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In this paper we investigate wormhole and spherically symmetric solutions in four-dimensional gravity

plus a matter source consisting of a ghost scalar field with a sine-Gordon potential. For the wormhole

solutions we also include the possibility of electric and/or magnetic charges. For both types of solutions

we perform a linear stability analysis and show that the wormhole solutions are stable and that when one

turns on the electric and/or magnetic field the solution remains stable. The linear stability analysis of

the spherically symmetric solutions indicates that they can be stable or unstable depending on one of the

parameters of the system. This result for the spherically symmetric solution is nontrivial since a previous

investigation of four-dimensional gravity plus a ghost scalar field with a ��4 interaction found only

unstable spherically symmetric solutions. Both the wormhole and spherically symmetric solutions

presented here asymptotically go to anti-de Sitter space-time.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
present Universe, has led to a search for a possible mecha-
nisms of this expansion. From the Einstein equations one
finds that such an expansion is only possible if one violates
one of the energy conditions. In hydrodynamical language,
this means that the parameter of the equation of state w ¼
p
� ¼ pressure

energy density should be less than �1=3 (i.e. violation of

the strong energy condition), or even less than �1 (i.e.
violation of the weak energy or null energy condition). In
this last case where w<�1, one finds exponentially fast
expansion of the Universe. One of the simplest ways of
obtaining such an acceleration is via models with ghost
scalar fields. In these models, one assumes that the sign in
front of the kinetic term of the scalar field is the opposite
from that of the standard scalar field. It is well-known that
ordinary scalar fields only lead to an equation of state with
w � �1. Ghost, scalar fields can give an equation of state
with w<�1 in which case they are called phantom fields
[1]. Astronomical observations [2,3], indicate that viola-
tion of the weak energy condition is possible. Despite the
strong theoretical misgivings about ghost fields these
experimental observations have motivated the theoretical
consideration of such ghost scalar fields. Depending on the

choice of the potential energy of these ghost scalar fields
one can obtain models of the accelerated expansion of the
Universe that are in good agreement with the observational
data [4,5].
Ghost fields have also been studied in the context of

compact astrophysical objects, such as stars and worm-
holes composed partly or completely of ghost fields. In
particular, ghost fields find a natural application to worm-
holes since these objects are know to generically require
violation of the weak (or null) energy condition [6]. In the
papers [7,8] a ghost scalar field with a Mexican hat poten-
tial was investigated, and it was found that this system only
had regular, stable solutions for topologically nontrivial
(wormholelike) geometry. The works [9–14] further inves-
tigated traversable Lorentzian wormholes refining the con-
ditions on the type of matter or field that would lead to such
space-times. In the papers [15,16] wormhole solutions
induced by quantum effects in grand unified theories
were proposed. A general overview of the subject of
Lorentzian wormholes and violations of the various energy
conditions can be found in the book by Visser [17].
There have also been papers devoted to non-

wormholelike solutions which have a trivial topology.
The paper [18] gives a general classification of nonsingu-
lar, static spherically symmetric solutions to the Einstein
equations for scalar fields with arbitrary potentials and
negative kinetic energy. In [19] it was found that there
existed spherically symmetric solutions to the system of
four-dimensional gravity plus a ghost field with a Mexican
hat potential which were similar to the Bartnik-McKinnion
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solutions [20] but with the ghost field replacing the Yang-
Mills field. A linear stability analysis of the solutions found
in [19] indicated that these solutions were not stable,
although depending on the form of the effective potential
they might persist for long times—i.e. they could be
metastable.

Having a negative kinetic energy term leads to obvious
quantum instability, but there are possible solutions of
this problem of quantum instability [21,22]. However, the
question of the classical, linear stability of a solution with
ghost scalar fields requires a case by case study, for
example: (i) In [8] it is shown that the solutions with the
Mexican hat potential are stable against radial perturba-
tions. (ii) In [23] the classical, stability conditions for a
charged wormhole created by a massless, ghost scalar field
were found. (iii) In [24,25] it is shown that wormhole
solutions within the general framework of scalar-tensor
theories with massless, nonminimally coupled scalar fields
are unstable under spherically symmetric perturbations.
(iv) In [26,27] the generalization of this problem was
carried out for the case with electric or magnetic charges.
(v) In [11] a linear stability analysis for a wormhole created
by a massless ghost scalar field was carried out with the
result that these wormholes had two asymptotically spheri-
cally symmetric ends with either both ends having vanish-
ing Arnowitt-Deser-Misner (ADM) masses or with the
ends having ADM masses of opposite signs. It was found
that such wormholes are stable if the ADM masses are
sufficiently small. (vi) In the paper [28] some estimates of
the stability of a rotating, scalar field wormhole were given.
(vii) In [29,30] it was shown that wormholes with a mass-
less ghost scalar field are unstable with respect to linear and
nonlinear perturbations. (viii) A finally example of such
classical, stability analysis can be found in [31] where it is
shown that adding a charge to the model of (vii) did not
lead to a stable wormhole solution.

