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Using the anti-de Sitter conformal theory correspondence, we examine holographic renormalization

group flows in a framework where the bulk gravity contains higher curvature interactions. This holo-

graphic model allows us to distinguish the flow of the different central charges in dual theory. For

example, in four dimensions, one finds that the flow of the central charge a is naturally monotonic but that

of c is not. Our results agree with Cardy’s proposal to extend Zamolodchikov’s c-theorem to higher

dimensions. We are also led to formulate a novel c-theorem for a universal coefficient appearing in the

entanglement entropy of the fixed point conformal theories in any (including an odd) number of

dimensions.
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I. INTRODUCTION

Zamolodchikov’s c-theorem [1] is a remarkable result
for quantum field theories in d ¼ 2. A direct outcome of
the c-theorem is that in any renormalization group (RG)
flow connecting two fixed points,

ðcÞUV � ðcÞIR: (1)

That is, the central charge of conformal field theory (CFT)
describing the ultraviolet fixed point is larger than (or equal
to) that at the infrared fixed point. The proof relies only on
the Euclidian group of symmetries, the existence of a
conserved stress-energy tensor and unitarity in the field
theory.

There have been various suggestions on how such a
result might extend to quantum field theories in higher d.
Cardy [2] conjectured a monotonic flow for the coefficient
of the A-type trace anomaly. For even d, the trace anomaly
for a CFT is in a curved background is given by [3]

hTa
ai ¼

X
BiIi � 2ð�Þd=2AEd (2)

where Ed is the Euler density in d dimensions and Ii are the
independent Weyl invariants of weight �d [4]. Cardy’s
proposal is then that A satisfies a relation like Eq. (1) along
RG flows between two fixed points in any even d. Of
course, this coincides with Zamolodchikov’s result in d ¼
2 where A ¼ c=12.

Efforts made towards proving Cardy’s conjectured c-
theorem have focused d ¼ 4 in which case Eq. (2) contains
two terms, i.e., there is a single Weyl invariant I1 ¼
CabcdC

abcd. The common nomenclature denotes the two
central charges as c ¼ 16�2B1 and a ¼ A. Numerous non-
trivial examples have been found supporting Cardy’s con-
jecture, including perturbative fixed points [5] and
supersymmetric gauge theories [6]. The latter investiga-
tions also demonstrated that the d ¼ 4 central charge cwill
not generically satisfy Eq. (1). Further, as we review below,
support for a c-theorem in higher dimensions was found [7]

with the anti-de Sitter conformal theory (AdS/CFT) corre-
spondence [8].
However, a general proof is lacking and, in fact, a

counterexample to Cardy’s c-theorem in d ¼ 4 was pro-
posed in [9]. If this counterexample survives further scru-
tiny, there are two obvious possibilities: A ‘‘c-theorem’’
exists in higher d but the quantity satisfying Eq. (1) is not
the central charge A. Alternatively, the central charge A
satisfies Eq. (1) under RG flows in higher d but only when
some more stringent requirements are imposed than in d ¼
2. In the latter case, the challenge would be to identify the
precise conditions for which the analog of Eq. (1) is
satisfied in higher (even) d.
In the following, we find evidence for the second alter-

native within the framework of the AdS/CFT correspon-
dence. We examine the c-theorem using a holographic
model with a higher curvature gravity theory [10,11] which
allows one to distinguish the central charges a and c in the
dual CFT. Hence, we are able to discriminate between the
behavior of these two central charges in RG flows, and we
find that only a has a natural monotonic flow. We are also
able to extend our analysis to holographic CFT’s in arbi-
trary higher d. Our results there suggest the following
general conjecture:
Placing a d-dimensional CFT on Sd�1 � R and calcu-

lating the entanglement entropy of the ground state be-
tween two halves of the sphere, one finds a universal
contribution: Suniv / a�d [as detailed in Eq. (22)]. Further

in RG flows between fixed points, ða�dÞUV � ða�dÞIR.
This conjecture then gives us a framework in which to

consider the c-theorem for d even or odd. As described
below, this conjecture actually coincides to Cardy’s pro-
posal for even d. We now discuss the holographic origin of
this conjecture.

