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Wrapped branes in string compactifications introduce a monodromy that extends the field range of

individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of

the system naturally control corrections to the axion potential. This suggests a general mechanism for

chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this

possibility and show that the mechanism is compatible with moduli stabilization and can be realized in

many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved

spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a

tensor to scalar ratio r � 0:07 accessible to upcoming cosmic microwave background observations.
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I. INTRODUCTION: AXION RECYCLING

An important class of inflationary models [1], chaotic
inflation [2], involves an inflaton field excursion that is
large compared to the Planck scale MP [3]. These models
have a GUT-scale inflaton potential, and are accessible to
observational tests via a B-mode polarization signature in
the cosmic microwave background (CMB) [4,5].

The Planckian or super-Planckian field excursions re-
quired for high-scale inflation may be formally protected
by an approximate shift symmetry in effective field theory.
A canonical class of examples with a field excursion�� ’
MP, known as natural inflation, employs a pseudo-Nambu-
Goldstone boson mode (an axion) as the inflaton [6,7].

Because inflation is sensitive to Planck-suppressed op-
erators, however, it is still of significant interest to go
beyond effective field theory and realize inflation in string
theory, a candidate ultraviolet completion of gravity.
Conversely, CMB observations which discriminate among
different inflationary mechanisms provide an opportunity
to probe some basic features of the ultraviolet completion
of gravity.

The lightest scalar fields in string compactifications
roughly divide into radial and angular moduli. Radial
moduli, such as the dilaton and the compactification vol-
ume, have an unbounded field range as they go toward
weak-coupling limits. In these limits their contributions to
the potential are typically very steep, not sourcing large-
field inflation in any example yet studied. Angular moduli,
such as axions, have potentials that are classically pro-
tected by shift symmetries. However, in the case of axions
it has been argued that the field range contained within a
single period is generally sub-Planckian in string theory
[8], leading to proposals to extend the field range by
combining many axions [9].

In the present work, we show that in the presence of
suitable wrapped branes, the potential energy is no longer a
periodic function of the axion. When this monodromy in

the moduli space is taken into account, a single axion
develops a kinematically unbounded field range with a
potential energy growing linearly with the canonically
normalized inflaton field. This implements the monodromy
mechanism introduced in [10] in a wide class of string
compactifications.
Because the basic idea is very simple, let us indicate it

here. Axions arise in string compactifications from inte-
grating gauge potentials over nontrivial cycles. For ex-
ample, in type IIB string theory, there are axions
bI ¼

R
�ð2Þ

I
B arising from integrating the Neveu-Schwarz

(NS) two-form potential BMN over two-cycles �ð2Þ
I , and

similarly axions cI ¼
R
�ð2Þ

I
C arise from the Ramond-

Ramond (RR) two-form CMN . In the absence of additional
ingredients such as fluxes and space-filling wrapped
branes, the potential for these axions is classically flat,
and develops a periodic contribution from instanton ef-

fects. A Dp-brane wrapping �ð2Þ
I , on the other hand, carries

a potential energy that is not a periodic function of the
axion: in fact, this energy increases without bound as bI
increases. The effective action for such a wrapped brane is
the DBI action, given in terms of the embedding coordi-
nates XMð�Þ as s

SDBI ¼ �
Z dpþ1�

ð2�Þp �0�ðpþ1Þ=2

� e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGMN þ BMNÞ@�XM@�X

N
q

(1)

where we have omitted the corresponding Chern-Simons
term, which will be unimportant for our considerations. A

key example is a D5-brane wrapped on a two-cycle �ð2Þ of
size ‘

ffiffiffiffiffi
�0p
, which yields a potential

VðbÞ ¼ �

gsð2�Þ5�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4 þ b2

p
(2)

that is linear in the axion field b at large b. (Here we have
included a factor � to represent the effects of warping,
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which we describe more carefully below.) Similarly, an

NS5-brane wrapped on �ð2Þ
I introduces a monodromy in

the cI direction.
Monodromy is a common phenomenon in string com-

pactifications. In the past, it has been studied extensively in
the context of particle states in field theory [11] and the
corresponding non-space-filling wrapped branes of string
theory [12]. The present case of monodromy in the poten-
tial energy arises when a would-be periodic direction � is
‘‘unwrapped’’ by the inclusion of an additional space-
filling ingredient whose potential energy grows as one
moves in the � direction, extending the kinematic range
of the corresponding scalar field. Because the wrapped
branes are space-filling, their charge must be cancelled
within the compactification. We will do so with an anti-
brane wrapped on a distant, homologous two-cycle as
depicted in Fig. 2 in Sec. IV below.

In the bulk of this paper, we analyze the conditions under
which this yields controlled large-field inflation in string
theory. We find a reasonably natural class of viable models.
As is usually the case in inflationary model building from
string theory, much of the challenge is to gain systematic
control of Planck-suppressed corrections to the effective
action. After ensuring that our candidate inflaton potential
does not destabilize the compactification moduli, and that
fluxes do not affect the structure of our candidate inflaton
potential, we establish that instanton effects, which pro-
duce sinusoidal contributions to the axion potential, can be
naturally suppressed. We assess these conditions for both
perturbative and nonperturbative stabilization mecha-
nisms, drawing examples based both on Calabi-Yau com-
pactifications and on more general compactifications that
break supersymmetry at the Kaluza-Klein scale. In the case
of nonperturbative stabilization mechanisms in type IIB
string theory, we find a controlled set of models for the RR
two-form axions cI, while perturbative stabilization
mechanisms suggest opportunities for inflating in the bI
as well as in the cI directions. These varied implementa-
tions of our axion monodromy mechanism give identical
predictions for the overall tilt and tensor to scalar ratio in
the CMB, as they are all well-described by a linear poten-
tial for a canonically normalized inflaton.1 Our prediction
for these quantities lies well within the exclusion contours
from present data [13], and is ultimately distinguishable
from the predictions of other canonical models via planned
CMB experiments [5,14] (see Fig. 3).

Our mechanism relies on specific additional ingre-
dients—branes—intrinsic in the ultraviolet completion of
gravity afforded by string theory. Although string theory
restricts the range of the original axion period in the first
place, it then recycles a single axion via monodromy,

providing a simple generalization of [2,6] with its own
distinctive predictions. The subject of axion inflation has
thus almost come full circle.2

II. AXIONS AND THE CANDIDATE INFLATON
ACTION

Axions in string theory arise from integrating gauge
potentials over nontrivial cycles in the compactification
manifold X. Let �I, I ¼ 1; . . . h1;1ðXÞ be an integral basis
of the homologyH2ðX;ZÞ, and let!I be a dual basis of the
cohomology H2ðX;ZÞ, with R

�I
!J ¼ �0�I

J. Then for the

Neveu-Schwarz two-form potential Bð2Þ, let us write

Bð2Þ ¼ bIðxÞ!I
2 (3)

with x the four-dimensional spacetime coordinate.
In the case of type II theories, additional axions arise

from integrating the RR p-form potentials over p-cycles.
Taking!�,� ¼ 1; . . .bpðXÞ, to be a basis ofHpðX;ZÞ dual
to an integral homology basis, we can write

CðpÞ ¼ cðpÞ� ðxÞ!�
p: (4)

In type IIB string theory, for example, we have an RR two-

form Cð2Þ which will play a key role in the case of Calabi-
Yau compactifications.
At the perturbative level in the string coupling and the

inverse string tension, and in the absence of spacetime-
filling branes wrapping the corresponding cycles, axions
enjoy a continuous shift symmetry. This symmetry is bro-
ken down to a discrete shift symmetry by spacetime and
world-sheet instantons. The resulting period of these axi-
ons, collectively denoted by a ¼ fb or cg, is

a ! aþ ð2�Þ2 (5)

as can be seen from the world-sheet coupling ði=2��0Þ �R
�ð2Þ

I
B in the case of Bð2Þ.

A. Axion kinetic terms

In order to analyze the possibility of inflation with
axions, we will need their kinetic and potential terms.
The classical kinetic term3 for the bI fields descends
from the jH3j2 term in the ten-dimensional action, with
H3 ¼ dB. In terms of the metric

ds2 ¼ g�	dx
�dx	 þ gijdy

idyj (6)

we have

1There may also be novel signatures from finer details of the
power spectrum originating in the repeated circuits of the
fundamental axion period, as we discuss further below.

2Though we hope to have added something to the subject this
time around.

3The kinetic terms are in general corrected by world-sheet
instantons or D-instantons, in the cases of b and c, respectively.
In our examples below we will ensure that these instanton effects
are negligible in our inflationary solutions.
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Z
d10x

ffiffiffi
g

p
ð2�Þ7g2s�04

1

2
jHj2 ) Skin;b

¼
Z d10x

12ð2�Þ7g2s�04
ffiffiffi
g

p
g�	@�bI

� @	bJ!
I
ij!