These examples show that the question of classical
stability or instability of a spherically symmetric or worm-
hole configuration is strongly model dependent and that
one needs to carry out a stability analysis in each specific
case. In this paper, we carry out a linear stability analysis
for a ghost scalar field model with the a sine-Gordon
potential. We also show why this system does not admit
a topological or global stability analysis. In a previous
paper [32] this system was studied with the interesting
result that one could use the solutions to generate a
dynamical model for the creation/annihilation of worm-
holes—by allowing the throat radius to vary smoothly
from some finite value down to zero one could interpret
this process as the creation a wormhole with subsequent
annihilation into two, disconnected spherically symmet-
ric solutions. In this paper, we will generalize the solu-
tions of [32] to the include electric and/or magnetic
charges, and carry out a linear stability analysis for all
these solutions.

For the solutions found in [32] it was shown that the
static spherically symmetric solutions with a ghost field
plus sine-Gordon potential tended asymptotically to
anti-de Sitter (AdS) space-time. AdS space-times have
generated much interest due to the discovery of the AdS/
CFT correspondence [33–35] which implies that a gravita-
tional theory in an AdS space-time is dual to a conformal
field theory (CFT) on the boundary of the space-time.
The question of the stability of such space-times has al-
ready received considerable attention [36–38]. In [36], in
the context of Einstein’s theory plus a negative cosmologi-
cal constant, the stability of asymptotically AdS metrics
against linear perturbations was demonstrated. In contrast,
Ref. [37] pointed out that in some cases instabilities may
arise for asymptotically AdS spaces. This implies the ne-
cessity of performing a stability analysis for solutions with
asymptotically AdS space-times on a case by case basis.
A second motivation to study the stability of the solu-

tions presented below is related to the existence of the
stable, static, sine-Gordon solitonic solutions for ordinary
scalar field in (1þ 1) dimensions without gravity [39]. The
sine-Gordon solutions are stable because of topological
reasons. In this paper we show that for some range of
parameters adding gravity and changing the ordinary scalar
field to a ghost scalar field leads to classically, linear stable
solutions in (3þ 1) dimensions. For other ranges of the
parameters, the solutions are unstable. Thus, including
gravity and allowing ghost fields leads to linear stable
solutions which is in contrast to ordinary scalar fields in
(3þ 1) which do not have stable solutions. However, in
contrast to the sine-Gordon soliton kink solution, the
present solutions do not obtain their stability from topo-
logical arguments.

II. FIELD EQUATIONS WITH ELECTRIC
AND MAGNETIC CHARGES

We consider a model of a gravitating ghost scalar field
in the presence of the electromagnetic field Fik. The
Lagrangian for this system is [32]

L ¼ � R

16�G
� 1

2
@�’@

�’� Vð’Þ � 1

4
FlmF

lm; (1)

whereR is the scalar curvature,G is Newton’s gravitational
constant, and V is the sine-Gordon potential with a
reversed sign from the usual case

V ¼ m4

�

�
cos

� ffiffiffiffi
�

p
m

’

�
� 1

�
: (2)

Here m is a mass of the field, and � is a coupling constant.
The corresponding energy-momentum tensor is

Tk
i ¼ �@i’@

k’� Fl
iF

k
l � �k

i ½�1
2@�’@

�’

� Vð’Þ � 1
4FlmF

lm�: (3)

To perform a linear stability analysis for this system, we
take a time dependent, spherically symmetric metric of the
form
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ds2 ¼ e2Fðr;tÞdt2 � dr2

Aðr; tÞ � ðr2 þ r20Þðd�2 þ sin2�d�2Þ;
(4)

where the metric functions Fðr; tÞ and Aðr; tÞ depend both
on the radial coordinate, r, and time, t.