II. HOLOGRAPHIC C-THEOREM

The AdS/CFT correspondence has emerged as a power-
ful tool to study the behavior of strongly coupled CFT’s in
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diverse dimensions [8]. Within this framework, [7] consid-
ered the c-theorem where one begins with (dþ 1)-
dimensional Einstein gravity coupled to various matter
fields:

I ¼ 1

2‘d�1
P

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p ðRþLmatterÞ: (3)

The matter theory is assumed to have various stationary
points where Lmatter ¼ dðd� 1Þ�2

i =L
2 with some canoni-

cal scale L. The fixed points are distinguished by different
values of � as indicated by the subscript and at these
points, the gravity vacuum is simply AdSdþ1 with the
curvature scale given by ~L2 ¼ L2=�2

i . RG flows between
critical points can be described with a metric of the form

ds2 ¼ e2AðrÞð�dt2 þ d~x2d�1Þ þ dr2: (4)

This metric becomes that for AdSdþ1 with AðrÞ ¼ r= ~L at
the stationary points. Now define [7]:

aðrÞ � �d=2

�ðd=2Þð‘PA0ðrÞÞd�1
; (5)

where ‘‘prime’’ denotes a derivative with respect to r. Then
for general solutions of the form (4), one finds

a0ðrÞ ¼ � ðd� 1Þ�d=2

�ðd=2Þ‘d�1
P A0ðrÞd A

00ðrÞ

¼ � �d=2

�ðd=2Þ‘d�1
P A0ðrÞd ðT

t
t � Tr

rÞ � 0: (6)

Above in the second equality, the Einstein equations are
used to eliminate A00ðrÞ in favor of components of the stress
tensor. The final inequality assumes that the matter fields
obey the null energy condition [12]. Given this monotonic
evolution of aðrÞ with r and the standard connection be-
tween r and energy scale in the CFT, aðrÞ always decreases
in flowing from the UV to the IR.

To make better contact with the dual CFT, it is simplest
to focus the discussion on d ¼ 4 at this point. Then with
the holographic trace anomaly [13] for the AdS5 stationary
points, one finds

aðrÞjAdS ¼ �2 ~L3=‘3P ¼ a: (7)

That is, the value of the flow function (5) matches precisely
that of the central charge a in the dual CFT at each of the
fixed points. Hence with the assumption of the null energy
condition, the holographic CFT’s dual to the gravity theory
(3) satisfy Cardy’s c-theorem. Of course, one must add that
the two central charges are precisely equal [13], i.e., a ¼ c,
for the class of d ¼ 4 CFT’s dual to Einstein gravity.
Hence these holographic models do not distinguish be-
tween the flow of a and c.

It has long been known that to construct a holographic
model where a � c, the gravity action must include higher
curvature interactions [14]. In part, this motivated the

construction of quasitopological gravity [10]

I ¼ 1

2‘3P

Z
d5x

ffiffiffiffiffiffiffi�g
p �

12�2

L2
þ Rþ �

2
L2X4 þ 7�

4
L4Z5

�
;

(8)

where X4 is the ‘‘Gauss-Bonnet’’ interaction, a combina-
tion of curvature-squared terms which corresponds to the
Euler density in four dimensions, and Z5 is a particular
interaction involving curvature-cubed terms developed in
[10,15]. This holographic model allows one to explore the
full three-parameter space of coefficients controlling the
two- and three-point functions of the stress tensor in a
general four-dimensional CFT [16]. However, one must
keep in mind that this action (8) was not derived from
string theory. Rather it was constructed to facilitate the
exploration of a broader class of holographic CFT’s while
maintaining control within the gravity calculations.
Further, the gravitational couplings in Eq. (8) can be con-
strained by various consistency requirements of the dual
CFT [11]. A generalization of the model (8) to d ¼ 2
CFT’s and c-theorems was considered in [17].
In comparison to the action presented in [10], we have

replaced the cosmological constant term by 12�2=L2 with
the study of RG flows in mind. The idea is that as in Eq. (3)
the gravity theory is coupled to a standard matter action
with various stationary points which yield different values
for the parameter �2. The curvature scale of the AdS5
vacua are related to the scale L appearing in Eq. (8) by
~L2 ¼ L2=f1, where

�2 � f1 þ �f21 þ�f21 ¼ 0: (9)

Using standard techniques [13], one determines the central
charges of the CFT’s dual to these AdS5 vacua [11]:

a ¼ �2 ~L3=‘3Pð1� 6�f1 þ 9�f21Þ; (10)

c ¼ �2 ~L3=‘3Pð1� 2�f1 � 3�f21Þ: (11)

