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We further study a predictive model for the masses and mixing matrix of three Majorana neutrinos. At

zeroth order the model yielded degenerate neutrinos and a generalized tribimaximal mixing matrix. At

first order the mass splitting was incorporated and the tribimaximal mixing matrix emerged with very

small corrections but with a zero value for the parameter s13. In the present paper a different, assumed

weaker, perturbation is included which gives a nonzero value for s13 and further corrections to other

quantities. These corrections are worked out and their consequences discussed under the simplifying

assumption that the conventional CP violation phase vanishes. It is shown that the existing measurements

of the parameter s23 provide strong bounds on s13 in this model.
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I. INTRODUCTION

At present, the particle physics community is planning,
as a follow-up to the enormously important experiments of
the last decade [1–7], an extensive programwith the goal of
more accurately understanding the neutrino masses and
mixings. There is really no accepted theory for an a priori
prediction of these quantities. Hence it seems worthwhile
to investigate in detail various theoretical models to de-
velop plausible scenarios which might be tested.

Here we look more closely at a particular model pre-
sented in [8] and further studied in [9] and in [10]. That
model assumed an initial permutation symmetry (S3)
which is motivated by the fact that the 3� 3 matrix which
transforms the defining representation to irreducible form
is, up to a single parameter rotation, the same as the
‘‘tribimaximal’’ matrix, which is in, at least, rough agree-
ment with the present experimental situation. The tribi-
maximal form is taken to be
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The assumption was also made that, at zeroth order, the
three neutrinos are degenerate. It may be seen from Table I
of [8] that this is plausible for a large range of possible fits
to the data. However, such an assumption at first seems
inconsistent with permutation symmetry which suggests
two of the three neutrinos to be degenerate (however,
not the two ‘‘solar’’ neutrinos) and different in mass from
the third. The proposed solution to this problem called for
the introduction of a Majorana type phase, which does not
affect the usual neutrino oscillations but does affect the rate

for neutrinoless double beta decay. The complications
involved in obtaining a suitable Higgs scheme for both
the neutrino mass matrix and the charged lepton mass
matrix (which can be arranged to be proportional to
the unit matrix) in this approach are discussed in some
detail in [8].
Of course, many interesting different models for neutri-

nos based on permutation symmetry have been discussed
for a long time [11–17]. In addition, many interesting
models with similar approaches to the tribimaximal mixing
matrix have been vigorously pursued [18–31].
In the model under present discussion, the zeroth order

piece of the prediagonal Majorana neutrino mass matrix
has the well-known S3 invariant form:

M� ¼ �
1 0 0
0 1 0
0 0 1

2
64

3
75þ �

1 1 1
1 1 1
1 1 1

2
64

3
75 � �1þ �d:

(2)

Here � and � are, in general, complex numbers while d is
usually called the ‘‘democratic’’ matrix. As discussed in
detail in [8,10], we take

� ¼ �ij�je�ic =2; (3)

where the physical phase c lies in the range:

0< c � �: (4)

For the assumed initial degeneracy, j�j is related to �,
assumed real, by

j�j ¼ 3�

2 sinðc =2Þ : (5)

The two zeroth order parameters are the degenerate neu-
trino masses, j�j and the phase c which contributes to the
neutrinoless double beta decay amplitude.
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The first order perturbation treated in [9,10] is

� ¼
0 0 0
0 t u
0 u t

0
@

1
A; (6)

where t and u are parameters. In general, t and u may be
complex but they were assumed real for simplicity.
This perturbation is well known as the ‘‘mu-tau’’ symmetry
[32–34]. The assumed zeroth order degeneracy (which
actually may be relaxed, if desired) forces us to use degen-
erate perturbation theory. Then� turns out (see e.g., Sec. II
of [10]) to be the only possible choice which forces the
desired tribimaximal form (as opposed to the generalized
tribimaximal form) of the first order mixing matrix.

Here we will choose for the second order perturbation,
the matrix:

�0 ¼
t0 u0 0
u0 t0 0
0 0 0

0
@

1
A: (7)

For simplicity we again consider the parameters t0 and u0 to
be real. Allowing the perturbation parameters to be com-
plex would predict CP violation in neutrino oscillations, to
be studied in future work.

Note that this second order perturbation preserves the S2
subgroup which involves the 1–2 interchange. One might
wonder about also including a perturbation, �00 which
preserves the 1–3 S2 subgroup. However, that is not
expected to give anything new since the combination of
Eqs. (2), (6), and (7) already has 6 parameters, the same
number of parameters as the most general symmetric 3� 3
matrix, M�.

