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We study lepton number violating decays of charged K, D, Ds, B, and Bc mesons of the form Mþ !
M0�‘þ‘þ, induced by the existence of Majorana neutrinos. These processes provide information

complementary to neutrinoless double nuclear beta decays, and are sensitive to neutrino masses and

lepton mixing. We explore neutrino mass ranges mN from below 1 eV to several hundred GeV. We find

that in many cases the branching ratios are prohibitively small, however in the intermediate range m� <

mN <mBc
, in specific channels and for specific neutrino masses, the branching ratios can be at the reach

of high luminosity experiments like those at the LHC-b and future super flavor factories, and can provide

bounds on the lepton mixing parameters.
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I. INTRODUCTION

One of the outstanding issues in neutrino physics today is
to clarify the Dirac or Majorana character of neutrino
masses. The discovery of neutrino oscillations indicates
that neutrinos are massive particles with masses likely to
be much smaller than those of charged fermions [1]. This
fact provides an important clue to the existence of a more
fundamental physics underlying the standard model (SM)
of particle physics, because neutrinos are naturally mass-
less in the SM. Although the experimental results on neu-
trino oscillations can determine the neutrino mixing
parameters and their squared mass differences, the absolute
magnitudes of the masses as well as their origin remain
unknown and constitute fundamental open questions in
neutrino physics. Many experiments have been set to search
for the absolute magnitude of neutrino masses. Direct
methods to determine the mass of the electron neutrino
use the end point of the electron spectrum in beta decays.
The most sensitive of these experiments uses tritium [2],
setting the present upper bound m�e

< 2 eV [3], and the

next experiment is expected to reach a sensitivity of 0.2 eV
[4]. Other experiments do direct searches for muon and tau
neutrino masses, setting the upper bounds m��

< 190 keV

and m��
< 18:2 MeV, respectively, at 90% C.L. [3]. To

date, the most stringent bound on the sum of all light
neutrino masses is obtained from cosmological observa-
tions, given by

P
im�i

< 0:17 eV at 95% C.L., a figure

which is, to a certain extent, model dependent [5].
If neutrinos are Dirac particles, they must have right-

handed electroweak singlet components in addition to the

known left-handed modes; in such a case lepton number
remains as a conserved quantity. Alternatively, if neutrinos
are Majorana particles, then a neutrino is indistinguishable
from its antiparticle and lepton number would be violated
by two units (�L ¼ 2) in some processes that involve
neutrinos. The experimental results to date are unable to
distinguish between these two alternatives.
There have been several attempts to determine a

Majorana nature of neutrinos by studying �L ¼ 2 pro-
cesses. The most prominent of these processes are neutri-
noless nuclear double beta decays (0���), which have
been regarded as the most sensitive way to look for lepton
number violation (LNV) [6]. The observation of 0���
would indeed be very important not only because it would
establish the existence of LNV, implying that neutrinos are
Majorana particles, but also because they would provide a
scale for the absolute magnitude of light neutrino masses,
complementary to the direct searches mentioned above:
these nuclear processes are proportional to the square
of the effective neutrino mass mee ¼ jP3

i¼1 U
2
eimij, with

mi and Uei being the individual neutrino masses and the
�i � e mixing matrix elements, respectively [7]. However,
it has long been recognized that, even though the experi-
ments are very sensitive, the extraction of the neutrino
mass scale and the Majorana nature of neutrinos from
nuclear 0��� is a difficult task, because reliable informa-
tion on neutrino properties can be inferred only if the
nuclear matrix elements for 0��� are calculated correctly.
The calculation of the nuclear matrix elements for 0���,
usually performed within either the quasiparticle random
phase approximation [8] or the nuclear shell model [9] or
their variants, is known to be a complex task, sometimes
with large differences among the different approaches [10].
Even in the most refined treatments, the estimates of the
nuclear matrix elements remain affected by various large
uncertainties [11].
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Another avenue to detect the Majorana nature of neu-
trinos is to study �L ¼ 2 processes in rare meson decays
[12–14]. In this paper we study �L ¼ 2 decays of heavy
charged mesons whose signals could be captured at high
intensity experiments such as LHC-b and future super
B factories as well as advanced K factories. The �L ¼ 2
processes we treat in this paper are rare neutrinoless decays
of heavy charged mesons into a lighter meson and two
charged leptons of the same sign [13]. These processes,
just like neutrinoless nuclear double beta decays, can occur
only via Majorana neutrino exchange, and thus their ex-
perimental observation could establish the Majorana char-
acter of the neutrinos and the absolute scale of neutrino
masses in much the same way as in nuclear 0��� decays,
but there are some essential differences. From a theoretical
viewpoint, the uncertainties in meson decays are much
easier to handle than in nuclear 0��� decays. However,
from the experimental viewpoint, the �L ¼ 2 meson
decay rates in the case of standard neutrinos (m� < 2 eV)
are prohibitively small for any experiment, while 0���
decays are more realistic options, due to their macroscopi-
cally large samples of decaying nuclei. In contrast, for
heavier, nonstandard neutrinos, the meson decay rates are
good alternatives to search for, as they can be within reach
of future experiments.

In this study it is important to distinguish between
standard and sterile neutrinos. From direct searches we
know the standard electron-neutrino mass is below 2 eV
[5], and neutrino oscillation experiments tell us that all
three neutrino masses differ from one another by much less
than that value [15]. Therefore all neutrinos with masses
above 2 eVare assumed to be nonstandard. Since our work
is mainly relevant for neutrinos above this bound, in what
follows we will denote them generically by the letter N,
instead of �.

An important motivation to search for sterile (nonstan-
dard) neutrinos with masses of the order of 1 MeV is that
their existence has nontrivial observable consequences for
cosmology and astrophysics. They are presumed to par-
ticipate in big-bang nucleosynthesis, supernovae explo-
sions, large scale structure formation and, in general, to
be a component of the dark matter in the Universe [16].
Thus, sterile neutrino masses and their mixing with the

standard neutrinos must be subjected to cosmological and
astrophysical bounds [17]. There are also some laboratory
bounds coming from the fact that sterile neutrinos contrib-
ute via mixing with the standard neutrinos to various
processes which are forbidden in the SM. Those bounds
turn out to be much weaker than the cosmological and
astrophysical bounds, but useful in cases where the latter
become inapplicable [18].
We have separated the analysis into three different cases,

depending on the relevant neutrino mass range. If the
exchanged neutrino is much lighter than the energy scale
in the process, the amplitude of the decay rate is propor-
tional to the square of an effective electron-neutrino mass,
m2

ee ¼ jPNU
2
eNmNj2, which is anticipated to be of the order

of �1 eV2 or less from current neutrino data and cosmo-
logical observations such as WMAP [19], if only standard
neutrinos are involved. Instead, if the exchanged neutrino is
much heavier than the decaying meson, the decay rate is
proportional to jUN‘1UN‘2=mNj2, where mN and UN‘ are

the heavy neutrino mass and its mixing with the standard
leptons, respectively. In general, in this case UN‘ is small
and mN is large, so the factor constitutes a severe suppres-
sion to the decay rate. Finally, for the case of Majorana
neutrinos with intermediate masses between that of the
initial and the final meson, the decay rate is dominated by
a resonantly enhanced s-channel amplitude [12,13,20],
where the intermediate neutrino goes on its mass shell.
In Sec. II, we describe the approximation methods for the

calculations of rare heavy meson decays of the formMþ !
M0�lþ1 lþ2 (whereM andM0 are pseudoscalar mesons). Here
we are interested in Kþ, Dþ, Dþ

s , B
þ, and Bþ

c decays into
��‘þ‘þ, K�‘þ‘þ, D�‘þ‘þ, D�

s ‘
þ‘þ, and B�‘þ‘þ

(where ‘ ¼ e, �, or �), therefore, we will denote the initial
and final mesons generically byMþ andM0�, respectively.
We separate the analysis for the three cases of light neu-
trinos ðmN <mM0 Þ, intermediate neutrinos ðmM0 <mN <
mMÞ, and heavy neutrinos ðmN >mMÞ. We include the
results and discussions in each subsection. In Sec. III we
summarize the results and state our conclusions.

