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We study codimension-1 brane solutions of the five-dimensional brane world models compactified on

S1=Z2. In the string theoretical setup, they suggest that the background branes located at orbifold fixed

points should be Neveu-Schwarz (NS)-branes (in the five-dimensional sense), rather than D-branes.

Indeed, the existence of the background NS-branes is indispensable to obtain flat geometry M4 � S1=Z2,

where M4 represents the four-dimensional Minkowski spacetime, and without these branes the five-

dimensional metric becomes singular everywhere. This result is very reminiscent of the (pþ 3)-

dimensional effective string theory [8] where the NS-NS type p-brane is indispensable to obtain a flat

geometry R2 or R2=Zn on the transverse dimensions. Without this NS-NS type p-brane, the two-

dimensional transverse space becomes a pin-shaped singular space. The correspondence between these

two theories leads us to a conjecture that the whole flat backgrounds of the string theory inherently involve

the NS-branes implicitly in their ansatz, and hence the true background p-branes immanent in our

spacetime may be NS-branes, instead of D-branes. We argue that this result can have a significant

consequence in the context of the cosmological constant problem.
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I. INTRODUCTION

In the usual brane world scenarios it is basically as-
sumed that our Universe is a stack of D3-branes (or
Dp-branes wrapped on a (p� 3)-dimensional compact
space) with standard model (SM) fields living on it [1–7].
But recently there was an argument [8] that true back-
ground p-brane immanent in our spacetime may be the
Neveu-Schwarz–Neveu-Schwarz (NS-NS) type brane,
rather than D-brane. In [8], the authors showed that in
(pþ 3)-dimensional string theory the presence of NS-NS
type p-brane with negative tension is indispensable to
obtain background R2 or R2=Zn on the transverse dimen-
sions, and the usual codimension-2 brane solutions with
these background geometries already involve the negative
tension Neveu-Schwarz (NS)-brane implicitly in their
ansatz.

In this line of studies it was also argued in [9] that the
NS-brane plays an important role in the context of the
cosmological constant problem in the (pþ 3)-dimen-
sional-brane world models where the NS-brane appears
as a background brane on which the SM-brane is to be
set. Indeed, brane world models with NS-branes have been
already considered in the literature [10–13], including
‘‘little string theory’’(LST) [14–16]. But the main object
of these papers is to obtain SM- or Yang-Mills gauge
theories irrespective of the cosmological constant problem.
In [9], it was shown that the bulk geometry, as well as the
flat intrinsic geometry of the brane, is practically insensi-
tive to the quantum fluctuations of SM-fields with support

on the SM-brane in the presence of the background NS-
brane, which then leads to a new type of self-tuning
mechanism with which to solve the cosmological constant
problem.
Apart from this, five-dimensional brane world models,

as being the simplest higher dimensional models, have
been extensively studied in the hope that they may provide
the first step toward the solution of the hierarchy problem
[7,17,18] and the cosmological constant problem as well
[19–23]. Among these models, the one proposed by
Randall and Sundrum is of particular interest in the context
of the hierarchy problem. In this Randall-Sundrum (RS)
model [17] the desired TeV physical mass scale can be
obtained from the fundamental Planck scale �1019 GeV
through an exponential hierarchy generated by an expo-
nential warp factor. But at the same time, the exponential
warp factor causes the problems associated with proton
decay and neutrino mass, etc. [24], though they can be
circumvented by assuming that the standard model fermi-
ons and gauge fields do not localized on the IR (visible)
brane [25].
The RS model can be regarded as a dimensional reduc-

tion of the 11-dimensional theory [26], and in this sense it
is not directly associated with the ten-dimensional super-
string theory. But one can consider a different type of five-
dimensional model which is directly obtained from the
string theoretical setup, but still compactified on S1=Z2

as in the RS model. In this model the warp factor reduces to
a constant and the five-dimensional metric is therefore
factorizable. Besides this, it turns out that the background
branes located at the orbifold fixed points are NS-NS type
branes, instead of D-branes, which is quite unexpected
because our spacetime is generally believed to be a stack
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of D-branes in the usual brane world scenarios. In the five-
dimensional brane world models, the 3-brane is a
codimension-1 brane, and the solutions of these models
usually take completely different forms as compared with
those of the (pþ 3)-dimensional brane world models
where the p-brane appears as a codimension-2 brane. In
this paper we will first briefly examine the codimension-1
brane solutions of the string-inspired five-dimensional
gravity-scalar theory to show that the existence of NS-
branes is indispensible to obtain the flat geometry M4 �
S1=Z2, and without these branes, the five-dimensional
metric becomes singular everywhere.

This result is very reminiscent of the (pþ 3)-
dimensional effective string theory [8] where the NS-NS
type p-brane is indispensible to obtain flat geometry R2 or
R2=Z2 on the transverse dimensions, and without this
brane the two-dimensional transverse space becomes a
pin-shaped singular space. The correspondence between
these two theories leads us to suspect that the whole flat
background geometries of the string theory inherently in-
volve the NS-branes implicitly in their ansatz, and hence
the background p-branes immanent in our spacetime may
be NS-NS type branes, instead of D-branes. In this paper it
is also argued that this result can have a significant con-
sequence in the context of the cosmological constant
problem.