J
i0j0g

ii0gjj
0

(7)

and similarly for the CðpÞ fields, with Fðpþ1Þ ¼ dCðpÞ:

Z
d10x

ffiffiffi
g

p
ð2�Þ7�04

1

2
jFðpþ1Þj2 ) Skin;c

¼
Z d10x

2ð2�Þ7ðpþ 1Þ!�04

� ffiffiffi
g

p
g�	@�cI@	cJ

�!I
i1...ip

!J
i0
1
...i0p

gi1i
0
1 . . . gipi

0
p :

(8)

To simplify the presentation we will now restrict attention

to bI and to cð2Þ� � cI, but the extension to other cðpÞ� is
immediate. The four-dimensional kinetic terms for our
axions bI, cI, collectively denoted as aI ¼ fbI or cIg,
may then be written

Skin ¼ 1

2

Z
d4x

ffiffiffiffiffi
g4

p
�IJg�	@�aI@	aJ

� 1

2

Z
d4x

ffiffiffiffiffi
g4

p X
I

f2aI ð@a0IÞ2

� 1

2

Z
d4x

ffiffiffiffiffi
g4

p X
I

ð@
aI Þ2; (9)

where in the second equality we have diagonalized the
metric �IJ, and in the third equality we have defined the
canonically normalized axion field 
aI for the Ith axion of

type a ¼ fb or cg. In much of this paper, wewill focus on a
single axion at a time, and use the notation 
a for its
canonically normalized field. The canonically normalized
inflaton field has periodicity


a ! 
a þ ð2�Þ2fa (10)

corresponding to (5).
Using (7) and (8), the axion kinetic term depends on the

geometry of the compactification via

�IJ ¼ 1

6ð2�Þ7g2s�04
Z

!I ^ ?!J (11)

for bI, and

�IJ ¼ 1

6ð2�Þ7�04
Z

!I ^ ?!J (12)

for cI. To express these results in terms of the four-
dimensional reduced Planck mass MP, we use

�0M2
P ¼ 2

ð2�Þ7
V
g2s

; (13)

where V�03 is the volume of the compactification.
Wewill use (11) and (12), guided by [8,15], to determine

the decay constants in our specific examples below. To
provide intuition, we now record the result in the simplified

case in which all length scales L
ffiffiffiffiffi
�0p

in the compactifica-
tion are the same (and V � L6). From (7) and (8) we
obtain


2
b �

L2

3g2sð2�Þ7�0 b
2;


2

cðpÞ�

� L6�2p

3ð2�Þ7�0 ðcðpÞ� Þ2 ðone scaleÞ:
(14)

Using (13) this gives


2
b

M2
P

� b2

6L4
;


2
cI

M2
P

� g2sc
2
I

6L4
ðone scaleÞ: (15)

B. Wrapped five-brane action

As discussed in the introduction, wrapping appropriate

branes on cycles threaded by Bð2Þ and CðpÞ introduces a
nonperiodic potential for the axions b and c. This follows
immediately from the DBI action (1) in the case of D5-

branes on 2-cycles with Bð2Þ-fields, and can be seen by
duality to apply to ðp; qÞ-five branes on cycles with both

Bð2Þ- and Cð2Þ-fields.
For D5-branes on a two-cycle �ð2Þ of size ‘

ffiffiffiffiffi
�0p

with b
axions turned on, or NS5-branes on a two-cycle with a c
axion, we have

VðbÞ ¼ �

gsð2�Þ5�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4 þ b2

p
;

VðcÞ ¼ �

g2sð2�Þ5�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4 þ c2g2s

q
;

(16)

where � encodes warp-factor dependence to be discussed
in Sec. IV. A similar contribution arises from an anti–five-
brane wrapped on a distant, homologous two-cycle as
depicted in Fig. 2 below.
In the large-field regime of interest, this potential is

linear in the axion a, and hence in the canonically normal-
ized field 
a:

Vð
aÞ � �3
a
a (17)

with �a a function of the parameters of the compactifica-
tion that depends on the model. We will analyze its struc-
ture in detail in several specific models in Sec. IV and V.
Let us also note a useful dual formulation of (2) and (16)

which elucidates the monodromy effect introduced by the
wrapped brane. Consider a D5-brane in type IIB string
theory wrapped on a two-cycle arising as the blowup cycle
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of a supersymmetric R3 � S1=Z2 orbifold; this is equiva-
lent to a fractional D3-brane at the orbifold singularity.
There is a T-dual, ‘‘brane box,’’ description of this con-
figuration, in which the fractional D3-brane becomes a D4-
brane stretched between two NS5-branes on a T-dual circle
(see e.g. [16]). Moving in the b direction through multiple
periods in closed-string moduli space in the original de-
scription corresponds to moving one of the NS5-branes
around the circle, dragging the D4-brane around with it so
as to introduce multiple wrappings. This T-dual descrip-
tion makes the linear potential manifest; see Fig. 1.

C. Basic phenomenological requirements

Our candidate inflaton action takes the form

S ¼
Z

d4x
ffiffiffi
g

p �
1

2
ð@
aÞ2 ��3

a
a

�
þ corrections; (18)

where we indicated corrections which we will analyze
below, suppressing them using symmetries, warping, and
the natural exponential suppression of nonperturbative
effects.

In order to obtain 60 e-folds of accelerated expansion,
inflation must start at 
a � 11MP. In addition, the quan-
tum fluctuations of the inflaton must generate a level of
scalar curvature perturbation �Rj60 ’ 5:4� 10�5, with

�RjNe
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12�2

V3

M6
PV

02

s ��������Ne

: (19)

This requires

�a � 6� 10�4MP: (20)

Given fa ¼ 
a=a and the above results, the number of
circuits of the fundamental axion period ð2�Þ2fa required
for inflation is

Nw ¼ 11
MP

fað2�Þ2
: (21)

We will compute this number of circuits in each of the
specific models below. In the very simple case with all
cycles of the same size, this gives, using (15),

Nw � 11
ffiffiffi
6

p L2

ð2�Þ2 ðone scaleÞ (22)

for b, while the requisite number of circuits for an RR
inflaton c is larger by a factor 1=gs.

D. Constraints on corrections to the
slow-roll parameters

Our next task is to ensure that the inflaton potential
Vinf � �3

a
a is the primary term in the axion potential.
All other contributions to the axion potential must make
negligible contributions to the slow-roll parameters

� ¼ M2
P

2

�
V 0

V

�
2
; � ¼ M2

P

V 00

V
: (23)

A good figure of merit to keep in mind is that Planck-
suppressed dimension-six operators such as Vð
�

�Þ2=M2

P, with 
� a constant, contribute Oð1Þ corrections
to �, for any inflaton potential V. In what follows, we will
analyze the conditions for sufficiently suppressing correc-
tions to the slow-roll parameters.
Our specific setups discussed below will include reason-

ably generic examples which naturally suppress these cor-
rections well below the 1% level, as is required in standard
slow-roll inflation. In other examples, instanton-induced
sinusoidal corrections to the potential lead to oscillating
shifts in � of order one. Let us pause to assess the con-
ditions on the slow-roll parameters in monodromy-driven
inflation. In this class of models, the brane-induced inflaton
potential is the leading effect breaking the approximate
shift symmetry in the inflaton direction; other effects—in
particular, instantons, in the case of our axion models—
produce periodic corrections to the potential. In general,
such models can tolerate larger oscillating contributions to
�, as we now explain.
In the present situation, the corrections �� and �� to

the slow-roll parameters oscillate as a periodic function of
a ¼ 
a=fa with period ð2�Þ2. The potential becomes
steeper and flatter repeatedly during the evolution, and
because these two effects can compensate each other, it
is worth analyzing carefully what level of suppression of
the amplitude of �� is really necessary to ensure 60
e-folds of inflation overall.
Let us simply give order-of-magnitude, parametric esti-

mates for the net effect of the steeper and flatter regions. It
would be interesting to study this in more detail, with an
eye toward ancillary observational signatures which might
arise in the power spectrum of density perturbations.

NS5

NS5D4-brane

FIG. 1 (color online). T-dual, ‘‘brane box’’, description of this
configuration, in which the fractional D3-brane becomes a D4-
brane stretched between two NS5-branes on a T-dual circle.
Moving in the b direction through multiple periods in closed-
string moduli space in the original description corresponds to
moving one of the NS5-branes around the circle, dragging the
D4-brane around with it so as to introduce multiple wrappings.
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The potential takes the form4

V ¼ �3
a
a þ�4 cos

�

a

2�fa

�
(24)

with � a constant determined by the instanton action.
The second term yields an oscillating contribution to �

given, for � � �3
a
a, by

� ¼ M2
p

�
1

2�fa

�
2 �4

�3
a
a

cos

�

a

2�fa

�
: (25)

The condition that the slope V 0ð
aÞ be non-negative can be
written as

11�
2�fa
MP

� 1; (26)

where we used (25) and the fact that 
a � 11MP during
the 60 e-folds of inflation in our linear potential.

Let us assume that averaging over the oscillations, the
system remains in its slow-roll regime, and check the
conditions for this to be self-consistent. The average field
velocity is then

_
a ’ ��3
a

3H
; (27)

and the time�t during a period�
a � ð2�Þ2fa is of order
�
a
_
a

� 3ð2�Þ2faH=�3
a. Using this and the fact that � is of

order €
a=H _
a, we obtain the change � _
þ in the field
velocity during the (half-)period in which the potential is
relatively steep:

� _
þ � j�jð2�Þ2faH: (28)

Similarly, on the flat regions of the potential, €
a þ
3H _
a ’ 0, and we obtain

� _
� ��ð2�Þ2faH: (29)

Thus, we see that the kinetic energy does not build up over
each full period of oscillation between steeper and flatter
potential energy—which ensures that potential-energy
dominated inflation proceeds—as long as j�j & 1. Again,
many of the specific examples realizing axion monodromy
inflation described below naturally yield much smaller
corrections to �, but this possibility of larger oscillations
in other examples is an intriguing new element worth
investigating further in future work.

III. NECESSARY CONDITIONS FOR
CONTROLLED INFLATION

So far, we have a candidate for inflation along the
direction 
a, with potential Vinf � �3

a
a. We must now
ensure that the proposed inflaton action (18) indeed arises
in a consistent and controllable string compactification.
This entails a series of nontrivial conditions dictated not
directly by observations, but by our goal of producing a
consistent and computable string realization. We first
briefly summarize these requirements, then, in the follow-
ing subsections, show how each of them can be met. As in
[6], we will use the natural exponential suppression of
instanton corrections to the axion potential.
The first, rather obvious condition is that the axion a

which is to serve as the inflaton is actually part of the
spectrum. This constrains the structure of the orientifold
action used in moduli stabilization; however, we expect
that some suitable modes do survive a generic orientifold
projection. Next, we must demonstrate that the proposed
inflaton potential is in fact the dominant contribution to the
total potential for a: additional effects in the compactifi-
cation must make subleading contributions to the axion
potential. Specifically, couplings to fluxes and periodic
contributions from instantons (world-sheet instantons and
D-brane instantons, in the cases of b and c, respectively)
must therefore be controlled or eliminated. Next, we must
show that the energy stored in the axion does not source
excessive distortion of the local geometry near the wrapped
branes. Finally, the inflaton potential must remain subdo-
minant to the moduli-stabilizing potential, and shifts in the
moduli during inflation must not give large corrections to
the inflaton potential.