II. CALCULATIONS OF Mþ ! M0�lþ1 l
þ
2

We now describe our approximation methods for the
calculations of rare heavy meson decays of the form

(a) (b)

FIG. 1. The t-type and s-type weak amplitudes at the quark level that enter in the processMþ ! M0�‘þ1 ‘þ2 (plus the same diagrams
with leptons exchanged if they are identical).
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Mþ ! M0�lþ1 lþ2 (where M and M0 are pseudoscalar
mesons) in all three neutrino mass ranges described above.
At the quark level, the decay occurs via two types of
amplitudes, shown in Fig. 1. We find that in the case of
light neutrinos (mN <m�), the amplitude on the left in
Fig. 1 (‘‘t-type’’ diagram) dominates due to long distance
contributions, and the decay rate becomes proportional to
m7

M �m2
N . For this reason, only the decays of the heavier B

mesons are of any importance in this case. In contrast, for
intermediate neutrino masses (mM0 <mN <mM), the
diagram on the right in Fig. 1 (‘‘s-type’’ diagram) domi-
nates when the neutrino propagator becomes resonant
on its mass shell, in which case the decay rate turns out
to be less dependent of the neutrino mass, but very sensi-
tive to the mixing elements. Finally, for heavy neutrinos
(mN >mM), both amplitudes in Fig. 1 are comparable and
the decay rate is / 1=m2

N .
In Table I we list the numerical values of the input

parameters we use in our numerical estimates.

A. The case of light neutrinos (mN < m�)

We find that a neutrinoless decay like Bþ ! D�‘þ‘þ
with light Majorana neutrinos in the intermediate state is
dominated at the meson level by the amplitude shown in
Fig. 2, when the intermediate state goes on mass shell. This
amplitude originates at the quark level from the t-type
weak amplitude shown in Fig. 1. We find the s-type am-
plitude shown in Fig. 1 to be subdominant, or at most

comparable with the former. In this sense, our treatment
differs from that of Ali et al. [13], where the s-type
amplitude is assumed to dominate [22]. However, since
the rate in any case turns out to be too small for any
foreseeable experiment, we will just do an order-of-
magnitude estimate for it, calculating the absorptive part
and assuming that the dispersive part is not much larger.
The absorptive part of the amplitude is calculated by
setting the intermediate particles on their mass shell and
then integrating over their phase space:

M absðBþ !D�‘þ‘þÞ ¼
Z

dpsDNAB!DN‘ADN!D‘; (1)

where AB!DN‘ and ADN!D‘ are the tree-level amplitudes
for the respective subprocesses, and dpsDN is the Lorentz-
invariant phase space of the intermediate D-N pair, which
in the rest frame of the pair is dpsDN ¼ P

sð1=16�2Þ�
ðjpNj=mD‘Þd�N . Here

P
s is the sum over the neutrino

spins, pN is the 3-momentum of the neutrino in the D-N
rest frame, and mD‘ is the invariant mass of the pair. In
turn, the amplitudes of the weak subprocesses are

ABþ!D0N‘ ¼
GFffiffiffi
2

p VcbUN‘h �D0ðp0ÞjJ�ð0ÞjBþðpÞi �uNðpNÞ

� ��ð1� �5Þv‘ðl1Þ;
AD0N!D�‘ ¼

GFffiffiffi
2

p VudUN‘hD�ðp0ÞjJ�ð0Þj �D0ðpÞi �vNðpNÞ

� ��ð1� �5Þv‘ðl2Þ; (2)

where V is the Cabbibo-Kobayashi-Maskawa (CKM)
matrix for quark mixing, and U the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix for lepton mixing. The
hadronic matrix elements can be parametrized in terms of
phenomenological form factors Fþðq2Þ and F�ðq2Þ as

h �D0ðp0ÞjJ�ð0ÞjBþðpÞi ¼ Fþ
BDðq2Þðpþ p0Þ�

þ F�
BDðq2Þðp� p0Þ�; (3)

and similarly for hD�ðp0ÞjJ�ð0Þj �D0ðpÞi, where q is the
corresponding 4-momentum transfer. In our crude esti-
mate, we will neglect the F� form factors and assume
the Fþ to be constants of order unity over the kinematical
range.
Now, in the product AB!DN‘ � ADN!D‘, after summing

over intermediate spin states, the two lepton lines can
be combined into a single one by using in ADN!D‘ the
identity �vN�

�ð1� �5Þv‘ ¼ �u �‘�
�ð1þ �5ÞuN . Here u �‘ is a

u spinor for the charged antilepton, and the neutrino is
assumed to satisfy the Majorana condition u �N ¼ �NuN
(where �N is a phase). The result is then

Mabs ¼ G2
F

2
VcbVudU

2
N‘�N

Z d�N

16�2

jpNj
mD‘

Fþ
BDF

þ
DD �u �‘ðl2Þ

� ðpD þpD0Þð1þ �5ÞðpN þmNÞðpD0 þpBÞ
� ð1� �5Þv‘ðl1Þ: (4)

FIG. 2. The main diagram in an effective meson theory for
Mþ ! M0�‘þ‘þ (plus diagram with leptons exchanged if they
are identical), mediated by Majorana neutrinos, when the neu-
trino is much lighter than the final meson. The amplitude is
estimated considering the intermediate state on its mass shell.

TABLE I. Values of input parameters used in our calculations.
They correspond to the central values given in Ref. [3], except
for fB and fBs

which are taken from Ref. [21], and Vcs which is

calculated by imposing the unitarity constraint on the CKM
matrix.

Parameter Value Parameter Value

f� 130.4 (MeV) Vud 0.9742

fK 155.5 (MeV) Vus 0.2255

fDþ 205.8 (MeV) Vub 0.0039

fDs
273. (MeV) Vcd �0:230

fB 196. (MeV) Vcs 0.950

fBc
322. (MeV) Vcb 0.041

PROBING MAJORANA NEUTRINOS IN RARE K AND . . . PHYSICAL REVIEW D 82, 053010 (2010)

053010-3



This angular integral is quite simple, because in the D-N
frame the energy of every particle in the process is fixed.
The subsequent steps to obtain the decay rate are straight-
forward and described in Appendix A. The expression for
the rate is thus the integral [see Eq. (A8)]:

�ðBþ ! D�‘þ‘�Þ

¼ G4
F

ð16�2Þ2 jVcbVudj2Fþ2
BDF

þ2
DD

jU2
N‘mNj2
m2

B

�
Z ðmB�m‘Þ

ðmDþm‘Þ
dmD‘

2�

jpNj2
m2

D‘

j~l1jjl2j �R; (5)

where jpNj, j~l1j, and jl2j are the 3-momenta of the neutrino
and leptons (given in Appendix A) and R is a quantity of
dimension m6 shown in Eq. (A6). The integral can be
easily done numerically, which we do considering a D
meson in the intermediate and final states (b ! c transi-
tion), or alternatively a pion (b ! u transition).