II. FIVE-DIMENSIONAL ACTION AND FIELD
EQUATIONS

We begin with a five-dimensional action [22]

I5 ¼ 1

2�2

Z
d5x

ffiffiffiffiffiffiffiffi�G
p ½R� kðr�Þ2 � eb���; (2.1)

plus a brane action

Ibrane ¼ �X
i

Z
d4x

ffiffiffiffiffiffiffi�g
p

TðiÞð�Þjy¼yi ; (2.2)

where yi represents the position of the i-th brane in the fifth

coordinate, while TðiÞð�Þ the tension of the i-th brane
coupled with a scalar �. In most cases of our discussion

TðiÞð�Þ takes the tree-level form
TðiÞð�Þ ¼ TðiÞ

0 e��; ðTðiÞ
0 ¼ constÞ: (2.3)

In the RS model, TðiÞð�Þ is given by (2.3) with � ¼ 0
because the RS model does not contain scalar field. In
the tree-level string theory, on the other hand, � is identi-

fied with the dilaton and TðiÞð�Þ is also given by (2.3), but
this time � is assigned to be either 2

3 or
5
3 , depending on

which brane is considered in the theory. If the brane is NS-
brane � is � ¼ 2

3 , which correspond to the factor e�2� in

the string frame, while for the D-brane � is � ¼ 5
3 , which

corresponds to the factor e�� in the string frame.
For the background geometry we assume that the five-

dimensional spacetime is compactified on S1=Z2, and two

3-branes are located at the orbifold fixed points y ¼ 0 and
y ¼ �Rc, respectively, where Rc is the radius of S1. Once

we choose TðiÞð�Þ as in (2.3) the boundary conditions at the
orbifold fixed points require that � ¼ b=2 (we will show
this later), and the action (2.1) plus (2.2) describes a family
of five-dimensional theories parameterized by k, b, and �.
Among these five-dimensional theories we are particularly
interested in the case k ¼ b ¼ 4

3 , which corresponds to a

five-dimensional effective string theory1 represented in the
Einstein frame. In this case, the condition � ¼ b=2 implies
� ¼ 2

3 , and the branes located at the orbifold fixed points

are identified as NS-branes (not D-branes!).
The field equations arising from (2.1) plus (2.2) are the

Einstein equation

ffiffiffiffiffiffiffiffi�G
p �

RAB � 1

2
GABR

�

� k
ffiffiffiffiffiffiffiffi�G

p �
ð@A�Þð@B�Þ � 1

2
GABðr�Þ2

�

þ 1

2

ffiffiffiffiffiffiffiffi�G
p

GABe
b��þX2

i¼1

�2 ffiffiffiffiffiffiffi�g
p

G�AG
��G�BT

ðiÞð�Þ

� �ðy� yiÞ ¼ 0; (2.4)

and the equation for �ffiffiffiffiffiffiffiffi�G
p ½2kh�� beb���

�X2
i¼1

2�2 ffiffiffiffiffiffiffi�g
p @TðiÞð�Þ

@�
�ðy� yiÞ ¼ 0; (2.5)

where A, B ¼ 0, 1, 2, 3, 5, while �, � ¼ 0, 1, 2, 3. Let us
introduce the five-dimensional metric in the form

ds2E ¼ dy2

f2ðyÞ þ e2AðyÞ½�dt2 þ d~x23�: (2.6)

In (2.6), fðyÞ is an extra degree of freedom associated with
the coordinate transformation y ! y0 ¼ FðyÞ, so it can be
taken arbitrarily as we wish. The complete set of field
equations are then given by

3A00 þ 6A02 þ 3A0 f
0

f
þ k

2
�02 þ 1

2

eb�

f2
�

¼ �X2
i¼1

�2 1

f
TðiÞð�Þ�ðy� yiÞ; (2.7)

6A02 � k

2
�02 þ 1

2

eb�

f2
� ¼ X2

i¼1

2�2 1

f

@TðiÞð�Þ
@�

�ðy� yiÞ;

(2.8)

1The action (1) may be identified as a truncation of the
type IIB superstring compactified on 5-torus [27].
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2k

�
�00 þ 4A0�0 þ f0

f
�0

�
� b

eb�

f2
�

¼ X2
i¼1

2�2 1

f

@TðiÞð�Þ
@�

�ðy� yiÞ; (2.9)

where the ‘‘prime’’ denotes the derivative with respective
to y. In the above equations the first two are the ð��Þ and
(55) components of the Einstein equation, while the last
one follows from the equation for �.