A. Axions and the orientifold projection

We must first ensure that the axions b, c of interest are
part of the spectrum. That is, the orientifolds which are
crucially used in moduli stabilization (or their generaliza-
tions in F-theory) must project in the required modes.
Some of the conditions for this in the case of type IIB
Calabi-Yau O3/O7 orientifolds appear in [17,18], where
the corresponding multiplets consist of b and c fields
descending from Kähler moduli hypermultiplets in the
‘‘parent’’ unorientifolded Calabi-Yau manifold.
The world-sheet orientation reversal � which is part of

every orientifold projection acts with a (� 1) on the
Neveu-Schwarz two-form potential BMN . However, orien-
tifolds typically include a geometric projection—a reflec-
tion I9�p on some 9� p directions—at the same time. Two

simple situations in which axions are projected in are the
following. First, a BMN field with one leg along the orienti-
fold p-plane and the other transverse to it will be projected
in by the full �I9�p action. Second, the orientifold may

exchange two separate cycles �1 and �2, independent in
homology in the covering space, into each other. This

4Here for simplicity we neglect terms proportional to

a cosð
a=2�faÞ, as they produce subdominant corrections to
the slow-roll parameters. Such corrections may arise from in-
stanton effects tied to the brane, hence the power of 
a in front
of the cosine.
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projects in one combination of the two axions of the parent
theory.

B. Conditions on the potential

A generic string compactification will generate addi-
tional contributions to the potential for 
a going beyond
the candidate inflaton potential (16) and (17). In this sub-
section, we will describe the conditions for these correc-
tions to be consistent with inflation.

1. Conditions on flux couplings

We must first ensure that background fluxes do not
couple to the putative inflaton in such a way as to introduce
problematic contributions to the potential. Ramond-
Ramond fluxes ~Fq include Chern-Simons corrections of

the form B2 ^ Fq�2 and Cq�3 ^H3. These contributions, if

present in the flux compactification being used to stabilize
the moduli, yield masses for the corresponding compo-
nents of b and c through the terms proportional to j ~Fqj2 in
the ten-dimensional Lagrange density.

The extra contributions to the generalized field strengths
give contributions of the formZ

d10x

ffiffiffi
g

p
16ð2�Þ7�04 jB2 ^ Fpj2 (30)

or, in the CðpÞ case,Z
d10x

ffiffiffi
g

p
16ð2�Þ7�04 jCp ^H3j2 (31)

to the effective action (for definiteness we have given the
normalizations for the case of j ~F5j2 in type IIB). It is worth
emphasizing that in type IIB flux compactifications on
Calabi-Yau orientifolds, the class of fluxes that are con-
sistent with the no-scale structure derived in [17,19],
namely, imaginary self-dual fluxes, do not contribute to
the axion potential: the axionic fields enjoy a no-scale
cancellation of their contribution to the flux-induced po-
tential [17].

In more general models we will have to ensure that we
can make analogous choices of fluxes to remove flux
contributions to the axion potential. If the wedge products
(30) and (31) are nonzero, and if the relevant flux Fp orH3

contributes leading moduli-stabilizing terms of order the
barriers in Umod, then the corresponding axion may be
obstructed from being the inflaton. As an example, con-
sider the case of a product manifold. The coupling (30)
scales like Z

d10x

ffiffiffi
g

p
16ð2�Þ7�04 jFpj2jb=L2j2

�
Z

d10x
ffiffiffi
g

p 3jFpj2
8ð2�Þ7�04


2
b

M2
P

(32)

while the contribution of the Fp flux to the moduli potential

scales likeZ
d10x

ffiffiffi
g

p
2ð2�Þ7�04 jFpj2 �

Z
d4x

ffiffiffiffiffi
g4

p
Umod: (33)

Thus, a super-Planckian excursion of the 
b field would
lead to a contribution (32) which would overwhelm the
moduli-stabilizing barriers.5 Similar comments apply to
curvature couplings and generalized fluxes.

2. Effects of instantons

The effective action for axions is corrected by instanton
effects. Worldsheet instantons depend periodically on b
type axions, while Euclidean D-branes (D-brane instan-
tons) introduce periodic dependence on the c type axions
(and nonperiodic, exponentially damped dependence on
b=gs). Both types of instantons are exponentially sup-
pressed in the size of the cycle wrapped by the Euclidean
world sheet or world volume.6

First, consider the kinetic terms in the effective action.
These take the form

1

2

Z
d4x

ffiffiffi
g

p
f2að@aÞ2ð1þ �1fperðaÞÞ; (34)

where fperðaÞ is a periodic function of a ’ aþ ð2�Þ2
normalized to have amplitude 1. This changes the canoni-
cally normalized field to be


a ¼ fa
Z a

da0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �1fperða0Þ

q
: (35)

Suppressing corrections to the slow roll parameters re-
quires sufficiently small �1. In terms of the bare canoni-

cally normalized field 
ð0Þ
a , our periodic function varies on

a scale of order ð2�Þ2fa: fper ¼ fperð
ð0Þ
a =faÞ. Thus for

small �1, the potential expanded about a local minimum
�
of fper is of the form

Vinfð
aÞ ’ �3
a
a

�
1þ �1

ð
a �
�Þ2
ð2�faÞ2

�

¼ �3
a

�
1þ �1

�
MP

2�fa

�
2 ð
a �
�Þ2

M2
P

�
: (36)

Thus if

�1 & 10�2

�
2�fa
MP

�
2 � 1

4�2N2
w

(37)

5There are interesting ideas for obtaining a large field range
via large-N gauge theory [20], which on the gravity side might
involve warped-down flux-induced monodromy. This may pro-
vide a way to use flux couplings to introduce an inflationary
axion potential consistent with moduli stabilization, but this
question requires further analysis.

6One may also consider nonperturbative effects arising in
Euclidean quantum gravity, as explored in [21]; these are ex-
ponentially suppressed in the controlled regime of weak cou-
pling and weak curvature.
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then the instanton corrections to the kinetic terms do not

affect inflation, since the slow roll parameters � ¼ M2
P

2 ðV0
V Þ2

and � ¼ M2
P
V00
V remain of order 10�2.

Next, let us consider instanton corrections arising di-
rectly in the potential energy term in the effective action.
These we can write as (using similar notation to that above)

Vinfð
aÞ ��3
a
að1þ �2gperð
a=faÞÞ þ �3

hperð
a=faÞ
�02 :

(38)

As before, let us assess sufficient conditions on �2 and �3 to
ensure that instanton corrections to the slow-roll parame-
ters are negligible. From the first term in (38), we see that

�2 & 10�2

�
2�fa
MP

�
2 � 1

4�2N2
w

: (39)

From the second term, we find

�3 & 10�2

�
2�fa
MP

�
2ðVinf�

02Þ � Vinf�
02

4�2N2
w

: (40)

Note that the conditions we have imposed here may be
relaxed, as discussed in Sec. IVD, because of the oscilla-
tory nature of the corrections. We will obtain negligibly
small corrections to � in a simple subset of our specific
examples below, but it is worth keeping in mind the pos-
sibility of a larger oscillating contribution in other
examples.

So far we have enumerated conditions on the amplitudes
�i, i ¼ 1, 2, 3 of various instanton contributions to the
effective action. In order to implement these conditions, we
need to relate the �i to parameters of the stabilized string
compactification in a given model. An exponentially small
coefficient �i arises automatically if the instanton wraps a
cycle larger than the string scale. For instantons wrapping
small cycles, �i may still be small if the kinetic term is
protected by local supersymmetry in the region near the
cycle, or if the instanton dynamics is warped down.Wewill
consider several of these cases in the specific models
discussed below.

C. Constraints from backreaction on the geometry

We obtained the effective potential from our wrapped
five-brane using standard results from ten-dimensional
string theory. A basic condition for control of our models
is the absence of backreaction of the brane on the ambient
geometry, so that this ten-dimensional analysis is valid to a
good approximation. In particular, the core size rcore of our
wrapped brane, including the effects of the axion, must be
smaller than the smallest curvature radius R? transverse to
it in the compactification.

A single D5-brane is pointlike at weak string coupling,
and a single NS5-brane is string-scale in size. However, in
our regime of interest the branes in effect carry Nw �
a=ð2�Þ2 units of D3-brane charge. Nw D3-branes produce

a backreaction at a length scale rcore of order [22]

r4core � 4��02gsNw: (41)

Thus in order to avoid significant backreaction on our
compactification geometry, we require

Nw � R4
?

4�gs�
02 : (42)

The one-scale expression for Nw derived in Sec. III C
suggests that this condition will be straightforward to
satisfy, since the right hand side of (42) is / R4, while
the expression (22) scales like two powers of the relevant
length scale in the problem. However, fitting GUT-scale
inflation into a stabilized compactification requires high
moduli-stabilizing potential barriers, which puts con-
straints on how large the ambient compactification may
be. Wewill implement this condition in the specific models
to follow.