Notice that by assuming the form factors to be constant
unity we are overestimating the process, while by neglect-
ing the F� form factors and the dispersive part of the
amplitude we may be inducing an uncertainty of an order
of magnitude. Within our approximations, in both cases the
results for the branching ratios are extremely small:

Br ðBþ ! D�‘þ‘þÞ � 1:2� 10�31

�
U2

N‘mN

1 eV

�
2
; (6)

Br ðBþ ! ��‘þ‘þÞ � 2:3� 10�33

�
U2

N‘mN

1 eV

�
2
; (7)

where we used the values of the CKM elements shown
in Table I, and also �B ¼ 4:0� 10�13 GeV. We can
compare these results with those of Ali et al. [13], who
considered the s-type diagram only. In our notation,
their result for BrðBþ ! ��eþeþÞ becomes ð0:3–1:8Þ �
10�35ðU2

N‘mN=eVÞ2, which is 2 orders of magnitude

smaller than Eq. (7).
Nevertheless, we expect our results to be just rough

estimates within 1 or 2 orders of magnitude, as we have
taken the form factors Fþ

BD � Fþ
DD to be unity, and we have

neglected the form factors F�
BD and F�

DD altogether. In
general, the form factors Fþ are expected to be unity at
most at the kinematical end point where the two meson
wave functions could overlap completely (provided they
have the same shape), but it should be smaller for all other
q2 values.

Taking for Fþ an average value of e.g. 0.3 instead
of unity, our calculated rates get reduced by a factor
ðFþÞ4 � 10�2, reducing Eq. (7) to a value comparable
with the result of Ali et al.

Accordingly, in the case of light neutrinos, our crude
estimate cannot clearly show the dominance of the
t-type diagram. However, it does show at least that a
calculation based purely on the s-type diagram may be

an underestimation [22]. It also shows that this potential
underestimation is hardly more than 2 orders of magnitude,
keeping these branching ratios still beyond the reach of
foreseen experiments, as concluded in Ref. [13].
To estimate the actual range of these branching ratios we

would need to have estimates of the neutrino masses and
mixings as well. Using the standard parametrization of the
PMNS neutrino mixing matrix multiplied by a 3� 3
Majorana phase matrix, the term U2

N‘mN can be explicitly

written in terms of three light neutrino masses, three neu-
trino mixing angles, two Majorana phases, and one Dirac
phase. Since the sign of �m2

31 is not determined from the

existing data, there are two possible neutrino mass hierar-
chies, one called normal ðm3 >m1;2Þ and the other inverted
ðm3 <m1;2Þ. The size of the term U2

N‘mN in general de-

pends on the mass hierarchy. If we consider standard
neutrinos, we know that m� < 2 eV, and we can roughly
use U�‘ �Oð1Þ for either ‘ ¼ e or �, in consistency with
oscillation experiments. We then get branching ratios
smaller than 10�31 and 10�33, respectively, values which
are prohibitively small for any foreseen experiment. On the
other hand, if we consider heavier neutrinos (but still
lighter than m�), i.e. mN � 100 MeV, the results could
be more promising, but in those cases we should use the
mixings of standard with extra neutrinos, which are
suppressed: U2

Ne, U2
N� < 0:002 [23], so the resulting

branching ratios have the upper bounds 10�21 and 10�23,
respectively, which are still prohibitively small.
As a final remark, we want to comment on the assump-

tions involved in this calculation. First, the fundamental
process at the quark level (see Fig. 1) with two electroweak
vertices has been modeled as a process with hadrons and
leptons, where a single long distance contribution (an
intermediate state with a meson and a neutrino on shell)
is supposed to dominate; we have thus neglected other
possible intermediate hadronic states (e.g. excitations of
the intermediate meson and multimeson states) as well as a
short-distance contribution where both weak vertices co-
alesce into a single one [24]. We have assumed the domi-
nance of the single D-N intermediate channel as it goes on
its mass shell. Another assumption was to consider the
absorptive part as representative of the full amplitude;
since we are only after an order-of-magnitude estimate,
this is likely to be a good assumption, again due to the
resonant character of the intermediate state as it goes on its
mass shell. Within the hadronic approximation for the
weak currents, we took into account just one of the form
factors of each hadronic current, and assumed it to be
constant (unity) within the whole dynamic range. In prin-
ciple one can expect the form factor to be unity at most, as
explained before; taking the q2 dependence into account
one should then obtain a lower value for the rate, but as we
have seen, it is unlikely for this effect to change the result
by more than 2 orders of magnitude. These approximations
are therefore consistent with the level of precision we seek.
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B. The case of intermediate mass neutrinos
(m� <mN <mBc

)

In contrast to the previous case, the process Mþ !
M0�‘þ‘þ in the case of Majorana neutrinos with masses
in the intermediate rangemM0 <mN <mM is dominated by
the s-type amplitude of Fig. 1, corresponding at the meson
level to Fig. 3, as the neutrino in the intermediate s channel
goes into its mass shell. As stated in the Introduction,
Majorana neutrinos with such masses must be sterile and
should originate from new physics beyond the SM.

Since there are two identical leptons in the final state,
one must also consider the diagram with crossed leptons
and then integrate over half the phase space. However, for
the case of the intermediate neutrino on mass shell,
the result is the same as using a single diagram, as if the
leptons were distinct, as shown in Fig. 3. The effective
amplitude then is

M ¼G2
F

2
U�2

N‘V
�
qQV

�
q2q1fMfM0

~M

ðp2
N �m2

NÞþ imN�N

; (8)

where UN‘ and Vqiqj are the PMNS lepton mixing and

CKM quark mixing elements, respectively, fM, fM0 are the
meson decay constants, and we define ~M as the reduced
matrix element that contains all the spinor structure of the
amplitude:

~M ¼ �N �u �‘ðl1ÞpMð1þ �5ÞpN þmNÞpM0 ð1� �5Þvðl2Þ;
(9)

where the notation is the same as in Eq. (4).
The decay rate we seek is then given by �ðMþ !

M0�‘þ‘þÞ ¼ ð1=2mMÞ
R
dps3jMj2, where dps3 is the

final 3-particle phase space. The calculation of the squared
matrix element and the integration over the final phase
space are shown in Appendix B, resulting in the following
expression [see Eq. (B3)]:

�ðM ! M0‘þ‘þÞ ¼ G4
F

32�2mM

f2Mf
2
M0 jVqQVq2q1 j2

� jUN‘j4
mN�N

j~l1j
mM

jl2j
mN

fðm2
N þm2

‘Þm2
M

� ðm2
N �m2

‘Þ2g � fðm2
N �m2

‘Þ2
� ðm2

N þm2
‘Þm2

M0 g; (10)

where j~l1j and jl2j are the 3-momenta of the first electron in
the M meson rest frame and of the second electron in the
neutrino rest frame, respectively.
Before we can use this expression, we also need a

theoretical expression for �N , the total decay width of
the intermediate Majorana neutrino, in terms of the same
neutrino parameters we have just used. The total width �N

can be estimated by comparing the decay modes of N with
those of the �� lepton, where �� / m5

�. Both N and ��
decay via the same type of diagrams and couplings, but
there are a few differences: (a) N has a different mass (thus
�N / m5

N); (b) �N has an additional factor of 2 due to the
Majorana character of N (unlike �� which is a Dirac
particle), because it decays with equal probability into
both ð‘0� þ restÞþ and ð‘0þ þ rest�Þ; and (c) �N has an
additional mixing factor jUN‘0 j2. Therefore:

�N � 2
X
‘0
jUN‘0 j2

�
mN

m�

�
5 � ��: (11)

This expression for �N is a good approximation whenmN is
near 2 GeV; in this case the decay channels of N are those
of �, where the virtualW boson produces e� ��e;�

� ��� and

d �u (the last channel is actually a set of three, due to color).
However, for mN > 2 GeV, the additional channels �� ���

and s �c open, increasing the expression in Eq. (11) by up to a
factor � 1:5, including phase space suppression due to the
masses of the products. Consequently, using Eq. (11) in
Eq. (10) may overestimate the rates by at most �30%. We
will thus use Eq. (11) in the estimation of the LNV rates,
but keeping in mind that a correction in �N should be
included in a more refined study.
Accordingly, and if we neglect the charged lepton mass,

Eq. (10) turns into

�ðM ! M0‘þ‘þÞ � 1

128�2
G4

Ff
2
Mf

2
M0 jVqQVq2q1 j2

� jUN‘j4P
‘0 jUN‘0 j2

mMm
5
�

2��

�
1�m2

M0

m2
N

�
2

�
�
1� m2

N

m2
M

�
2
: (12)

Here we will use m� ¼ 1:77 GeV and �� ¼ 2:3�
10�12 GeV [3]. Equation (12) is valid for mN in the range
mM0 <mN <mM; it vanishes at the two end points of this
range, and reaches its maximum at mN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mM �mM0
p

,

where ð1�m2
M0=m2

NÞ2ð1�m2
N=m

2
MÞ2 ! ð1�mM0=mMÞ4.

Consequently, these suppressed nonstandard decays can
impose more or less stringent bounds on the mixing ele-
ments between the standard leptons and extra neutrinos,
jUN‘j, depending on the Majorana neutrino mass. In par-
ticular, the nonobservation of these processes defines
mN-dependent upper bounds for the corresponding jUN‘j.
In Figs. 4–7 we show the branching ratios for the decays

Kþ ! ��‘þ‘þ, Dþ ! M0�‘þ‘þ, Dþ
s ! M0�‘þ‘þ,

Bþ ! D�‘þ‘þ, and Bþ
c ! M0�‘þ‘þ as functions of

FIG. 3. The dominating diagram (plus diagram with leptons
exchanged if they are identical) in an effective meson theory for
Mþ ! M0�‘þ‘þ, mediated by Majorana neutrinos with mass in
the range between mM0 and mM.
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mN, where the bounds on the mixings jUN‘j can be
deduced also as functions of mN .

Let us consider the decay Bþ ! D�eþeþ as an
example. Here we must use VqQ ! Vub and Vq1q2 ! Vcd

as inputs, as well as fB and fD (see Table I) and �B ¼
4:0� 10�13 GeV [3]. The branching ratio for this process
as a function ofmN is shown in Fig. 6(a), lower dashed line,
and reaches a maximum:

BrmaxðBþ ! D�eþeþÞ ¼ 3� 10�7 � jUNej4P
‘0
jUN‘0 j2

at mN � 3 GeV: (13)

This expression just gives the maximal possible value of
this branching ratio, which occurs only ifmN happens to be
near 3 GeV, but for other values of mN , it could be much
smaller, as shown in Fig. 6(a).
Analogous to Eq. (13), the maximal branching ratio of

any of the other decays has the form:

Br maxðMþ ! M0�‘þ‘þÞ ¼ C� jUN‘j4P
‘0
jUN‘0 j2

: (14)

FIG. 5 (color online). Branching ratios for (a) Dþ decays and (b) Dþ
s decays, as functions of the neutrino mass mN , with the lepton

mixing factor divided out as in Fig. 4. The full lines correspond to ‘ ¼ e and the dashed lines to ‘ ¼ �.

FIG. 4 (color online). Branching ratios for Kþ ! ��‘þ‘þ
(‘ ¼ e, �) as functions of the exchanged neutrino mass mN in
the range m� < mN <mK , with the lepton mixing factor,
jUNej4=P‘0 jUN‘0 j2, divided out.

FIG. 6 (color online). Branching ratios for Bþ ! M0�‘þ‘þ as functions of the neutrino mass mN , with the lepton mixing
factor divided out as in Fig. 4. The produced pseudoscalars are M0 ¼ �, K, D, and Ds. (a) The case of leptons with negligible
mass (‘ ¼ e, �); (b) the case ‘ ¼ � (here M0 ¼ D, Ds are kinematically forbidden).
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Table II shows the coefficient C appearing in Eq. (14), for
the different branching ratios, and the value of the corre-
sponding neutrino mass mN at which the maximal branch-
ing ratio is reached.

Accordingly, an experimental upper bound on the
branching ratio for Mþ ! M0�‘þ‘þ imposes an upper
bound on the leptonic mixings jUN‘j, a bound that strongly
depends on the neutrino mass mN , and which is most
stringent if mN � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mM �mM0
p

, where the branching ratio

is maximal. FormN away from that value, the upper bounds
imposed on the mixings become much less stringent.

From the C values in Table II one can read the potential
of different processes to set upper bounds on the lepton

mixing elements jUN‘j, for different neutrino masses mN.
For a given experimental upper bound of a branching ratio,
the larger the C coefficient, the more stringent the upper
bound that can be imposed on jUN‘j, provided the neutrino
mass is near the indicated value where the theoretical
branching ratio is maximal.
From Eq. (14) it is clear that the bounds on the mixings

imposed from these decays appear in the combination

jUN‘j4
jUNej2 þ jUN�j2 þ jUN�j2 ; ‘ ¼ e;�; or �; (15)

and not just jUN‘j. Only if jUN‘j is much larger than the
other mixings, then this expression reduces to jUN‘j2.
Otherwise, one must use the bounds on BrðM !
M0�‘þ‘þÞ for a given meson pair M and M0, but for all
lepton flavors ‘ ¼ e, �, and �, in order to disentangle the
bounds for each of the mixings jUN‘j. Moreover, these
bounds will depend on mN , since the relation between the
branching ratios and the mixings depends on mN , as it was
already mentioned and shown in Figs. 4–7.
On the other hand, to explore the prospects of experi-

mentally observing any of these processes, one needs at
least an estimate of the jUN‘j elements. Present upper
bounds on the heavy-to-light neutrino mixing jUN‘j2 for
‘ ¼ e,�, vary considerably with the neutrino mass, but are
typically in the range jUN‘j2 < 10�4, 10�6, 10�7, for
mN � 10 MeV, 100 MeV, 1 GeV, respectively (pp. 546–
548 in Ref. [3]). We have then listed in the last column of
Table II the expected upper bound on the branching ratios,
provided the mixing elements have the values just
mentioned.

C. The case of heavy neutrinos (mN > mBc
)

If neutrinos happen to be much heavier than the decay-
ing meson, then in general both diagrams in Fig. 1 con-
tribute with more or less the same strength, and reduce at
the meson level to a single pointlike interaction diagram as

FIG. 7 (color online). Branching ratios for Bc ! M0�‘þ‘þ as functions of the neutrino mass mN , with the lepton mixing
factor divided out as in Fig. 4. The produced pseudoscalars are M0 ¼ �, K, D, and Ds. (a) The case of leptons with negligible
mass (‘ ¼ e, �); (b) the case ‘ ¼ �.

TABLE II. The coefficients C appearing in Eq. (14) for the
maximal branching ratio, and the neutrino mass mN at which the
maximum is reached, for various decays Mþ ! M0�‘þ‘þ,
where m‘ can be neglected. In the last column, the expected
upper bound on the branching ratios, provided jUN‘j2 � 10�6 or
10�7, for mN � 0:1 GeV or �1 GeV, respectively.

