.1) and (2.3) would contain both
the vacuum component and the �-dependent term due to
DIS on a shock wave. Since we are interested in the latter
we need to subtract the vacuum piece. We thus write using
Eq. (2.6)

���ðqÞ ¼ �2

a

Z
d2x?d2y?dx�dy�dðxþ � yþÞe�iq�ðx�yÞ

� �2

�Ab
�ðxÞ�Ab

�ðyÞ
½SclMaxwellð�Þ � SclMaxwellð0Þ�;

(2.16)

where SclMaxwellð�Þ is the classical Maxwell field action in

the background of the shock wave metric (2.1), while
SclMaxwellð0Þ is the same action in the empty AdS5
background.

III. R-CURRENTS CORRELATOR

A. General expression

1. Transverse components of the hadronic tensor

While Eqs. (2.14) are hard to solve exactly, we will look
for the solution perturbatively in �. We start by concen-
trating on the transverse field component Ai which con-
tributes to the transverse part �ij of the hadronic tensor
���. Note that the equation (2.14c) for Ai completely
decouples from the rest of the Maxwell equations (2.14):
therefore we can treat Ai as an independent degree of
freedom. We write

Aiðx; zÞ ¼ Að0Þ
i ðx; zÞ þ Að1Þ

i ðx; zÞ þ Að2Þ
i ðx; zÞ þ . . . (3.1)

where the term AðnÞ
i is of the order �n.

Start by putting � ¼ 0 (no shock wave) and solving

Eq. (2.14c) for Að0Þ
i ðx; zÞ

�
2@þ@� þ 1

z
@z � @2z

�
Að0Þ
i ðxþ; x�; zÞ ¼ 0: (3.2)

Concentrating on the z dependence of Að0Þ
i ðx; zÞ we see that

the general solution of this equation can be written as

Að0Þ
i ðxþ; x�; zÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞC1ðxþ; x�Þ
þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
I1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞC2ðxþ; x�Þ
(3.3)

with C1 and C2 some arbitrary functions. Demanding
that our Maxwell field (and, more importantly, its field
strength) grows slower than�z1 as z ! 11 we can discard
the second term on the right of Eq. (3.3) since it would give
an exponential divergence at large z for positive eigenval-
ues of the operator 2@þ@�. We therefore write

Að0Þ
i ðxþ; x�; zÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞAb
i ðxþ; x�Þ

(3.4)

where Ab
i ðxÞ is the boundary value of the field Að0Þ

i ðx; zÞ.
We define the Green function of the operator on the left-

hand side of Eq. (2.14c) (while treating it as a differential
operator in z only) by�

2@þ@� þ 1

z
@z � @2z

�
Gðz; z0; @þ@�Þ ¼ z0�ðz� z0Þ:

(3.5)

The Green function Gðz; z0; @þ@�Þ is itself a differential
operator being dependent on @þ@�. Unfortunately,
Eq. (3.5) does not uniquely define the Green function G
since we can always shift the Green function by the right-
hand side of Eq. (3.3) unless we specify the boundary
conditions. As one can see from Eq. (2.16) our goal is to
differentiate with respect to the boundary values of the
Maxwell field. At the same time, if we solve Maxwell
equations (2.14) order-by-order in � the boundary
value of the free field in Eq. (3.4) may be modified by
�-dependent corrections and may become a �-dependent
function itself. In other words, the boundary value of the
field Aiðx; zÞ would not be Ab

i ðxÞ from Eq. (3.4), but instead
would contain some explicit �-dependent terms added to
it: it would then be unclear how to perform the functional

1This condition arises in deriving Eq. (2.13), where the con-
tribution from z ¼ 1 can be neglected only if all field compo-
nents grow slower than �z1 at large z.
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differentiation of Eq. (2.16). To avoid this problem it

appears easiest to follow [71] and demand that AðnÞ
i ðx; zÞ

is zero at z ¼ 0 for all n � 1. Then the boundary value of
the full field Aiðx; zÞ would be given by Ab

i ðxþ; x�Þ from
Eq. (3.4), making functional differentiation possible.

We therefore demand that the Green function
Gðz; z0; @þ@�Þ is 0 at z ¼ 0. On top of that we demand
that Gðz; z0; @þ@�Þ does not diverge exponentially as
z ! 1. These two conditions together with Eq. (3.5) fix
the Green function Gðz; z0; @þ@�Þ uniquely. The Green
function can be shown to be equal to [66]

Gðz; z0; @þ@�Þ ¼ zz0I1ðz<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞK1ðz>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ
(3.6)

with

z>ð<Þ ¼ maxðminÞfz; z0g: (3.7)

In general, the convolution of the Green function
Gðz; z0; @þ@�Þ with other functions may generate inverse
powers of @þ@�. Requiring causality, we will understand
those as denoting the following operations:

1

@þ
½. . .�ðxþÞ �

Z xþ

�1
dx0þ½. . .�ðx0þÞ;

1

@�
½. . .�ðx�Þ �

Z x�

�1
dx0�½. . .�ðx0�Þ:

(3.8)

Let us define one more abbreviated notation:

Ĝ zð@þ@�Þfðxþ;x�;zÞ�
Z 1

0

dz0

z0
Gðz;z0;@þ@�Þfðxþ;x�;z0Þ

(3.9)

for an arbitrary function fðxþ; x�; zÞ.
With the help of this notation we write the result of the

first iteration of Eq. (2.14c) as

Að1Þ
i ðxþ; x�; zÞ
¼ ��

a
Ĝzð@þ@�Þz4�ðx�Þ�ða� x�Þ@2þAð0Þ

i ðxþ; x�; zÞ

¼ ��

a
Ĝzð@þ@�Þz4�ðx�Þ�ða� x�Þ

� @2þz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞAb
i ðxþ; x�Þ; (3.10)

where in the last step we have used Eq. (3.4). Repeating
the procedure several times a general term in the series of
Eq. (3.1) can be written as

AðnÞ
i ðxþ; x�; zÞ ¼

�
��

a
Ĝzð@þ@�Þz4�ðx�Þ�ða� x�Þ@2þ

�
n

� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞAb
i ðxþ; x�Þ;

(3.11)

where each differential operator in the square brackets acts
on everything to its right, that is, say, @� in one of the
brackets acts on all x� dependence in all other brackets to
its right and on Ab

i ðxþ; x�Þ.

The solution of Eq. (2.14c) can then be written as an
infinite series

Aiðxþ; x�; zÞ ¼
X1
n¼0

�
��

a
Ĝzð@þ@�Þz4�ðx�Þ�ða� x�Þ@2þ

�
n

� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞAb
i ðxþ; x�Þ:

(3.12)

In evaluating structure functions using Eq. (2.16) it will
be important to know the small-z behavior of Aiðxþ; x�; zÞ.
Expanding Eq. (3.4) in powers of z yields

Að0Þ
i ðxþ;x�;zÞ¼

�
1þ z22@þ@�

4

�
ln

�
z22@þ@�

4

�

þ2	�1

�
þoðz4 lnzÞ

�
Ab
i ðxþ;x�Þ: (3.13)

For AðnÞ
i with n � 1 the expansion is different. Expanding

the Green function in Eq. (3.6) at small z we write for
n � 1

AðnÞ
i ðxþ; x�; zÞ

¼ �z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
2

�

a

�
Z 1

0
dz0K1ðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þz04�ðx�Þ�ða� x�Þ@2þ

�
�
��

a
Ĝz0 ð@þ@�Þz04�ðx�Þ�ða� x�Þ@2þ

�
n�1

� z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞAb
i ðxþ; x�Þþ oðz4Þ: (3.14)

We are now almost ready to evaluate �ijðqÞ. Using
Eq. (2.13) in Eq. (2.16) along with the asymptotics found
in Eqs. (3.13) and (3.14) we obtain

�ijðqÞ¼�2

a

N2
c

16�2

Z
d2x?d2y?dx�dy�dðxþ�yþÞe�iq�ðx�yÞ

�
Z
d4~x

�
1

z

�Að0Þ
k ð~x;zÞ

�Ab
i ðxÞ

@z
�Akð~x;zÞ
�Ab

j ðyÞ

�1

z

�Að0Þ
k ð~x;zÞ

�Ab
i ðxÞ

@z
�Að0Þ

k ð~x;zÞ
�Ab

j ðyÞ
���������z¼0

; (3.15)

where we made use of the fact that �ijðqÞ is an even
function of q� [see Eq. (2.8)]. The sum over k runs over
k ¼ 1, 2.
Just like [71], we will work in a frame with q ¼ 0.

This is the reason we have neglected transverse coordi-
nate dependence of the classical Maxwell fields through-
out the discussion. The argument is as follows: since
the metric tensor in Eq. (2.1) is independent of
transverse coordinates, putting transverse coordinate de-
pendence back into Maxwell equations (2.14) would only
generate some differential operators @x? in its solution

(3.12). After substituting Eq. (3.12) into Eq. (3.15), those
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differential operators become @~x? acting either on �2ðx�
~xÞ or on �2ðy� ~xÞ. We can therefore replace @~x? ! �@x?
(or @~x? ! �@y?) and integrate by parts, such that in the

end we would get @~x? ! �@x? ! �iq? (or @~x? !
�@y? ! iq?). Hence these transverse coordinate deriva-

tives vanish in the q? ¼ 0 limit, leaving only two trans-
verse delta functions �2ðx� ~xÞ�2ðy� ~xÞ, which eliminate

~x? and y? integrals. The remaining x? integral is strictly
speaking infinite, but we assume that the nucleus has a
large but finite transverse extent and replacesZ

d2x? ! S? (3.16)

where S? is the transverse area of the nucleus. We assume
that as long as the nucleus is large enough in trans-
verse direction, much larger than the typical relevant dis-
tance scale for DIS, the DIS process would most of the time
be insensitive to the edge effects justifying the approxima-
tion. This is done in complete analogy with perturbative
DIS calculations [20,21]. We conclude that at q? ¼ 0 all
transverse integrals simply disappear, leaving only the
factor of S? from Eq. (3.16).

