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3Dipartimento di Fisica, Università di Roma ‘‘La Sapienza’’ and INFN — Sezione di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
(Received 15 July 2010; published 3 September 2010)

We investigate the properties of the deconfining/chiral restoring transition for two flavor QCD in the

presence of a uniform background magnetic field. We adopt standard staggered fermions and a lattice

spacing of the order of 0.3 fm. We explore different values of the bare quark mass, corresponding to pion

masses in the range 200–480 MeV, and magnetic fields up to jejB� 0:75 GeV2. The deconfinement and

chiral symmetry restoration temperatures remain compatible with each other and rise very slightly (< 2%

for our largest magnetic field) as a function of the magnetic field. On the other hand, the transition seems

to become sharper as the magnetic field increases.
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I. INTRODUCTION

The study of strong interactions in presence of magnetic
background fields is relevant to many phenomenological
contexts. Large magnetic fields (B� 1016 Tesla, i.e.ffiffiffiffiffiffiffiffiffijejBp � 1:5 GeV) may have been produced at the cosmo-
logical electroweak phase transition [1] and they may have
influenced subsequent QCD transitions. Slightly lower
fields are expected to be produced in noncentral heavy
ion collisions, reaching up to 1014 Tesla at the
Relativistic Heavy Ion Collider and up to �1015 Tesla at
the LHC [2,3]. Large magnetic fields, of the order of 1010

Tesla, are also expected in some neutron stars known as
magnetars [4].

The influence of electric and magnetic fields on the
chiral properties of the vacuum has been studied for
some time, using various approximations or effective mod-
els of QCD [5–12], predicting an enhancement of chiral
symmetry breaking as a magnetic field is switched on.
Recently, new interesting phenomenology has been pro-
posed, consisting in the appearance of an electric current
parallel to the magnetic field in presence of deconfined
quarks and local CP violations, induced, e.g. by topologi-
cal charge fluctuations [13,14]. That is usually known
as the chiral magnetic effect and experimental confirma-
tions of it are currently being searched by heavy ion experi-
ments [15].

An important issue is the influence of the magnetic field
on the structure of the QCD phase diagram, in particular,
on the location and the nature of deconfinement and chiral
symmetry restoration. Clarifying that in the case of strong
magnetic fields is essential to correctly predict the phe-
nomenological consequences of the QCD transition on the
evolution of the Universe during its early stages. Some
computations exist, based on different approximations and
QCD-like models [16–22], which predict the possibility of
a quite rich phenomenology, ranging from a possible
splitting of deconfinement and chiral symmetry restoration

to a sizable increase in the strength of the transition.
However, the various model predictions are not always
consistent among themselves.
A clarification of these issues may come from lattice

QCD computations. A magnetic background field, contrary
to an electric field or a finite baryon density, does not give
rise to technical difficulties such as a sign problem. The
phase diagram in presence of a chromo-magnetic back-
ground field has been investigated in Refs. [23,24]: the
transition temperature decreases as a function of the exter-
nal field, with deconfinement and chiral symmetry resto-
ration staying strictly related to each other. Investigations
in presence of (electro-) magnetic (e.m.) fields have been
done since long with the purpose of studying the magnetic
properties of hadrons [25,26], while some recent studies
[27–30] have reported mostly on the chiral properties of
the theory and about numerical evidence for the chiral
magnetic effect.
In this paper we report on a first investigation of the

QCD phase transition in presence of an (electro-) magnetic
background field. In order to do that, it is essential to
include dynamical quark contributions, since only quark
fields, being electrically charged, are influenced by the
magnetic field. We have considered Nf ¼ 2 QCD with

standard staggered fermions and different values of the
quark masses, to appreciate how the effects of the magnetic
field change as the mass spectrum changes (in the heavy
quark limit the magnetic field becomes irrelevant). In
Sec. II, we give some details about lattice QCD in the
presence of a background field and about our numerical
setup. In Sec. III, we present our numerical results and
finally, in Sec. IV, we give our conclusions.