D. Constraint from the number of light species

A related but slightly more subtle condition concerns
new light species that arise in our brane configuration at
large b or c. The effectively large D3-brane charge Nw

introduces of order N2
w light species [23]. It is important to

check the contribution this makes to the renormalized four-
dimensional Planck mass. In the regime gsNw > 1, the
effect of the D3-brane charge is best estimated using the
gravity side of the (cutoff) AdS/CFT correspondence,
following Randall and Sundrum [24]. As just discussed,
in the regime (42), the size rcore of the gravity solution for

the D3-branes is smaller than the ambient size L
ffiffiffiffiffi
�0p

of the
compactification. This leads to a negligible contribution to
M2

P.

E. Consistency with moduli stabilization

A further condition is that our inflaton potential, which
depends on the moduli as well as on 
a, not exceed the
scale of the potential barriers Umod separating the system
from weak-coupling and large-volume runaway directions
in moduli space:

Vinfð
aÞ � Umod: (43)

Here Umod denotes the scale of the barrier height in the
moduli potential. Since our large-field inflation model has
a GUT-scale inflaton potential, this requires high moduli-
stabilizing potential barriers.
One must also ensure that the shifts in the moduli

induced by the inflaton potential do not appreciably change
the shape of the inflaton potential: in other words, the
moduli-stabilizing potential must not only have high bar-
riers, it must also have adequate curvature at its minimum.
A self-consistent way to analyze such shifts is to use an
adiabatic approximation, in which the moduli � adjust to
sit in instantaneous minima ��ð
Þ determined by the in-
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flaton VEV:

@�ðVinfð
;�Þ þUmodð�ÞÞj�¼��ð
Þ ¼ 0: (44)

One then computes the correction this introduces in the
inflaton potential Vð
;��ð
ÞÞ and checks whether this
correction is negligible.

For moduli stabilization mechanisms which use pertur-
bative effects, this condition is satisfied provided (43)
holds, as explained in Sec. 2.4.2 of [10]. Let us briefly
summarize this here. The volume and string coupling are
exponentials in the canonically normalized fields �; for

example, the volume is V�03 ¼ V �e
ffiffi
3

p
�v=MP�03 where

V � is the stabilized value of the volume and �v is the
canonically normalized field describing volume fluctua-
tions. In perturbative stabilization mechanisms, the leading

terms in the moduli potential scale like powers of L �
V 1=6: schematically,

U mod �
X
n

cn
Ln ; (45)

where the coefficients cn depend on other moduli in a
similar way. Therefore, as the dependence is exponential
in the canonically normalized fields �, we see that deriva-
tives of the inflaton potential Vinf and the moduli-
stabilizing potential Umoduli with respect to �=MP scale
like the potential terms themselves. Combining the tadpole
from the inflaton potential Vinf with the mass squared from
the moduli potential Umod yields the moduli shifts

�

MP
� Vinf

Umod

: (46)

Plugging this back into the potential yields corrections
which change its shape. However, these are small, giving
corrections to � of order �Vinf=Umod.

For mechanisms we will study which employ exponen-
tial (e.g. instanton) effects to stabilize the volume [25,26],
the structure of the potential is schematically [17,18]

U mod �
X
n;m

cn
Ln expð�CmðL4=gs þ ~�b2ÞÞ; (47)

where ~� is a factor of order unity. From this we can analyze
two important consistency conditions.

First, let us discuss the moduli shifts. In the expression
(47), there are still power-law prefactors in the potential
(arising from the rescaling of the potential to Einstein
frame) which lead to a similar suppression in the tadpoles
for the volume and the string coupling as in the perturba-
tively stabilized case. Furthermore, there are additional
contributions to the masses of the moduli from differenti-
ating the exponential terms which can enhance the masses
relative to the perturbatively stabilized case, further sup-
pressing the tadpoles.

Second, it will be important to keep track of which
combinations of geometrical moduli and axions are stabi-
lized by a given moduli-stabilization mechanism in calcu-

lating the slow-roll parameters. In the scenario [25], a
combination of the volume and b type axions of the form
L4=gs þ ~�b2 is what is stabilized by Umod. This leads to
an � problem for inflation along the direction of any
Neveu-Schwarz axion b, analogous to the � problem iden-
tified in [27]. In this class of models, we will therefore be
led to consider instead RR two-form axion inflation.

IV. SPECIFIC MODELS I: WARPED IIB
CALABI-YAU COMPACTIFICATIONS

In this section and in Sec. V, we implement our basic
strategy in several reasonably concrete models, imposing
the consistency conditions delineated above. This is an
important exercise, necessary in order to ensure that it is
indeed possible to satisfy all the conditions together.
Needless to say, there are many ways to generalize—and
potentially simplify—these constructions, and we will in-
dicate along the way some further directions for model
building.
There are two classes of examples which differ in which

combinations of scalar fields are stabilized by the moduli-
fixing potential. In the case of mechanisms such as those
outlined in [19,25,26,28] which employ nonperturbative
effects in a low-energy supersymmetric formulation, the
moduli potential stabilizes a combination of the geometric
and axion modes. In perturbative stabilization mechanisms
such as those outlined in [29–32], the volume and other
geometrical moduli are directly stabilized. These latter
cases will be discussed in Sec. V.
One canonical class of examples arises in warped flux

compactifications of type IIB string theory on orientifolds
of Calabi-Yau threefolds. After a telegraphic review of the
resulting low-energy supergravity, we show that nonper-
turbative stabilization of the Kähler moduli leads to an �

problem for a candidate inflaton b descending from Bð2Þ.
We then demonstrate that this problem is absent when Cð2Þ
is the inflaton, and furthermore show that the leading
remaining dependence of the potential on c, from
Euclidean D1-branes, may be naturally exponentially sup-
pressed. Inflation driven by a wrapped NS5-brane which
introduces monodromy in the RR two-form axion direction
is therefore a reasonably robust and natural occurrence in
warped IIB compactifications.

A. Multiplet structure, orientifolds, and fluxes

Consider a compactification of type IIB string theory on
a Calabi-Yau threefold, with h1;1 Kähler moduli. The re-
sulting four-dimensional N ¼ 2 supergravity contains
h1;1 þ 1 hypermultiplets, one of which is the universal
hypermultiplet containing the axio-dilaton . The remain-
ing hypermultiplets have as bosonic components bA, cA,
ReTA, ImTA � �A, where �A ¼ R

�ð4Þ
A

C4, and TA is the

N ¼ 1 complexified Kähler modulus, defined more care-
fully below. The axions suitable for monodromy inflation
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with wrapped five-branes are in the (bA, cA) half of these
hypermultiplets. The overall volume and other size moduli
are contained in the TA.

We now consider orientifold actions, which breakN ¼
2 ! N ¼ 1 and play an important role in moduli stabili-
zation. We will particularly focus on orientifold actions
whose fixed loci give O3-planes and O7-planes. For the
orientifold action we take

O ¼ ð�1ÞFL��; (48)

where � is a holomorphic involution of the Calabi-Yau,
under whose action the cohomology groups split as:

Hðr;sÞ ¼ Hðr;sÞ
þ 	Hðr;sÞ� : (49)

We correspondingly divide the basis !A; A ¼ 1; . . .h1;1

into !�;� ¼ 1; . . . h1;1þ and !I; I ¼ 1; . . .h1;1� . As ex-
plained in detail in [17], half of the fields are invariant
under the orientifold projection and are kept in the four-
dimensional theory. Specifically, Kähler moduli T� corre-

sponding to even cycles and axionic moduli GI ¼
bI

gs
þ iðcI � C0b

IÞ corresponding to odd cycles survive the

projection.
Let us indicate two classes of odd cycles we can project

in by orientifolding Calabi-Yau manifolds. The first, con-
sidered in [17,18], consists of zero-size cycles which in-
tersect the orientifold fixed plane in a locus of real
dimension one. In this case, the orientifold can project in
BMN and CMN with their legs oriented so that M (say) is
parallel and N transverse to the orientifold fixed plane. The
size modulus for the two-cycle is projected out in this case.
The second construction arises when the orientifold maps
two separate cycles �1 and �2, independent in homology
in the covering space, into each other. In this situation, the
size modulus Tþ of the even combination �þ of the two
two-cycles is projected in, while the G modulus G� of the
odd combination �� of the two-cycles is projected in. It is
important to note that this requires the sizes v1 and v2 of
the two-cycles in the covering Calabi-Yau space to be the
same: v1 ¼ v2 � 1

2vþ. The odd volume modulus

v� ¼ v1 � v2—the difference in size of the two-cycles—
is projected out. Note that this allows for a situation in
which there are no small geometrical sizes anywhere in the
orientifold, if vþ is large. In particular, as long as vþ is
large, the fact that v� is zero does not indicate the presence
of any small curvature radii or small geometrical sizes in
the compactification.

Let us consider the latter ‘‘free exchange’’ case for
definiteness. In order to straightforwardly satisfy Gauss’
law in the compactification, it is simplest to consider two
families of two-cycles �1 and �2, extending into warped
regions of the parent Calabi-Yau. Within each family, place
a five brane in a local minimum of the warp factor, and an
anti–five-brane at a distant local minimum of the warp
factor. The orientifold exchanges the two families, yielding

families of (anti)invariant two-cycles�þð��Þ. The warped
five brane, with its monodromy in the axion direction,
provides our candidate inflationary potential energy. This
is illustrated schematically in Fig. 2.
As a standard example, we may consider a warped throat

which is approximately given by AdS5 � X5, where X5 is
an Einstein space, the two factors have common curvature

radius R� L
ffiffiffiffiffi
�0p
, and the throat is cut off in the IR and UV

[19,24,33].

ds2 ¼ e2AðrÞ��	dx
�dx	 þ e�2AðrÞðdr2 þ r2ds2X5

Þ (50)

with warp factor eAðrÞ � r=R.
To complete the definition of the Kähler moduli, we first

define the Kähler form J ¼ v�!
�. The compactification

volume V�03 satisfies7

V ¼ ð2�Þ6
6

c���v�v�v�; (51)

where c��� are the triple intersection numbers. Then the
complexified Kähler modulus is given by [17]

T� ¼ 3
4c

���v�v� þ 3
2i�� � 3

8e

c�IJGIðGþ �GÞJ: (52)

FIG. 2 (color online). Schematic of tadpole cancellation. Blue:
Two-real-parameter family of two cycles �1, drawn as spheres,
extending into warped regions of the Calabi-Yau. Red: We have
placed a five-brane in a local minimum of the warp factor, and an
anti–five-brane at a distant local minimum of the warp factor. In
the lower figure, �1 is drawn as the cycle threaded by Cð2Þ, and
global tadpole cancellation is manifest.