Taking linear combination of (2.7) and (2.8), and choos-
ing f2 ¼ eb�, one finds that the above set of field equations
reduces to

d

dy

�
	
dA

dy

�
þ 1

3
�	 ¼ �X2

i¼1

�2

3
CðiÞ
1 �ðy� yiÞ; (2.10)

d

dy

�
	
d�

dy

�
� b

2k
�	 ¼ X2

i¼1

�2

k
CðiÞ
2 �ðy� yiÞ; (2.11)

6

�
dA

dy

�
2 � k

2

�
d�

dy

�
2 þ 1

2
� ¼ 0; (2.12)

where 	 is defined by

	 ¼ e4Af ¼ e4Aþðb=2Þ�; (2.13)

while CðiÞ
k (k ¼ 1, 2) are

CðiÞ
1 ¼ e4ATðiÞð�Þjy¼yi ; CðiÞ

2 ¼ e4A
@TðiÞð�Þ

@�

��������y¼yi

:

(2.14)

III. SOLUTION TO FIELD EQUATIONS
WITH � � 0

By inspecting (2.13) together with (2.10) and (2.11), one
finds that 	 must satisfy

d2	

dy2
þ 
�	 ¼ X2

i¼1

aðiÞ	 �ðy� yiÞ; (3.1)

where


 ¼ 4

3
� b2

4k
; (3.2)

and

aðiÞ	 ¼ ��2

2

b

k

�
8

3

k

b
CðiÞ
1 � CðiÞ

2

�
: (3.3)

The solution to the differential Eqs. (2.10) and (2.11) can
be readily found. Using (3.1), one can show that the most
general solution to the set of field Eqs. (2.10) and (2.11)
takes the form

eA ¼ iA	
1=3
; e� ¼ i�	

�ðb=2k
Þ; (3.4)

where iM (M ¼ A, �) are defined by the equation

d

dy

�
	

iM

diM
dy

�
¼ X2

i¼1

aðiÞM�ðy� yiÞ; (3.5)

with aðiÞM given by

aðiÞA ¼ b

6
�2 1

k


�
b

2
CðiÞ
1 � CðiÞ

2

�
;

aðiÞ� ¼ � 4

3
�2 1

k


�
b

2
CðiÞ
1 � CðiÞ

2

�
:

(3.6)

Now we want to find 	 and iM satisfying the boundary
condition at y ¼ y1 (i.e., at y ¼ 0). First we consider the
case � � 0. (Throughout this paper we mainly consider the
case � � 0. The case � ¼ 0 is separately discussed in
Sec. VI.) With an assumption of the Z2 symmetry y !
�y, one can show that the most general solution to (3.1)
valid in the region ��Rc < y < �Rc appears to be

	 ¼ 	0e
�

ffiffiffiffiffiffiffiffi
�
�

p
jyj þ 	1 cosh

ffiffiffiffiffiffiffiffiffiffiffi�
�
p

y; (3.7)

where 	1 is an arbitrary constant, but 	0 is given by

	0 ¼ � að1Þ	

2
ffiffiffiffiffiffiffiffiffiffiffi�
�

p : (3.8)

Also the Z2 symmetry requires that iM defined by (3.5)
must satisfy

	

iM

diM
dy

¼ að1ÞM

2
�ðyÞ; (3.9)

where �ðyÞ is the step function defined by

�ðyÞ ¼
�þ1; for y > 0
�1; for y < 0

: (3.10)

We have seen that (3.4) is the solution to (2.10) and
(2.11). But we still need for consistency to check whether it
satisfies (2.12) either before we proceed further.
Substituting (3.4) [together with (3.7) and (3.9)] into
(2.12) gives two consistency conditions:

8að1ÞA þ bað1Þ� ¼ 0; (3.11)

and

3að1Þ2A � k

4
að1Þ2� þ �ð	2

1 þ 2	0	1Þ ¼ 0: (3.12)

Among these two conditions the first one is identically
satisfied by (3.6). But (3.12) [upon using (3.8) and (3.11)]
gives a condition

	1 ¼ 	0

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
k
2l2

s �
; (3.13)

where l is defined by

l ¼ að1Þ� =að1Þ	 : (3.14)
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Equation (3.13) contains two roots for 	1. But only the
upper sign agrees with the RS model (upon taking k ¼ 0)
as will be clear later [see (4.2)]. Thus, in what follows we

will only consider the case where 	1 is given by 	1 ¼
	0½�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 k

2l2

q
�.

To find iM, it is convenient to rewrite 	 as

	 ¼
�
c1e

ffiffiffiffiffiffiffiffi
�
�

p
y þ c2e

�
ffiffiffiffiffiffiffiffi
�
�

p
y ðy > 0Þ

c2e
ffiffiffiffiffiffiffiffi
�
�

p
y þ c1e

�
ffiffiffiffiffiffiffiffi
�
�

p
y ðy < 0Þ

; (3.15)

with c1 ¼ 	1

2 and c2 ¼ 	0 þ 	1

2 , respectively. Substituting

(3.15) into (3.9) one finds

iM ¼ dM

�
1þ ffiffiffiffi

p
p

e
ffiffiffiffiffiffiffiffi
�
�

p
jyj

1� ffiffiffiffi
p

p
e

ffiffiffiffiffiffiffiffi
�
�

p
jyj

�
IM
; (3.16)

where dM is an arbitrary constant, while

p ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 k

2l2

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 k

2l2

q ; (3.17)

and

IM ¼ �
�
3

4
k

��ð1=2Þ �l
j
j

að1ÞM

að1Þ�

; (3.18)

where �l � l=jlj.