Using Eqs. (3.13) and (3.14) we can find the functional
derivatives needed in Eq. (3.15):

�Að0Þ
k ðxþ; x�; zÞ

�Ab
i ðyþ; y�Þ

¼ �ik�ðxþ � yþÞ�ðx� � y�Þþoðz2 lnzÞ
(3.17)

and for n � 1

�AðnÞ
k ðxþ; x�; zÞ

�Ab
i ðyþ; y�Þ

¼ ��ikz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
2

�

a

�
Z 1

0
dz0K1ðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þz04�ðx�Þ�ða� x�Þ@2þ

�
�
��

a
Ĝz0 ð@þ@�Þz04�ðx�Þ�ða� x�Þ@2þ

�
n�1

� z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�ðxþ � yþÞ
� �ðx� � y�Þ þ oðz4Þ: (3.18)

Here �ik is the Kronecker delta.
Substituting Eqs. (3.17) and (3.18) into Eq. (3.15) and

employing the arguments which led to Eq. (3.16) we there-
fore get

�ijðqþ; q�; q ¼ 0Þ ¼ ��2S?
a

N2
c

8�2

�

2a
�ij

Z 1

�1
dx�dy�dðxþ � yþÞeiqþðx��y�Þþiq�ðxþ�yþÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2@þ@�
p

�
Z 1

0
dzK1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þz4�ðx�Þ�ða� x�Þ@2þ
X1
n¼1

�
��

a
Ĝzð@þ@�Þz4�ðx�Þ�ða� x�Þ@2þ

�
n�1

� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�ðxþ � yþÞ�ðx� � y�Þ: (3.19)

Integrating by parts in Eq. (3.19) we can replace all @þ with

@þ ! �iq� (3.20)

after which the integral over xþ � yþ simply cancels
�ðxþ � yþÞ. For all factors of @� to the left of the
sum in Eq. (3.19) integration by parts also give @� !
�iqþ. Finally, the factors of @� to the right of the sum
in Eq. (3.19) are also replaced by @� ! �iqþ, which
can be seen by integrating over y� in Eq. (3.19), applying
@� which appears to the right of the sum, and undoing the
y� integral. Finally, remembering that Q2 ¼ q2 ¼
�2qþq� > 0 in DIS we write

�ijðqþ; q�; q ¼ 0Þ

¼ �2S?
a

N2
c

8�2

�

2a
�ijQ2ðq�Þ2

�
Z a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ Z 1

0
dz z4K1ðQzÞ

� X1
n¼1

�
�

a
ðq�Þ2Ĝzð�iq�@�Þz4�ðx�Þ�ða� x�Þ

�
n�1

� zK1ðQzÞ�ðx� � y�Þ: (3.21)

We purposefully did not carry out the y� integration as the
expression in the form shown in Eq. (3.21) will be easier to
evaluate.

2. Longitudinal components of the hadronic tensor

To find the structure functions�1 and�2 from Eq. (2.8)
we need to find one of the longitudinal components
(�þþ, ���, or �þ�) of the hadronic tensor ���.
Finding only one of the longitudinal components of ���

is sufficient, along with Eq. (3.21), to uniquely determine
�1 and �2. We will determine �þþ.
We start by solving Eq. (2.14b) for A�:

A�ðxþ; x�; zÞ ¼ 1

@2þ

�
@þ@� þ 1

z
@z � @2z

�
Aþðxþ; x�; zÞ:

(3.22)

Plugging this into Eq. (2.14d) we write�
2@þ@� � 1

z2
þ 1

z
@z � @2z

�
@zAþðxþ; x�; zÞ

¼ ��

a
z4�ðx�Þ�ða� x�Þ@2þ@zAþðxþ; x�; zÞ: (3.23)
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Similar to the transverse field components case above,
we begin by solving Eqs. (3.22) and (3.23) in the � ¼ 0
case of no shock wave. Solving Eq. (3.23) for� ¼ 0 while

requiring that Að0Þ
þ ðxþ; x�; zÞ remains finite as z ! þ1 we

get

Að0Þ
þ ðxþ; x�; zÞ ¼ Abþðxþ; x�Þ þ

1

2@þ@�
½1� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
� K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�Cðxþ; x�Þ (3.24)

with Cðxþ; x�Þ an arbitrary function of xþ and x� and

Abþðxþ; x�Þ the boundary value of the field Að0Þ
þ ðxþ; x�; zÞ.

To fix Cðxþ; x�Þ we plug Eq. (3.24) into Eq. (3.22) and
match terms at z ¼ 0 obtaining

Cðxþ; x�Þ ¼ @2þAb�ðxþ; x�Þ � @þ@�Abþðxþ; x�Þ; (3.25)

where Ab�ðxþ; x�Þ is the boundary value of the field

Að0Þ� ðxþ; x�; zÞ. We thus have

Að0Þ
þ ðxþ; x�; zÞ ¼ 1

2
½1þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�Abþðxþ; x�Þ þ
@þ
@�

1

2
½1� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�Ab�ðxþ; x�Þ (3.26a)

Að0Þ� ðxþ; x�; zÞ ¼ @�
@þ

1

2
½1� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�Abþðxþ; x�Þ þ
1

2
½1þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p
K1ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ�Ab�ðxþ; x�Þ: (3.26b)

Using the �-expansion technique developed above we can
write the solution of Eq. (3.23) for @zAþ as

@zAþðxþ; x�; zÞ ¼
X1
n¼0

@zA
ðnÞ
þ ðxþ; x�; zÞ

¼ X1
n¼0

�
��

a
ĜL

z ð@þ@�Þz4�ðx�Þ�

� ða� x�Þ@2þ
�
n
zK0ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ
� ½@2þAb�ðxþ; x�Þ � @þ@�Abþðxþ; x�Þ�

(3.27)

where we have defined

ĜL
z ð@þ@�Þfðxþ; x�; zÞ

¼
Z 1

0

dz0

z0
GLðz; z0; @þ@�Þfðxþ; x�; z0Þ (3.28)

with the longitudinal Green function defined by

�
2@þ@� � 1

z2
þ 1

z
@z � @2z

�
GLðz; z0; @þ@�Þ

¼ z0�ðz� z0Þ: (3.29)

Requiring that GLðz; z0; @þ@�Þ goes to zero as z ! 0
and that it is finite at z ! þ1 one readily obtains
[56,66,71]

GLðz; z0;@þ@�Þ ¼ zz0I0ðz<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p ÞK0ðz>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ:
(3.30)

The subscript L for Green function GL stands for longitu-
dinal components. (Here we are using the same notation as
in [71].) In arriving at Eq. (3.27) we have again demanded
that AðnÞ

þ ðxþ; x�; z ¼ 0Þ ¼ 0 for n � 1, such that
Aþðxþ; x�; z ¼ 0Þ ¼ Abþðxþ; x�Þ. Equation (3.22) can be
used together with Eq. (3.27) to find A�ðxþ; x�; zÞ as
a series in powers of �: one can easily show that
AðnÞ� ðxþ; x�; z ¼ 0Þ ¼ 0 for n � 1 as well.

To evaluate�þþ we use Eqs. (2.13) and (2.16) along with the fact that AðnÞ
þ ðxþ; x�; z ¼ 0Þ ¼ 0 and AðnÞ� ðxþ; x�; z ¼ 0Þ ¼

0 for n � 1 obtaining

�þþðqÞ ¼ ��2

a

N2
c

16�2

Z
d2x?d2y?dx�dy�dðxþ � yþÞe�iq�ðx�yÞ

�
Z

d4~x

�
1

z

�Að0Þ
þ ð~x; zÞ

�AbþðxÞ
@z

�A�ð~x; zÞ
�AbþðyÞ

þ 1

z

�Að0Þ� ð~x; zÞ
�AbþðxÞ

@z
�Aþð~x; zÞ
�AbþðyÞ

� 1

z

�Að0Þ
þ ð~x; zÞ

�AbþðxÞ
@z

�Að0Þ� ð~x; zÞ
�AbþðyÞ

� 1

z

�Að0Þ� ð~x; zÞ
�AbþðxÞ

@z
�Að0Þ

þ ð~x; zÞ
�AbþðyÞ

���������z¼0
: (3.31)

With the help of Eqs. (3.26), (3.27), (3.23), and (3.22) we write
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�Að0Þ
þ ðxþ; x�; zÞ

�Abþðyþ; y�Þ
¼ �ðxþ � yþÞ�ðx� � y�Þ þ oðz2 lnzÞ (3.32a)

�Að0Þ� ðxþ; x�; zÞ
�Abþðyþ; y�Þ

¼ oðz2 lnzÞ (3.32b)

�AðnÞ� ðxþ; x�; zÞ
�Abþðyþ; y�Þ

¼ � @�
@þ

�AðnÞ
þ ðxþ; x�; zÞ

�Abþðyþ; y�Þ
þ oðz4Þ ¼ �z2

�

2a

@�
@þ

Z 1

0
dz0K0ðz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þz04�ðx�Þ�ða� x�Þ@2þ

�
�
��

a
ĜL

z0 ð@þ@�Þz04�ðx�Þ�ða� x�Þ@2þ
�
n�1

z0K0ðz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@þ@�

p Þ@þ@��ðxþ � yþÞ�ðx� � y�Þ þ oðz4Þ
(3.32c)

with Eq. (3.32c) valid for n � 1.
Using Eqs. (3.32) in Eq. (3.31) and integrating over ~x,

x?, y?, and xþ � yþ similar to how it was done in arriving
at Eq. (3.21) yields

�þþðqþ; q�; q ¼ 0Þ

¼ �2S?
a

N2
c

32�2

�

2a
Q4

Z a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ

�
Z 1

0
dz z4K0ðzQÞ

� X1
n¼1

�
�

a
ðq�Þ2ĜL

z ð�iq�@�Þz4�ðx�Þ�ða� x�Þ
�
n�1

� zK0ðzQÞ�ðx� � y�Þ: (3.33)

Equations (3.21) and (3.33) give us the most general
expressions for the two components of the hadronic ten-
sor that we need to determine the structure functions �1

and �2. We will now evaluate them in the eikonal
approximation.