Let us consider only radial components of electric and
magnetic fields F01 ¼ Er and F23 ¼ �Hr. Then by choos-
ing the ansatz for the magnetic field F23 ¼ @�A3, where
A3 ¼ Q cos� and Q is the magnetic charge, we have the
following expression for the quadratic field combination

FlmF
lm ¼ �2Ae�2FE2

r þ 2
Q2

ðr2 þ r20Þ2
: (5)

The equation for Er can be found from Maxwell’s equa-
tions

½ ffiffiffiffiffiffiffi�g
p

Fik�;k ¼ 0 ) Er ¼ qeF

ðr2 þ r20Þ
ffiffiffiffi
A

p ; (6)

where q is the electric charge.
Using the Lagrangian (1) and Eqs. (5) and (6), the

gravitational equations take the form

� A0

A
xþ 1

A
þ x2

x2 þ x20
� 2

¼ �
x2 þ x20

A

�
� 1

2
e�2F _�2 � A

2
�02 þ cos�� 1

þ �q2 þ �Q2

2ðx2 þ x20Þ2
�
; (7)

2x2

x2þx20
�2�A0

A
xþ2xF0 ¼��

x2þx20
A

½e�2F _�2þA�02�:
(8)

We have introduced new dimensionless variables � ¼
ð ffiffiffiffi

�
p

=mÞ’, x ¼ mr, 	 ¼ mt and � ¼ 8�Gm2=�, �q ¼ffiffiffiffi
�

p
q, �Q ¼ ffiffiffiffi

�
p

Q. Equations (7) and (8) are the

t
t

� �

and �
t
t

� �
� x

x

� ��

components of the Einstein equations.
The scalar field equation is

e�2F

�
€��

�
_Fþ 1

2

_A

A

�
_��

� A

�
�00 þ

�
F0 þ 2x

x2 þ x20
þ 1

2

A0

A

�
�0

�
¼ � sin�: (9)

In the above equations, ‘‘prime’’ and ‘‘dot’’ denote differ-
entiation with respect to x and 	, respectively.

In [32] a set of static solutions was found for the system
(7)–(9) for various values of the parameter x0 and with the
electric and magnetic charges ð �q; �QÞ set to zero. It was
shown that there exist regular solutions up to the value
x0 ¼ 0. This was interpreted as the possible creation/
annihilation process of a wormhole—as the throat radius
x0 ! 0 the wormhole split into two, separate, spherically
symmetric space-times. This interpretation assumed that
the static solutions could be considered as snapshots of a
dynamical process where the wormhole annihilated into
two separate space-times or run in reverse where two
separate space-times merged to create a wormhole. These
solutions and this creation/annihilation interpretation are
similar to the five-dimensional Kaluza-Klein dyonic
wormholes studied in [40]
We now extend the results of [32] by including radial

electric and magnetic fields. These fields will give positive
contributions to the total energy density of the system,
leading to solutions differing from the ones discussed in
[32]. We have not found an analytical solution for the
system (7)–(9) for the entire range of x. Thus we solve
this system of coupled, nonlinear equations numerically.
From the Eqs. (7)–(9) we obtain the initial conditions for
starting our numerical solution as

Fð0Þ ¼ const; Að0Þ ¼ 1� �

�
�q2 þ �Q2

2x40
� 2

�
x20;

�ð0Þ ¼ �; �0ð0Þ ¼
ffiffiffiffiffiffiffiffiffi
2

�x20

s
: (10)

These initial conditions, where x0 � 0, give wormhole
solutions. Later we will discuss the spherically symmetric,
boson star solutions for which x0 ¼ 0. From the above
expression for Að0Þ one can see that the addition of a
nonzero electric and/or magnetic charges �q, �Q gives a
lower limit on x0 for which Að0Þ is positive. We do not
give the explicit expression for x0 but it involves solving a
quadratic equation for x20. The physical meaning is that the

addition of a large charge—and its associated positive
energy density—makes the existence of wormholes and
spherically symmetric solutions impossible. The general,
qualitative behavior of the solutions at acceptable values of
x0 (i.e. values for which Að0Þ> 0) with electric and/or
magnetic fields remains similar to the case when there
are no fields (compare Figs. 1–3 of the present paper
with Figs. 1–3 in [32]). From now on we take into account
only electric charge by taking �q nonzero and setting �Q ¼
0. This is not a reduction in the generality of the system
since, from Eq. (7), it is possible to introduce a new
effective electric charge defined as �q2eff ¼ �q2 þ �Q2. As

implied by electromagnetic duality it is only a matter of
convention whether one talks of electric charge, magnetic
charge or some combination. What matters is �qeff . From
the numerical solutions shown in Figs. 1–3 one can make
the following statements about the asymptotic form of the
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solutions: (i) The scalar field approaches the minimum of
the potential Vð’Þ from (2) (i.e. � ¼ �) both from below
(for x < 0) and from above (for x > 0). (ii) The electric/
magnetic field asymptotically takes a Coulomb form, 1=x2.
Note as the effective electric/magnetic charge increases a
cusp develops at x ¼ 0. This might be seen as the influence
of the electric/magnetic charge to generate a singularity
at x ¼ 0 in the case of a space-time with trivial topology
i.e. when x0 ! 0 and the wormhole space-time goes over
to the spherically symmetric topology. (iii) The metric