IV. WARP FACTOR AND FIVE-DIMENSIONAL
GEOMETRY

In the framework of string theory the five-dimensional
metric in (2.6) corresponds to the Einstein metric, and it is
related to the string metric by the equation ds2E ¼
e�b�ds2string. So the string metric takes the form

ds2string ¼ dy2 þWðyÞ½�dt2 þ d~x23�; (4.1)

with the warp factor WðyÞ given by

WðyÞ ¼ d2Ad
b
�

�
1þ ffiffiffiffi

p
p

e
ffiffiffiffiffiffiffiffi
�
�

p
jyj

1� ffiffiffiffi
p

p
e

ffiffiffiffiffiffiffiffi
�
�

p
jyj

�
IW ½	0e

�
ffiffiffiffiffiffiffiffi
�
�

p
jyj

þ 	1 cosh
ffiffiffiffiffiffiffiffiffiffiffi�
�

p
y�2ð1�ð1=
ÞÞ; (4.2)

where IW ¼ 2IA þ bI�, and therefore by (3.11) and (3.18)

IW ¼ �
�
3

4
b

��
3

4
k

��ð1=2Þ �l
j
j : (4.3)

So in the string theory limit (b ¼ k ¼ 4
3 , 
 ¼ 1) WðyÞ is

given by

WðyÞ ¼ d2Ad
4=3
�

�
1þ ffiffiffiffi

p
p

e
ffiffiffiffiffiffi��

p jyj

1� ffiffiffiffi
p

p
e
ffiffiffiffiffiffi��

p jyj

���l
: (4.4)

Note that the terms in 	 do not contribute to WðyÞ in this
case.

In the case of the RS model (b ¼ k1=2 ¼ 0, 
 ¼ 4
3 );

however, there is no distinction between ds2E and ds2string,

and the metric is simply represented by (4.1) together with

(4.2). Indeed (4.2) becomes (upon taking dA ¼ 	�1=4
0 )

WðyÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1=3Þ�

p
jyj (4.5)

for b ¼ k1=2 ¼ 0, which coincides with the solution in
[17].

V. BOUNDARY CONDITION AT y ¼ �Rc

In Sec. III, we have considered the boundary condition
at y ¼ 0. Now we require that the solution also satisfies the
boundary condition at y ¼ �Rc either. To consider the
boundary condition at y ¼ �Rc we need to know the
singular behaviors of 	ðyÞ and iMðyÞ at that point. Note
that in order for 	ðyÞ to be periodic with a period 2�Rc,
	ðyÞ must be given in the region 0< y< 2�Rc by

	 ¼
�
	0e

�
ffiffiffiffiffiffiffiffi
�
�

p
y þ 	1 cosh

ffiffiffiffiffiffiffiffiffiffiffi�
�
p

y ð0< y< �RcÞ
	0e

ffiffiffiffiffiffiffiffi
�
�

p
ðy�2�RcÞ þ 	1 cosh

ffiffiffiffiffiffiffiffiffiffiffi�
�
p ðy� 2�RcÞ ð�Rc < y < 2�RcÞ

; (5.1)

and in terms of a new coordinate ~y � y� �Rc (5.1) can be
rewritten as

	ð~yÞ ¼ 	0e
�

ffiffiffiffiffiffiffiffi
�
�

p
ð�Rc�j~yjÞ þ 	1 cosh

ffiffiffiffiffiffiffiffiffiffiffi�
�
p ð�Rc � j~yjÞ;

(5.2)

which shows that 	ð~yÞ is singular at the point ~y ¼ 0 (y ¼
�Rc). Besides this, in the region 0< y < 2�Rc (3.1) also
reduces to

d2	

d~y2
þ 
�	 ¼ að2Þ	 �ð~yÞ: (5.3)

Substituting (5.2) into (5.3), and using (3.8) and (3.13) one
finds a condition

að2Þ	 ¼ �að1Þ	 e�
ffiffiffiffiffiffiffiffi
�
�

p
�Rc�ðlÞ; (5.4)

where

�ðlÞ ¼ 1þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
k
2l2

s �
e

ffiffiffiffiffiffiffiffi
�
�

p
�Rc

� sinh
ffiffiffiffiffiffiffiffiffiffiffi�
�

p
�Rc: (5.5)
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Similarly, in order for iM to be periodic with a period
2�Rc it must be of the form

iMð~yÞ ¼ dM

�
1þ ffiffiffiffi

p
p

e
ffiffiffiffiffiffiffiffi
�
�

p
ð�Rc�j~yjÞ

1� ffiffiffiffi
p

p
e

ffiffiffiffiffiffiffiffi
�
�

p
ð�Rc�j~yjÞ

�
IM

(5.6)

in the region 0< y< 2�Rc. Substituting (5.6) into the
equation

	

iM

diM
d~y

¼ að2ÞM

2
�ð~yÞ; (5.7)

we find the second condition

að2ÞM ¼ �að1ÞM : (5.8)

Nowwe assume that TðiÞð�Þ is given by (2.3). Then since
CðiÞ
2 ¼ �CðiÞ

1 for such TðiÞð�Þ, (5.4) and (5.8) reduce, re-

spectively, to�
8k

3b
� �

�
Cð2Þ
1 ¼ �

�
8k

3b
� �

�
Cð1Þ
1 e�

ffiffiffiffiffiffiffiffi
�
�

p
�Rc�ðlÞ; (5.9)

and �
b

2
� �

�
Cð2Þ
1 ¼ �

�
b

2
� �

�
Cð1Þ
1 : (5.10)