II. NUMERICAL SETUP

We consider Nf ¼ 2 QCD, with quarks carrying differ-

ent electric charges and coupled to a background e.m.
field. The background field affects quark propagation and
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corresponds to a modification of the Dirac operator. In the
continuum the covariant derivative changes by inclusion of
the e.m. A� field; on the lattice one has to add appropriate

Uð1Þ fields to the gauge link variables which parallel
transport quarks fields from one lattice site to the other.
In the case of a uniform magnetic field B, with different
electric charges for the two flavors, qu ¼ 2jej=3 and qd ¼
�jej=3 (jej being the elementary charge), the partition
function of the (rooted) staggered fermion discretized ver-
sion of the theory is

ZðT;BÞ�
Z
DUe�SG detM1=4½B;qu�detM1=4½B;qd�; (1)

Mi;j½B; q� ¼ am�i;j þ 1

2

X4
�¼1

�i;�ðuðB; qÞi;�Ui;��i;j��̂

� u�ðB; qÞi��̂;�U
y
i��̂;��i;jþ�̂Þ: (2)

DU is the functional integration over the gauge link var-
iables Un;�, SG is the discretized pure gauge action (we

consider a standard Wilson action). The subscripts i and j
refer to lattice sites, �̂ is a unit vector on the lattice and �i;�

are the staggered phases. Periodic (antiperiodic) boundary
conditions (b.c.) must be taken for gauge (fermion) fields
along the Euclidean time direction, while spatial periodic
b.c. are chosen for all fields. uðB; qÞi;� are the gauge links

corresponding to the background Uð1Þ magnetic field. We

shall consider a constant magnetic field ~B ¼ Bẑ and the
following choice for the gauge field:

Ay ¼ Bx; A� ¼ 0 for � ¼ x; z; t: (3)

The corresponding Uð1Þ links on the lattice are

uðB; qÞn;y ¼ eia
2qBnx ;

uðB; qÞn;� ¼ 1 for � ¼ x; z; t:
(4)

This choice corresponds to a magnetic flux a2B going
through each plaquette in the x� y plane, except at the
boundary ðLx; y; z; tÞ, due to the periodic b.c. in the spatial
directions. In order to guarantee the smoothness of the
background field across the boundary and the gauge in-
variance of the fermion action the Uð1Þ gauge fields must
be modified at the boundary of the x direction:

uðB; qÞn;x¼Lx
¼ e�ia2qLxBny (5)

and the magnetic field must be quantized, a2qB ¼
2�b=LxLy, where b is an integer. That corresponds to

taking the appropriate gauge invariant b.c. for fermion
fields on the torus [31] (with the possible additional free
phases �x and �y [31] set to zero). Given the two different

values of qu and qd, the quantization of B in our case is set
by the d quark charge qd ¼ �jej=3,

jejB ¼ 6�T2

�
Nt

Ls

�
2
b; (6)

T ¼ 1=ðNtaÞ is the temperature and Lx ¼ Ly � Ls.

Our simulations have been carried out on 163 � 4 latti-
ces and for three different bare quark masses am ¼
0:01335, 0.025 and 0.075. The corresponding (Goldstone)

pion masses are am� ¼ 0:307ð3Þ, 0.417(3), and 0.707(3).
The temperature T ¼ 1=ðNtaÞ is changed by varying the
lattice spacing through the inverse gauge coupling �.
Zero T estimates of the string tension, done at the same

� values where the B ¼ 0 transition takes place, lead to a
ranging from 0.29 to 0.31 fm as am is decreased, corre-
sponding to TcðB ¼ 0Þ ranging from 170 to 160 MeV.
The corresponding values of the (Goldstone) pion mass
are m� � 195, 275 and 480 MeV. For each quark mass we
have done simulations using magnetic field corresponding
to b ¼ 0, 8, 16 and 24, i.e. for jejB ¼ 0, 3�T2, 6�T2 and
9�T2, respectively. Thus, for the lightest pion mass our
magnetic field reaches values up to jejB � 19m2

�, i.e.ffiffiffiffiffiffiffiffiffijejBp � 850 MeV in physical units. Note that, since we
are working with a fixed value of Nt, B changes while
changing temperature as a�2 / T2. However, for all
the quark masses the range of couplings (hence of a) that
we explore corresponds to a <2% change in T and hence
the magnetic field only changes at most by a few percent.
The rational hybrid Monte Carlo algorithm has been

used to simulate rooted staggered fermions: we need to
treat separately each flavor and thus take the fourth root of
the fermion determinant. Typical statistics are of the order
of 10 k molecular dynamics trajectories.