Considering the metric ansatz (4), it is straightforward to
construct two flow functions:

aðrÞ � �2

‘3PA
0ðrÞ3 ð1� 6�L2A0ðrÞ2 þ 9�L4A0ðrÞ4Þ; (12)

cðrÞ � �2

‘3PA
0ðrÞ3 ð1� 2�L2A0ðrÞ2 � 3�L4A0ðrÞ4Þ: (13)

These are chosen as the simplest extensions of Eq. (5) with
d ¼ 4 which yield the two central charges at the fixed
points, i.e., aðrÞjAdS ¼ a and cðrÞjAdS ¼ c. Now for a
general RG flow solution, one finds

a0ðrÞ ¼ �3
A00ðrÞ
A0ðrÞ cðrÞ ¼ � �2

‘3PA
0ðrÞ4 ðT

t
t � Tr

rÞ � 0;

(14)
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where as before we are using the gravitational equations of
motion and assuming that the matter sector obeys the null
energy condition. We might note that the null energy
condition plays a central role in gravitational physics
[12] and that violations of this condition are argued to
lead to instabilities quite generally [18]. While it is pos-
sible that our assumption is unduly conservative in the
present context, we regard it as a reasonable restriction
on the matter sector in order to produce a holographic
framework with a consistent dual CFT. With the latter
assumption, aðrÞ evolves monotonically along the holo-
graphic RG flows and we can conclude that the central
charge (10) satisfies the analog of Eq. (1). One can also
consider the behavior of cðrÞ along RG flows but there is no
clear way to establish that c0ðrÞ has a definite sign. Hence,
this holographic model provides another broad class of
four-dimensional theories which support Cardy’s proposal
that the central a (rather than any other central charge)
evolves monotonically along RG flows.

Given this result and those above for Einstein gravity, it
is straightforward to extend our holographic analysis of
quasitopological gravity to an arbitrary spacetime dimen-
sion. Beginning with the equations of motion which are
proportional to Tt

t � Tr
r, one can engineer the following

flow function [19]

adðrÞ � �d=2

�ðd=2Þð‘PA0ðrÞÞd�1

�
�
1� 2ðd� 1Þ

d� 3
�L2A0ðrÞ2 � 3ðd� 1Þ

d� 5
�L4A0ðrÞ4

�
:

(15)

By construction, adðrÞ satisfies the following:

a0dðrÞ ¼ � �d=2

�ðd=2Þ‘d�1
P A0ðrÞd ðT

t
t � Tr

rÞ � 0; (16)

where we again assume the null energy condition. Note
that here we must also ensure that A0ðrÞ> 0 for odd d—the
details of this proof will be given in [20]. If we define the
fixed point value as a�d � adðrÞjAdS, then

a�d ¼
�d=2 ~Ld�1

�ðd=2Þ‘d�1
P

�
1� 2ðd� 1Þ

d� 3
�f1 � 3ðd� 1Þ

d� 5
�f21

�
;

(17)

and the result in Eq. (16) guarantees that

ða�dÞUV � ða�dÞIR: (18)

Having found that a�d satisfies a c-theorem, one is left to

determine what this quantity corresponds to in the dual
CFT. By construction for d ¼ 4, this is precisely the cen-
tral charge a. Motivated by Cardy’s general conjecture for
even d, it is natural to compare a�d to the coefficient A in

Eq. (2). In fact, using the approach of [21], one readily
confirms that there is a precise match:

a�d ¼ A for even d: (19)

Hence again, we find support for Cardy’s conjecture with
this broad class of holographic CFT’s. However, we must
seek a broader definition of a�d to also incorporate odd d.
Examining the results for black hole entropy in quasito-

pological gravity [10], we observe the following: If the
dual CFT is placed on a (d� 1)-dimensional hyperbolic
plane (i.e., the d-dimensional space is Hd�1 � R), the
energy density �E of the ground state is negative. If a
temperature is introduced and the system is heated up to
the point where �E ¼ 0, the entropy density becomes

s ¼ ð4�Þd=2�ðd=2Þa�dTd�1 ¼ 2�

�d=2
�ðd=2Þ a�d

Ld�1
; (20)

where L denotes the radius curvature of Hd�1. Now this
leads to an interesting question: The bulk geometry is
precisely AdSdþ1 in ‘‘unusual’’ coordinates, i.e.,

ds2 ¼ dr2

ðr2~L2 � 1Þ �
�
r2

~L2
� 1

�
dt2 þ r2d�d�1

2 ; (21)