B. Eikonal approximation and its applicability region

1. Eikonal hadronic tensor

Let us evaluate the expressions (3.21) and (3.33) in the
eikonal approximation first. Eikonal approximation corre-
sponds to the mathematical limit of a ! 0, such that Eq.
(2.3) becomes

�ðx�Þ ! ��ðx�Þ: (3.34)

Eikonal approximation in AdS/CFT has been employed
before in [61,64–66,69,70,79]. The eikonal approximation
(3.34) tries to mimic the physical limit when the shock
wave is infinitely boosted. Indeed for a real-life proton or
nucleus the physical limit of infinite boost can be achieved
by sending the large momentum of the proton/nucleus
wave pþ to infinity. While indeed in the pþ ! 1 limit
a ! 0 as follows from Eq. (2.5), one also notices from
Eq. (2.4) that strictly speaking in this limit � ! 1making
Eq. (3.34) meaningless. We will understand the eikonal
limit as the case when pþ is very large but is still finite,
such that the delta-function approximation of Eq. (3.34) is
valid, though � is very large. The eikonal approximation

can be thought of as taking the pþ ! 1 limit, while
simultaneously sending � ! 0 in such a way that �
would remain constant, the possibility of which follows
from Eq. (2.4). This is similar to Aichelburg and Sexl’s
construction of an ultrarelativistic black hole metric [91].
Mathematically the eikonal limit is simply equivalent to
taking a ! 0 while keeping � fixed.
Following [79,82] one can identify the series in

Eqs. (3.21) and (3.33) with the scattering of the gauge field
in the graviton field of a shock wave. Each power of � in
Eqs. (3.21) and (3.33) corresponds to a graviton exchange
with the shock wave.2 The scattering of the gauge field in
the shock wave is shown in Fig. 1. If a is small, the shock
wave has a very short extent in the x� direction, such that
the derivative @� in Eq. (3.5) is very large. We thus
approximate the eikonal Green function as (see [79] for a
similar approach to shock wave scattering with the goal of
modeling heavy ion collisions)

Geikðz; z0; @þ@�Þ ¼ 1

2@þ@�
z0�ðz� z0Þ: (3.35)

One then has

Ĝ eik
z ð@þ@�Þfðxþ; x�; zÞ ¼ 1

2@þ@�
fðxþ; x�; zÞ: (3.36)

We start by evaluating the transverse components of the
hadronic tensor first. Replacing @þ ! �iq� in Eq. (3.36)
and using the result in Eq. (3.21) yields

2An interesting (but irrelevant for presented calculations)
question is where exactly the graviton field of the shock wave
originates: since our shock wave (2.1) has no source in the bulk,
one can think of is as having a source at z ¼ 1 (see [92]) with
graviton exchanges with that source, or one may think of the
boundary condition at z ¼ 0 (that we have a nucleus in four
dimensions) as being the effective ‘‘source’’ for the shock wave,
with the gravitons exchanged with the boundary, as shown in
Fig. 1.
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�ij
eikðqþ; q�; q ¼ 0Þ

¼ �2S?
a

N2
c

8�2

�

2a
�ijQ2ðq�Þ2

�
Z a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ Z 1

0
dz z4K1ðQzÞ

� X1
n¼1

�
i
�

2a
q�

1

@�
z4�ðx�Þ�ða� x�Þ

�
n�1

z

� K1ðQzÞ�ðx� � y�Þ: (3.37)

Now since for n � 2 and for x� 	 a�
1

@�
�ðx�Þ�ða� x�Þ

�
n�1

�ðx� � y�Þ

¼ �ðy�Þ�ða� y�Þ�ðx� � y�Þ ðx
� � y�Þn�2

ðn� 2Þ! (3.38)

we obtainZ a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ

�
�
1

@�
�ðx�Þ�ða� x�Þ

�
n�1

�ðx� � y�Þ

¼ an

n!

X1
m¼0

ðiqþaÞm
m!

ðn� 1Þn
ðnþm� 1ÞðnþmÞ

¼ an

ðn� 1Þ! fe
iqþa � ð�iqþaÞ�nðiqþaþ n� 1Þ

� ½�ðnÞ � �ðn;�iqþaÞ�g: (3.39)

The nth term in the series of Eq. (3.37) brings in a factor of
�n=anþ1 on top of the factor we obtained in Eq. (3.39).
Note that one factor of 1=a comes from the prefactor in
the definition of ��� in Eq. (2.6). Therefore, the a ! 0
eikonal limit should not apply to this factor. For the pur-
pose of the eikonal approximation the nth term in the series
of Eq. (3.37) is then of the order �n=an times Eq. (3.39).
It is then clear that in the a ! 0 limit with� fixed only the

first term in the series in the second line of Eq. (3.39)
survives, asZ a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ

�
�
1

@�
�ðx�Þ�ða� x�Þ

�
n�1

�ðx� � y�Þ

¼ an

n!
þ oðanþ1Þ: (3.40)

Using the eikonal approximation of Eq. (3.40) in Eq. (3.37)
we obtain

�ij
eikðqþ; q�; q ¼ 0Þ

¼ i
�2S?
a

N2
c

8�2
�ijQ2q�

Z 1

0
dz z½K1ðQzÞ�2

�
�
1� exp

�
i

2
�q�z4

��
(3.41)

in agreement with the eikonal formulas used in [69,70]
and recently derived in [71] for DIS on a shock wave.

Remembering that a ¼ A1=3=pþ we see that q�=a ¼
pþq�=A1=3 ¼ Q2=ð2xA1=3Þ such that Eq. (3.41) can be
rewritten as

�ij
eikðqþ; q�; q ¼ 0Þ

¼ i�2S?
N2

c

16�2
�ij Q4

xA1=3

Z 1

0
dz z½K1ðQzÞ�2

�
�
1� exp

�
i

2
�q�z4

��
(3.42)

making the agreement with [71] manifest (up to a trivial
factor of�2S? which probably signifies a slightly different
overall normalization used in [71]).
Similar calculations for �þþ from Eq. (3.33) give the

eikonal expression

�þþ
eik ðqþ; q�; q ¼ 0Þ

¼ i�2S?
N2

c

16�2

Q2

4ðq�Þ2
Q4

xA1=3

Z 1

0
dz z½K0ðQzÞ�2

�
�
1� exp

�
i

2
�q�z4

��
: (3.43)

Equation (3.43) agrees with the result of [71] up to the

same overall normalization factor of �2S? as for �ij
eik.

Note that the eikonal approximation developed in [79]
also leads to the eikonal propagator (the factor in the
square brackets) in Eqs. (3.42) and (3.43) originally
obtained in [69,70]. To see this note that the truncated
eikonal graviton amplitude in Eq. (3.29) of [79] is propor-
tional to

X1
n¼0

ðnþ 1Þ
�
� 1

2
z4t2ðxþÞ @�@þ

�
n
t2ðxþÞ; (3.44)

where, for the purposes of comparing with Eq. (3.42) we
take the shock wave profile to be

FIG. 1. Diagrammatic representation of the Maxwell gauge
field scattering on the shock wave in the bulk. The horizontal
wiggly line represents the gauge field, while the vertical cork-
screw lines represent graviton exchanges with the shock wave.
The boundary of AdS5 is at the top of the shock wave, which in
turn is denoted by the shaded rectangle.
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t2ðxþÞ ¼ �2

a2
�ðxþÞ�ða� xþÞ: (3.45)

In [79] a proton-nucleus collision was modeled by collid-
ing a shock wave with a smaller energy density (a proton)
with a shock wave with a larger energy density (a nucleus).
The larger ‘‘nucleus’’ shock wave was chosen to move in
the x� direction in [79]: this is why its profile in Eq. (3.45)
is a function of xþ instead of x�.

Using Eq. (3.45) one can readily show that

lim
a2!0

�
t2ðxþÞ 1

@þ

�
n
t2ðxþÞ ¼ �nþ1

2

ðnþ 1Þ!�ðx
þÞ; (3.46)

which, when substituted into Eq. (3.44) after summing the
series over n yields

expð�1
2z

4�2@�Þt2ðxþÞ: (3.47)

Identifying @� in Eq. (3.47) with �iqþ in Eqs. (3.42) and
(3.43) we see that the exponents in both equations are
identical up to xþ $ x� interchange. (In [79] the series
started from n ¼ 0 since the n ¼ 0 term corresponded to
no additional rescatterings, but still contained graviton
production, in contrast to the DIS case at hand, where no
rescattering implies no interactions and hence no contri-
bution to DIS cross section. This is why we do not subtract
1 from the exponent in Eq. (3.47) unlike the exponents in
Eqs. (3.42) and (3.43).)

Finally, as � ¼ pþ�2A1=3 we see that �q� ¼
Q2�2A1=3=ð2xÞ. Defining a momentum scale3

Q2
1ðx; AÞ �

�2A1=3

4x
(3.48)

we recast Eqs. (3.42) and (3.43) into the following form:

�ij
eikðqþ; q�; q ¼ 0Þ ¼ i�2S?