The combination of Eqs. (2), (6), and (7) was motivated
by the group theory treatment of the strong interactions
before QCD which led, for example, to the Gell-Mann
Okubo mass formula [35]. In that case the initial term
was flavor SU(3) invariant, the next term was invariant
under the SU(2) isospin subgroup, while the smallest last
term was invariant under the SU(2) ‘‘U-spin’’ subgroup. In
the present case the zeroth order term has the discrete
group S3 invariance and two different S2 subgroups are
left invariant by the two perturbations.

II. PERTURBATION ANALYSIS

In [10] we diagonalized the needed symmetric matrix:

RTð�1þ �dþ �ÞR

¼ �1þ
tþ u

ffiffi
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2
p
3 ðtþ uÞ 3�þ 2

3 ðtþ uÞ 0

0 0 t� u

0
BBB@

1
CCCA: (8)

The diagonalization of this matrix gave the first order

neutrino mixing matrix, Kð1Þ as

Kð1Þ ¼ RR1; (9)

where,
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This results in a diagonalization with complex eigenvalues.

To make these real positive we multiplied Kð1Þ on the right
by a suitable diagonal matrix of phases.
To include the second order perturbation, Eq. (7), we

must diagonalize,

H ¼ RT
1R

Tð�I þ �dþ �þ �0ÞRR1 � H0 þH0 (11)

where, after some computation and neglect of still higher
order terms, we obtain
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We introduced the notation H0 [everything in Eq. (11)
except for �0] and H0 to indicate that, rather than making
an explicit diagonalization we will regard, the result to first
order as a ‘‘zeroth order Hamiltonian,’’ the given second
order term, Eq. (7) as a ‘‘first order perturbation’’ and use
ordinary quantum mechanics perturbation theory to pro-
ceed. In that approach one has of course the corrections to
the energies as

E0
n ¼ hc njH0jc ni; (13)

while the corrections to the eigenvectors are

c ð1Þ
m ¼ X

n�m

hc njH0jc mi
Em � En

c n: (14)

A more general perturbation approach, which gives the
same results, is discussed in the Appendix. The lepton
mixing matrix up to and including second order then reads

K ¼ RR1R2P ¼ ðc 1; c 2; c 3ÞP; (15)

where the c i are the columns of RR1R2 and furthermore P
is the phase matrix needed for the neutrino masses to be
real positive; explicitly,
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and the phase matrix has the form

P ¼
e�i� 0 0
0 e�i� 0
0 0 e�i�

0
@

1
A; (17)

wherein,
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Note that we are free to subtract ð�þ �þ �Þ=3 from each
of these three entries. Then the sum of the modified three
entries will vanish in accordance with the requirement that
there be only two independent Majorana phases. The real
positive neutrino masses to second order are then
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Notice that the zeroth order masses have the character-
istic strength � while the first order masses are suppressed

by ðt; uÞ=� and the second order masses are suppressed by
ðt0; u0Þ=�.
Also notice that the absolute values of the neutrino

masses depend on the Majorana phase, c . However, the
lepton number conserving neutrino oscillations cannot de-
pend on a Majorana phase [36]. As a check of this we see
that the phase c cancels out when one considers the mass
differences,

A � m2
2 �m2

1 � 3�ðtþ uÞ þ 9

2
�t0;

B � m2
3 �m2

2 � �ð�5tþ uÞ � �

�
7

2
t0 þ 2u0

�
;

C � m2
3 �m2

1 � 2�ð�tþ 2uÞ þ �ðt0 � 2u0Þ:

(20)

Of course, A, B, and C are not independent. There are
two, presently unresolved, experimental possibilities:

Type 1: m3 >m2 >m1; Type 2: m2 >m1 >m3:

(21)

The corresponding relations are

Type 1: jCj ¼ jBj þ A; Type 2: jCj ¼ jBj � A:

(22)

These relations were obtained by using the known
positive sign of A and that only the two possibilities
m2

3 >m2
2 >m2

1 and m2
2 >m2

1 >m2
3 are allowed. In the

literature some works specify A and jBj while others
specify A and jCj.
The following best fit values for the perturbation

parameters �t and �u were given in the first order treat-
ment [10]:

�t � �4:13� 10�4 eV2;

�u � 4:39� 10�4 eV2; Type 1;
(23)

�t � 4:21� 10�4 eV2;

�u � �3:94� 10�4 eV2 Type 2: (24)

III. ELEMENTS OF THE MIXING MATRIX

We employ the following parameterization [37] of the
leptonic mixing matrix, K:

K ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23e
i� c12c23 � s12s13s23e

i� c13s23
s12s23 � c12s13c23e

i� �c12s23 � s12s13c23e
i� c13c23

0
@

1
AP; (25)

where c12 is short for cos	12, for example. P is the diagonal
matrix of Majorana type phases given in Eqs. (17) and (18)

for the present model. For simplicity we are presently
neglecting the conventional CP violation and thus setting
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� ¼ 0. To specify s12, s13, and s23, it is clearly sufficient to
compare the (1–2), (1–3), and (2–3) matrix elements of K
in Eq. (25) with those calculated in Eq. (16). This yields

s12c13 ¼ 1ffiffiffi
3

p � 2ffiffiffi
3

p tþ u

9�
þ 1ffiffiffi

3
p t0 þ u0

9�
;

s13 ¼ � 1

2
ffiffiffi
2

p t0 � 2u0

t� 2u
� 1ffiffiffi

2
p t0 þ u0

9�
;

s23c13 ¼ 1ffiffiffi
2

p þ 1

4
ffiffiffi
2

p t0 � 2u0

t� 2u
� 1ffiffiffi

2
p t0 þ u0

9�
:

(26)

For an initial orientation we see that at zeroth order, s13
vanishes and also K has the tribimaximal form. When the
first order perturbation characterized by t and u is added,
neither s13 nor s23 change. However, s12 is somewhat
modified as discussed previously in Sec. IV of [10].
When the second order perturbation characterized by t0
and u0 is added, s13 finally becomes nonzero while both s12
and s23 suffer further corrections.

But something unusual is happening; there are terms for
s13 and s23 which behave like t

0=t and are manifestly of first
order in strength. These arise from the energy difference
denominator in Eq. (14). Since we had to use degenerate
perturbation theory at first order this denominator is pro-
portional to the first order ‘‘energy’’ corrections rather than
the zeroth order energies. Keeping terms of actual first
order in strength we find the interesting relation

s13 � �2
s23; (27)

where 
s23 denotes the deviation of s23 from its tribimax-
imal value. Also the good approximation c13 ¼ 1 was
made.

IV. NUMERICAL ESTIMATES

Already, Fogli et. al. [38] and Schwetz et. al. [39] have
pointed out that detailed analysis of existing neutrino
oscillation experiments gives some hint for nonzero s13.
Thus it seems interesting to see what predictions emerge
from Eq. (27).

Expanding s23 around its ‘‘tribimaximal value’’ as s23 ¼
½s23�TBM þ 
s23, one gets:

ðs23Þ2 � 1
2 þ

ffiffiffi
2

p

s23: (28)

Comparing with the results of a global analysis of the
oscillation data given in Table A1 of [39] one then identi-
fies, for respectively 1�, 2�, and 3� errors,

j
s23j ¼ 0:05; 0:08; 0:11: (29)

Note that the three cases are associated with the experi-
mental data relating to the 2–3 type neutrino oscillations.
Using Eq. (27) then leads to the corresponding predicted
bounds for js13j,

js13j< 0:025; 0:040; 0:055: (30)

It is amusing to note that these values range from about 1=4
to 1=2 of the ‘‘best fit’’ value js13j ¼ 0:11, which is also
presented in the first column of Table A1 in [39]. Of course,
our estimates provide a test of the present theoretical model
for neutrino parameters and have no connection with ex-
perimental data on js13j.
As discussed above, the theoretical estimate for js13j is

of characteristic first order strength, appearing as a ratio of
a second order quantity divided by a first order quantity.
Using Eq. (26) for s13 and neglecting the term of second
order strength we can get an estimate of the relative second
to first order effects:

��������t0 � 2u0

t� 2u

��������� 2
ffiffiffi
2

p js13j � 0:071; 0:11; 0:16;

(31)

wherein Eq. (30) was used. Evidently the second order
effects seem to be suppressed by about 1=10 compared
to the first order effects. On the other hand, as seen in
Eq. (20), the quantities t0 and u0 enter in the true second
order corrections for the neutrino mass differences. Thus
those corrections are likely to be small—on the order of
10% of the first order mass splittings.

V. SUMMARYAND DISCUSSION

In this work, we designated the zeroth order parameter
as �, the first order parameters as t and u, and the second
order parameters as t0 and u0. The first order corrections to
the neutrino masses were suppressed by ðt; uÞ=� compared
to zeroth order. For the mixing angles, the first order
corrections had a previously obtained piece proportional
to ðt; uÞ=� as well as a new piece proportional to
ðt0; u0Þ=ðt; uÞ. The latter term arose because we are using
degenerate perturbation theory and is clearly important for
s13 to be nonzero and correlated to corrections of s23.
Here, we have numerically neglected, for both masses

and mixing angles, terms proportional to ðt0; u0Þ=�. In [10]
we considered ðt; uÞ=� to be about 1=5. Here we found a
characteristic strength of s13 to correspond to ðt0; u0Þ=ðt; uÞ
about 1=10. Both of these magnitudes are roughly
similar.
Note that Eqs. (20) for the neutrino mass differences and

Eqs. (26) for the mixing angles do contain pieces of actual
second order strength. These should be interesting to study
in the future when more precise data becomes available.
As a prelude to such work we consider what restrictions
would exist on t0 and u0 if t and u take on the values given
in Eqs. (23) and (24). We see, from the last of Eqs. (20),
that the relative deviation of m2