ansatz functions FðxÞ, AðxÞ asymptotically go as e2F !
2�
3 x2 and A ! 2�

3 x2 i.e. asymptotically the metric ap-

proaches anti-de Sitter space-time. In order to have the
space-time be asymptotically AdS one needs to choose the

constant value of Fð0Þ ¼ const such that both e2FðxÞ and
AðxÞ approach 2�

3 x2 as x ! 1. In Fig. 3, for example,

Fð0Þ � �0:945 at �q ¼ 0:35 and Fð0Þ � 0:145 at �q ¼ 0

in order to meet this requirement. The choice of Fð0Þ is
connected with the scaling of the time coordinate at x ¼ 0.
Thus one must appropriately scale the time coordinate at

x ¼ 0 in order to have both metric functions, e2FðxÞ and
AðxÞ, give asymptotic AdS space-time.

III. LINEAR STABILITYANALYSIS

We now study the dynamical stability of the above static
solutions under linear perturbations with a harmonic time
dependence. This type of stability analysis is essentially
that used in the works [41,42] to study boson stars. The
present authors have used this type of stability analysis
to study the issue of stability for the spherical solutions
for the system of a ghost scalar field with a Mexican hat
potential coupled to gravity [19]. For simplicity, we intro-
duce a new metric function aðxÞ in place of AðxÞ defined
as AðxÞ ¼ eaðxÞ. We perturb the solutions of the system
(7)–(9) by expanding the metric functions and scalar field
function to first order as follows:

Fðx; 	Þ ¼ F0ðxÞ þ F1ðxÞ cos!	;

aðx; 	Þ ¼ a0ðxÞ þ a1ðxÞ cos!	;

�ðx; 	Þ ¼ �0ðxÞ þ�1ðxÞ cos!	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q :

The index 0 indicates the static background solutions of
Eqs. (7)–(9) and 	 is the scaled time parameter defined in
the previous section. The first-order perturbation equations
which follow from (7) and (8) are

a01 ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
x

�
x�0

0�1

x2 þ x20
��0

0�
0
1 � e�a0 sinð�0Þ�1

�
;

(11)

FIG. 1. The background, static, wormhole solutions of the
system (7)–(9) for the scalar field � at x0 ¼ 0:3, � ¼ 1 and �q ¼
0 (the solid line), �q ¼ 0:35 (the dashed line), �Q ¼ 0 for all
graphs. Asymptotically � ! �.

FIG. 2. The background, static, wormhole solutions of the
system (7)–(9) for the dimensionless electric field �Er ¼
ð ffiffiffiffi

�
p

=m2ÞEr ¼ �qeF=½ðx2 þ x20Þ
ffiffiffiffi
A

p � at x0 ¼ 0:3, � ¼ 1 and �q ¼
0:35, �q ¼ 0:40, and �q ¼ 0:43, top-down, respectively, �Q ¼ 0 for
all graphs. Asymptotically �E ! �q=x2.

FIG. 3. The background static, wormhole solutions of the
system (7)–(9) for the metric functions F and a ¼ lnA at x0 ¼
0:3, � ¼ 1 and �q ¼ 0 (the solid lines), �q ¼ 0:35 (the dashed
lines), �Q ¼ 0 for all graphs. Asymptotically e2F ! 2�

3 x2 and

A ! 2�
3 x2. This means that the space-time for large x is anti-

de Sitter.
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F0
1 ¼

1

2
a01 � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
x

�
�0

1 �
x

x2 þ x20
�1

�
�0

0; (12)

and the equation for �1 is

�00
1 þ

�
F0
0 þ

1

2
a00
�
�0

1 � V0ðxÞ�1 þ!2e�2F0�a0�1 ¼ 0

(13)

with the potential given by

V0ðxÞ ¼ e�a0

�
cos�0 � �

x2 þ x20
x

sinð�0Þ�0
0

�

� x2

ðx2 þ x20Þ2
þ 1

x2 þ x20
þ

�
F0
0 þ

1

2
a00
�

x

x2 þ x20
:

(14)

Introducing the new independent variable �

d�

dx
¼ exp

�
�F0 � 1

2
a0

�
; (15)

we can rewrite Eq. (13) in a Schrödinger-like form

� d2�1

d�2
þ V½xð�Þ��1 ¼ !2�1; (16)

where

V½xð�Þ� ¼ e2F0þa0V0ðxÞ: (17)

The study of the stability of the static solutions displayed in
Figs. 1–3 now reduces to a study of the Schrödinger-like
equation given by (16) and (17). If the energy-like eigen-
values, !2 from (16) are >0 then the solution is stable; if
there are eigenvalues such that !2 < 0 then the perturba-
tions grow exponentially and the solution is unstable.