N2
c

16�2
�ij Q4

xA1=3

�
Z 1

0
dz z½K1ðQzÞ�2½1� expðiQ2Q2

1ðx; AÞz4Þ�; (3.49a)

�þþ
eik ðqþ; q�; q ¼ 0Þ ¼ i�2S?

N2
c

16�2

Q2

4ðq�Þ2
Q4

xA1=3

�
Z 1

0
dz z½K0ðQzÞ�2½1� expðiQ2Q2

1ðx; AÞz4Þ�: (3.49b)

In [69–71] the scale Q2
1 was identified with the saturation

scale Q2
s . As in the eikonal approximation it is the only

momentum scale in the problem and because structure
functions become independent of x for Q2 <Q2

1, in agree-
ment with what one observes in perturbative approaches
[21]. Our understanding of the physical meaning ofQ2

1 will
be detailed in Sec. IV.

2. Applicability region of the eikonal approximation

The question we would like to address now is whether
the eikonal result (3.49) gives us the complete ‘‘hadronic
tensor’’ ��� in the small-x limit. As we noted above, the
proper physical high energy limit corresponds to increas-
ing the proton/nucleon momentum pþ, and not to simply
taking the a ! 0 limit. In arriving at Eqs. (3.49) we
have made several approximations. In particular, we have
neglected higher powers of qþa in approximating
Eq. (3.39) with Eq. (3.40). Since

qþa ¼ qþ

pþ A1=3 ¼ �xA1=3 (3.50)

we are neglecting higher powers of Bjorken x, which
seems to be justified in the small-x limit.4 However, it is
easy to see from Eqs. (3.49) that if we expand the expo-
nentials in them back into series, the series would be in the
powers of

Q2
1ðx; AÞ
Q2

��2A1=3

Q2x
: (3.51)

We would then have

���ðqþ; q�; q ¼ 0Þ

�X
n

cn

�
�2A1=3

Q2x

�
n½1þ d1nxA

1=3 þ d2nðxA1=3Þ2 þ . . .�

(3.52)

with cn’s and dmn ’s some x- and Q2-independent constants.
We now have a problem: if we want to take a
small-x/fixed-Q2 limit [which is the same as taking pþ
large in Eqs. (2.4) and (2.5)], the eikonal formulas (3.49)
would receive order-1 corrections. Namely, if we do power
counting in x in Eq. (3.52), we see that subleading order-x
noneikonal correction to the (nþ 1)st term is of the same
order as the nth term in the eikonal series

cnþ1

�
�2A1=3

Q2x

�
nþ1

d1nþ1xA
1=3 � cn

�
�2A1=3

Q2x

�
n

(3.53)

as each of them is of the order x�n. The parametric equality
can be simplified to

�2A2=3

Q2
� 1: (3.54)

We see that the noneikonal corrections become important
at Q�Q2 with the momentum scale Q2 defined by

Q2ðAÞ � �A1=3: (3.55)

This scale is similar to the saturation scale identified in
scattering a dipole on a shock wave in [67] [see Eq. (4.28)

3As one can see from Eqs. (2.4) and (2.5) the expressions we
use for � and a are accurate up to a constant and possibly some
factors of ’t Hooft coupling � [82]. Such factors, which are
important for phenomenology, can be easily included later.

4Note that qþa� a=lcoh, where lcoh is the coherence length of
the projectile (particles the R-current decays into) in the x�
direction: smallness of qþa means that the coherence length is
much larger than the size of the proton/nucleus.
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there] and also in [78]. The only difference betweenQ2 and

the saturation scale found in [67] is a factor of
ffiffiffiffi
�

p
contained in the latter which appears not to be present in

Q2 (� is the ’t Hooft coupling constant). This factor of
ffiffiffiffi
�

p
is inherently present in any calculation of the dynamics
of a fundamental superstring as it is a prefactor in the
Nambu-Goto action (see, e.g., [76]). At the same time
any AdS/CFT-based calculation of R-current correlators
in the large-� limit appears to be � independent. To date
we have not found a satisfactory explanation of this differ-

ence by
ffiffiffiffi
�

p
and suspect that it may be related to some more

fundamental questions concerning AdS/CFT correspon-
dence. We leave this question open for further research.5

A priori the scale Q2 from Eq. (3.55) is not the only
scale one can construct out of noneikonal corrections in
Eq. (3.52). Equating the kth noneikonal correction to the
(nþm)th term in the series of Eq. (3.52) to the nth eikonal
term yields6

cnþm

�
�2A1=3

Q2x

�
nþm

dknþmðxA1=3Þk � cn

�
�2A1=3

Q2x

�
n

(3.56)

giving a possible new scale at which noneikonal correc-
tions should become important:

Q2
m;k �

�2A1=3

x
ðxA1=3Þk=m: (3.57)

Adjusting positive integers k and m in Eq. (3.57) one
can get the scale Qm;k as (parametrically) close to Q1 as

desirable. Still, as k, m � 0 we have Qm;k 	 Q1. In fact

Qm;k’s are a multitude of scales below Q1 and both above

and below Q2. Since Qm;k’s are the scales at which non-

eikonal corrections are important, we conclude that, at
least with this a priori analysis, one cannot trust the eikonal
formulas (3.49) for Q�Qm;k 	 Q1.

Therefore, the conclusion of our power-counting analy-
sis is that the eikonal expressions in Eqs. (3.49) are valid
only at

Q2 * Q2
1ðx; AÞ (3.58)

or, strictly speaking, only for Q2 
 Q2
1ðx; AÞ. To clarify

whether this really is the region of validity of the eikonal
approximation or whether it may actually be applicable at
Q2 <Q2

1ðx; AÞ one has to find the exact expression for the
hadronic tensor.

Note that since

Qm;k �Q1�ðk=mÞ
1 Qk=m

2 (3.59)

the problem of the R-current DIS on a shock wave remains
a problem with only twomomentum scalesQ1 andQ2. The
series (3.52) can be written in terms of these two scales as

���ðqþ;q�;q¼ 0Þ

�X
n

cn

�
Q2

1

Q2

�
n
�
1þd1n

�
Q2

Q1

�
2þd2n

�
Q2

Q1

�
4þ . . .

�
: (3.60)

The important conclusion of this subsection is that the DIS
process at strong coupling is a two-scale problem.

C. Beyond the eikonal approximation:
perturbative solution

Let us construct the hadronic structure tensor perturba-
tively by exactly calculating the terms in the series of
Eqs. (3.21) and (3.33) order-by-order in �. We denote
the nth term in each of those series by

�ðnÞ
ij ðqþ; q�; q ¼ 0Þ

¼ �2S?
a

N2
c

8�2

�

2a
�ijQ

2ðq�Þ2

�
Z a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ Z 1

0
dz z4K1ðQzÞ

�
�
�

a
ðq�Þ2Ĝzð�iq�@�Þz4�ðx�Þ�ða� x�Þ

�
n�1

z

� K1ðQzÞ�ðx� � y�Þ (3.61)

and

�ðnÞ��ðqþ; q�; q ¼ 0Þ

¼ �2S?
a

N2
c

32�2

�

2a
Q4

Z a

0
dx�

Z 1

�1
dy�eiqþðx��y�Þ

�
Z 1

0
dz z4K0ðzQÞ

�
�

a
ðq�Þ2ĜL

z ð�iq�@�Þz4�ðx�Þ�

� ða� x�Þ
�
n�1

zK0ðzQÞ�ðx� � y�Þ (3.62)

with n ¼ 1; 2; . . . . Below we estimate the n ¼ 1 and n ¼ 2
terms.

1. Leading order

For the n ¼ 1 term a quick calculation readily gives the
leading-order (LO) terms

�ð1Þ
ij ¼ �ij�

2S?
N2

c

10�2

�

a

ðq�Þ2
Q4

;

�ð1Þ�� ¼ �2S?
N2

c

60�2

�

a

1

Q2
:

(3.63)

The same expressions would be obtained if one expands
the eikonal formulas (3.42) and (3.43) to order �. Indeed

5Indeed � may depend on �, as was suggested in Appendix A
of [82]: however this would not explain the difference between
Eq. (3.55) and Eq. (4.28) in [67], as � dependence in � would
modify both of them in the same way.

6It may happen that one of these terms is real, while the other
one is purely imaginary: if one then insists on equating only real
terms to real terms and imaginary terms to imaginary terms, one
should equate the nth eikonal term to the (2k)th correction in the
(nþ 2m)th term, obtaining the same result as below. Powers of i
in Eqs. (3.39) and (3.49) would insure that the terms we compare
are either both real or both imaginary.
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the eikonal approximation of the previous subsection only
modifies the gauge field propagators sandwiched between
the graviton exchanges in Fig. 1 along with the interaction
vertices of Fig. 1, since we only modify the Green function
as shown in Eq. (3.36) and the longitudinal integrals
over positions of graviton-gauge field vertices, as follows
from Eq. (3.40). For n ¼ 1 we only have one-graviton
exchange: the propagators to the left and to the right of
the graviton-gauge field vertex [each of which giving
K1ðQzÞ in Eq. (3.21) and K0ðQzÞ in Eq. (3.33)] are exact,
even in the eikonal approximation, and the longitudinal
integral (3.39) is carried out exactly in this case. Therefore
the exact one-graviton exchange results in Eq. (3.63) are
the same as the order-� terms in the eikonal formulas
(3.42) and (3.43).