3 �m2
1 due to nonzero t0

and u0 is

ðt0 � 2u0Þ
2ðt� uÞ ; (32)
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which is also
ffiffiffi
2

p
s13 in the present model. Thus Eq. (30)

also sets limits on how large are the allowable deviations
from the existing first order fit to m2

3 �m2
1. Similarly, the

relative deviation of m2
2 �m2

1 from the first order fit is
determined from the first of Eqs. (20) to be

3t0

2ðtþ uÞ : (33)

Using the first line of Table A1 of [39] we identify the
allowable experimental relative deviations for m2

2 �m2
1 as

ð0:026; 0:052; 0:078Þ; (34)

corresponding to, respectively, 1�, 2�, and 3� errors.
Then �t0 must be less than

ð0:17; 0:34; 0:51Þ � 10�5 eV2; (35)

respectively.
The result for the usual neutrinoless double beta decay

quantity jmeej up to ‘‘second order’’ turns out to be

jmeej ¼ �

2 sinðc =2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4 cosc

p �
1� 2sin2ðc =2Þ

5þ 4 cosc

t0

�

�
:

(36)

Note that to first order, there is no correction to the
zeroth order result. In this context, note a forthcoming
erratum to Eq. 51 of Ref. [10]. Furthermore, there is no
‘‘effective’’ first order term of the form ðt0; u0Þ=ðt; uÞ as in
the case of the mixing matrix elements discussed above.

In the present work we have assumed that the diagonal-
ization of the charged lepton mass matrix makes a negli-
gible contribution to the lepton mixing matrix. This is
plausible since many models correlate large mass differ-
ences (as in the cases of the quarks and the charged
leptons) with small mixing angles. On the other hand small
mass differences or close to degenerate masses (as may
hold for the neutrinos) correlate with large mixing angles.
Of course, at a later stage, the contributions of the charged
leptons should be included at the expense of additional
parameters or assumptions.
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APPENDIX: ALTERNATIVE
PERTURBATION METHOD

We present here an alternative approach which leads to
results in perturbation theory order by order. This can be
applied to the case at hand or more generally when the
mass matrix is invariant at zeroth order under a finite group
G0 and then we add perturbations of decreasing importance
in the small parameter x such that, for example, the nth
perturbation is of order xn and is invariant under a smaller
group Gn. The mass matrix can then be written as an
expansion in x,

MðxÞ ¼ M0 þ xM1 þ x2M2 þ . . . (A1)

where M0 is invariant under G0, M1 under G1, and so on.
The eigenvalues (diagonal) and eigenvector matrices can

also be expanded as

MdðxÞ ¼ Md0 þ xMd1 þ x2Md2 þ . . . ;

RðxÞ ¼ R0 þ xR1 þ x2R2 þ . . .
(A2)

where,

RTðxÞMðxÞRðxÞ ¼ MdðxÞ (A3)

is the eigenvalue equation.
If we differentiate Eq. (A3) once we obtain

RT0MRþ RTM0Rþ RTMR0 ¼ M0
d (A4)

which can be written as

½Md; R
TR0� þ RTM0R ¼ M0

d: (A5)

Here we used the orthonormality condition for the ei-
genvector matrix:

RT0Rþ RTR0 ¼ 0: (A6)

Note that the matrix RT0Rwhich appears in what follows
is antisymmetric (in each order of perturbation theory)
and in consequence all of its derivatives will be
antisymmetric.
The second derivative and third derivative equations will

read

½M0
d; R

TR0� þ ½Md; ðRTR0Þ0� þ ½RTM0R; RTR0� þ RTM00R ¼ M00
d;

½M00
d; R

TR0� þ 2½M0
d; ðRTR0Þ0� þ ½Md; ðRTR0Þ00�þ

½½RTM0R; RTR0�; RTR0� þ 2½RTM00R; RTR0� þ ½RTM0R; ðRTR0Þ0� þ RTM000R ¼ M000
d : (A7)
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All commutators of diagonal matrices give zero on diago-
nal and in consequence the mass eigenvalues are obtained
from the rest of the terms.

It is clear that by setting x ¼ 0 one can associate the first
derivative with the first order perturbation theory, second
with second order, and so on. The mass eigenvalues and the
matrix RTR0 can be extracted in each order from equations
like (A5) and (A7).

Then one should use the orthonormality condition to
obtain the eigenvector matrix according to

RTðxÞR0ðxÞ ¼ RT
0R1 þ xðRT

1R1 þ 2RT
0R2Þ þ . . . : (A8)

Using this method and G0 ¼ S3, G1 ¼ S23, and
G2 ¼ S12 one retrieves the eigenvalues and eigenvectors
in each order of perturbation theory. The results agree with
those presented in the main text.
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