Decay C mN at maximum Br<

Kþ ! ��‘þ‘þ 2.8 0.26 GeV 2:8� 10�6

Dþ ! ��‘þ‘þ 4:5� 10�3 0.51 GeV 4:5� 10�10

Dþ ! K�‘þ‘þ 1:4� 10�4 0.96 GeV 1:4� 10�11

Dþ
s ! ��‘þ‘þ 6:9� 10�2 0.53 GeV 6:9� 10�9

Dþ
s ! K�‘þ‘þ 2:2� 10�3 0.99 GeV 2:2� 10�10

Dþ
s ! D�‘þ‘þ 8:5� 10�8 1.92 GeV 8:5� 10�15

Bþ ! ��‘þ‘þ 6:3� 10�6 0.86 GeV 6:3� 10�13

Bþ ! K�‘þ‘þ 3:6� 10�7 1.61 GeV 3:6� 10�14

Bþ ! D�‘þ‘þ 1:7� 10�7 3.14 GeV 1:7� 10�14

Bþ ! D�
s ‘

þ‘þ 4:5� 10�6 3.23 GeV 4:5� 10�13

Bþ
c ! ��‘þ‘þ 6:4� 10�4 0.94 GeV 6:4� 10�11

Bþ
c ! K�‘þ‘þ 3:9� 10�5 1.76 GeV 3:9� 10�12

Bþ
c ! D�‘þ‘þ 2:4� 10�5 3.43 GeV 2:4� 10�12

Bþ
c ! D�

s ‘
þ‘þ 6:5� 10�4 3.52 GeV 6:5� 10�11

Bþ
c ! B�‘þ‘þ 1:6� 10�11 5.76 GeV 1:6� 10�18
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shown in Fig. 8. The vertex in Fig. 8 represents the double
weak interaction shown in Fig. 1, where the neutrino line as
well as all other internal lines have been reduced to a point.
At the meson level, the specific tensor structure of this
four-particle vertex cannot be selected among all the gen-
eral possibilities, so we start from the fundamental quark
and lepton interactions as shown in Fig. 1 and exhibit the
approximations involved to get to the leading term at the
meson level. These details are presented in Appendix C.
Our model of the dynamics in this case is equivalent to that
of Ali et al. [13]. In summary, if we can approximate the
hadronic tensor by the product of two currents, factorized
by a vacuum insertion, the squared amplitude is then given
in terms of the mesons’ decay constants and the kinematics
of mesons and leptons separate into independent factors
[see Eq. (C5)]:

jMj2 � f2Mf
2
M0 ðpM � pM0 Þ2ð‘1 � ‘2Þ:

The decay rate then becomes [see Eq. (C6)]

�ðMþ ! M0�‘þ‘þÞ

¼ G4
F

128�3

��������
U�2

N‘

mN

��������
2
��������V�

qQV
�
q1q2 þ

V�
q1Q

V�
qq2

Nc

��������
2

� f2Mf
2
M0m3

M

Z ðmM�mM0 Þ2

4m2
‘

dm2
‘‘�

1=2

�
1;
m2

M0

m2
M

;
m2

‘‘

m2
M

�

� �1=2

�
1;

m2
‘

m2
‘‘

;
m2

‘

m2
‘‘

��
1þm2

M0

m2
M

�m2
‘‘

m2
M

�
2ðm2

‘‘ � 2m2
‘Þ;

(16)

where the function �ðx; y; zÞ is defined in Eq. (A2). This
expression exactly coincides with the expression obtained
in Ref. [13] for the heavy neutrino cases.

The integral above can be easily done numerically. In
order to do the phenomenology, we set a fiducial value for
the neutrino mass mN ¼ 100 GeV, and a corresponding
mixing element jUN‘j2 ¼ 10�2 and express the branching
fraction of this decay in terms of a dimensionless quantity
B, whose value, according to Eq. (16), is determined by the
masses of the external particles:

BrðMþ !M0�‘þ‘þÞ � �ðMþ !M0�‘þ‘þÞ
�M

¼B�
�
100 GeV

mN

�
2
�jUN‘j2
10�2

�
2
: (17)

For the case Bþ ! D�‘þ‘þ we must use fM ¼ fBþ and
fM0 ¼ fD� . Using the values shown in Table I, as well as
�Bþ ¼ 4:0� 10�13 [3], the result is

BrðBþ ! D�‘þ‘þÞ � 1:1� 10�22 �
�
100 GeV

mN

�
2

�
�jUN‘j2
10�2

�
2
: (18)

Similar results can be obtained for decays of other mesons
Mþ ¼ Kþ, Dþ, Dþ

s , and Bþ
c . The coefficients B for

various decays are given in Table III. The present bounds
on the PMNS mixing elements jUN‘j for heavy Majorana
neutrinos (mN � 100 GeV) are [23]X

N

jUNej2 � ðs�e
L Þ2 	 0:005;

ðs��

L Þ2 	 0:002; ðs��

L Þ2 	 0:010:

(19)

So, Eq. (17) and the bounds in Eq. (19) allow us to interpret
the B values in Table III as upper bound estimates of the
corresponding branching ratios, for the case of heavy
Majorana neutrinos with masses above 100 GeV.
As expected, our results in Table III coincide with those

of Ref. [13], with discrepancies within 10% due to varia-
tions in the input parameters (a bit larger discrepancies are
found in Dþ and Ds decays due to the different values we
used for fD and fDs

). The conversion of their theoretical

estimates into our notation is a simple factor 10�14 due to
different units used. In the cases where Ref. [13] quotes a
range, our agreements are with their central values. The
sole exception occurs in Bþ ! ���þ�þ, where their re-
sult is almost exactly a factor of 10 larger. We can attribute
this discrepancy only to a misprint in the power of 10 of
their result.
From Table III we see that the highest upper bounds

(�10�20) are for the branching ratios of Bþ
c ! D�

s ‘
þ‘þ,

with ‘ ¼ e or �. Yet, these bounds are several orders of
magnitude too small to be detected in current and future
experiments, like those at the LHC-b and super flavor
factories.
As a final remark in this section, we want to compare

these results with what would be expected if lepton flavor
violation came from other sources, namely, supersymme-
try with R-parity violation (RPV), or left-right symmetric
electroweak theories. One can anticipate that such LNV
processes should involve mass scales well above the
electroweak scale, typically around the TeV scale, so
they can be compared with the same LNV processes
mediated by heavy Majorana neutrinos. Even though the
experimental observation of the LNV meson decays
would strongly support the hypothesis that neutrinos are

FIG. 8. The diagram in an effective meson theory for Mþ !
M0�eþeþ, when the neutrino mass is much larger than that of
the decaying meson, which is resulted from the four amplitudes
of Fig. 1.
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Majorana particles, these other sources could produce the
same signals without involving Majorana neutrinos di-
rectly, just as it occurs in neutrinoless double beta decays.