As we did above, we replace � and a using

q�

a
¼ Q2

2xA1=3
(3.64)

and

�q� ¼ Q2�2A1=3

2x
: (3.65)

Equation (3.63) can then be written in terms of x and Q2 as

�ð1Þ
ij ¼ �ij�

2S?
N2

c

40�2

�2

x2
;

�ð1Þ�� ¼ �2S?
N2

c

240�2

Q2

ðq�Þ2
�2

x2
:

(3.66)

2. Next-to-Leading order

We start by analyzing the transverse components of
���. To find the transverse hadronic tensor at the next-
to-leading order we put n ¼ 2 in Eq. (3.61) and employ the
definition of the Green function in Eqs. (3.9) and (3.6)
obtaining

�ð2Þ
ij ¼ �ij

�2S?
a

N2
c

16�2

�
�

a

�
2
Q2ðq�Þ4

�
Z a

0
dx�

Z a

0
dy�eiqþðx��y�Þ Z 1

0
dz z5K1ðzQÞ

�
Z 1

0
dz0I1ðz<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i2q�@�
p ÞK1ðz>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i2q�@�
p Þz05

� K1ðz0QÞ�ðx� � y�Þ (3.67)

where we have used �ðx� � y�Þ to replace �ðx�Þ�ða�
x�Þ by �ðy�Þ�ða� y�Þ and employed the latter to modify
the limits of y� integration. As before @� ¼ @=@x� and
z>ð<Þ ¼ maxðminÞfz; z0g.

We write

�ðx� � y�Þ ¼
Z 1

�1
dlþ

2�
e�iðlþþi
Þðx��y�Þ: (3.68)

Theþi
 regulator is inserted to impose causality: it makes
sure that

1

@�
�ðx� � y�Þ ¼ �ðx� � y�Þ (3.69)

for 1=@� defined in Eq. (3.8). Using Eq. (3.68) we rewrite
Eq. (3.67) as

�ð2Þ
ij ¼ �ij

�2S?
a

N2
c

16�2

�
�

a

�
2
Q2ðq�Þ4

�
Z 1

�1
dlþ

2�

Z a

0
dx�

Z a

0
dy�eiðqþ�lþ�i
Þðx��y�Þ

�
Z 1

0
dz z5K1ðzQÞ

Z 1

0
dz0I1

� ðz<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2q�ðlþ þ i
Þ

q
ÞK1ðz>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2q�ðlþ þ i
Þ

q
Þz05

�K1ðz0QÞ: (3.70)

Performing x� and y� integrations in Eq. (3.70) yields

�ð2Þ
ij ¼ �ij

�2S?
a

N2
c

16�2

�
�

a

�
2 Q2ðq�Þ4

jqþj
�

Z 1

�1
d�

2�

1

ð1� �þ i
Þ2
� ½2� e�iqþað1��þi
Þ � eiq

það1��þi
Þ�
�

Z 1

0
dz z5K1ðzQÞ

Z 1

0
dz0I1ðz<Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ

� K1ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þz05K1ðz0QÞ: (3.71)

We have defined

� � lþ

qþ
: (3.72)

In arriving at Eq. (3.71) we have also used the fact that
0<Q2 ¼ �2qþq�, such that, since x > 0, then, due to
Eq. (2.10), q� > 0 and we have qþ < 0.
The � integral in Eq. (3.71) is analyzed in the Appendix,

where the z and z0 integrals are also carried out. The result
is [see Eq. (A7)]

�ð2Þ
ij ¼ �ij�

2S?
1152N2

c

�2
i

�
�

a

�
2 ðq�Þ4
jqþjaQ10

�
Z 1

0

dy

ð1þ yÞ12 yð1� yÞ2

� ½1þ iqþað1þ yÞ � eiq
það1þyÞ�: (3.73)

If one performs y integration in Eq. (3.73) one obtains an
answer expressed in terms of special functions. However
this does not appear to make the expression (3.73) more
transparent: we will leave it in the integral form. Equation
(3.73) is our exact result for the transverse components of
the hadronic tensor �ij at the order �

2.

To explicitly find corrections to the eikonal expression
we expand Eq. (3.73) in powers of a and integrate over y to
obtain
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�ð2Þ
ij ¼ �ij�

2S?
32N2

c

7�2
i

�
�

a

�
2 ðq�Þ4
Q10

jqþja

�
�
1þ i

2

5
qþa� 1

8
ðqþaÞ2 þ . . .

�
: (3.74)

Using Eqs. (3.50), (3.64), and (3.65), we rewrite Eq. (3.74)
in terms of x and Q2

�ð2Þ
ij ¼ �ij�

2S?
2N2

c

7�2
i
�4A1=3

Q2x3

�
�
1� i

2

5
xA1=3 � 1

8
ðxA1=3Þ2 þ . . .

�
: (3.75)

Finally, employing Eqs. (3.48) and (3.55) we rewrite our
result (3.75) as

�ð2Þ
ij ¼ �ij�

2S?
8N2

c

7�2
i
�2

x2
Q2

1ðx;AÞ
Q2

�
�
1� i

1

10

�
Q2ðAÞ
Q1ðx;AÞ

�
2 � 1

128

�
Q2ðAÞ
Q1ðx;AÞ

�
4 þ . . .

�
:

(3.76)

We now move on to the longitudinal components of the
hadronic tensor. Equation (3.62) gives

�ð2Þ�� ¼ �2S?
a

N2
c

64�2

�
�

a

�
2
Q4ðq�Þ2

�
Z a

0
dx�

Z a

0
dy�eiqþðx��y�Þ Z 1

0
dz z5K0ðzQÞ

�
Z 1

0
dz0I0ðz<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i2q�@�
p ÞK0ðz>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i2q�@�
p Þz05

� K0ðz0QÞ�ðx� � y�Þ: (3.77)

The rest of evaluation proceeds along the same lines
as for the transverse components of ���. Similar to
Eq. (3.71), we write

�ð2Þ�� ¼ �2S?
a

N2
c

64�2

�
�

a

�
2 Q4ðq�Þ2

jqþj
�

Z 1

�1
d�

2�

1

ð1� �þ i
Þ2
� ½2� e�iqþað1��þi
Þ � eiq

það1��þi
Þ�
�

Z 1

0
dz z5K0ðzQÞ

Z 1

0
dz0I0ðz<Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ

� K0ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þz05K0ðz0QÞ: (3.78)

For evaluation of z, z0, and � integrals in Eq. (3.78) the
reader is referred to the Appendix. Using Eq. (A12), there
we write

�ð2Þ�� ¼ �2S?
32N2

c

�2
i

�
�

a

�
2 ðq�Þ2
jqþjaQ8

�
Z 1

0

dy

ð1þ yÞ12 ð1� 4yþ y2Þ2

� ½1þ iqþað1þ yÞ � eiq
það1þyÞ�: (3.79)

This is our final exact result for ��� at the order �2.
Expanding Eq. (3.79) in the powers of a yields

�ð2Þ�� ¼ �2S?
32N2

c

35�2
i

�
�

a

�
2 ðq�Þ2

Q8
jqþja

�
�
1þ i

3

8
qþa� 1

9
ðqþaÞ2 þ . . .

�
; (3.80)

or, in terms of Bjorken x and Q2,

�ð2Þ�� ¼ �2S?
2N2

c

35�2
i

Q2

ðq�Þ2
�4A1=3

Q2x3

�
�
1� i

3

8
xA1=3 � 1

9
ðxA1=3Þ2 þ . . .

�
; (3.81)

and in terms of Q1 and Q2,

�ð2Þ�� ¼�2S?
8N2

c

35�2
i
Q2

ðq�Þ2
�2

x2
Q2

1ðx;AÞ
Q2

�
�
1� i

3

32

�
Q2ðAÞ
Q1ðx;AÞ

�
2 � 1

144

�
Q2ðAÞ
Q1ðx;AÞ

�
4 þ . . .

�
:

(3.82)

One can see that the form of the hadronic tensor
suggested in Eq. (3.60) is explicitly confirmed by our
results in Eqs. (3.76) and (3.82). The prefactors of the
square brackets of Eqs. (3.76) and (3.82) can also be
obtained from the eikonal expression (3.49). For
Q2 ¼ Q2

2ðAÞ the second terms in the square brackets of
Eqs. (3.76) and (3.82) become parametrically comparable
to (and numerically much larger than) the leading-order
results given in Eq. (3.66). As we noted above, this
indicates the breakdown of the eikonal formula (3.49) at
Q2 �Q2

2ðAÞ.

D. Brief summary of our results and expressions
for structure functions

Let us briefly summarize the results of this section. We
have written down exact general expressions (3.21) and
(3.33) for the two independent components of the hadronic
tensor ���. These expressions do not appear to be easy to
evaluate in general since they involve multiple iterations of

the Green function operators Ĝz and ĜL
z . Instead we have

employed two approximations aimed at understanding the
structure of the full solution.
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We first rederived the components of the hadronic tensor
in the eikonal approximation [65,69–71] obtaining

�ij
eikðqþ;q�;q¼ 0Þ ¼ i�2S?

N2
c

16�2
�ij Q4

xA1=3

�
Z 1

0
dzz½K1ðQzÞ�2½1� expðiQ2Q2

1ðx;AÞz4Þ�; (3.83a)

�þþ
eik ðqþ;q�;q¼ 0Þ ¼ i�2S?