III. NUMERICAL RESULTS

In Figs. 1–3 we show the behavior of h �c c i (average of
the u and d quark condensates) and of the Polyakov loop
for different magnetic fields and am ¼ 0:075, 0.025, and
0.01335. Results are presented as a function of the inverse
gauge coupling �: we recall that T is an increasing func-
tion of�, a conversion into physical units will be presented
later. For all temperatures h �c c i increases as a function of
B, as expected from analytic predictions. Interpreting the
drop of the condensate as the signal for chiral symmetry
restoration, we infer that the transition temperature in-
creases as a function of B. A sharper drop is observed at
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FIG. 1 (color online). Chiral condensate and Polyakov loop for
am ¼ 0:075.
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the highest fields explored, especially for the lowest quark
masses, indicating a sizable increase in the strength of the
transition; that is visible from the behavior of the discon-
nected chiral susceptibility (Fig. 4).

The Polyakov loop P is a pure gauge quantity, coupled
to the magnetic field only through quark loops, hence its
behavior is less trivial to predict. FromFigs. 1–3we see that,
while at low T it decreases as a function of B (as one would
expect qualitatively from the fact that h �c c i increases), at
high T it increases. Such behavior is qualitatively similar to
what obtained in Ref. [20] by a Polyakov-Nambu-Jona-
Lasinio model analysis and should be further investigated,
e.g. by determining the renormalized Polyakov loop. If we
interpret the rise of P as the onset of deconfinement, we
infer that the shift and the increase in strength of the
deconfinement transition is similar to what observed for
the chiral transition. Data obtained for the Polyakov loop
susceptibility lead to similar conclusions (see Fig. 5).

In Table I we report the pseudocritical couplings �c for
deconfinement and chiral restoration obtained by fitting

the peak of the susceptibilities by a quadratic function.
We have also determined �c looking for the inflection
point of observables, by means of polynomial fits, obtain-
ing compatible results within errors. Data obtained for �c

confirm that no appreciable separation of chiral restoration
and deconfinement is induced by the background field, at
least for the explored field strengths.
From the values of�c we obtain the ratio TcðBÞ=Tcð0Þ as

a function of the dimensionless ratio eB=T2, as reported in
Fig. 6; the 2-loop � function has been used for the con-
version. A direct determination of the physical scale on
T ¼ 0 lattices is preferable but would require very precise
measurements to appreciate T variations of the order of
percent. On the other hand, given the small scale range
explored, the approximation is reasonable and no qualita-
tive change is expected.
Figure 6 shows that the change in Tc is small and of the

order of a few percent at the highest explored fields.
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FIG. 3 (color online). Same as in Fig. 1 for am ¼ 0:01335.
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FIG. 2 (color online). Same as in Fig. 1 for am ¼ 0:025.
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FIG. 4 (color online). Disconnected h �c c i susceptibility for
am ¼ 0:01335.
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FIG. 5 (color online). Polyakov loop susceptibility for am ¼
0:013 35.
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Moreover, there seems to be a saturation as the chiral limit
is approached: results for am ¼ 0:013 35 and am ¼ 0:025
stay onto each other. Notice that this is true if we plot
results as a function of jejB=T2: had we used jejB=m2

�

results at different masses would have been different: the
highest B is about 20m2

� for am ¼ 0:013 35 and 10m2
�

for am ¼ 0:025. This suggests that, at least for the strong
fields and for the pion masses explored, the relevant scale
governing the effect of the magnetic field on the shift of the
transition is T itself and not m�.