In a supersymmetric extension of the standard model
that includes RPV, the exchange of charged lepton or quark
superpartners and neutralinos or gluinos rather than
W bosons and Majorana neutrinos can also induce these
LNV meson decays. RPV supersymmetry allows for addi-
tional trilinear terms in the superpotential, of the form:

W ¼ �ijkLiLjE
c
k þ �0

ijkLiQjD
c
k þ �00

ijkU
c
i D

c
jD

c
k; (20)

where i, j, and k denote the families, L andQ denote lepton
and quark isodoublet chiral superfields, and Ec,Uc, andDc

charged lepton and quark isosinglet chiral superfields. Of
these terms, only the second leads to LNV meson decays
[25]. The effective Lagrangian for these decays induced by
the RPV terms can be written as [26]

L�L¼2
eff ¼ G2

F

2mp

�eð1þ �5Þec
�
�PSJPSJPS � 1

4
�TJ

��
T JT��

�
;

(21)

where the hadronic currents are JPS ¼ �u	ð1þ �5Þd	 and
J
��
T ¼ �u	
��ð1þ �5Þd	, with color index 	 and 
�� ¼
ði=2Þ½��; ��
. Here mp is the proton mass and the explicit

forms of the parameters �PS and �T are given in [27]. We
should add that, in the case of LNV decays induced by
heavy neutrinos, the effective Lagrangian can also be put in
the form above if we use �NJ

�
VAJVA�, where J

��
VA ¼

�u	��ð1� �5Þd	 and �N ¼ jUN‘j2
10�2 = 100 GeV

mN
(see Sec. II C

and Appendix C). If we assume that the contribution
induced by either gluinos or neutralinos is dominant over
the others and the masses of the sfermions are almost
equal, the parameters �PS and �T are of the order of

��0
ijk�

0
ij0k0

G2
Fm

4
~f

�
	smp

6m~g

þ 	2mp

2m�

�
; (22)

where 	s, 	2, m�, m~g, and m~f denote the strong coupling,

SUð2Þ weak coupling, neutralino mass, gluino mass, and
sfermion mass, respectively, and �0

ijk�
0
ij0k0 actually depends

on the process (�0
123�

0
111 for B ! Dee, �0

113�
0
112 for B !

Kee, �0
113�

0
111 for B ! �ee, �0

122�
0
111 for D ! Kee,

�0
121�

0
111 for D ! �ee, and �0

112�
0
111 for K ! �ee).

Besides 0��� decay, the electron electric dipole moment
experiments lead to the most stringent bounds on
single �0

111, which are 5:5� 10�5 for m~f ¼ 100 GeV

and 2:4� 10�7 for m~f ¼ 1 TeV [28,29]. There are also

several bounds on single RPV couplings �0
11k and �0

12k

coming from experimental results for forward-backward
asymmetries in the fermion pair production reactions mea-
sured at LEP and SLC, and leptonic� decays, respectively;
�0
11k & 0:02 and �0

12k & 0:21 for m~dkR
¼ 100 GeV [29].

Imposing those bounds on �0
111; �

0
11kðk ¼ 2; 3Þ and

�0
12kðk ¼ 1; 2; 3Þ, the magnitudes of the corresponding

terms in Eq. (22) are of the order of 10�8–10�9 for
m~g;�;~f ¼ 100 GeV. These should be compared with the

parameter �N for the case of LNV induced by Majorana
neutrinos. For jUN‘j2 � 10�2 and mN � 100 GeV, the
magnitude of �N becomes unity. Thus, the above bounds
on �0

ijk would imply that the RPV supersymmetric contri-

bution to the corresponding LNV decays should be much
smaller than those induced by heavy neutrinos for mN ¼
100 GeV (and maximally allowed jUN‘j). Conversely, the
LNV meson decay experiments can be used to put bounds
on the corresponding �0

ijk parameters, especially in those

cases where the bounds are very loose or still nonexistent.

TABLE III. Branching ratio coefficients B appearing in Eq. (17), for various decays Mþ !
M0�‘þ‘þ, if the process is dominated by heavy neutrinos (mN � mM). B values correspond to
branching ratios if mN ¼ 100 GeV and jUN‘j2 ¼ 10�2. All three lepton flavors are considered
(‘ ¼ e, �, �). Entries with � � � are decays that are kinematically forbidden.

Decay Bð‘ ¼ eÞ Bð‘ ¼ �Þ Bð‘ ¼ �Þ
Kþ ! ��‘þ‘þ 8:47� 10�24 2:44� 10�24 � � �
Dþ ! ��‘þ‘þ 1:90� 10�23 1:78� 10�23 � � �
Dþ ! K�‘þ‘þ 1:58� 10�23 1:47� 10�23 � � �
Dþ

s ! ��‘þ‘þ 2:14� 10�22 2:02� 10�22 � � �
Dþ

s ! K�‘þ‘þ 2:46� 10�23 2:30� 10�23 � � �
Dþ

s ! D�‘þ‘þ 6:99� 10�28 � � � � � �
Bþ ! ��‘þ‘þ 1:13� 10�23 1:12� 10�23 7:42� 10�25

Bþ ! K�‘þ‘þ 8:44� 10�25 8:37� 10�25 5:01� 10�26

Bþ ! D�‘þ‘þ 1:02� 10�22 1:01� 10�22 � � �
Bþ ! D�

s ‘
þ‘þ 5:02� 10�23 4:96� 10�23 � � �

Bþ
c ! ��‘þ‘þ 1:76� 10�21 1:75� 10�21 3:04� 10�22

Bþ
c ! K�‘þ‘þ 1:73� 10�22 1:72� 10�22 2:89� 10�23

Bþ
c ! D�‘þ‘þ 3:20� 10�22 3:17� 10�22 2:14� 10�23

Bþ
c ! D�

s ‘
þ‘þ 9:17� 10�21 9:10� 10�21 5:17� 10�22

Bþ
c ! B�‘þ‘þ 3:31� 10�28 2:96� 10�28 � � �
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Alternatively, a left-right symmetric model also involves
a large mass scale which may characterize LNV mediated
by heavy physics [30]. In SUð2ÞL � SUð2ÞR �Uð1ÞB�L,
this gauge group breaks down to SUð2ÞL �Uð1ÞY via an
extended Higgs sector containing a bidoublet � and two
triplets �L;R whose leptonic couplings generate Majorana

neutrino masses and thus lepton number violation. The
�L;R-lepton interactions are not suppressed by lepton

masses and have the structure L� hij�
þþ
L;R

�lci ð1� �5Þlj þ
H:c:, where the couplings hij are in general diagonal and

associated with the heavy neutrino mixing matrix. In this
model, short-distance contributions to LNV decays arise
from the exchange of both heavy right-handed Majorana
neutrinos and �L;R, which can be parametrized by [31]

g42
M4

WR

1

M�R

;
g32
M3

WR

hij

M2
�

; (23)

where g2, MWR
, M�, and M�R

denote the weak gauge

coupling, the SUð2ÞR gauge boson mass, the triplet scalar
mass, and the right-handed neutrino mass, respectively.
These terms are to be compared with �NG

2
F=mp corre-

sponding to the LNV decays induced by heavy neutrinos.
Imposing the current lower bound of 715 GeVon MWR

[3]

and takingM�R
�M� � 1 TeV, those terms multiplied by

mp=G
2
F are of the order of 10�9–10�10, which are again

very small compared with �max
N � 1 for mN ¼ 100 GeV.

III. SUMMARYAND CONCLUSIONS

We have studied lepton number violating decays of
charged K, D, Ds, B, and Bc mesons of the form Mþ !
M0�‘þ‘þ, induced by the existence of Majorana neutrinos.
These decays violate lepton number by two units, and
therefore can occur only if neutrinos are of Majorana
type. The decays are sensitive to neutrino masses and lepton
mixing, and can also provide information complementary
to neutrinoless double beta decays. We explore neutrino
mass ranges mN from below 1 eV to several hundred GeV.

The decay rates are dominated by different weak ampli-
tudes, depending on the mass of the neutrinos involved in
the intermediate states.

If the mass of the neutrino that dominates the process is
below the mass of the produced meson, we find that the
main contribution to the branching ratio should come from
a two-particle intermediate state that goes on shell, formed
by a meson (with the correct flavor) and the neutrino. These
cases have a topology similar to neutrinoless double beta
decay. However, the branching ratios obtained in these
cases are far too small to be detected in foreseen experi-
ments. Indeed, if the neutrinos involved are standard
(masses below 1 eV, albeit Majorana) we find the branching
ratios to be below 10�31, and if they are heavier (up to the
order of 100 MeV), the branching ratios to be below 10�21,
which are too small to be detected in the foreseen future, so
we do not go into more refined calculations in these cases.