N2
c

16�2

Q2

4ðq�Þ2
Q4

xA1=3

�
Z 1

0
dzz½K0ðQzÞ�2½1� expðiQ2Q2

1ðx;AÞz4Þ�: (3.83b)

We can rewrite this result in terms of dimensionless
structure functions F1 and F2 defined by

F1ðx;Q2Þ ¼ 1

2��2
Im�1ðx;Q2Þ;

F2ðx;Q2Þ ¼ �p � q
2��2

Im�2ðx;Q2Þ;
(3.84)

where we replaced the conventional proton mass by the
typical transverse momentum in the shock wave�. For the
p ¼ q ¼ 0 case considered here we have

�ij
eikðqþ; q�; q¼ 0Þ ¼ �ij�1;

�þþ
eik ðqþ; q�; q¼ 0Þ ¼ Q2

4ðq�Þ2
�
��1 þ Q2

4x2
�2

�
:
(3.85)

Combining Eqs. (3.83), (3.84), and (3.85), we write
[65,69–71]7

F2ðx; Q2Þ ¼ S?
N2

c

16�3

Q4

A1=3

Z 1

0
dz z½K1ðQzÞ2 þ K0ðQzÞ2�

� Re½1� expðiQ2Q2
1ðx; AÞz4Þ�; (3.86a)

FLðx;Q2Þ ¼ S?
N2

c

16�3

Q4

A1=3

Z 1

0
dz z½K0ðQzÞ�2

� Re½1� expðiQ2Q2
1ðx; AÞz4Þ�; (3.86b)

where, as usual, FL ¼ F2 � 2xF1.
We have argued that the eikonal expressions (3.86)

apply only for Q2 * Q2
1ðx; AÞ. To demonstrate this

explicitly, we have evaluated the hadronic tensor at the
orders � and �2 going beyond the eikonal approximation.
Our above calculations can be summarized as follows:

�1ðx;Q2Þ¼�2S?
N2

c

40�2

�2

x2

�
�
1þi

320

7

Q2
1ðx;AÞ
Q2

þ32

7

Q2
2ðAÞ
Q2

�i
5

14

Q4
2ðAÞ

Q2Q2
1ðx;AÞ

þ ...

�
;

(3.87a)

�2ðx;Q2Þ¼�2S?
4N2

c

�2

�2

Q2

�
�
1

24
þi

72

35

Q2
1ðx;AÞ
Q2

þ1

5

Q2
2ðAÞ
Q2

�i
11

720

Q4
2ðAÞ

Q2Q2
1ðx;AÞ

þ ...

�
:

(3.87b)

Clearly for Q2 � Q2
2ðAÞ the third term in the brackets in

each of the equations (3.87) becomes comparable to the
first (leading-order) term in the series, thus generating an
order-one correction to Eqs. (3.83). Corrections to the
structure functions F2 and FL result from the imaginary
parts of �1 and �2 in Eq. (3.87): at the order of the
calculation shown in Eq. (3.87) such corrections appear
to stem only from the last terms in the square brackets,
which are always smaller than the 2nd terms contributing
to the structure functions. However, it is clear that an
order-�3 calculation would generate imaginary terms /
iQ2

1Q
2
2=Q

4 in the square brackets of �1 and �2, which
would become comparable to leading large-Q2 contribu-
tions to the structure functions forQ2 � Q2

2ðAÞ, generating
corrections to (3.86). Such an order-�3 calculation,
while conceptually straightforward, is technically rather
involved. We have verified that the terms / iQ2

1Q
2
2=Q

4

do indeed arise in such a calculation: the determination
of the exact numerical prefactors in front of such terms
does not seem to be important for the conceptual conclu-
sion about the breakdown of the eikonal formulas (3.86) at
Q2 � Q2

2ðAÞ, which we draw here.
However, the applicability region of Eqs. (3.86) is not

simplyQ2 
 Q2
2ðAÞ. In fact, as was detailed in Sec. III B 2,

noneikonal corrections to the higher-order terms in the
eikonal series lead to the applicability region of the eikonal
approach being reduced to Q2 * Q2

1ðx; AÞ, as such correc-
tions become important at scales arbitrary close to (but
smaller than) Q2

1ðx; AÞ. At the moment we cannot asses the
net size and the effect of such corrections: this may require
knowing the exact solution of the problem [i.e., the exact
solution of Eqs. (2.14)].

IV. DISCUSSION OF MOMENTUM SCALES IN DIS

Above we have shown that R-current DIS on a shock
wave of finite longitudinal extent at strong ’t Hooft cou-
pling is described by two momentum stales, Q1 and Q2.
This seems to be natural since the finite-size shock wave is
described by two dimensionful scales: � and a.
Our conclusion also appears to be in qualitative

agreement with the calculation performed in [67]: there
DIS process on a shock wave was modeled by a

7Note that Nc counting here agrees with the perturbative
calculations of the DIS structure functions for partons in color-
adjoint representation with the target nucleus made of nucleons
with N2

c valence partons each.
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quark-antiquark dipole scattering on a shock wave. Indeed
in QCD this is how the DIS process takes place: a virtual
photon splits into a quark-antiquark pair which then scat-
ters on a target proton or nucleus (see, e.g., [20,21] and
references therein). In [67] the dipole-shock wave scatter-
ing was described by calculating an expectation value of a
fundamental Wilson loop in the shock wave background.
For a shock wave of the type (2.1), which does not have any
transverse coordinate dependence, the resulting forward
dipole-target scattering amplitude Nðr; sÞ was a function
of the transverse dipole size r and the center-of-mass
energy s. In order to obtain the DIS structure functions,
one has to convolute Nðr; sÞ with the light-cone wave
function of a virtual photon splitting into q �q pair, which
results in r being dual to 1=Q (see, e.g., [68,93]). The
dipole amplitude Nðr; sÞ from [67] had two momentum
scales associated with it. One scale was defined by the
condition ð�=aÞr4 ¼ const and indicated the q �q separation
r at which the classical string solution became complex
valued. To translate this scale into Q2 and x variables, we
note that the calculation in [67] was done in the rest frame
of the dipole. Taking into account Lorentz properties of
�=a, we see that to generalize this condition we should
replace r4 by ðq�Þ2=Q6 (as the appropriately transforming
projectile-related parameters), such that this scale, which
we label Q3, is defined by the condition

�

a

ðq�Þ2
ðQ3Þ6

¼ const (4.1)

leading to

Q3ðxÞ ��

x
�Q1ðx; AÞ2

Q2ðAÞ : (4.2)

The second scale describing DIS obtained in [67] was the
scale Q2ðAÞ. In complete analogy with perturbative QCD
calculations, defining saturation scale by Nð1=Qs; sÞ ¼
1=2 (half of the black disk limit of N ¼ 1) [41], the
calculation in [67] obtained Qs � Q2ðAÞ (see also [78]).
It was also observed that the dipole amplitude Nðr; sÞ
became independent of energy/Bjorken x at high energy
for a broad range of values of r both inside and outside of
the saturation region.

We see that the two scales Q1 and Q2 we have obtained
above were also present in the calculation of [67]. In the

small-x regime, when xA1=3 � 1, the lower scale found in
[67] was Q2 which corresponded to the saturation scale.
The larger scale Q3 from Eq. (4.2) can also be understood:
in [67] the string solution considered was static, which is
strictly-speaking only valid for a shock wave of infinite-
extent. Hadronic tensor for such shock wave can be
obtained from our exact Eqs. (3.21) and (3.33) by taking
a ! 1 limit while keeping �=a fixed: this would simply
remove theta-functions, making the series in Eqs. (3.21)
and (3.33) a power-series in ð�=aÞðq�Þ2=Q6. The problem

now is described by only one scale—the scale Q3

from Eq. (4.2).
To reconcile this single-scale result with our two-scale

conclusion above one could argue following [65] that for
DIS on an infinite-extent shock wave what matters is the
size of the interaction region between the R-currents and
the shock wave. One should therefore replace the shock

wave longitudinal width a� A1=3=pþ by the typical
longitudinal separation between points x� and y� in the
R-current correlator (2.6): the latter is �1=jqþj ¼
1=ðxpþÞ. Hence one has to replace

A1=3 ! 1

x
: (4.3)

Under such replacement both scales Q1 and Q2 become
equal to Q3 and the problem becomes single-scale. This is
also why the saturation scale Qs ¼ Q2 found in [67] is in
agreement with the results of [65,66] for the infinite

medium: under the substitution (4.3) one has ðQ2Þ2 ¼
�2A2=3 ! �2=x2 ¼ ðQ3Þ2. (The discrepancy by a factor

of
ffiffiffiffi
�

p
with � the ’t Hooft coupling that we mentioned

above still remains indeed: we can not explain it at the
moment.)
Let us now return to the finite-extent shock waves.

While both our above analysis and the calculations of
[67] have the same conclusion about DIS at strong cou-
pling being a two-scale problem, one may still worry about
the physical interpretation of the scales Q1 and Q2 we
found. The calculation in [67] considered DIS on a finite-
size shock wave but, as a first approximation, employed the
static limit of the string configuration, strictly-speaking
valid for an infinite shock wave only: the question whether
in scattering on a large but finite shock wave the string has
enough time to quickly settle onto its static configuration
remains to be answered (see [70] for the analysis of the
problem for a thin shock wave). Moreover, building on the
analogy with the complex trajectory method in Quantum
Mechanics the classical string solutions found in [67] were
analytically continued into the complex-valued domain.
Justification of such a procedure may be needed in the
string theory context. Therefore we will try to discuss the
possible physical meanings of Q1 and Q2 with an
open mind while temporarily ignoring the preexisting
results of [67].
Indeed the physical meaning of the scales Q1 and Q2

would have probably been more manifest if the exact result
for F2 structure function was known. Instead we have the
eikonal expression (3.86a) due to [65,69–71], which is
valid for Q2 * Q2

1ðx; AÞ. At large Q2 
 Q2
1ðx; AÞ it gives

[69–71]

F2ðx;Q2ÞjQ2
Q2
1ðx;AÞ � S?

18N2
c

35�3

�4A1=3

x2Q2
; (4.4)

while at small Q2 it reduces to [69,71]
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F2ðx;Q2ÞjQ2�Q2
1
ðx;AÞ � S?