7This formula follows our convention (13); another common
convention is to define the volume in units of ls ¼ 2�

ffiffiffiffiffi
�0p

(see
the appendix of [34]).
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In the instructive simple case where hð1;1Þþ ¼ 1 (so that the
index � takes a single value, L, corresponding to the
overall volume modulus), the classical Kähler potential
for the sector descending from nonuniversal hypermultip-
lets takes the form

K ¼ �3 logðTL þ �TL þ 3
2e

�
cLIJbIbJÞ þ . . . (53)

The quantity inside the logarithm depends only on the
overall volume and string coupling.

Moduli stabilization is essential for any realization of
inflation in string theory, and we must check its compati-
bility with inflation in each class of examples. In type IIB
compactifications on Calabi-Yau threefolds, inclusion of
generic three-form fluxes stabilizes the complex structure
moduli and dilaton [19]. A subset of these three-form
fluxes—imaginary self-dual fluxes—respect a no-scale
structure [18,19]. This suffices to cancel the otherwise
dangerous flux couplings described in Sec. III A 1.

B. An eta problem for B

In this class of compactifications, however, the stabili-
zation of the Kähler moduli leads to an � problem in the b
direction. This problem arises because the nonperturbative
effects (e.g. from Euclidean D3-branes or strong dynamics
on wrapped seven-branes) stabilize the Kähler moduli [25]
T� rather than directly stabilizing the overall volume
V�03.

Consider a setup with one or more D5-branes wrapping

a curve �ð2Þ
I ; as already explained, bI is the candidate

inflaton in this case. Now, the action for a Euclidean D3-

brane wrapping the even four-cycle �ð4Þ
L is proportional to

TL, so the nonperturbative superpotential depends specifi-
cally on the Kähler modulus TL,

8

WED3 ¼ Ae�aLTL : (54)

On the other hand, the compactification volume involves a
combination (53) of the Kähler modulus and the would-be
inflaton bI. The volume appears in the four-dimensional
potential, as usual, through the rescaling to Einstein frame;
equivalently, the volumeV appears in the F-term potential
via the prefactor eK. This inflaton-volume mixing is ex-
actly analogous to the problem encountered for D3-brane
inflatons in [27]; just as in that case, expansion of the
potential around the stabilized value of TL immediately
reveals a Hubble-scale mass for the canonically normal-
ized field 
b corresponding to the axion b. Hence �� 1,
preventing prolonged inflation.9

We remark that this problem is apparently absent for the
case of a perturbatively stabilized volume. Moreover, be-

cause the volume depends on bI but not on cI, inflaton-
volume mixing is also not a problem for a model in which
cI is the inflaton, which we now consider in detail.10

C. Instantons and the effective action for RR axions

We are now led to consider a compactification on an
orientifold of a Calabi-Yau, in which one or more NS5-

branes wrap a curve �ð2Þ
I , and the leading moduli-

stabilizing effects from fluxes and Euclidean D3-branes—
or gaugino condensation effects—do not contribute to the
potential for cI. The next task is to determine whether there
are any further contributions to the inflaton potential which
might lead to overly strong dependence on our candidate
inflaton direction cI. In particular, Euclidean D1-branes,
when present, introduce sinusoidal contributions. So we
must study and control the effects of Euclidean D1-branes.

1. Instanton contributions to the superpotential

A priori, one might expect the superpotential to take the
schematic form

W ¼
Z
ðF3 � H3Þ ^�þ Ae�aLTL þ Be�~aðvþ�G�=ð2�Þ2Þ

þ Ce�aLTL�aLG�=ð2�Þ2 þ �WðTþÞ; (55)

where for simplicity of presentation we have restricted
attention to a single pair of cycles freely exchanged by
the orientifold, with corresponding fields Tþ, G�, as well
as an additional four-cycle �ð4Þ

L associated with the overall
volume; the prefactors A, B, C are constants.
Let us discuss each term in turn. The first two terms

represent the moduli-stabilizing contributions of [19,25];
we will discuss additional features arising in the case of the
large volume scenario [26] below. The next putative term
represents the contribution of Euclidean D1-branes. Here

vþ is the volume of the orientifold-even two-cycle �ð2Þ
þ ; as

explained in [17], vþ belongs to a linear multiplet, not a
chiral multiplet. Holomorphy therefore forbids the super-
potential from depending on vþ (said another way, the
proper Kähler coordinates are TL, Tþ, which are four-cycle
volumes), but at the same time any Euclidean D1-brane
effect must vanish at large volume. So the third term in (55)
must be absent [36].
The next term, proportional to C, represents Euclidean

D1-brane corrections to the Euclidean D3-brane action
(which we will refer to as ED3-ED1 contributions), in
the case without wrapped seven-branes on the correspond-
ing four-cycle. (We will discuss the case of strong dynam-
ics on seven-branes further below.) When present, this
arises from a Euclidean D1-brane dissolved as flux in a
Euclidean D3-brane; see e.g. [37]. Such a contribution

8We will soon consider the possibility of axion dependence in
the prefactor A; aL is a constant.

9Note that this is not an oscillating contribution to �, and
hence must be suppressed well below Oð1Þ.

10In [35] it was recognized that bI receives a mass from the
leading nonperturbative stabilization effects, whereas cI does
not.
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requires that (a supersymmetric representative of) the two-

cycle carrying our Cð2Þ axion be embedded in the (super-
symmetric) four-cycle wrapped by the original Euclidean
D3-brane. When the cycles are configured in this way, the
resulting dependence of the superpotential on cI appears to
be unsuppressed compared to the leading moduli-
dependence, and in those cases one should worry that the
moduli-stabilizing superpotential gives the inflaton a large
mass-squared, of order Umod=ð2�faÞ2 >H2.

We could attempt to control this effect using warping.
That is, if the two-cycle in question, and all two-cycles in
its homology class, are localized in a warped region, then
the coefficient C in (55) is suppressed, on dimensional
grounds, by three powers of the warp factor eAtop at the
top of the two-cycle fixed locus in the throat

C� e3Atop : (56)

Since this contribution was marginally dangerous to begin
with, a modest warp factor satisfying

e3Atop < ��ð2�fa=MPÞ2; (57)

with �� constrained as described in Sec. IVD, suffices to
avoid significant contributions to the slow-roll parameters.

However, examples generating this contribution to the
superpotential are tightly constrained with respect to the
basic backreaction condition (42), as follows. A computa-
tion of the kinetic term for c shows11 that the axion decay
constant fc is proportional to the maximal warp factor
arising in the homology class of the corresponding two-

cycle: fc � eAtop f̂c. This impliesNw � 11e�Atop=ðf̂cð2�Þ2Þ.
Putting this together with (42), we obtain the constraint

eAtop > 11f̂c=ð�gsMPÞ. But the condition (57) is equivalent
to the condition eAtop < ð2�Þ2��f̂2c=M2

P. Together these

would require ��> 11MP=ð4�3g2s f̂cÞ.
Because of these issues, we will consider examples

where the dangerous ED3-ED1 terms do not arise. One
situation in which this occurs naturally is the following.
Consider, as in [25], the case that the moduli-stabilizing
nonperturbative superpotential arises from gaugino con-
densation on seven-branes wrapping four-cycles. In that
situation, the physics below the KK scale of the four-cycles
is given by pure N ¼ 1SUðNLÞ supersymmetric Yang-
Mills theory. In terms of its holomorphic gauge coupling
YM ¼ �=ð4�Þ þ i=g2YM, this theory has an exact super-
potential of the form [38]

W ¼ �3 ¼ Aeð8�2=NLÞiYM : (58)

In order to determine the dependence of our superpotential
on TL and G� (and in general on other moduli), we must
determine the Yang-Mills gauge coupling, including all
significant threshold corrections to it at the KK scale.

The Yang-Mills gauge coupling on the seven-branes is
classically given by 8�2=g2YM ¼ 2�ReTL (in the absence
of magnetic two-form flux on the D7-branes [39]), and
similarly for other four-cycles in cases with more Kähler
moduli. Comparing to (58), we can identify the parameter
aL in (55) as 2�=NL for this case.
The holomorphic gauge coupling function YM, like the

superpotential itself [36], is constrained by holomorphy
combined with the condition that in our weakly coupled
regime, all nonperturbative corrections decay exponen-
tially as the curvature radii grow. This means that YM,
like W, cannot develop pure ED1 corrections of order

e�2�G�=NL ; instead, the leading correction to the gauge
coupling function must be exponentially suppressed in
TL. Plugging this into (58), we see that the leading correc-
tions from such threshold effects to the superpotential itself
are exponentially suppressed relative to the leading
moduli-stabilizing terms in (55). In particular, the coeffi-
cient C in (55) is negligible in this setup.