where d�d�1 denotes the line element on Hd�1 with unit
curvature, and so why should there be any entropy at all?
The answer is that the foliation of AdSdþ1 in Eq. (21)
divides the boundary into two halves—see Fig. 1. Hence,
the entropy is interpreted as the entanglement entropy
between these two halves—related ideas were discussed
in [22]. Note that if we integrate over the hyperbolic
horizon out to some maximum radius which is then given
the conventional interpretation of a short-distance cutoff,
i.e., � ¼ L2=�max, the leading contribution in Eq. (20)
takes the form S / a�dðL=�Þd�2. Hence despite doing a

(d� 1)-dimensional integral, the leading divergence pro-
duced by the hyperbolic geometry has precisely the power

FIG. 1 (color online). A slice of constant t through the AdSdþ1

metric in Eq. (21). This slice bears some similarity to the
Einstein-Rosen bridge in a Schwarzschild black hole [12].
Note that only half of the AdS boundary is reached in the limit
r ! 1. The other half is reached from the second asymptotic
region ‘‘behind the horizon.’’
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expected for the ‘‘area law’’ contribution to the entangle-
ment entropy in a d-dimensional CFT [23]. However, this
divergent contribution is not universal. Rather a universal
contribution is extracted from the subleading terms. The
form of the universal contribution to the entanglement
entropy depends on whether d is odd or even:

Suniv ¼
� ð�Þðd=2Þ�14a�d logðL=�Þ for even d;
ð�Þðd�1Þ=22�a�d for odd d:

(22)

With a Weyl transformation, the boundary metric can be
brought to that on Sd�1 � R and Eq. (22) can then be
interpreted as the universal contribution to the entangle-
ment entropy between the two halves of the Sd�1 for
ground state of the CFT. Hence, this framework allows
us to interpret the coefficient a�d in terms of entanglement

entropy in the dual CFT for odd or even d. Further our
previous analysis shows that this coefficient obeys a c-
theorem in the holographic RG flows.

III. DISCUSSION

Although our holographic calculations here referred to
quasitopological gravity for concreteness, our findings
hold for a much wider class of higher curvature gravity
theories in arbitrary dimensions [20]. In all of these in-
stances, we still assume that the null energy condition
holds and that the gravitational couplings are independent
of the matter fields. It will be interesting to explore the
extent to which these conditions can be relaxed while still
requiring the existence of a holographic c-theorem. In any
event, having identified this interesting behavior in the RG
flows of a broad class of holographic CFT’s, it is natural to
conjecture that the same c-theorem should apply more
broadly for RG flows outside of any holographic frame-
work. Hence, we propose the general conjecture presented
above in the introduction. Now one would like to deter-
mine what evidence one might find for this general con-
jecture, again, outside of a holographic framework.

For even dimensions, one can calculate the entangle-
ment entropy for a CFT divided by a smooth boundary
making use of the trace anomaly [23,24]. In general, the
result will depend on all of the coefficients appearing in
Eq. (2). However, our conjecture refers to a very specific
background geometry and a specific boundary dividing this
space. Applying the approach of [23,24] for this geometry
in arbitrary even d, one finds that the coefficient of the
universal entanglement entropy (22) is precisely a�d ¼ A
[20]. While this matches Eq. (19) for our holographic
model, our result here is a general statement about Suniv
on Sd�1 � R with any CFT in even d. Hence our conjec-
tured c-theorem coincides precisely with Cardy’s proposal
for arbitrary even d. Therefore any evidence for Cardy’s
conjecture also supports the present conjecture. However,
the present results also frame Cardy’s conjecture in the
context of entanglement entropy. Taking into account both

of these perspectives should prove useful in better under-
standing the precise conditions under which A satisfies
Eq. (1) for higher (even) dimensions, e.g., in particular,
for d ¼ 4.
We emphasize that specifying the geometry in which

one calculates the entanglement entropy is an important
feature of our conjecture. As noted above, our prescription
for the geometry was crucial to have Suniv / A in even d.
We can infer that the entanglement entropy decreases
along RG flows for several known examples in d ¼ 2
and 3 [25–27]. However, we cannot say that these ex-
amples provide direct support of our conjecture primarily
because they do not concern the precise geometry specified
there. We also anticipate that with further study one can
identify other geometries for which the universal entangle-
ment entropy is proportional to a�d [20]. For example,

Suniv / a for a d ¼ 4 CFT when calculated for a spherical
boundary in flat space [24].
Of course, entanglement entropy has previously been

considered in the context of RG flows and c-theorems. In
particular, [28] establishes an entropic c-theorem in d ¼ 2
based purely on considerations of Lorentz symmetry and
the strong subadditivity. This construction is distinct from
our conjecture in d ¼ 2, where in fact the latter simply
coincides with Zamalodchikov’s c-theorem [1].
The higher curvature terms play an important role in our

holographic analysis as they allow us to unambiguously
identify a�d with the A-type anomaly in any even d.