N2
c

64�3

Q2

A1=3
ln
Q2

1ðx; AÞ
Q2

; (4.5)

though it is not clear how reliable Eq. (4.5) is in light of
the Q2 * Q2

1ðx; AÞ applicability constraint of Eq. (3.86a).
We will proceed under assumption that Eqs. (4.4) and (4.5)
are qualitatively correct, i.e., that F2ðx;Q2Þ has a maxi-
mum at Q2 � Q2

1ðx; AÞ and it decreases as Q2 becomes
either larger or smaller than Q2

1ðx; AÞ.
The exact effect of the scale Q2ðAÞ on F2 is not clear

from the above calculations and it appears that to clarify it
one needs to solve the problem exactly. In the meantime,
we argue that Eqs. (3.87) indicate that the structure func-
tions would change quite significantly at Q ¼ Q2ðAÞ. We
can only guess the exact effect of Q2 on F2. If we believe
that F2 already decreases with decreasing Q2 for Q<Q1,
as seems to follow from Eq. (4.5), which we choose to
believe at least at the qualitative level, and combine this
with the fact that, on general grounds, F2 should go to 0
for Q2 ! 0, we conclude that it is probable that for
Q<Q2 the structure function F2 would continue to
decrease with decreasing Q2, probably decreasing faster
than it was for Q2 <Q<Q1. The sketch of our guess/
tentative understanding of F2ðx;Q2Þ is shown in Fig. 2.

Assuming that the sketch in Fig. 2 accurately represents
the structure function F2 given by the exact solution of the
R-current scattering problem in AdS/CFT, we propose the
following three possible interpretations of the physical
meaning of scales Q1 and Q2.

(1) The first, and, in our view, the most probable option,
stems from comparing the F2 structure function in
Fig. 2 to what one has in QCD at small coupling and/
or to the actual data reported by DIS experiments.
The prediction of CGC/saturation physics is that the
F2 structure function scales as [21,94–96] (for a
review see [27])8

FCGC
2 / Q2; Q2 � Q2

s (4.6a)

FCGC
2 / ðQ2Þ0:628; Q2 * Q2

s : (4.6b)

It is important to note that in the small-x CGC/
saturation physics framework F2 structure function
never decreases with increasing Q2. Therefore it
may seem hard to reconcile the decrease of F2

with Q2 shown in Eq. (4.4) with small-x CGC/
saturation physics. Moreover, if one remembers
that in weakly-coupled QCD F2 is given by the
sum of quark distributions xqðx;Q2Þ over all flavors
the decrease withQ2 may seem even more puzzling:
if we use the standard (albeit somewhat simplified)

interpretation of xqðx;Q2Þ as the number of quarks
at a given value of Bjorken x with transverse mo-
menta kT 	 Q, then it would appear that xqðx;Q2Þ
along with F2ðx;Q2Þ can never decrease with Q2,
since the number of quarks with kT 	 Q can only
increase with Q2.
However such arguments are not entirely correct. It
relies on a simple perturbative relation between
F2ðx;Q2Þ and distribution functions, which may be
modified at strong coupling. On top of that,9 at large
Q2, when the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution [98–100] is important,
the relation between, say, the gluon distribution
function xGðx;Q2Þ and the unintegrated gluon dis-
tribution � is not simply

xGðx;Q2Þ ¼
Z Q2

dk2T�ðx; k2TÞ (4.7)

but, instead, is given by [101–105]10

xGðx;Q2Þ ¼
Z Q2

dk2T�ðx; k2T;Q2Þ: (4.8)

As usual for distribution functions, Q2 is the renor-
malization scale: in the spirit of the leading-
logarithmic approximation we put it as the upper
cutoff on the k2T integral in Eq. (4.8). Equation (4.8)
shows that when one goes beyond the leading-
logarithmic small-x evolution approximation, and
includes DGLAP evolution [98–100] as well, the
unintegrated gluon distribution �ðx; k2T; Q2Þ itself
becomes a function ofQ2. It implies that the highest
transverse momentum of a ‘‘real’’ parton in the
proton’s wave function is kT , while the wave func-
tion is evolved using DGLAP to the scale Q2, such
that the evolution from k2T to Q2 is due to virtual

2
F

Q
2

Q
1

Q
22 2

FIG. 2. A sketch of the F2 structure function of R-current DIS
at strong coupling as a function of Q2 based on our under-
standing/guess of the exact AdS/CFT prediction (see text).

8The power of Q2 in Eq. (4.6b) is given by the fixed-coupling
approximation. This power changes when running coupling
corrections are included [41,97]. For our purposes we only
need the power to be positive and smaller than 1, which is true
at both the fixed and running coupling.

9We would like to thank Genya Levin for pointing out this
argument to us.
10Of course Eq. (4.8) should get substantially modified and
ceases to be valid also at low Q2 inside the saturation region
(Q<Qs) due to multiple rescatterings, nonlinear evolution, and
other higher-twist corrections.
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corrections to DGLAP only, resulting in a
form factor in the definition of �ðx; k2T;Q2Þ [see
[102–105] for more details and for the definition
of �ðx; k2T; Q2Þ]. Now, as Q2 increases, the uninte-
grated distribution function �ðx; k2T;Q2Þ decreases,
as the probability of no real gluon emissions be-
tween k2T and Q2 decreases with increasing Q2. It is
thus possible that at large enough Q2 this decrease
with Q2 in � would dominate in Eq. (4.8), resulting
in the gluon distribution function xGðx;Q2Þ decreas-
ing with Q2. (The same argument can be applied to
quark distributions.)
It is important to point out that if one wants to
interpret �ðx; k2T; Q2Þ in Eq. (4.8) as the number of
gluons with transverse momentum kT , this number
would depend on the momentum of the probe (or,
equivalently, on the renormalization scale) Q. The
reason behind thisQ dependence is that�ðx; k2T; Q2Þ
really gives the number of gluons at kT with the
condition that there are no gluons with higher trans-
verse momenta in the hadronic wave function. It
appears to be impossible in general to define unin-
tegrated gluon distribution independent of Q2,
which would simply give the number of gluons at
kT without any exclusive conditions. Thus the
probabilistic interpretation of the gluon distribution
xGðx;Q2Þ as the number of gluons with kT 	 Q is
not valid once the full DGLAP evolution is in-
cluded. (Again the same applies to quark distribu-
tions.) This is why the falloff of F2 withQ

2 presents
no contradiction.
To visualize how a distribution function (and there-
fore a structure function) may decrease with Q2 and
to determine at what Q2 these functions start
decreasing let us consider a simple but realistic toy
model.11 Take the gluon distribution given by the
solution of the leading-logarithmic fixed-coupling
DGLAP evolution equation:

xGðx;Q2Þ ¼
Z bþi1

b�i1
d!

2�i
x!

�
Q2

Q2
0

�
	GGð!Þ

G!ðQ2
0Þ:
(4.9)

Here b is an arbitrary real number and Q0 is the
initial scale of DGLAP evolution. For simplicity
we assume that there are no quarks in the toy theory
we consider. We also assume a particularly simple
toy form of the gluon-gluon splitting function [106]

	GGð!Þ ¼ �sNc

�

�
1

!
� 1

�
: (4.10)

This splitting function has the correct residue of the
small-x pole at! ¼ 0. The term (� 1) in the paren-
thesis of Eq. (4.10) mimics all the non-small-x terms

in the actual splitting function. It also makes sure
that the momentum sum rule

	GGð1Þ ¼ 0 (4.11)

is satisfied.
At small x and large Q2 the integral in Eq. (4.9) can
be evaluated in the saddle-point approximation with
the saddle point at

!sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sNc

�

lnðQ2=Q2
0Þ

lnð1=xÞ

s
(4.12)

and the gluon distribution given approximately by

xGðx;Q2Þ � x!sp

�
Q2

Q2
0

�
	GGð!spÞ

: (4.13)

This distribution function is a decreasing function
of Q2 for 	GGð!spÞ< 0, which means !sp > 1.

Therefore the gluon distribution decreases with Q2

for

Q2 >Q2
decr � Q2

0

�
1

x

�
�=�sNc

: (4.14)

This is indeed a very large scale for small x, but for
larger x it becomes small enough for a decrease of
F2 with Q2 to be seen experimentally at HERA.
Note that at large ’t Hooft coupling the scale in
Eq. (4.14) is not necessarily large.
Equation (4.14) illustrates a known fact that at very
large Q2 distribution functions (and, therefore,
structure functions) do decrease with Q2 even in
the perturbative picture. Therefore, combining this
result with Eqs. (4.6) we now see that in perturbative
QCD the F2 structure function looks qualitatively as
shown in Fig. 2 if we identify the scale Q2 with the
saturation scale Qs and the scale Q1 with the scale
Q2

decr from Eq. (4.14) at which F2 starts falling off

with Q2.
Therefore our first guess at the physical meaning of
Q2 and Q1 is to identify them with Qs and Qdecr

correspondingly. In [65,66,71] it is shown that the
scale Q1 is essential for satisfying the momentum
sum rule: this seems to confirm our conclusion since
Qdecr results from satisfying the same momentum
sum rule of Eq. (4.11). It is possible that at strong
’t Hooft coupling, just like at small coupling �s,
energy conservation effects come in at a differentQ2

scale from unitarization effects.
(2) The second interpretation of Q2 and Q1 we propose

is to leave the interpretation of Q2 as the saturation
scale, but to suggest that Q1 is the extended
geometric scaling scale kgeom [95,96,107].

Extended geometric scale kgeom is the scale such

that for Q< kgeom the structure functions are func-

tions of Q=Qs only [95,96]. In CGC, usually11We are grateful to Genya Levin for this argument as well.
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kgeom >Qs[96], which supports our hypothesis

here. Also, if we accept Eq. (4.5) as being at least
qualitatively correct for the exact AdS/CFT predic-
tion for F2, we can see that F2 is almost completely
x independent below Q1, and probably can be writ-
ten as a function of Q=Q2, which also supports the
suggestion that Q1 could be kgeom, since in CGC F2

is a function ofQ=Qs forQ< kgeom [96]. Indeed the

relation between kgeom and Qs has to be modified at

strong coupling in comparison to the weak-coupling
CGC result [27,96,108].
The main problem with this scenario is that in CGC
for Q> kgeom the structure function F2 keeps in-

creasing with Q [27,96], while in AdS/CFT calcu-
lations one obtains F2 decreasing with Q for
Q>Q1 as one can see from Eq. (4.4) and from
Fig. 2. Therefore our second hypothesis does not
seem to be in agreement with the shape of the plot in
Fig. 2 for Q>Q1, which makes it somewhat less
compelling than the first one.