Trying to understand the dependence of Tc on B, we
have fitted our data for am ¼ 0:013 35 according to

TcðBÞ
Tcð0Þ

¼ 1þ A

�jejB
T2

�
�
; (7)

finding that � ¼ 1:45ð20Þ and A� 1:3� 10�4.
Finally we discuss about the nature of the transition. At

B ¼ 0 it is still unclear if a weak first order transition is
present in the chiral limit [32,33], however no clear signal
for a finite latent heat has been found on available lattice
sizes, hence the first order transition, even if present, is so
weak to be of poor phenomenological relevance. On the
other hand, our results show that the introduction of a

magnetic field makes the transition sharper. The question
is if large fields can turn the transition into a first order
strong enough to be clearly detectable.
To that aim we have analyzed the reweighted plaquette

distribution at the critical couplings and for different
values of B: results are shown in Fig. 7. The single peak
distribution, which is present at zero or small magnetic
field, turns into a double peak distribution, typical of a
first order transition, for the largest B explored; also the
Monte Carlo histories of the plaquette, Fig. 8, present
signals of a metastable behavior. We can consider that as
an indication but not as a final answer: numerical simula-
tions on larger lattice sizes are necessary to clarify if the
double peak structure survives the thermodynamical limit
and for a proper finite size scaling analysis.

IV. CONCLUSIONS

We have presented results from an investigation of the
Nf ¼ 2 QCD phase diagram in presence of a magnetic

TABLE I. Pseudocritical couplings obtained by fitting the
peak of the chiral condensate or Polyakov loop susceptibilities.

amq b �c (Pol. loop) �c ð �c c Þ
0.013 35 0 5.2714(4) 5.2716(3)

0.013 35 8 5.2739(4) 5.2741(4)

0.013 35 16 5.2783(3) 5.2785(3)

0.013 35 24 5.2836(2) 5.2838(2)

0.025 0 5.2893(2) 5.2898(3)

0.025 8 5.2925(3) 5.2925(3)

0.025 16 5.2961(3) 5.2966(3)

0.025 24 5.3014(4) 5.3018(4)

0.075 0 5.351(1) 5.351(2)

0.075 8 5.353(1) 5.353(2)

0.075 16 5.355(1) 5.357(2)

0.075 24 5.358(1) 5.360(1)
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FIG. 6 (color online). TcðBÞ for different quark masses. The
solid curve is a power law fit to the lightest quark data (see text).
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FIG. 7 (color online). Reweighted plaquette distribution at �c

as a function of the external field at am ¼ 0:013 35 on a 163 � 4
lattice.
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FIG. 8 (color online). Monte Carlo histories of the plaquette at
3 different � values around the transition for b ¼ 24 and am ¼
0:01335.
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background field. We have explored different quark
masses, corresponding to m� ranging from 200 MeV to

480 MeV, and different magnetic fields, with
ffiffiffiffiffiffiffiffiffijejBp

up to
about 850 MeV (jejB� 20m2

� for the lightest mass).
Main results can be summarized as follows: the transi-

tion temperature increases slightly (< 2% at the highest
field) and no evidence is found, within the range of ex-
plored fields, for a disentanglement of chiral symmetry
restoration and deconfinement. TcðBÞ=Tcð0Þ as a function
of jejB=T2 shows negligible dependence on m� for the
two lowest masses, and is well described by a power law
TcðBÞ=Tcð0Þ ¼ 1þ AðjejB=T2Þ� with �� 1:45ð20Þ. The
transition becomes sharper with some preliminary evi-
dence for a first order transition, in the form of double
peak distributions, at the highest fields explored: such
indications should be clarified by future studies on larger
spatial volumes and by a finite size scaling analysis.

Regarding the comparison with model predictions, our
results show partial agreement with some of the results
reported in Ref. [21] and in Ref. [20]: the deconfinement
and chiral restoring temperatures both increase, even if we
do not see any sign for a faster grow and splitting of the
chiral transition till jejB� 20m2

�. Also, the observed in-
crease in the strength of the transition is common to some

models [18,21]. We stress the qualitatively different be-
havior which is observed in numerical simulations with a
background chromo-magnetic field, where Tc decreases as
a function of the external field [23,24].
Our results have been obtained using a standard stag-

gered discretization and a coarse lattice, with a lattice
spacing a� 0:3 fm. Apart from possible systematic effects
related to the fourth root trick, flavour breaking discretiza-
tion effects may play an important role, with a distorted
hadron spectrum that could partially modify the effect of
the magnetic field on QCD thermodynamics. For this
reason it will be important to confirm our results in the
future by using different lattice discretizations.
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