Before moving on to the details of the linear stability
analysis of the wormhole and spherically symmetric cases
we discuss several other criteria for stability of solutions
similar to those presented here. There are several other
stability criteria—topological stability [39] and global
stability [43]—which are more powerful and go beyond
the linear stability analysis presented here. However the
present solution does not meet the conditions that allow us
to apply these broader stability criteria.

The typical example of topological stability is given by
the sine-Gordon kink in the absence of gravity [39]. The
sine-Gordon kink is topologically stable since the value of
its scalar field takes two different values at x ¼ �1 and
x ¼ þ1. From Fig. 1 one can see that the wormhole
solution does not have this feature; the scalar field of the
wormhole solution approaches the same value at x ¼ �1
and x ¼ þ1 thus ruling out a topological argument its
stability.

A global stability analysis method for systems of gravity
coupled to a complex scalar field was given in [43]. In this
work the global stability was determined by studying the
binding energy of the system

B ¼ M�mN

whereM is that Tolman mass and N is the particle number.
The Tolman mass is defined by

M ¼
Z
ð2T0

0 � T
�
� Þ

ffiffiffiffiffiffi
jgj

q
d3x:

From (3) T�
� ¼ @��@��þ 4Vð�Þ. Combining this with

T0
0 , which also can be obtained from (3) or read off of (7),

we find that (2T0
0 � T

�
� ) in the above equation tends

asymptotically to a constant value equal to �2V1 ¼ 4,
where V1 is the asymptotic value of the potential. The

asymptotic value of
ffiffiffiffiffiffijgjp / r2 and so the integral for M

above diverges—as one would expect for a space-time
which is asymptotically AdS.
Next, the particle number N is the integral over all space

of the time component, j0, of the Noether current density

j� ¼ i
2

ffiffiffiffiffiffijgjp
g�
½��@
���@
�

��

N ¼
Z

j0d3x:

Since our scalar field is not complex j� ¼ 0 and so N ¼ 0.
Thus, neither the wormhole nor spherically symmetric
solutions presented in Sec. II can be analyzed in terms of
topological stability or global stability due to the asymp-
totic AdS nature of the space-time, the asymptotic behavior
of the scalar field or the fact that the scalar field is real
rather than complex.

A. Wormhole case (x0 � 0)

We now study the stability of the wormhole solutions for
various values of the wormhole throat size x0. Figure 4
shows four effective potential curves for x0 ¼ 1, x0 ¼ 0:5,
x0 ¼ 0:1 and x0 ¼ 0:01 respectively and with no electro-
magnetic field. One can see that for x0 ¼ 1 and x0 ¼ 0:5
the curves of the potential are completely positive so that
!2 > 0 for any solutions of (16) and (17) i.e. the solutions
are stable. In the cases when x0 ¼ 0:1 and x0 ¼ 0:01
there are small regions where the potential (17) becomes
negative. From Fig. 4 these negative regions occur around
� � 1:4. Thus in principle the lowest eigenvalue !2 could
be negative. Further analytical details which support the
positiveness of!2 for the parameters used in this paper are
given in Appendix A, even in those cases when the poten-
tial V½xð�Þ� has regions where it dips below zero. In the
language of ordinary quantum mechanics these regions are
not deep enough for a bound state with !2 < 0 to form.
For comparison Fig. 4 also shows the behavior of the

potential (17) for the spherically symmetric solution, i.e.,
when x0 ¼ 0 and � ¼ 1. The full investigation of this
case is given in the next subsection and appendix B.
One can see that near � ¼ 0 behavior of the spherically
symmetric case differs from the behavior of the wormhole
solution as x0 ! 0. This difference is connected with
different behavior of the derivative �0ð0Þ at x ¼ 0:
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For the wormhole solution, this derivative tends to infinity,
according to (10); for the spherically symmetric solution,
the derivative goes to 0 [32]. Nevertheless, at � ¼ 1, the
spherically symmetric solution is stable, since the lowest
eigenvalue, !2, is positive.

