
Six-dimensional methods for four-dimensional conformal field theories

Steven Weinberg*

Theory Group, Department of Physics, University of Texas Austin, Texas, 78712, USA
(Received 30 June 2010; published 30 August 2010)

The calculation of both spinor and tensor Green’s functions in four-dimensional conformally-invariant

field theories can be greatly simplified by six-dimensional methods. For this purpose, four-dimensional

fields are constructed as projections of fields on the hypercone in six-dimensional projective space,

satisfying certain transversality conditions. In this way some Green’s functions in conformal field theories

are shown to have structures more general than those commonly found by use of the inversion operator.

These methods fit in well with the assumption of AdS/CFT duality. In particular, it is transparent that if

fields on AdS5 approach finite limits on the boundary of AdS5, then in the conformal field theory on this

boundary these limits transform with conformal dimensionality zero if they are tensors (of any rank), but

with conformal dimension 1=2 if they are spinors or spinor-tensors.
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I. INTRODUCTION

Let us first review some well-known fundamentals. The
action of conformal transformations in four spacetime
dimensions on a general field c nðxÞ is given by its com-
mutators with the generators J�� of Lorentz transforma-
tions, P� of translations, K� of special conformal
transformations, and S of dilatations:

i½J��; c nðxÞ� ¼
�
x�

@

@x�
� x�

@

@x�

�
c nðxÞ

� iðj��Þnmc mðxÞ; (1)

i½P�; c nðxÞ� ¼ � @

@x�
c nðxÞ; (2)

i½K�; c nðxÞ� ¼
�
2x�x�

@

@x�
� x2

@

@x�

�
c nðxÞ

� 2ix�ðj��Þnmc mðxÞ þ 2dx�c nðxÞ; (3)

i½S; c nðxÞ� ¼
�
x�

@

@x�
þ d

�
c nðxÞ; (4)

where d is the conformal dimensionality of the field, and
j�� is the appropriate matrix representation of the Lie
algebra of the Lorentz group, satisfying the commutation
relations

i½j��; j��� ¼ ���j�� � ��rhoj�� � ���j�� þ ���j��:

(5)

We can work out the consequences of conformal symmetry
for Green’s functions of general fields by direct use of these
commutation relations, but this is complicated, especially
for nonscalar fields, for which j�� � 0, and for three-point
and higher Green’s functions. A widely practiced alterna-
tive [1] is to make use of invariance under the a single
action of the inversion x� � �x�=x2, but this is also

complicated, and not necessarily valid. The inversion is
not an element of the connected part of the conformal
group, but only an outer automorphism, so that it is pos-
sible for the commutation relations (1) through (4) to be
satisfied without invariance under the inversion. This
makes no difference for two-point functions, or for some
more complicated Green’s functions involving only scalar
fields, but in Sec. V we will see examples of Green’s
functions for spinor fields that are not invariant under the
inversion, even when the commutation relations (1)
through (4) are satisfied. (These comments do not apply
if one acts with the inversion an even number of times, but
this gets complicated, and it is not what is usually done in
deriving the structure of Green’s function.) Here we are
going to offer a different method for the calculation of
Green’s functions in four-dimensional conformal field
theories, based on very elementary calculations in six
dimensions.1 Though no dynamical assumptions are
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1This work was done in preparing a course on quantum field
theory given in Spring 2010. Since the original version of this
paper was posted on the hep-th archive, I have learned of
previous work in which dynamical equations are assumed for
fields in six dimensions, and then used to derive physical field
equations in four dimensions. The literature on this goes back to
Dirac [2], where electromagnetic fields and free spinor fields
were considered. Among the first following Dirac to use this
approach were Mack and Salam [3]. Other early references are
given in a historical review by Kastrup [4]. Extensive work has
been done on six-dimensional field equations (including con-
straints on six-dimensional fields found here) corresponding to
realistic theories in four-dimensions, by Bars [5]. Related work
was done by Ferrara, Grillo, and Gatto [6] for the case of
symmetric tensors, and extended to superconformal theories by
Ferrara, Iliopoulos, and Zumino [7]. Of course, much work on
the AdS/CFT correspondence deals with related problems [8]. In
contrast to all of this previous work, the aim of the present paper
is the modest one of using six-dimensional field theories to
derive only those properties of Green’s functions in four dimen-
sions that follow solely from conformal invariance, with no
dynamical assumptions.
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made here, to achieve conformal invariance in four dimen-
sions, it is found necessary to specify certain relations
between the fields in four dimensions and in six dimen-
sions and to impose constraints on the six-dimensional
fields, both of which may prove useful in dynamical
theories.