Instead, if the neutrino mass is in the range between the
masses of the initial and final meson, the process is
dominated by an intermediate state with just the neutrino,
which goes on shell. In this ‘‘long distance’’ process, the
neutrino is essentially produced and then it decays. Some
of the branching ratios in this case are now within or
near the reach of current or foreseen experiments, as shown
in Table II. For example, BðKþ ! ��eþeþÞ can be up to
10�6 and BðBc ! ��eþeþÞ up to 10�11. Experimental
exploration of these decays can then at least provide
upper bounds for the lepton mixing elements of the stan-
dard charged leptons with exotic Majorana neutrinos,
bounds that will be dependent on the mass of the neutrino
involved.
Finally, if the process is dominated by a neutrino that is

considerably heavier than the decaying meson, the branch-
ing ratio is again far too suppressed to be experimentally
observed, as shown in Table III and previously predicted in
Ref. [13]. Indeed, for neutrino masses near 100 GeV or
above, the branching ratios are all below 10�20. In this case
we also explore other underlying physics sources that
could induce these LNV decays without involving
Majorana neutrinos directly, namely, RPV supersymmetric
models and left-right symmetric models. Concerning RPV
SUSY, if we impose the current bounds on the relevant
parameters �0

ijk, the effect of these interactions on the

decays would be lower than the effect of neutrinos.
Otherwise, in general the experimental bound on each of
the decays will impose bounds on its corresponding �0
parameter. Finally, concerning left-right symmetric mod-
els, their effect seems to fall far below the contributions of
heavy Majorana neutrinos, and thus these decays may not
be useful to put bounds on those models.
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APPENDIX A: THE CASE OF LIGHT NEUTRINOS

In this Appendix we present the calculation of the decay
rate for the process Mþ ! M0�‘þ‘þ in the case in which
neutrinos are lighter than the mesons in the process. The
calculation is done assuming that the transition matrix
element can be approximated by its absorptive part, which
is given in Eq. (4).
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After doing the integral in Eq. (4), the square of the
amplitude, summed over the final lepton spins, becomes

jMabsj2 ¼ G4
F

16�2
jVcbVudj2Fþ2

BDF
þ2
DDjU2

N‘mNj2 jpNj2
m2

D‘

�T ;

(A1)

where we have defined

T ¼ 2Tr½l2ðpDpB þm2
D0 þ ED0ð�0pB

þ pD�
0ÞÞl1ðpBpD þm2

D0 þ ED0ðpB�
0 þ �0pDÞÞ
;

and where jpNj is the neutrino 3-momentum in the rest
frame of the D-N pair. Using the well-known expression

�ðx; y; zÞ � x2 þ y2 þ z2 � 2xy� 2yz� 2xz; (A2)

it can be written as jpNj ¼ �1=2ðm2
D‘;m

2
D0
; m2

NÞ=2mD‘.

Since the expression for jMabsj2 in Eq. (A1) is not
explicitly covariant, it is convenient to separate the
phase space integral over the D-‘-‘ final state (dps3) into
the 2-body phase spaces for B ! ‘1 þ XD‘ and XD‘ !
Dþ ‘2, with the invariant mass of the pair XD‘ integrated
over its physical range:

Z
dps3 �

Z Y3
i¼1

d3pi

ð2�Þ32Ei

ð2�Þ4�4ð�pi� pMÞ

¼
Z dm2

D‘

2�

Z
dpsðB!‘1XD‘Þ

Z
dpsðXD‘!D‘2Þ; (A3)

where the 2-body phase spaces in their respective rest
frames reduce to

dpsðB!‘1XD‘Þ ¼
1

16�2

j~l1j
mB

d�‘1 ;

dpsðXD‘!D‘2Þ ¼
1

16�2

jl2j
mD‘

d�‘2 ;

and the 3-momenta in the respective cases are

j~l1j ¼
�1=2ðm2

B;m
2
D‘;m

2
‘Þ

2mB

and

jl2j ¼ �1=2ðm2
D‘;m

2
D;m

2
‘Þ

2mD‘

:

(A4)

Now, the integration over d�‘2 of the nontrivial factor T
in Eq. (A1) can be expressed as

Z
dpsðXD‘!D‘2ÞT ¼ 1

16�2

jl2j
mD‘

4�R; (A5)

where R is a long expression of dimension m6:

R � f8ðm2
D0 þ 2E2

D0Þ2E1E2 þ 16ðm2
D0 þ 2E2

D0ÞðEDE2 þ jl2j2ÞðEBE1 � jl1j2Þ þ 16ðm2
D0 þ 2E2

D0ÞED0ðE2ðEBE1 � jl1j2Þ
� E1ðEDE2 þ jl2j2ÞÞ þ 16ED0ð2EBðEBE1 � jl1j2ÞðEDE2 þ jl2j2Þ �m2

DE2ðEBE1 � jl1j2Þ �m2
BE1ðEDE2 þ jl2j2ÞÞ

þ 8E2
D0ðE1E2ð½EB � ED
2 þ jl1j2 þ jl2j2Þ þ 2ðEB � EDÞðE1jl2j2 � E2jl1j2Þ � 2jl1j2jl2j2Þ þ 8ðm2

DE2 � 2E2
DE2

� 2EDjl2j2Þðm2
BE1 � 2E2

BE1 þ 2EBjl1j2Þg; (A6)

where all kinematical variables here are defined in the rest
frame of theD-‘ pair and are functions of its invariant mass
mD‘:

ED ¼ m2
D‘ þm2

D �m2
‘

2mD‘

; E2 ¼ m2
D‘ �m2

D þm2
‘

2mD‘

;

ED0 ¼ m2
D‘ þm2

D0 �m2
N

2mD‘

; EB ¼ m2
B þm2

D‘ �m2
‘

2mD‘

;

E1 ¼ m2
B �m2

D‘ �m2
‘

2mD‘

; jl1j ¼ �1=2ðm2
B;m

2
D‘;m

2
‘Þ

2mD‘

:

(A7)

Finally, since the result in Eq. (A5) is independent of
angles, the subsequent integration over d�‘1 simply brings
a factor 4�. The decay rate �ðBþ ! D�‘þ‘�Þ then results
in the expression:

�ðBþ ! D�‘þ‘�Þ

¼ G4
F

ð16�2Þ2 jVcbVudj2Fþ2
BDF

þ2
DD

jU2
N‘mNj2
m2

B

�
Z ðmB�m‘Þ

ðmDþm‘Þ
dmD‘

2�

jpNj2
m2

D‘

j~l1jjl2j �R; (A8)

where jpNj, j~l1j, jl2j, and R were defined above and are
explicit functions of mD‘. The integral in the expression
above can be easily done numerically.