B. Spherically symmetric case (x0 ¼ 0)

In this subsection, we study the stability of the system of
Eqs. (7)–(9) when the radius of the wormhole throat goes to
zero x0 ! 0, i.e., the spherically symmetric case. The
static solutions for this case were found in [32] as a limiting
case of the wormhole solutions when x0 ! 0. In this case,

the only free parameter is �. We specify the boundary
conditions as in [32]

A0ð0Þ¼1; �0ð0Þ¼ const; �0
0ð0Þ¼0; F0ð0Þ¼ const:

(18)

With these initial conditions we numerically found
solutions for �ðxÞ, FðxÞ, AðxÞ for different values of the
parameter �—see Figs. 6 and 7. The boundary conditions
from (18) also imply we are focusing on the case where the
charges are set to zero since in the presence of charges the
solutions become singular at x ! 0. This can be seen from
the boundary condition for AðxÞ implied by Eq. (7):

A0ð0Þ :¼ 1� �

2

�q2 þ �Q2

x2
! �1:

Some further analytical details of the linear stability
analysis for the spherically symmetric case are given in
Appendix B. The summary of the results from Appendix B

FIG. 4. The potential V½xð�Þ� from (17) as a function of �
which is defined in (15). The solid line corresponds to x0 ¼ 1,
the dash-dotted, the long dashed and the short dashed lines
correspond to x0 ¼ 0:5, x0 ¼ 0:1 and x0 ¼ 0:01, respectively.
The curve for x0 ¼ 0 (the spherically symmetric solution) is also
shown by the solid line. For the spherically symmetric solution
the range of � is 0 � � � 1. For all solutions the electric and
magnetic charges are set to zero ( �q, �Q ¼ 0) and � ¼ 1.

FIG. 5. The dependence of the lowest eigenvalues !2 on the
throat size x0 without electric charge ( �q ¼ 0) and with �q ¼ 0:3,
� ¼ 1. For �q ¼ 0:3 at x0 � 0:21, !2 ! 0 and Að0Þ ! 0 simul-
taneously [see Eq. (10)].

FIG. 6. The spherically symmetric case: The scalar field � at
different values of the parameter �: 1.5, 1.0, 0.75 and 0.5, from
top to bottom. Asymptotically � ! �.

FIG. 7. The spherically symmetric case: The metric functions
FðxÞ (the dashed lines) and a ¼ lnA (the solid lines) at different
values of the parameter �: 1.5, 1.0 and 0.5, from top to bottom.
Asymptotically e2F ! 2�

3 x2 and A ! 2�
3 x2.
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are that for the spherically symmetric (x0 ¼ 0) case, the
solutions are stable for �> 3=4 and unstable for �< 3=4.

IV. CONCLUSION

In this paper we have studied dynamical stability of
spherically symmetric and wormhole configurations for
the system of four-dimensional gravity coupled to a sine-
Gordon, ghost scalar field. In some we included cases
electric and/or magnetic charges. The stability of these
solutions was tested with respect to linear, radial, harmonic
perturbations. For the wormhole configurations we con-
sidered the case both with and without electric and/or
magnetic charges. For the spherically symmetric case we
investigated only the case when the electric and magnetic
charges were zero, since adding charges to the spherically
symmetric solution would result in a singularity at x ¼ 0.

To determine whether a particular configuration was
stable or not the equation for the perturbation of the scalar
field, (13), was written in a Schrödinger-like form (16).
The ‘‘energy’’ eigenvalue of this equation was the square
of the frequency, !2, of the harmonic perturbations. If
!2 > 0 then the solution was stable; if !2 < 0 this implied
exponential growth of the perturbation and that the solution
was unstable. This method of testing for stability was used
in [41,42] to study the stability of boson stars, and was used
by the present authors [19] to study the stability of phan-
tom/ghost boson stars. Other, stronger stability criteria—
such as topological stability [39] or the global stability of
[43]—were not applicable to the present solution due to the
asymptotic AdS nature of the space-time, the asymptotic
nature of the scalar field, or the real character of the scalar
field.

For the wormhole solutions, using a combination of
numerical calculations and analytical estimates, it was
shown that stable solutions exist for a wide range of the
parameters (e.g. the size of the wormhole throat x0 and the
free parameter �) both with and without the charges. For
the spherically symmetric solution (when the wormhole
throat radius x0 ¼ 0), it is shown that the stability of the
system depends on the value of the parameter�: when�>
3=4 the solutions were stable; when �< 3=4 the solutions
were unstable.