Similarly we are also able to distinguish a�d from Ĉ, the

coefficient appearing in the free energy density, i.e., f ¼
ĈTd. This coefficient was also considered in efforts to
extend the c-theorem to higher dimensions [29]. In our
holographic model, it does not appear that this coefficient
always varies monotonically in RG flows [20].
In closing, we note that our calculation of the holo-

graphic entanglement entropy did not make reference to
the standard proposal conjectured by [23]. We would also
note that this is also the first calculation of such a quantity
that includes the contributions of higher curvature inter-
actions in the bulk gravity theory. However, in the Einstein
gravity limit, i.e., � ¼ 0 ¼ �, our result (22) coincides
with that calculated using the standard proposal. The
present calculation may point the way to a more systematic
derivation of holographic entanglement entropy.

ACKNOWLEDGMENTS

We thank I. Affleck, E. Fradkin, J. Gomis, S. Hartnoll,
D. Kutasov, A. LeClair, M. Metlitski, C. Nayak, S.
Sachdev, G. Vidal, and X.-G. Wen for discussions.
Research at Perimeter Institute is supported by the
Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Research
& Innovation. R. C.M. also acknowledges support from
NSERC, under Discovery Grant No. and funding from the
Canadian Institute for Advanced Research.

ROBERT C. MYERS AND ANINDA SINHA PHYSICAL REVIEW D 82, 046006 (2010)

046006-4



[1] A. B. Zamolodchikov, JETP Lett. 43, 730 (1986).
[2] J. L. Cardy, Phys. Lett. B 215, 749 (1988).
[3] See, for example: M. J. Duff, Nucl. Phys. B125, 334

(1977); Classical Quantum Gravity 11, 1387 (1994).
[4] Our convention is that Tab � �2=

ffiffiffiffiffiffiffi�g
p

�I=�gab. The
Euler density Ed is normalized so that on a
d-dimensional sphere:

H
Sd d

dx
ffiffiffi
g

p
Ed ¼ 2. The Weyl invar-

iants Ii are constructed from contractions of d=2 curva-
tures or d=2� k curvatures and 2k covariant derivatives.
Further, note that we have ignored a scheme-dependent
total derivative which may appear in Eq. (2).

[5] H. Osborn, Phys. Lett. B 222, 97 (1989).
[6] D. Anselmi, D. Z. Freedman, M. T. Grisaru, and A.A.

Johansen, Nucl. Phys. B526, 543 (1998); D. Anselmi, J.
Erlich, D. Z. Freedman, and A.A. Johansen, Phys. Rev. D
57, 7570 (1998).

[7] D. Z. Freedman et al., Adv. Theor. Math. Phys. 3, 363
(1999); L. Girardello et al., J. High Energy Phys. 12
(1998) 022.

[8] O. Aharony et al., Phys. Rep. 323, 183 (2000).
[9] A. D. Shapere and Y. Tachikawa, J. High Energy Phys. 12

(2008) 020.
[10] R. C. Myers and B. Robinson, arXiv:1003.5357.
[11] R. C. Myers, M. F. Paulos, and A. Sinha, arXiv:1004.2055.
[12] See, for example: S.W. Hawking and G. F. R. Ellis, The

Large Scale Structure of Space-Time (Cambridge
University Press, Cambridge, 1973).

[13] M. Henningson and K. Skenderis, J. High Energy Phys. 07
(1998) 023; Fortschr. Phys. 48, 125 (2000).

[14] S. Nojiri and S.D. Odintsov, Int. J. Mod. Phys. A 15,
413 (2000); M. Blau, K. S. Narain, and E. Gava, J. High

Energy Phys. 09 (1999) 018.
[15] J. Oliva and S. Ray, arXiv:1003.4773.
[16] See, for example: H. Osborn and A. C. Petkou, Ann. Phys.