In general (5.9) and (5.10) are incompatible2 with one
another unless � ¼ 8k=3b or � ¼ b=2. So � must be
one of these values. But if � ¼ 8k=3b, l ! 1 from (3.4)
and (3.14). So we discard it and we only take

� ¼ b

2
: (5.11)

By (5.11) and (5.10) becomes an empty condition, and we
are only left with (5.9), which now reads

Cð2Þ
1 ¼ �Cð1Þ

1 e�
ffiffiffiffiffiffiffiffi
�
�

p
�Rc (5.12)

because l vanishes for � ¼ b=2. Further, using (2.13) and

the fact that 	 becomes 	 ¼ 	0e
�

ffiffiffiffiffiffiffiffi
�
�

p
jyj for l ¼ 0, one

finds from (5.12) that

Tð2Þ
0 ¼ �Tð1Þ

0 : (5.13)

That is, the tensions of the branes located at the orbifold
fixed points y ¼ 0 and�Rc must be equal in magnitude but
opposite in sign from one another.

VI. � ¼ 0 CASE

So far we have only considered the case � � 0. In this
section we want to find the solution to the field equations
with � ¼ 0. In the case � ¼ 0 the field equations are the
same as before except that � must be set equal to zero
everywhere. So the solution to the field equations is still
given by (3.4), but this time 	 must be a solution to

d2	

dy2
¼ X2

i¼1

aðiÞ	 �ðy� yiÞ (6.1)

instead of (3.1), while iM are still defined by (3.5) [and
therefore by (3.9) and (5.7) for the Z2-symmetric configu-
rations]. The general solution to (6.1), satisfying both the
Z2 symmetry and boundary condition at y ¼ 0, is simply

	ðyÞ ¼ ~	0jyj þ ~	1; (6.2)

where ~	1 is an arbitrary constant, but ~	0 is related to a
ð1Þ
	 by

the equation

~	 0 ¼
að1Þ	

2
: (6.3)

Also, using (3.9) and (6.2) one finds

iM ¼ dMð~	0jyj þ ~	1ÞlM ; (6.4)

where lM is defined by lM ¼ að1ÞM =að1Þ	 .

Now we have to check that this solution also satisfies the
consistency condition (2.12) with � ¼ 0. Substituting the
given solution into (2.12), and using (3.11) one obtains a
condition

~	 2
0 ¼ 3

16k

2að1Þ2� ; (6.5)

which, however, reduces to

að1Þ2	 ¼ ð34kÞ
2að1Þ2� (6.6)

by (6.3). The condition (6.6) is very restrictive. Upon
setting Tð�Þ ¼ T0e

��, it implies

�2 ¼ 4
3k: (6.7)

In the string theoretical setup this result is obscure. For k ¼
4
3 , (6.7) gives � ¼ � 4

3 , which corresponds to neither the

NS-brane nor D-brane of the string theory. Equation (6.7)
implies that the branes on the orbifold fixed points must
appear in the form of a very specific combination of the
NS- and D-branes.
However, it turns out that the solution described by (6.7)

does not satisfy the boundary condition at y ¼ �Rc, and
consequently it is not allowed to be a solution to the field
equations. Indeed, the boundary condition for 	ðyÞ at y ¼
�Rc requires

að2Þ	 ¼ �að1Þ	 ; (6.8)

2To be precise, both (5.9) and (5.10) can be satisfied simulta

neously for an arbitrary � if e�
ffiffiffiffiffiffiffiffi
�
�

p
�Rc�ðlÞ ¼ 1. But this

equation is only solved by e
ffiffiffiffiffiffiffiffi
�
�

p
�Rc ¼ 1 or e

ffiffiffiffiffiffiffiffi
�
�

p
�Rc ¼

½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 k

2l2

q
�=½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 k

2l2

q
�, where the first equation

implies Rc ¼ 0, while the second equation yields Rc ¼ 1 for

both k ¼ 0 (RS case) and l ¼ 0 (NS-brane). Finally, for the D-

brane (k ¼ 4
3 , 
 ¼ 1, l ¼ �2) the second equation does not

yield a real solution for Rc. For these reasons, we discard the

case where � is arbitrary.
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while the boundary condition for iMðyÞ at y ¼ �Rc re-
quires

að2ÞM ¼ �að1ÞM : (6.9)

But since CðiÞ
2 ¼ �CðiÞ

1 for Tð�Þ ¼ T0e
��, (6.8) and (6.9)

reduce, respectively, to�
8k

3b
� �

�
Cð2Þ
1 ¼ �

�
8k

3b
� �

�
Cð1Þ
1 ; (6.10)

and �
b

2
� �

�
Cð2Þ
1 ¼ �

�
b

2
� �

�
Cð1Þ
1 : (6.11)

Clearly, with � given by (6.7) it is impossible that (6.10)
and (6.11) are both satisfied at the same time, which
implies that the compact solution corresponding to � ¼ 0
does not exist in the given configuration. Since the solution
does not exist in the case � ¼ 0, in the following discus-
sion we will only consider the case � � 0.