The stability of these solutions, especially the spheri-
cally symmetric solutions, is a nontrivial result. Previously
the authors [19] found spherically symmetric solutions to
the system of four-dimensional gravity plus a ghost scalar
field having a ��4 self interaction. These solutions were
compared to the Bartnik-McKinnon solutions [20] with the
ghost field playing the role of the SU(2) Yang-Mills fields.
However, these ghost field supported solutions were not
stable. Here we find stable solutions by considering a ghost
field with a sine-Gordon potential. In (1þ 1) there exists
the well-known sine-Gordon soliton [39] but it is known
from Derrick’s theorem [44] that soliton solutions coming
from only scalar fields do not exist in dimensions higher

than (1þ 1). What we have found here is a solitonlike
solution in (3þ 1) dimensions. This was achieved by add-
ing gravity and letting the scalar field be a ghost field. The
only feature about the spherical solutions that is slightly
undesirable is that fact that asymptotically the solution
goes to AdS space-time rather than Minkowski space-
time. However, in light of the AdS/CFT correspondence
[33] and the connection between AdS space-time and the
holography ideas [35], this feature of the asymptotic form
of the solution may not be so negative. Finally, if the
Universe has some cosmological constant as observations
indicate, having a space-time with asymptotic dS or AdS
behavior is actually preferable to having asymptotic
Minkowski behavior.
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APPENDIX A: DETAILS OF WORMHOLE
CASE (x0 � 0)

In this appendix we give additional, analytical support
for the positiveness of the potential (17) (and therefore of
!2) by analyzing the asymptotic behavior of V½xð�Þ� for
x ! 0 and for x ! 1. First we consider the behavior of the
potential (17) at x ! 0, making use of the boundary con-
ditions (10). To simplify the analysis we express the con-
dition for the metric function A [i.e. the middle equation in
(10)] in term of a ¼ lnA. This yields

a0ð0Þ ¼ lnð1� ��x20Þ; (A1)

where the index 0 refers to a static solution, and we have
introduced the notation

� ¼ �

x40
� 2; � ¼ �q2 þ �Q2

2
> 0:

It follows from (A1) that Að0Þ � 0. By taking the limit
Að0Þ ¼ 0 one finds a lower bound on x0, which we denote
as the critical value, xcr:

x20 :¼ x2cr >
1

4

��1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2�

p
�

�
: (A2)

Taking into account this critical value, the behavior of the
potential (17) near x ¼ 0 depends on whether the parame-
ter � is positive or negative. In the case when � < 0 its
value falls in the range

� 2 � � < 0:

The lower bound, � ¼ �2, corresponds to absence of any
charges (� ¼ 0). There are two limiting cases:
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(i) x0 � 1, � � 1: in this case

a0ð0Þ � 0; F0ð0Þ � 0; �0 � �0ð0Þ þ�0
0x

and, accordingly, the potential (17) will then be

V½0� � 1þ 1

x20
� 1:

In other words, the potential will be positive and
large near x ¼ 0.

(ii) x0 � 1: in this case a0ð0Þ � lnð�j�jx20Þ and the

potential (17) will be

V½0� � j�jð12 þ �Þ:
Again the potential is positive near x ¼ 0.

We now turn to the asymptotic behavior of the potential
(17) as x ! 1. In this case, the metric functions, FðxÞ,
AðxÞ behave as (see the discussion at the end of Sec. II and
the caption for Fig. 3):

e2F0 ! 2
3x

2; a0 ! lnð23x2Þ:
To investigate the x ! 1 behavior of the scalar field � we
expand the field as a small perturbation, ��1, around the
asymptotic solution of �

� ¼ �þ ��1; ��1 � 1:

Plugging this form into Eq. (9) yields the following equa-
tion for ��1

��001 þ 4

x
��01 þ 3

2x2
��1 ¼ 0:

This equation has the solution

��1 ¼ Cxð�3þ ffiffi
3

p Þ=2;

where C is an integration constant. Taking into account
these asymptotic forms for the metric functions and the
scalar field, the behavior of the potential (17) is

V½xð�Þ�1 � 2
9x

2:

In summary for the case � < 0 we have the following
behavior of the potential from (17) near x ¼ 0 and as
x ! 1

x ! 0: V½xð�Þ� !

8>>><
>>>:

�
1þ 1

x2
0

�
� 1 at x0 � 1; � � 1;

j�j
�
1
2þ�

�
> 0 at x0 � 1;

x ! 1: V½xð�Þ� ! 2
9 x

2, x0, � are arbitrary.