(3) Finally one may accept the viewpoint advocated in
[65,66,70,71] and identify Q1 with the saturation
scale. Indeed, the similarity between Eqs. (4.6a) and
(4.5) seems to suggest that this is correct. However,
as we argued above, Eq. (4.5), while obtained by
eikonal methods, lies outside the region of applica-
bility of the eikonal approximation and should be
questioned. Also in CGC the structure function F2

continues growing with Q2 for Q>Qs, as one can
see from Eq. (4.6b), in disagreement with Eq. (4.4),
casting more doubt on this third possible scenario.
One should also mention that x independence of
structure functions was observed at large coupling
in [67] for Q>Qs: therefore x independence of
Eq. (4.5) may not yet signal saturation.
An important question remains regarding the physi-
cal role of the scaleQ2. In traditional CGC literature
there are no important scales below Qs. One may
speculate that Q2 may be the scale at which other
higher-twist effects, such as pomeron loops, may
become important (see, e.g., [20]). While possible
in principle we believe further research is needed to
test this assumption. Pomeron loops are suppressed
by powers of A, while the scale Q2 does not have
any A suppression compared to Q1, exhibiting the
opposite A enhancement. In principle, until the
exact solution of the problem is found, it may also
be possible that nothing of physical importance
happens at the scale Q2, though such a conclusion
is hardly likely, since a whole class of terms be-
comes important at this scale, as one can see from
Eq. (3.60). The scale Q2 is known to play an im-
portant role in heavy ion collisions modeled in AdS/
CFT: as was shown in [79,82] in a strongly-coupled
collision shock waves stop at the light-cone time

xþstop � 1=Q2 in the center-of-mass frame. It is prob-

able that the scale that determines the stopping time
in a shock wave collision should play some role in
DIS as well.
Indeed, an exact solution of the R-current DIS
problem is needed to conclude whether one (if
any) of the above-listed possibilities is correct.
Unfortunately, an exact analytic evaluation of
Eqs. (3.21) and (3.33) appears to be a rather difficult
problem at present.
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APPENDIX: SOME USEFUL INTEGRALS

We start by integrating over � in Eq. (3.71), namely, we
need to find

R2 �
Z 1

�1
d�

2�

1

ð1� �þ i
Þ2
� ½2� eiq

það1��þi
Þ � e�iqþað1��þi
Þ�
�

Z 1

0
dz z5K1ðzQÞ

Z 1

0
dz0I1ðz<Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ

� K1ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þz05K1ðz0QÞ: (A1)

Using the series representations of the modified Bessel
functions

I1ðzÞ ¼
X1
m¼0

1

�ðmÞ�ðmþ 1Þ
�
z

2

�
2m�1

(A2a)

K1ðzÞ ¼
X1
m¼0

1

�ðmÞ�ðmþ 1Þ
�
z

2

�
2m�1

�
�
ln

�
z

2

�
� 1

2m
� c ðmÞ

�
; (A2b)

we see that I1ðz<Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p ÞK1ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ from
Eq. (A1) has a branch cut discontinuity for � 2 ð�1þ
i
; 0þ i
�. The complex structure of the integrand in
Eq. (A1) is depicted in Fig. 3. The integrand has a branch
cut we have just mentioned, along with a possible pole at
� ¼ 1þ i
. While strictly speaking there is no pole at � ¼
1þ i
 in the full expression in Eq. (A1), individual terms
in the square brackets in Eq. (A1) lead to contributions to
the integrand containing this pole.
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Since qþ < 0, the last term in the square brackets of
Eq. (A1) demands that the �-integration contour be closed
in the lower half-plane: since there are no poles or branch
cuts in the lower half-plane, we can discard this term. For
the first two terms in the square brackets of Eq. (A1) we
have to close the integration contour in the upper half-
plane (for the very first term the direction of contour
closing is actually dictated by the large-argument asymp-
totics of the modified Bessel functions). Picking up the
pole at � ¼ 1þ i
 and wrapping the contour around the
branch cut yields

R2 ¼ i

2

Z 0

�1
d�

ð1� �Þ2 ½2� eiq
það1��Þ�

�
�Z 1

0
dz z5K1ðzQÞJ1ðzQ

ffiffiffiffiffiffiffiffi��
p Þ

�
2

þ i
d

d�

�
½2� eiq

það1��Þ�
Z 1

0
dz z5K1ðzQÞ

�
Z 1

0
dz0I1ðz<Q

ffiffiffi
�

p ÞK1ðz>Q
ffiffiffi
�

p Þz05K1ðz0QÞ
����������¼1

;

(A3)

where we have used

I1ðz<Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p ÞK1ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ
� I1ðz<Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ i


p ÞK1ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ i


p Þ
¼ �i�ð��ÞJ1ðzQ

ffiffiffiffiffiffiffiffi��
p ÞJ1ðz0Q

ffiffiffiffiffiffiffiffi��
p Þ; (A4)

which can be inferred from Eqs. (A2).
The first term on the right-hand side of Eq. (A3) is

straightforwardly evaluated as

i

2

Z 0

�1
d�

ð1� �Þ2 ½2� eiq
það1��Þ�

�
�Z 1

0
dzz5K1ðQzÞJ1ðzQ

ffiffiffiffiffiffiffiffi��
p Þ

�
2

¼ i

2

1922

Q12

Z 0

�1
d�

ð1� �Þ2 ½2� eiq
það1��Þ�

� ffiffiffiffiffiffiffiffi��
p ð1þ �Þ
ð1� �Þ5

�
2

¼ i

2

1922

Q12

Z 1

0

dy

ð1þ yÞ12 yð1� yÞ2

� ½2� eiq
það1þyÞ�; (A5)

where y ¼ ��. The second term on the right-hand side of
Eq. (A3) is a linear polynomial in a,

#þ #0a; (A6)

with the coefficients depending on Q. We know from the
eikonal approximation [see Eq. (3.40)] that R2, if expanded
in a series in the powers of a, should start at the order a2.
The same can be inferred from Eq. (A1), though we note
that a power series in a expansion in the integrand there
gives finite results only at the order a2, not allowing to
learn anything about higher powers of a.
Requiring that the series in powers of a for R2 starts

from a2 along with Eq. (A6) shows that the second term on
the right-hand side of Eq. (A3) simply cancels the constant
and linear in a terms in the first term on the right-hand side
of Eq. (A3). (We have also checked by explicit numerical
integration that this is true.) Adding extra terms to remove
the constant and linear in a terms in Eq. (A5) we obtain our
final answer for R2:

R2 � i

2

1922

Q12

Z 1

0

dy

ð1þ yÞ12 yð1� yÞ2

� ½1þ iqþað1þ yÞ � eiq
það1þyÞ�: (A7)

We now need to evaluate

RL
2 ¼

Z 1

�1
d�

2�

1

ð1� �þ i
Þ2
� ½2� eiq

það1��þi
Þ � e�iqþað1��þi
Þ�
�

Z 1

0
dz z5K0ðzQÞ

Z 1

0
dz0I0ðz<Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ

� K0ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þz05K0ðz0QÞ (A8)

needed for calculation of the longitudinal components of
the hadronic tensor in Eq. (3.78). We begin by employing
the series representation for modified Bessel functions I0
and K0

I0ðzÞ ¼
X1
m¼0

1

½�ðmþ 1Þ�2
�
z

2

�
2m

(A9a)

K0ðzÞ ¼ � X1
m¼0

1

½�ðmþ 1Þ�2
�
z

2

�
2m
�
ln

�
z

2

�
� c ðmþ 1Þ

�

(A9b)

to infer that the complex �-plane structure of the integrand
in Eq. (A8) is the same as shown in Fig. 3 above. Picking
up the pole at � ¼ 1þ i
 and wrapping the contour around
the branch cut yields, similar to Eq. (A3),

RL
2 ¼ i

2

Z 0

�1
d�

ð1� �Þ2 ½2� eiq
það1��Þ�

�
�Z 1

0
dz z5K0ðzQÞJ0ðzQ

ffiffiffiffiffiffiffiffi��
p Þ

�
2 þ i

d

d�
f½2

� eiq
það1��Þ�

Z 1

0
dz z5K0ðzQÞ

�
Z 1

0
dz0I0ðz<Q

ffiffiffi
�

p ÞK0ðz>Q
ffiffiffi
�

p Þz05K0ðz0QÞ
����������¼1

;

(A10)

where we have used

1

Im ξ

Re ξ

FIG. 3. The complex �-plane structure of the integrands of
Eqs. (A1) and (A8) (see text).
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I0ðz<Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p ÞK0ðz>Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� i


p Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ i
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¼ �i�ð��ÞJ0ðzQ

ffiffiffiffiffiffiffiffi��
p ÞJ0ðz0Q

ffiffiffiffiffiffiffiffi��
p Þ; (A11)

which follows from Eqs. (A9). The second term on the
right-hand side in Eq. (A10) is again a linear polynomial
in a, with the coefficients that can be fixed by requiring
that the Taylor expansion of RL

2 in powers of a starts from

order a2. Imposing this condition and integrating over z in
the first term on the right-hand side of Eq. (A10) we arrive
at the final result

RL
2 ¼ i

2

642

Q12

Z 1

0

dy

ð1þ yÞ12 ð1� 4yþ y2Þ2

� ½1þ iqþað1þ yÞ � eiq
það1þyÞ�; (A12)

where, as before, y ¼ ��.
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