VII. BACKGROUND BRANES AT ORBIFOLD
FIXED POINTS

Turning back to Sec. V it should be noted that the
condition (5.11) is very important because it tells us of
what type the brane under consideration would be. For
instance, b ¼ 0 gives � ¼ 0, which of course corresponds
to the brane of the RSmodel. In the string theoretical setup,
on the other hand, (5.11) gives � ¼ 2

3 , indicating that the

branes placed at the orbifold fixed points must be basically
NS-branes.3 Moreover, as mentioned in [22], the dynamics
of the world volume degrees of freedom on the NS-brane
does not depend on the dilaton, meaning that the relevant
coupling constant is dilaton independent, and consequently

TðiÞð�Þ is expected to maintain the tree-level form even
under quantum corrections to the brane tension due to
dynamics of world volume fields. Thus, the above argu-
ment is not restricted only to the tree-level string theory.

The configuration where NS-branes reside at the orbi-
fold fixed points has interesting aspects. For the NS-branes,

TðiÞð�Þ is given by (2.3) with � ¼ b
2 ¼ 2

3 , so aðiÞ� and con-

sequently l, p, and 	1 all vanish; l ¼ p ¼ 	1 ¼ 0. Also,
since 
 ¼ 1 for b ¼ k ¼ 4

3 , one finds that WðyÞ in (4.2) is

simply a constant, i.e., WðyÞ ¼ 1 if we choose d2Ad
b
� ¼ 1,

and therefore (4.1) becomes a flat metric, a direct product
of M4 and S1=Z2, where M4 is the four-dimensional
Minkowski space. This is interesting. In the string frame
the five-dimensional spacetime does not know about the
existence of the constant �. In the presence of the back-
ground NS-branes it remains flat even for nonzero �. The

five-dimensional metric only acquires a conformal factor
e�b� in the Einstein frame, where the string coupling e� is
given (for b ¼ k ¼ 4

3 and l ¼ 0) by4

e� ¼ gse
ffiffiffiffiffiffi��

p jyj=2: (7.1)

The above discussion leads to an important result. The
flat metric M4 � S1=Z2 can be obtained only through an
introduction of the background NS-branes on the orbifold
fixed points. Indeed, without these background branes the
five-dimensional metric becomes singular everywhere as
can be readily checked as follows. In the absence of branes
a	 and aM all vanish, and from (3.8) and (3.9) one finds that

	0 ¼ 0 and iM ¼ constant. Also, since 	1 ¼ 0 (for � � 0
and aM ¼ 0) from (3.12), 	 and consequently the confor-
mal factor e�b� vanishes everywhere in S1. This property
is very reminiscent of the (pþ 3)-dimensional brane world
models [8] in which the presence of the NS-NS type
p-brane is indispensable to obtain background R2 or
R2=Zn on the transverse dimensions. Without this brane
the two-dimensional transverse space becomes a ‘‘semi-
infinitely long pin’’ whose tip is identified as the origin of
the coordinates. The NS-NS type p-brane (with negative
tension) is necessary to spread out this pin-shaped space to
get R2 orR2=Zn. In general, codimension-1 brane solutions
take completely different forms as compared with
codimension-2 brane solutions, and the above correspon-
dence between five-dimensional models and (pþ 3)-
dimensional models suggests that the role of the NS-branes
in the background geometries may be much more signifi-
cant than we expect.

VIII. TOWARDTHECOSMOLOGICALCONSTANT
PROBLEM

The consequence of the fact that the spacetime contains
background NS-branes is crucial in the context of the
cosmological constant problem. Consider a configuration
that a D-brane is introduced on the background NS-brane,
and SM-fields are living on that D-brane. In string theory
the tension of the codimension-1 D-brane is expected to be

given [22] by a power series of the form TDð�Þ ¼
eð5=3Þ�

P1
n¼0 T

ðDÞ
n en�, and therefore the tension of the co-

incident brane (of the background NS-brane and the D-
brane) would roughly take the form5

3A similar example of such a configuration can be found in
[28] where the author observed that the world-sheet conformal
field theory of the type IIA orbifold R6 � R4=I2 describes a
solitonic 5-brane (NS5-brane), living in the fixed point of R4=Z2.

4The constant gs was defined by gs ¼ e�jy¼0, which amounts
to choosing d� ¼ gs	

1=2
0 .

5To be precise, the tension of the bound state of the D-brane
and NS-brane may appear rather complicated than this if their
world volumes are in parallel with each other. It is known [29]
that in this case the supersymmetry of the system is completely
broken and the D-brane becomes unstable and eventually decays
losing most of its energy. However, if some of dimensions of
their world volumes are not in parallel, then the decay of the D-
brane can be avoided. Also see [30].
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Tð�Þ ¼ eð2=3Þ�TðNSÞ
0 þ eð5=3Þ�TðDÞ

0 þ X1
n¼1

eðð5=3ÞþnÞ�TðDÞ
n ;

(8.1)

where TðNSÞ
0 and TðDÞ

0 are both of an order �1=�02, and the

terms with n � 1 represent the quantum correction terms.
Substituting (8.1) into (3.14), one finds

l ¼ �gs
½TðDÞ

0 þP1
n¼1ðnþ 1ÞTðDÞ

n gns �
½TðNSÞ

0 þ 1
2T

ðDÞ
0 gs �

P1
n¼1

ðn�1Þ
2 TðDÞ

n gðnþ1Þ
s � ;

(8.2)

where gs is defined by gs � e�jy¼0 (see footnote
3).