2. Instanton contributions to the Kähler potential

Next, we note that the corrected Kähler potential can be
written schematically as follows12 (with similar terms
depending on Tþ):

K ¼ �3 logðTL þ �TL þ 3
2e

�
cLIJbIbJ

þ CþRee�2�vþ�G�=ð2�ÞÞ þ . . . (59)

In contrast to the holomorphic gauge coupling and super-
potential just discussed, the Kähler potential is not pro-
tected by holomorphy. The dependence on 
c arising
through the appearance of G� in (59) can naturally be
suppressed to the necessary extent by using the exponential
suppression in the size vþ of the two-cycle. The ED1
contribution here yields a shift of � of order

��� Umod

Vinflation

ð2�Þ2 Cþ
gs

e�2�vþ : (60)

This is straightforward to suppress with a modest blowup
vþ of the even cycle, as the dependence is exponential.
(Alternatively, one may consider the possibility discussed
in Sec. II of larger oscillating contributions to �.)
In general, there are several mechanisms one can con-

sider for suppressing instanton effects, including use of
local symmetries, warping, and (as just mentioned) expo-
nential suppression of instanton effects with the geometri-
cal sizes of cycles they wrap. Let us elaborate on the latter
approach, which is likely to be the generic situation.
In the KKLT mechanism of moduli stabilization, non-

perturbative effects are used to stabilize Kähler moduli.
Consider using this mechanism to stabilize the Kähler
modulus Tþ corresponding to the geometric size of the
two-cycle wrapped by our NS5-brane (strictly speaking,

11This analysis proceeds as in [24], with c a bulk scalar field in
the throat, or alternatively by the method reviewed in Sec. II A. 12See e.g. [40] for related work in the type I string.
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the Kähler modulus corresponds to the size of the dual
four-cycle, and we implicitly use the relation between the
T�’s and v�’s.) In doing this, we must keep both Tþ and the
overall volume sufficiently small that the barrier heights
exceed the GUT scale of our inflaton potential, which takes
the form (16):

VðcÞ ¼ �

g2sð2�Þ5�0ð6�pÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þ þ c2g2s

q
: (61)

The vþ dependence in (61) tends to compress the wrapped
two-cycle, so a crucial consistency condition, as discussed
in Sec. III A for the overall volume and dilaton, is that the
modulus Tþ be stabilized strongly enough so as not to shift
in such a way as to destabilize inflation. As in Sec. III B, we
must therefore compare the tadpole from (61) with the
scale of the mass introduced by the moduli stabilization
potentialUmod. Unlike the overall volume, Tþ need not be
exponentially related to its canonical field �þ if it makes a
subleading contribution to the physical volume V appear-
ing in the Kähler potential, so we must assess its shift
separately.

It is convenient—and equivalent—to work out the shift
�vþ of vþ rather than that of the canonically normalized
field �þ, and then substitute the result back into the
potential to determine the size of the resulting corrections
to slow-roll parameters in the
c direction. We obtain from
the added exponential terms inUmod the leading contribu-
tions to the mass term for �vþ

@2vþUmod �
�
@Tþ
@vþ

�
2
Umod

� ðcþþLvL þ 2cþþþvþÞ2Umod: (62)

The tadpole introduced by the expanding the inflaton po-
tential (61) in powers of v2þ=ðcgsÞ2—note that this quantity
is small in our regime of super-Planckian axion VEV—is
of order

@vþV � V
vþ

ðcgsÞ2
: (63)

This leads to a shift in vþ of order

�vþ � V

Umod

ðvþ=c2g2sÞ
ðcþþLvL þ 2cþþþvþÞ2

(64)

and a corresponding correction to the full scalar potential
of order

�Utot � V
V

Umod

ðvþ=c2g2sÞ2
ðcþþLvL þ 2cþþþvþÞ4

: (65)

This shift is negligible since 1 � vþ � cgs.
Once the cycle vþ is stabilized at a value larger than

string scale, the Euclidean D1-brane corrections to the
Kähler potential are exponentially suppressed. This pro-
vides a natural mechanism for ensuring the conditions (37),
(39), and (40) that �1, �2, and �3 are sufficiently small.

3. Effects of enhanced local supersymmetry

In some cases, the instanton corrections might be small

without blowing up the cycle �ð2Þ
I . There is ongoing re-

search on stringy instanton effects; a systematic under-
standing of these effects would substantially improve our
ability to build concrete axion inflation models. In particu-
lar, in some recent works, desired D-instanton corrections
were difficult to obtain because of cancellations arising
from extra fermion zero modes [41]. For our purposes this
cancellation is advantageous; one situation in which it is
particularly likely is when the region near the two-cycle
locally preserves extra supersymmetry. A more specific
setup of this sort is one in which our two-cycle is locally
a C2=Z2 orbifold blowup cycle in a warped throat. In
particular, consider such an orbifold singularity, with the
fixed point locus extending up the radial direction of the
warped throat to a maximal warp factor eAtop (see Fig. 2)
and along a circle of size 2�R in the internal X5 directions.
In this case, in the local six-dimensional system the

modulus vI corresponds to a geometrical blowup of the
two-cycle, and is linearly related to the canonically nor-
malized scalar field (as can be seen, for example, by its
T-dual relation to relative positions of NS5-branes).
In the case of a Klebanov-Strassler throat, for example,

we can orbifold to obtain a fixed point locus which extends
radially up the warped throat and along an S1 within the
internal T1;1, as follows. In the standard presentation of the
deformed conifold,

X4
i¼1

z2i ¼ "2 (66)

we obtain this with an orbifold action under which
ðz1; z2; z3; z4Þ ! ð�z1;�z2; z3; z4Þ. This system has N ¼
4 supersymmetry locally, and the extended nature of the
fixed point locus of the orbifold implies the presence of
bosonic and fermionic zero modes corresponding to the
collective coordinates describing the instanton’s position in
the radial direction and along the S1 within the T1;1. For
this configuration, we note that using (12), the axion decay
constant is given by


c � cffiffiffiffiffi
�0p eAtop

�
Rffiffiffiffiffi
�0p
�
�MPe

Atop
cgs
L2

; (67)

where again we keep track of the maximal warp factor in
the region explored by the entire family of homologous
blowup two-cycles, a quantity which is determined by the
way in which the warped throat is connected to the rest of
the compactification. It is worth emphasizing that the
simplest methods we outlined above for suppressing cor-
rections to the slow-roll parameters do not require warping
of the entire family of two-cycles; one may simply take
eAtop � 1 provided that the cycle wrapped by the NS5-brane
is stabilized at finite volume and that the moduli-stabilizing
nonperturbative effects arise from seven-branes.
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D. Backreaction condition

Let us next address the question of backreaction of our
wrapped brane inside the warped Calabi-Yau. The basic
condition (42) becomes

Nw � �3

4
ReðTLÞ; (68)

where we used the relation ReðTLÞ ¼ Vol4
ð2�Þ4gs between the

chiral field TL and the size Vol4�
02 of the corresponding

four-cycle in the Calabi-Yau (which we then identified
with L4 � ð2R?Þ4=�02). Now let us combine this with the
condition that the moduli potential barriers exceed the
scale of our inflation potential. The scale of the moduli-
stabilizing barriers is given in terms of the rank of the
gauge group NL on the seven-branes as

U mod ’ jAj2
T3
LM

2
P

e�4�TL=NL : (69)

Setting Umod 
 Vinf ’ 2:4� 10�9M4
P yields the con-

straint

TL � �NL

4�
log

�
2:4� 10�9T3

L

M6
P

jAj2
�

) Nw � ��2

16
NL log

�
2:4� 10�9T3

L

M6
P

jAj2
�
: (70)

The coefficient A in the superpotential may depend
holomorphically on complex structure moduli. As in
much of the previous literature on KKLT moduli stabiliza-
tion, we will take A � M3

P. However, we should note a
standard subtlety with loop corrections to the gauge cou-
pling and how it affects our considerations. In our system,
the four-dimensional N ¼ 1 supersymmetric Yang-Mills
theory on the seven-branes crosses over at the KK scale
MKK � ð2�ÞgsMP=L

4 to an eight-dimensional maximally
supersymmetric gauge theory. The effective cutoff scale in
the quantum field theoretic analysis of the N ¼ 1 super-
symmetric Yang-Mills theory [38,42] is therefore MKK.
This might naively suggest A�M3

KK, but this would not
be holomorphic. The holomorphy of the superpotential
(58) may be maintained by an appropriate redefinition of
the chiral superfield T� appearing in the gauge coupling
function for the seven-brane stack wrapping the four-cycle

�ð4Þ
� . This in turn introduces a shift proportional to� N�

2� �
logðT� þ �T�Þ (plus a constant) in the argument of the
logarithm appearing in the Kähler potential (53). Since
we require relatively high moduli-stabilizing barriers, our
system lies close to the interior of Kähler moduli space,
and this shift can become significant depending on the
details of the example. A preliminary investigation sug-
gests that with reasonable numbers the effect is (barely)
‘‘neglibigle’’ in the stabilization of T�, and that more
generally it may in fact push T� to larger values at fixed,
high, barrier heights. Overall, we find that with modest

choices of NL, our system can tolerate hundreds of circuits
of the basic axion period.

The large volume scenario

In the large volume mechanism [26] for stabilizing
Calabi-Yau flux compactifications, both power-law and
nonperturbative terms play a role in stabilizing the
Kähler moduli. In this setting, one can increase the volume,
maintaining the required high barrier heights, by increas-
ing W0. This provides another method for ensuring satis-
faction of the backreaction constraint.