(N.Y.) 231, 311 (1994); J. Erdmenger and H. Osborn,
Nucl. Phys. B483, 431 (1997).

[17] A. Sinha, J. High Energy Phys. 06 (2010) 61.
[18] R. V. Buniy, S. D. H. Hsu, and B.M. Murray, Phys. Rev. D

74, 063518 (2006); S. Dubovsky et al., J. High Energy
Phys. 03 (2006) 025.

[19] For the reasons explained in [10], one should set � ¼ 0 in
d ¼ 5 which avoids the singularity in last term of Eq. (15).

[20] R. C. Myers and A. Sinha ‘‘Holographic c-Theorems in
Arbitrary Dimensions’’ (unpublished).

[21] C. Imbimbo et al., Classical Quantum Gravity 17, 1129
(2000); A. Schwimmer and S. Theisen, Nucl. Phys. B801,
1 (2008).

[22] R. Emparan, J. High Energy Phys. 06 (1999) 036.
[23] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602

(2006); J. High Energy Phys. 08 (2006) 045.
[24] S. N. Solodukhin, Phys. Lett. B 665, 305 (2008).
[25] J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys.

Rev. A 71, 034301 (2005); G. Vidal, Phys. Rev. Lett. 99,
220405 (2007); G. Evenbly and G. Vidal, New J. Phys. 12,
025007 (2010); Phys. Rev. B 81, 235102 (2010).

[26] M.A. Metlitski, C. A. Fuertes, and S. Sachdev, Phys. Rev.
B 80, 115122 (2009).

[27] B. Hsu et al., Phys. Rev. B 79, 115421 (2009).
[28] H. Casini and M. Huerta, Phys. Lett. B 600, 142 (2004).
[29] A. H. Castro Neto and E.H. Fradkin, Nucl. Phys. B400,

525 (1993).

SEEING A c-THEOREM WITH HOLOGRAPHY PHYSICAL REVIEW D 82, 046006 (2010)

046006-5

http://dx.doi.org/10.1016/0370-2693(88)90054-8
http://dx.doi.org/10.1016/0550-3213(77)90410-2
http://dx.doi.org/10.1016/0550-3213(77)90410-2
http://dx.doi.org/10.1088/0264-9381/11/6/004
http://dx.doi.org/10.1016/0370-2693(89)90729-6
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://dx.doi.org/10.1103/PhysRevD.57.7570
http://dx.doi.org/10.1103/PhysRevD.57.7570
http://dx.doi.org/10.1088/1126-6708/1998/12/022
http://dx.doi.org/10.1088/1126-6708/1998/12/022
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1088/1126-6708/2008/12/020
http://dx.doi.org/10.1088/1126-6708/2008/12/020
http://arXiv.org/abs/1003.5357
http://arXiv.org/abs/1004.2055
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://dx.doi.org/10.1002/(SICI)1521-3978(20001)48:1/3%3C125::AID-PROP125%3E3.0.CO;2-B
http://dx.doi.org/10.1088/1126-6708/1999/09/018
http://dx.doi.org/10.1088/1126-6708/1999/09/018
http://arXiv.org/abs/1003.4773
http://dx.doi.org/10.1006/aphy.1994.1045
http://dx.doi.org/10.1006/aphy.1994.1045
http://dx.doi.org/10.1016/S0550-3213(96)00545-7
http://dx.doi.org/10.1007/JHEP06(2010)061
http://dx.doi.org/10.1103/PhysRevD.74.063518
http://dx.doi.org/10.1103/PhysRevD.74.063518
http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://dx.doi.org/10.1088/0264-9381/17/5/322
http://dx.doi.org/10.1088/0264-9381/17/5/322
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.015
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.015
http://dx.doi.org/10.1088/1126-6708/1999/06/036
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1016/j.physletb.2008.05.071
http://dx.doi.org/10.1103/PhysRevA.71.034301
http://dx.doi.org/10.1103/PhysRevA.71.034301
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1103/PhysRevB.81.235102
http://dx.doi.org/10.1103/PhysRevB.80.115122
http://dx.doi.org/10.1103/PhysRevB.80.115122
http://dx.doi.org/10.1103/PhysRevB.79.115421
http://dx.doi.org/10.1016/j.physletb.2004.08.072
http://dx.doi.org/10.1016/0550-3213(93)90414-K
http://dx.doi.org/10.1016/0550-3213(93)90414-K