With the background NS-brane alone (8.2) gives l ¼ 0
as we already know. Now introduce a D-brane (SM-brane)
on the background NS-brane. In this case, l acquires a
nonzero value. Neglecting the quantum correction terms
one finds

l��ðTðDÞ
0 =TðNSÞ

0 Þgs: (8.3)

Equation (8.3) implies that l is as small as gs, l� gs, since

TðDÞ
0 and TðNSÞ

0 are of the same order �1=�02. Thus, in the

limit gs ! 0 the effect of introducing the D-brane on the
bulk geometry is negligibly small. Indeed, (4.2) can be
expanded in a power series of l as

WðyÞ ¼ d2Ad
b
�	

2ð1�ð1=
ÞÞ
0 e�2ð1�ð1=
ÞÞ

ffiffiffiffiffiffiffiffi
�
�

p
jyj

�
�
1�

�
3

4
b

�
le

ffiffiffiffiffiffiffiffi
�
�

p
jyj þ 1

2

�
3

4
b

�
2
l2e2

ffiffiffiffiffiffiffiffi
�
�

p
jyj

� 
2

�
1� 1




��
3

4
k

�
l2e

ffiffiffiffiffiffiffiffi
�
�

p
jyj cosh

ffiffiffiffiffiffiffiffiffiffiffi�
�
p jyj

þOðl3Þ
�
: (8.4)

In the RS limit (b ¼ k1=2 ¼ 0, 
 ¼ 4
3 ), (8.4) simply be-

comes (4.5) as it should be. In this case, WðyÞ is not given
by a power series of l. In the string theory limit (b ¼ k ¼
4=3, 
 ¼ 1); however, (8.4) becomes

WðyÞ ¼ 1� le
ffiffiffiffiffiffi��

p jyj þ 1

2
l2e2

ffiffiffiffiffiffi��
p jyj þOðl3Þ (8.5)

upon taking d2Ad
4=3
� ¼ 1, which shows that the change of

WðyÞ due to an introduction of the D-brane is only of an
order �gs.

Once l is determined at the tree-level, the effect of the
higher order terms can be obtained by adding �l to l, where
�l is the shift in l due to the quantum correction (the terms
with n � 1) to the D-brane tension. From (8.2), one finds
that �l is only of an order �g2s :

�l� ðTðDÞ
1 =TðNSÞ

0 Þg2s ; (8.6)

which implies that the change of the bulk geometry due to
quantum fluctuations of SM fields with support on the D-

brane is extremely suppressed in the limit gs ! 0. In the
brane world models the intrinsic curvature of the brane is
a priori zero, and consequently the whole quantum fluctu-
ations of SM fields entirely contribute to changing the
geometry of bulk space. Thus, in general the bulk geometry
is necessarily severely disturbed by the quantum fluctua-
tions. In our case, however, the disturbance due to quantum
fluctuations is highly suppressed as mentioned above, and
the bulk geometry, as well as the flat geometry of the brane,
is virtually insensitive to the quantum fluctuations. Such a
feature also can be found in the (pþ 3)-dimensional brane
world models [9], and provides a new type of self-tuning
mechanism with which to solve the cosmological constant
problem. See Sec. IX.

IX. SUMMARYAND DISCUSSION

In this paper we have studied codimension-1 brane
solutions of the five-dimensional brane world models com-
pactified on S1=Z2. In string theoretical setup they suggest
that background branes sitting at orbifold fixed points
should be NS-branes, rather than D-branes. Indeed, the
existence of the background NS-branes is indispensable
to obtain the flat geometryM4 � S1=Z2, and without these
branes the five-dimensional metric becomes singular (it
vanishes everywhere in the Einstein frame), indicating
that the flatM4 � S1=Z2 inherently involves the NS-branes
in itself. The ansatz for the five-dimensional metric of this
paper is the most general ansatz we can think of for the
configurations of five-dimensional spacetime with
Poincaré symmetry in the four-dimensional subsector,
which suggests that the solutions obtained in this paper
would be the one that is closer to the true extremum of the
action than the others. In general fixing an ansatz leads to a
limited class of geometries.
The same result also can be found in the (pþ 3)-

dimensional effective string theory where the p-brane
appears as a codimension-2 brane. In [8] it was argued
that in (pþ 3)-dimensional string theory the existence of
NS-NS type p-brane is indispensable to obtain background
geometry R2 or R2=Zn on the transverse dimensions. In the
absence of this background brane the two-dimensional
transverse space becomes a semi-infinitely long pin, and
the only way to avoid this singular space is to introduce the
NS-NS type p-brane with negative tension on the orbifold
fixed point. In general, codimension-1 brane theory is
entirely different from the codimension-2 brane theory,
and the above correspondence between these two entirely
different theories leads us to a conjecture that the whole flat
backgrounds of the string-inspired brane world models (or
the string theory itself) inherently involve the NS-branes
implicitly in their ansatz.
As mentioned above, in the presence of the NS-branes

the five-dimensional spacetime becomes a direct product
M4 � S1=Z2 with Z2 symmetry in the fifth compact di-
mension. The NS-branes contribute to fixing the back-
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ground geometry of the five-dimensional spacetime. After
the geometry of the spacetime is fixed by the NS-branes,
we may also introduce D-branes on this backgroundM4 �
S1=Z2. Introducing D-branes, however, hardly affects the
background geometry. It affects the five-dimensional ge-
ometry only to the extent of an order�gs, and similarly the
quantum fluctuations of SM-fields to the extent of an order
�g2s , which are entirely negligible in the limit gs ! 0.