For the case � > 0, there is an upper limit, �cr, coming
from (A2). In particular, at � ! 1, �cr ! 0, and at � ! 0,
�cr ! 1=ð�2�Þ ! 1. Carrying out an analysis similar to
the � < 0 case, we find the following asymptotic behavior
for the potential from (17) for 0 � � < �cr:

x ! 0: V½xð�Þ�

!
8><
>:
�
1þ 1

x20

�
> 0 at � ! 0; x0 > xcr and finite;

1 at � ! �cr; x0 ! xcr;

x ! 1: V½xð�Þ� ! 2
9 x

2, x0 > xcr.

The above analysis shows that near x ¼ 0 and at x ! 1
the potential (17) is positive. Although we have no similar
demonstration for the positiveness of the potential at inter-
mediate x, the numerical solutions of V½xð�Þ� show that for
some of the parameters we investigated the potential was
positive over the entire range of x—see Figs. 4 and 5. This
shows that at least for these parameters the solutions found
in Sec. II and in [32] are stable.

APPENDIX B: DETAILS OF SPHERICAL
SYMMETRIC CASE (x0 ¼ 0)

As for the wormhole solutions, we now study the stabil-
ity of the static solutions by looking at the behavior of the
potential (17) near x ! 0 and x ! 1. First we expand the
functions�0, A0, F0 in a Taylor series in the neighborhood
of x ¼ 0

�0 � �0ð0Þ þ�2

x2

2
; (B1)

A0 � A0ð0Þ þ A2

x2

2
; (B2)

F0 � F0ð0Þ þ F2

x2

2
; (B3)

where �2, A2, F2 are the corresponding values of the
second derivatives at x ¼ 0. Expressions for these second
derivatives can be found by inserting (B1)–(B3) into the
static Eqs. (7)–(9). This yields

�2 ¼ 1
3 sin�ð0Þ; A2 ¼ �½1� cos�ð0Þ�; F2 ¼ 1

2A2:

Inserting the expansions from (B1)–(B3) into the potential
(17), gives

V½0� ¼ e2F0ð0Þ½�þ ð1� �Þ cos�ð0Þ�: (B4)

We now turn to the x ! 1 behavior of the potential (17).
In this case, the metric functions behave as

A0 ! 2�

3
x2; e2F0 ! 2�

3
x2:

As for the wormhole solutions, in order to study the be-
havior of the scalar field � at infinity, we take a perturba-
tion around the asymptotic solution of the static Eq. (9) of
the form

� ¼ �þ ��1; ��1 � 1:

With this Eq. (9) takes the form
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��001 þ 4

x
��01 þ 3

2�x2
��1 ¼ 0:

If � � 2
3 this has the following solution:

��1 ¼ Cxn; n ¼ �3
ffiffiffiffi
�

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�� 6

p
2

ffiffiffiffi
�

p ;

where C is an integration constant. If � � 2
3 the solution is

��1 ¼ C1

sinð
ffiffiffiffiffiffiffiffiffi
6�9�

p
2

ffiffiffi
�

p lnxÞ
x3=2

þ C2

cosð
ffiffiffiffiffiffiffiffiffi
6�9�

p
2

ffiffiffi
�

p lnxÞ
x3=2

;

where C1, C2 are integration constants.
Using these asymptotic expressions for the metric func-

tions and the scalar field, we can obtain the asymptotic
behavior of the potential (17) for the two cases:

(i) For � � 2=3:

V½xð�Þ�1 ¼ 4

9
�2x2

�
2� 3

2�
þ 3

2
nC2x2n

�
;

where

� 1:5� n< 0 since

�
��1 !Cx�1:5 at �! 2

3 ;

��1 !Cx�1=ð2�Þ at �!1:

(ii) For � � 2=3:

V½xð�Þ�1 ¼ 4

9
�2x2

�
2� 3

2�
þ ½cos; sin�

x

�
;

where the notation [cos, sin] denotes a sum of the
functions

cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 9�

p
2

ffiffiffiffi
�

p lnx

�
and sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 9�

p
2

ffiffiffiffi
�

p lnx

�
:

Hence, one can see that, asymptotically, the terms pro-
portional to x2n in the first case and 1=x in the second case
can be neglected. The final expression for the asymptotic
form of the potential for both cases (� � 2=3 and � �
2=3) is

V½xð�Þ�1 � 4

9
�2x2

�
2� 3

2�

�
: (B5)

It is clear from this expression that there is critical value of
� ¼ 3=4. For �< 3=4 the potential becomes negative and
the static solutions of the system (7)–(9) are unstable.
A graphic illustration of the behavior of the potential

(17) at various values of � is presented in Fig. 8, and the
behavior of the lowest eigenvalues !2 as the dependence
on � is shown in Fig. 9.
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