E. Numerical toy examples

Our analysis of the conditions for inflation suggests that
they are reasonably straightforward to satisfy. Because the
full potential is somewhat complicated, it is worth check-
ing numerically how the scales work out in a four-
dimensional supersymmetric effective action which enco-
des the essence of our mechanism, including the basic
structures required for moduli stabilization and inflation.
We will therefore consider the four-dimensional action
descending from a compactification with the minimal pos-

sible content—h1;1þ ¼ 2 and h1;1� ¼ 1—required for the
mechanism described above, including the effects of the
orientifold action.
We will consider setups of the sort described in the

previous subsection, with two size moduli denoted by an
index � ¼ L for the overall volume mode and � ¼ þ for
the even combination of cycles under an orientifold action.
(The odd combination of cycles, as described above, sup-

ports our Cð2Þ inflaton field, c� ¼ Re½G��.)
To mock this up, guided by the structure of orientifolds

of Calabi-Yau manifolds such as P4
11169 and P4

13335, we

define a class of toy models by a classical Kähler potential
of the form

K ¼ �2 lnV E

¼ �2 lnfðTL þ �TLÞ3=2
� ½Tþ þ �Tþ þ 3

8gscþ��ðG� þ �G�Þ2�3=2g: (71)

plus contributions depending on the dilaton and complex
structure moduli, where we defined

V E ¼ L6

g3=2s ð2�Þ6 ¼
V

g3=2s ð2�Þ6 : (72)

From the requirement of getting a positive-definite kinetic
term for G� we deduce cþ�� > 0 and for the following
examples we choose for convenience cþ�� ¼ þ1. We also
include corrections to K of the form given in (59).
The superpotential we take to be of a generalized KKLT-

type structure [25,28]

GRAVITY WAVES AND LINEAR INFLATION FROM AXION . . . PHYSICAL REVIEW D 82, 046003 (2010)

046003-13



W ¼ W0 þ Aþe�aþTþ

þ
�
ALe

�aLTL “KKLT”

Að1Þ
L e�að1ÞL TL þ Að2Þ

L e�að2ÞL TL “KL”
: (73)

For simplicity in this section, we will work in units of MP.
Moduli stabilization then proceeds from the F-term

scalar potential for the fields TL, Tþ, G� which is deter-
mined by

VFðTL; Tþ; G�Þ ¼ eKðKI �JDIWDJW � 3jWj2Þ; (74)

where KI �J is understood to be the inverse Kähler metric
derived by keeping the dilaton dependence in K (and thus
for its determination the tree-level dilaton Kähler potential
K ¼ � ln½�iðþ �Þ� has to be included in K). The dila-
ton is assumed to be fixed by three-form fluxes at DW ¼
0, and wewill take gs � 1=2 for concreteness. Thus, here I,
J run over the values L;þ;�, corresponding to the fields
TL, Tþ, G�.

With a choice of parameters in e.g. the KKLT case of

AL ¼ �1; Aþ ¼ 1; aL ¼ 2�

25
;

aþ ¼ 2�

3
; W0 ¼ 3� 10�2“KKLT”

(75)

this setup stabilizes TL � 20, Tþ � 4 and b� 0 in a way
consistent with the most basic conditions for inflation. In
particular, the moduli potential barriers exceed Vinf , and
the moduli suffer practically negligible shifts in their VEVs
during inflation driven by an NS5-brane wrapped on the
blown-up two-cycle.13

In terms of the supersymmetric multiplets, the NS5-
brane potential is given by

VNS5 ¼ M4
Pe

4Abottom
1

ð2�Þ3gsV 2
E

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs

Tþ þ �Tþ þ 3
8gscþ��ðG� þ �G�Þ2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
this isv2

þ

þ g2sc
2

vuuuuut
(76)

with eAbottom denoting the warp factor at the bottom of the
throat. We obtain a GUT-scale inflaton potential for
eAbottom � 0:04. Inputting the axion decay constant for this
case (67), with eAtop � 1, we find of order Nw � 70 cycles
during inflation, easily satisfying the backreaction con-
straint. Increasing aþ to � introduces oscillating correc-
tions to � of amplitude �0:04.

In all cases discussed above, the uplifting contribution of
an anti-D3-brane

�VD3�uplift ¼
�D3

V 4=3
E

(77)

is assumed present and is fine-tuned as in [25] so as to
provide the post-inflationary minimum at c ¼ 0 with small
positive cosmological constant.

F. Gravity waves and low-energy supersymmetry

It is interesting to consider the possibility of combining
low-energy supersymmetry with high-scale inflation. The
present work moves a step closer to an understanding of
this question by implementing large-field inflation in string
compactifications which have a four-dimensional effective
theory with spontaneously brokenN ¼ 1 supersymmetry.
In the particular case of KKLT moduli stabilization—

with an uplift of a SUSY-breaking AdS minimum—the
scale of the moduli barriers decreases with decreasing
scale of supersymmetry breaking. Kallosh and Linde [28]
explained how—with extra fine-tuning via an additional
racetrack in the superpotential—one may decouple these
scales (see also the recent work [43]).
In our setup, we may also apply this mechanism, with

the following caveat. Our wrapped five-brane action, at its
post-inflationary minimum, itself constitutes a
supersymmetry-breaking ‘‘uplifting’’ contribution to the
potential energy for nonzero vþ. This contribution would
need to be very small in order to obtain a low scale of
supersymmetry breaking. Such a suppression might be
possible by (i) blowing down vþ, which may lead to a
larger, but still viable, oscillating contribution to � (mod-
ulo suppressions coming from the enhanced local super-
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FIG. 3 (color online). Linear axion inflaton potential
VðReTL;
cÞ with KKLT Kähler moduli stabilization scenario.
The linear inflaton valley is clearly visible. The potential looks
very similar (but for the second AdS minimum at larger volume)
for the KL case. The cutoff surfaces at the top of the plotted box
denote the further rise of the scalar potential in the barriers.

13Note that given a fully explicit model, knowledge of the
intersection numbers in Tþ ¼ cþ��v

�v� may allow for having
smaller values of Tþ, while still yielding vþ � 2, as necessary
for sufficiently suppressing the ED1 contributions to the Kähler
potential.
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symmetry near the cycle in some examples), or (ii) warping
the NS5-brane further down, as long as this is consistent
with the backreaction constraints.

It is worth emphasizing that despite much progress in
recent years, specific models arise very much under a
lamppost, and it is difficult—if not impossible—to deter-
mine generic patterns without a systematic analysis of
string compactifications.14 Thus, although there is no
known natural construction combining high-scale inflation
with low scale supersymmetry, neither is there is a com-
pelling ‘‘no go’’ theorem. The answer to this question must
await further development of the subject.

V. SPECIFIC MODELS II: PERTURBATIVELY
STABILIZED COMPACTIFICATIONS

Let us next briefly outline some potential examples of
our mechanism in the context of perturbative stabilization
of moduli. This class of examples includes compactifica-
tions on more generic—Ricci-curved—manifolds, and a
correspondingly higher scale of supersymmetry breaking.
The conditions that the flux-induced axion masses not lift b
and c, which were automatically satisfied in the no-scale
type IIB Calabi-Yau compactifications discussed above,
will need to be assessed separately in these cases. The
perturbative models, on the other hand, enjoy some com-
plementary simplifications of their own, such as the fact
that one need not balance classical effects against non-
perturbative effects to stabilize moduli. The moduli-
stabilizing barriers, being power law in the volume as
well as in the dilaton, may be naturally higher, and the �
problem for b derived in the previous section does not
directly apply when the volume is perturbatively stabilized.

As with Calabi-Yau compactifications, only a small
subset of models in this class have been analyzed in any
detail. The simplest examples of this sort involve known
classical compactification geometries and a relatively
small set of additional ingredients, and are therefore ac-
cessible to more detailed analysis than the typical Calabi-
Yau compactification (as in [10,32]). The most specific,
tractable examples, however, do not incorporate the warp-
ing effects one expects to arise in a typical compactifica-
tion (whether low-energy supersymmetric or not). Clearly
the implementation of our mechanism for linear inflation
from axion monodromies will benefit from further devel-
opments in string compactification.

A. Compactifications on nilmanifolds

First, consider compactifications of type IIA string the-
ory on a product of two nilmanifolds

ds2Nil�Nil ¼
L2
u

�
du21 þ �L2

udu
2
2 þ L2

xðdxþMu1du2Þ2

þ L2
u

�
d~u21 þ �L2

ud~u
2
2 þ L2

xðd~xþM~u1d~u2Þ2;
(78)

compactified via projection by a discrete set of isometries,
and stabilized, for example, with the ingredients described
in [32], including an orientifold action exchanging the
tilded and untilded coordinates. In the presence of D4-
branes, these manifolds yield monodromy-driven large

field inflation with a 
2=3 potential [10]. It is interesting
to consider the angular closed string moduli in [10], to see
if monodromy from wrapped branes might yield linear
inflation in axion directions also in these models.
To begin, we note that the flux couplings in Sec. III C

prevent inflation in the Neveu-Schwarz axion (b) direc-
tions in this model, because of the zero-form fluxm0 which
plays a leading role in moduli stabilization. Ramond-

Ramond axions come from those components of Cð1Þ,
Cð3Þ, and Cð5Þ that are invariant under the orientifold pro-
jection. With the NS-NS H3 flux configuration of the

specific example analyzed in [32], Cð1Þ ^H3 is always
nonzero.