In the brane world models the intrinsic curvature of the
brane is a priori zero, and the four-dimensional cosmo-
logical constant automatically vanishes, leading to a natu-
ral solution to the cosmological constant problem. But in
this case the inherently fixed geometry of the brane gives
rise to an unwanted problem. The whole quantum fluctua-
tions of the SM fields entirely contribute to changing the
geometry of bulk space because the geometry of the brane
is already fixed to be flat from the beginning. Thus, the bulk
geometry, and therefore the compactification scale Rs in
the five-dimensional case is necessarily severely disturbed
by the quantum fluctuations, and this disturbance of the
compactification scale can in turn lead to severe disturban-
ces of the observed coupling constants. In the given con-
figurations of this paper such a problem can be naturally
solved. In the presence of the background NS-branes, the
disturbances due to quantum fluctuations is highly sup-
pressed in the limit gs ! 0, and consequently the coupling
constants are not disturbed by the quantum fluctuations of
the SM-fields living on the D-branes. Such a feature may
lead to a new type of brane world model with which to
solve the cosmological constant problem.

In our configurations the bulk cosmological constant � is
not allowed to vanish. �must have some nonzero value and
its magnitude can be readily estimated. Namely, l and
therefore 	1 vanish for � ¼ b=2, so using (2.13) and

(3.3) one finds from (3.8) that
ffiffiffiffiffiffiffiffi��

p ¼ �2Tð1Þ
0 =2 for k ¼

b ¼ 4
3 and 
 ¼ 1, or since �2 � 1=M3

5 and Tð1Þ
0 � 1=�02 �

M4
s , where M5 and Ms are the five-dimensional Planck

scale and the string scale, respectively,
ffiffiffiffiffiffiffiffi��

p
can be re-

written as
ffiffiffiffiffiffiffiffi��

p � �2=�02 �M4
s=M

3
5. In string theory � is

only of a subleading order and vanishes at the tree level in
ordinary circumstances. But still one can consider more
general cases where � can have nonzero values at the tree
level. For instance, closed string backgrounds with nonzero
tree-level cosmological constant can be obtained by con-
sidering subcritical strings, which could arise naturally as a
result of tachyon condensation [31,32]. But in this case � is
given by ���1=�0, and in order for this to be consistent

with the above �, M5 must be proportional to Ms, i.e.,
M5 ¼ �Ms with ��Oð1Þ.6
Apart from this, one can find the four-dimensional

Planck scale Mpl in terms of M5. In our string theoretical

setup Mpl can be obtained most easily in the string frame,

and it turns out to be M2
pl � ð1= ffiffiffiffiffiffiffiffi��

p ÞðM3
5=g

2
sÞ�

ð1� e�
ffiffiffiffiffiffi��

p
�RcÞ. So if we assume

ffiffiffiffiffiffiffiffi��
p

Rc �Oð1Þ, then
using 1=

ffiffiffiffiffiffiffiffi��
p � Rc we will have M2

pl �M3
5Rc=g

2
s . This

equation may be regarded as a string theoretical general-
ization of the conventional equation M2

pl �M3
5Rc [7], but

in our case Rc need not be so large to obtain Mpl �
1019 GeV in contrast to the case of [7]. Indeed, there is
an interesting way of viewing this equation. If we take the
hierarchy assumption that electroweak scale mEW is the
only fundamental short distance scale in nature (i.e., if we
assume thatM5 �Ms � TeV and Rc � TeV�1), the above
equation is satisfied if we take gs � 10�16, which is just the
realistic decoupling limit of LST [33], showing that this
configuration also accords with the hierarchy assumption.

In the case
ffiffiffiffiffiffiffiffi��

p
Rc � 1, we still get the same result as

above; M2
pl �M3

5Rc=g
2
s , so the same story goes on.

Namely, if we take M5 � TeV and Rc � TeV�1, then we
get gs � 10�16. But in this case the condition M5 �Ms,
which was mentioned above in relation to subcritical

strings, is not respected. Finally, if
ffiffiffiffiffiffiffiffi��

p
Rc ! 1, we get

M2
pl �M6

5=M
4
sg

2
s by using

ffiffiffiffiffiffiffiffi��
p �M4

s=M
3
5. In this case,

we can think of two possibilities. The first one is the caseffiffiffiffiffiffiffiffi��
p ! 1, and therefore Ms 	 M5. In this case, Rc need
not be very large, but gs ! 0 is not guaranteed (also the
conditionMs �M5 is not respected), and this case may be

irrelevant to our discussion. But if
ffiffiffiffiffiffiffiffi��

p
=Ms �Oð1Þ and

therefore Ms �M5, gs is again gs � 10�16 upon taking
Ms �M5 � TeV. But in this case, the size of S1 must be
very large, i.e., Rc ! 1.
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