APPENDIX B: THE CASE OF INTERMEDIATE
MASS NEUTRINOS

Here we present the meson decay rateMþ ! M0�‘þ‘þ
in the case in which neutrinos have a mass in the inter-
mediate range mM0 <mN <mM.
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The square of ~M in Eq. (9) and sum over external lepton
spins of this reduced amplitude, after some algebra, can be
written as

j ~Mj2 ¼ 32m2
Nfðm2

N �m2
‘Þ2ðl1 � l2Þ

þm2
‘ððm2

N �m2
‘Þ2 �m2

Mm
2
M0 Þg: (B1)

The final 3-body phase space can again be separated into
two 2-body integrals, and another over the invariant mass
of the intermediate state (which in this case is the neutrino
momentum squared, p2

N):

Z
dps3 ¼

Z dp2
N

2�

Z
dpsðM!l1NÞ

Z
dpsðN!l2M

0Þ; (B2)

where dpsðM!l1NÞ ¼ 1=ð16�2Þðj~l1j=mMÞd�1 and

dpsðN!l2M
0Þ ¼ 1=ð16�2Þðjl2j=mNÞd�2. This time, the

propagator of the intermediate neutrino in the matrix ele-
ment [see Eq. (8)] can be approximated by a delta function,
since it is a narrow state:

1

ðp2
N �m2

NÞ2 þm2
N�

2
N

! �

mN�N

�ðp2
N �m2

NÞ:

The only term in jMj2 that depends on an integration angle
is the one that contains ðl1 � l2Þ [see Eq. (B1)]. In the
neutrino rest frame,

R
d�2ðl1 � l2Þ ¼ 4�E1E2, where

E1 ¼ ðm2
M �m2

N �m2
‘Þ=2mN and E2 ¼ ðm2

N þm2
‘ �

m2
M0 Þ=2mN are the respective energies of the external lep-

tons. All other solid angle integrals give just a factor 4�.
Putting everything together, we obtain the decay rate:

�ðM ! M0‘þ‘þÞ ¼ 1

2mM

G4
F

4
f2Mf

2
M0 jVqQVq2q1 j2jUN‘j4

Z
dps3

j ~Mj2
ðp2

N �m2
NÞ2 þm2

N�
2
N

¼ G4
F

32�2mM

f2Mf
2
M0 jVqQVq2q1 j2

jUN‘j4
mN�N

j~l1j
mM

jl2j
mN

fðm2
N þm2

‘Þm2
M � ðm2

N �m2
‘Þ2g

� fðm2
N �m2

‘Þ2 � ðm2
N þm2

‘Þm2
M0 g; (B3)

where j~l1j ¼ �1=2ðm2
M;m

2
N;m

2
‘Þ=2mM and jl2j ¼

�1=2ðm2
N;m

2
M0 ; m2

‘Þ=2mN .

APPENDIX C: THE CASE OF HEAVY NEUTRINOS

Here we present the derivation of the meson decay rate
for Mþ ! M0�‘þ‘þ (‘ ¼ e, �, �) when the exchanged
Majorana neutrino is heavier than the decaying meson. In
this case, both weak amplitudes shown in Fig. 1 contribute
with similar strength to the process.

In order to see the approximations involved, let us first
consider the neutrino mass mN not to be necessarily high.
Let us first recall the valence quark content of the decaying
mesonM as ð �QqÞ and of the produced mesonM0 as ð �q2q1Þ.
Let us also denote by J�ð �QqÞ � �Q��ð1� �5Þq the weak

V � A quark current with flavor change q ! Q. In much
the same way as before, we rearrange the lepton line using
charged-conjugated spinors and the Majorana character of
the neutrino, thus appearing an irrelevant Majorana phase
�N ¼ expði�NÞ. Then the contribution of Fig. 1(a) (and
diagram with exchanged antileptons ‘þ1 $ ‘þ2 ) can be
written as

M1a ¼ ð�1ÞG
2
F

2
U�2

N‘�
�
NðV�

q1Q
V�
qq2ÞhM0jJ�ð �q2qÞJ�ð �Qq1ÞjMi

� �u �‘ðl2Þ��ð1þ �5Þ
�

kN þmN

k2N �m2
N þ i�NmN

þ k0N þmN

k0N 2 �m2
N þ i�NmN

�
��ð1� �5Þv‘ðl1Þ: (C1)

Here we called kN and k0N the corresponding neutrino
momenta for the two crossings of the external lepton lines.
Now, if the neutrino is heavy, in the denominators we
neglect all except m2

N. In addition, using the orthogonality
of the chiral projectors and the relation f��; ��g ¼ 2g��,
the expression reduces to

M1a ¼ G2
F

2
U�2

N‘�
�
NðV�

q1Q
V�
qq2ÞhM0jJ�ð �q2qÞJð �Qq1Þ�jMi

� 4

mN

½ �u �‘ðl2Þð1� �5Þv‘ðl1Þ
: (C2)

In much the same way one can treat the contribution of
Fig. 1(b), but now the roles of the flavors q and q1 are
interchanged, thus the quark currents and CKM elements
are different:

M1b ¼ G2
F

2
U�2

N‘�
�
NðV�

qQV
�
q1q2ÞhM0jJ�ð �q2q1ÞJð �QqÞ�jMi

� 4

mN

½ �u �‘ðl2Þð1� �5Þv‘ðl1Þ
: (C3)

The largest uncertainty here is in the determination of
the hadronic matrix element. As a first estimate, reasonable
for the level of accuracy we seek, we can separate the
currents inserting the vacuum and assuming it saturates
the expression (vacuum saturation approximation).
We must then do a Fierz rearrangement in M1a to match
the flavors, which then mismatches the color, inducing a
suppression factor 1=Nc. The hadronic currents then

G. CVETIC et al. PHYSICAL REVIEW D 82, 053010 (2010)

053010-12



reduce to their corresponding decay constants, fM and fM0 ,
and the total amplitude for heavy neutrino exchange (‘‘h’’)
becomes

Mh ¼M1a þM1b

¼G2
F

2
U�2

N‘�
�
N

�
V�
qQV

�
q1q2 þ

V�
q1Q

V�
qq2

Nc

�
fMfM0 ðpM �pM0 Þ

� 4

mN

½ �u �‘ðl2Þð1��5Þv‘ðl1Þ
: (C4)

One may neglect the 1=Nc term, except if the other term is
much more CKM suppressed. The square and sum over
final polarizations of this amplitude are

jMhj2 ¼ jKhj232ðpM � pM0 Þ2ðl1 � l2Þ; (C5)

where we have gathered all constant factors under the
symbol

jKhj2 ¼ G4
Fj
U�2

N‘

mN

j2jV�
qQV

�
q1q2 þ

V�
q1Q

V�
qq2

Nc

j2f2Mf2M0 :

The decay width �ðMþ ! M0�‘þ‘þÞ can now be calcu-
lated explicitly, by integrating jMhj2 over the final phase
space. This time we express the M0-‘-‘ phase space as

Z
dps3 ¼

Z dm2
‘‘

2�

Z
dpsðM!M0X‘‘Þ

Z
dpsðX‘‘!‘‘Þ;

where dpsðM!M0X‘‘Þ ¼ ð1=16�2ÞðjpM0 j=mMÞd�M0 and

dpsðX‘‘!‘‘Þ ¼ ð1=16�2Þðjl2j=m‘‘Þd�‘2 . In the frame of

the lepton pair, the integrand (C5) is independent of angles,
so the integral over d�‘2 is a simple factor of 4�, and

equally for the subsequent integral over d�M0 .
The decay rate is then

�ðMþ ! M0�‘þ‘þÞ

¼ 1

2!

1

8�2

jKhj2
mM

Z ðmM�mM0 Þ2

4m2
‘

dm2
‘‘

2�

jpM0 j
mM

jl2j
m‘‘

� ðm2
M þm2

M0 �m2
‘‘Þ2ðm2

‘‘ � 2m2
‘Þ; (C6)

where jpM0 j ¼ �1=2ðm2
M;m

2
M0 ; m2

‘‘Þ=2mM and jl2j ¼
�1=2ðm2

‘‘; m
2
‘; m

2
‘Þ=2m‘‘. The factor 1=2! appears because

there are two identical particles in the final state. This
integral can be easily done numerically.
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