Many components of Cð3Þ consistent with the orientifold
projection satisfy Cð3Þ ^H3 ¼ 0. The next question is
whether any ingredients which fit into the compactification
introduce monodromy in one or more of these directions.
Consider (16) for the case of an NS5-brane in the presence

of a Cð2Þ axion (i.e. p ¼ 2). T-duality in a direction y?
transverse to the NS5-brane yields a KK5-brane—a
Kaluza-Klein monopole with fiber direction y?. The

T-duality transforms the Cð2Þ field to a Cð3Þ field with two
legs along the KK5-brane world volume and one along y?.
Hence a KK5-brane thus oriented with respect to a Cð3Þ
axion c3 introduces a linear potential for c3.
The setup [10,32] includes of order 1=� sets ofM KK5-

branes wrapped along a linear combination of the u2 and ~u2
directions times a combination of the x and ~x directions,
with its fiber circle in the transverse combination of x, ~x

directions. The components of Cð3Þ with legs along these
three directions are lifted by the nilmanifold’s ‘‘metric
flux’’—that is, the fiber circle is a torsion cycle. Thus, in
order to implement c3 axion inflation we need to add
additional wrapped branes.
Consider adding a second set ofM KK5-branes wrapped

along the u2 and ~u2 directions, with their fiber circle in a
linear combination of the x and ~x directions. Let us denote
this set by KK50. They carry a linear potential in the c3
direction. The ratio of the KK50 potential energy to the
original KK5 potential energy is

�1=2

LxLu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2L4

u þ c23g
2
s=L

2
x

q
: (79)

14Moreover, generic compactifications with this much super-
symmetry involve many further ingredients, such as generalized
fluxes, which significantly affect questions of genericity.
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We now observe that the decay constant of an axion arising
from a potential that threads a product space of the form

�ðpÞ � �ð6�pÞ is given by


2
c � L6

ð2�Þ7‘2pðpÞ�0 c
2 �M2

P

g2sc
2

2‘2pðpÞ
ðproduct spaceÞ:

(80)

Using (80) and (21) for p ¼ 3, we find that gsNw �
cgs=ð2�Þ2 � 11ð2�L3Þ=ð2�Þ2. In order for our added
KK50 branes to be subdominant to the moduli potential
all along the inflation trajectory, we need to tune the
anisotropy � such that the ratio (79) is less than unity.

Next let us assess systematically the rest of the consis-
tency conditions delineated in Sec. III. First, consider the
KK50 branes before the effect of the axion VEV c3. The
core size of a KK monopole is its fiber size, here Lx; in the

present case we obtain rKK
0

core �MLx. This fits well within
the transverse u1, ~u1 directions, and is marginal for M� 1
within the transverse linear combination of x, ~x directions.

We now consider the effect of c3 on the core size of the
object. In the present case where our manifold is locally a
product space, the c3 term in the brane action contributes to
its effective tension. In our regime of interest, the tension is

of order 
c

MP
� 11 times what its tension would be at c3 ¼ 0.

In other words, it behaves like 11 sets of KK50 branes. This
increases the core size by a factor of 11.

Locally in the u1 directions, the KK50 branes are BPS
objects, and hence the corresponding formula for their
tension applies to good approximation. Moreover, as dis-
cussed in [32], there are more elaborate methods which
might be used to warp down the tensions of KK5-branes in
this space to separate such marginal ratios of scales, bring-
ing NS5-branes wrapped on the x and ~x directions close to
the positions of the KK50 branes.

Finally, we note that instanton effects which depend on
c3 arise from Euclidean D2-branes. These are safely sup-
pressed by a factor of order exp½��L3=gs�.

B. Compactifications on hyperbolic spaces (Riemann
surfaces)

Generic compact manifolds are negatively curved, and
moduli stabilization has been outlined for a very special
case of this—type IIB string theory on a product of three
Riemann surfaces [30]. Let us therefore sketch the possi-
bilities for linear inflation from axion monodromies in this
class of compactifications.

Because the volume is directly stabilized, these models
do not suffer from the � problem discussed in Sec. IVA in
the Neveu-Schwarz axion (b) directions. Moreover, in
contrast to the massive IIA models discussed in the pre-
vious subsection, the flux couplings of Sec. III C do not
immediately lift all the b type axions. It is therefore
possible that inflation with b type axions as well as c
type axions might arise in this example. The main potential

obstruction to this is the rich set of intersecting ðp; qÞ
seven-branes prescribed in [30]. Some of these—in par-
ticular those which combine to form O7-planes—impose
boundary conditions that components of BMN vanish which
are fully transverse or fully parallel to the O7. The negative
term in the moduli-fixing potential in [30] arises from triple
intersections of ðp; qÞ seven-branes (which contribute
anomalous O3 tension as in [19]).
Finally, we note an intriguing feature of more general

supercritical compactifications (of which a special case
was studied in [29])—compactifications of D-dimensional
type II string theory contain exponentially many RR axi-
ons, of order 2D with D the total spacetime dimension. On
the other hand, there are many a priori possible flux-
induced masses for these axions. Again in this setting, a
systematic analysis of axion monodromy inflation awaits
further progress in the study of string compactification.

VI. OBSERVATIONAL PREDICTIONS

We have seen that the monodromy produced by wrapped
branes yields a linear potential, over a super-Planckian
distance, for the canonically normalized axion field. The
leading corrections to this structure are periodic modula-
tions induced by instantons.
Because of the natural exponential suppression of in-

stanton effects, it is reasonably straightforward to arrange
that these modulations are negligible, as we argued in our
examples above. When this is the case, the linear inflaton
potential gives for the tensor to scalar ratio r and tilt ns of
the power spectrum

r � 0:07 ns � 0:975: (81)

The uncertainty comes only from the usual fact that the
number of e-folds is not known precisely in the absence of
a specification of reheating. The resulting predictions are
indicated in Fig. 4, which exhibits their consistency with
current exclusion contours. We note that several authors
have exhibited a preference in the data [44] for potentials
with V00 � 0, which arises naturally in the case of
monodromy-driven inflation. Upcoming CMB experi-
ments promise to reduce these contours to Oð10�2Þ in
both directions, which will go a long way toward discrimi-
nating different inflationary mechanisms.
However, it is very interesting to consider the more

general case in which the instanton-induced15 modulations
of the linear potential are non-negligible; one example like
this might involve a vanishing vþ in the models described
in Sec. IV. In this case we must incorporate oscillating

15Shifts of the moduli during inflation may be contrived to give
small corrections to the potential, but this requires inflationary
energy that is marginally sufficient to destabilize the compacti-
fication. We expect that most successful models of inflation
based on our mechanism have negligible corrections from this
effect.
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corrections to the slow-roll parameters, and correspond-
ingly to the power spectrum. We leave a complete study of
this case for the future. For now we note only that modu-
lations of sufficiently high frequency but non-negligible
amplitude may not affect the average tilt, but could con-
ceivably lead to signatures in the more detailed structure of
the power spectrum.

Let us also remark that the prospect of recurrent modu-
lations of the perturbation spectrum is quite general in
systems making use of the monodromy mechanism [10]:
as the system moves repeatedly around the monodromy
direction, it may interact periodically with localized de-
grees of freedom, including, for example, degrees of free-
dom into which the system reheats.

VII. DISCUSSION

Monodromy is a generic phenomenon in string compac-
tifications. We have shown that the axion monodromy
introduced by space-filling wrapped five-branes leads to
a linear potential, over a super-Planckian distance, for the
canonically normalized axion field. Axion monodromy
therefore provides a mechanism for realizing chaotic in-
flation, with a linear potential, in string theory. We have
shown that this mechanism is compatible with various
methods of moduli stabilization, including nonperturbative
stabilization of type IIB string theory on warped Calabi-
Yau manifolds, as well as perturbative stabilization on
more general Ricci-curved spaces. This produces a clear
signature in the CMB of r � 0:07, with model-dependent
opportunities for further, novel, signatures arising from
oscillating corrections to the slow-roll parameters.

Our mechanism is reasonably robust and natural because
of the presence of perturbative axionic shift symmetries. In
our examples, the inflaton potential itself is the leading

effect that breaks the shift symmetry, with instanton cor-
rections naturally exponentially suppressed. We would like
to remark that a related symmetry structure is plausibly
also present in configurations with more general monodro-
mies not involving axions. Monodromy in the potential
energy arises when a would-be circle in a direction � in the
approximate moduli space is lifted by an additional ingre-
dient whose potential energy grows as one moves in the �
direction. This unwraps the circle direction and extends the
kinematic range of the corresponding field. Then, symme-
tries translating around the original circle do much to
control the structure of the potential along the eventually
unwrapped direction. Thus, monodromy-extended direc-
tions are not just long; they also generically profit from
approximate symmetries. Monodromy-extended directions
can be used for large-field inflation if the underlying mod-
uli potential depends sufficiently weakly on � and if all
corrections to the slow-roll parameters are sufficiently sup-
pressed; the classes of compactifications analyzed here and
in [10] provide two particular realizations of this effect.16

There is much more to be done at the level of model
building. The examples we have provided in this work are
useful as proofs of principle, and to that end we have
focused on demonstrating parametric suppression of cor-
rections to the inflaton potential, and, in particular, on
enumerating a wide array of mechanisms, such as warping,
axionic symmetries, extended local supersymmetry, etc.,
that serve to control such contributions. We have not yet
attempted to construct a minimal realization of linear axion
inflation that uses the smallest possible subset of these
control mechanisms. This is an interesting problem for
future work, as methods for analyzing string compactifica-
tions and string-theoretic instantons improve.
A further lesson of this work, as of [10], is that in large-

field models based on monodromy, a degree of suppression
of otherwise problematic contributions to the potential that
suffices for inflation is also sufficient to make firm predic-
tions for the tilt of the scalar power spectrum. This is in
sharp contrast to typical small-field models, where fine-
tuning the inflaton potential to be flat enough for inflation
is not a strong enough restriction to be predictive: slight
variations in the fine-tuned contributions can noticeably
change the tilt. The difference in our case is that the
problematic terms arise as periodic modulations of the
potential; requiring that inflation occurs at all implies
that the amplitude of these modulations is small compared
to the scale of changes in the inflaton potential itself. In
turn, this implies that the average tilt is not affected at a
detectable level by these modulations. On the other hand, it
would be very interesting if the oscillations in the detailed
power spectrum produced by a modulated linear potential
had characteristic features accessible to future observa-

FIG. 4 (color online). Red: 5-year WMAPþ BAOþ SN [13]
combined joint 68% and 95% error contours on (ns, r).
Recycling symbol: general prediction of the linear axion infla-
tion potential Vð
cÞ ¼ �3

c
c, for N ¼ 50, 60 e-folds before the
end of inflation.

16Recently, monodromy has been used as a method to model
chain inflation [45] in string theory [46].
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tions. In any case, this class of models is falsifiable on the
basis of its gravity wave signature.
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