It is well-known that the connected part of the conformal
group in four spacetime dimensions form the group
SOð4; 2Þ, which can be realized as linear transformations
in a six-dimensional projective space. This six-
dimensional space is a hypercone,

�KLX
KXL ¼ 0; (6)

where K, L, etc. run over the values 1, 2, 3, 0, 5, 6, and �KL

is the metric of the six-dimensional space, a diagonal
matrix with nonzero elements

�11 ¼ �22 ¼ �33 ¼ �55 ¼ þ1; �00 ¼ �66 ¼ �1:

(7)

It is a projective space, in the sense that �XK is identified
with XK for any nonzero �. The connection between six
and four dimensions is provided by the formula for the
spacetime coordinates x�,

x� ¼ X�

X5 þ X6
; (8)

where as usual �, �, etc. run over the values 1, 2, 3, 0. The
conformal group consists of transformations

XK � �K
LX

L; �KL�
K
M�

L
N ¼ �MN;

Det� ¼ 1;
(9)

which generate the group of conformal transformations on
the x� given by Eq. (8). The generators JKL ¼ �JLK of
these transformations satisfy the commutation relations

i½JKL; JMN� ¼ �MLJKN � �KMJLN � �LNJKM

þ �KNJML; (10)

with the generators of translations, special conformal trans-
formations, and dilatations identified as

P� ¼ J5� þ J6�; K� ¼ �J5� þ J6�; S ¼ J65:

(11)

The inversion operation x� � �x�=x2 is simply the re-
flection that changes the sign of X6, leaving all other XK

unchanged. It violates the condition Det� ¼ þ1, and
hence belongs to Oð4; 2Þ but not to SOð4; 2Þ.

Because of the simplicity of the conformal transforma-
tion rule (9), it is very easy to work out the consequences of
conformal invariance for the Green’s functions of fields in
the six-dimensional projective space. We can tell by in-
spection whether a Green’s function of fields in six dimen-
sions is SOð4; 2Þ-invariant, in much the same way that we
can tell at a glance whether a Green’s function in four

spacetime dimensions is Lorentz invariant. The question,
then, is how can we convert information about six-
dimensional Green’s functions into information about the
Green’s functions of fields in four-dimensional spacetime?
Fields in six dimensions of course have more components
than the corresponding fields in four dimensions; for in-
stance, a six-dimensional tensor of rank r has 6r compo-
nents, rather than the 4r components in four dimensions,
and a spinor field in six dimensions has eight, rather than
four, components. In order to construct suitable four-
dimensional fields from fields in six dimensions, we need
both to impose constraints on the fields in six dimensions
and to write the four-dimensional fields as suitable projec-
tions of the six-dimensional fields.
We show how to do this for tensor fields in Sec. II. In

Sec. III we apply these methods to derive the structure of
various Green’s functions of tensor fields in four-
dimensions. Section IV deals with spinor fields, and in
Sec. V we find some new results for spinor Green’s
functions.
Although the methods of this paper described in Secs. II,

III, IV, and V do not in any way depend on assumptions
about holography, they were in fact inspired by AdS/CFT
duality [9], especially as explained byWitten [10]. The six-
dimensional methods introduced here are applied to AdS/
CFT duality in Sec. VI and are used to find the conformal
dimensionality d of fields in four-dimensional conformal
field theories that arise from fields in five-dimensional anti-
de Sitter space that approach finite limits on the boundary
of the space. For general tensors, it has the familiar value
d ¼ 0, but for spinor or spinor-tensor fields, it is d ¼ 1=2.

II. TENSOR FIELDS

A tensor field TK1K2���KrðXÞ of rank r in six dimensions
has the conformal transformation rule

TK1���KrðXÞ � �L1

K1 � � ��Lr

KrTL1���Lrð�XÞ; (12)

with � satisfying Eq. (9). (Indices K, L, etc. are lowered
and raised with �KL and its inverse �KL.) For infinitesimal
SOð4; 2Þ transformations, this can be expressed as formulas
for the commutators of TK1K2���Kr with the generators JKL

of these transformations:

i½JMN; TK1���KrðXÞ� ¼
�
XN @

@XM

� XM @

@XN

�
TK1���KrðXÞ

� iðJMNÞK1���Kr

L1���Lr
TL1���LrðXÞ; (13)

where JMN is the tensor representation of the SOð4; 2Þ
algebra:

iðJMNÞK1���Kr
L1���Lr

¼ ð�MK1�N
L1

� �NK1�M
L1
Þ�K2

L2
� � ��Kr

Lr
þ � � �

þ ð�MKr�N
Lr
� �NKr�M

Lr
Þ�K1

L1
� � ��Kr�1

Lr�1
:

(14)

Because we identify XK with �XK, TK1���KrðXÞmust satisfy
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a scaling relation

TK1���Krð�XÞ ¼ ��dTK1���KrðXÞ; (15)

where for the present d is just some unknown number. For
reasons that will become clear, we also require that the
hypercone condition (6) must not be affected by any of the
differential operators

TK1���KrðXÞ @

@XK1
; � � � ; TK1���KrðXÞ @

@XKr
;

so that TK1���KrðXÞ must be transverse on each index

XK1
TK1���KrðXÞ ¼ 0; � � � ; XKr

TK1���KrðXÞ ¼ 0: (16)

Now, consider the four-dimensional field

t�1����rðxÞ � ðX5 þ X6Þde�1

K1
ðxÞ � � � e�r

Kr
ðxÞTK1���KrðXÞ;

(17)

with

e
�
� ðxÞ � �

�
� ; e

�
5 ðxÞ � e

�
6 ðxÞ � �x�: (18)

Because of the scaling condition (15), the field (17) is only
a function of the ratios of the XK, so that when we elimi-
nate X5 � X6 by imposing the hypercone condition (6), the
field (17) can indeed be regarded as a function only of the
spacetime coordinate x� given by Eq. (8).

It is straightforward though tedious to use Eqs. (6), (8),
(11), (13), (15), and (16) to show directly that the four-
dimensional tensor field given by Eqs. (17) and (18) does
satisfy the conformal transformation rules (1) through (4),
with ðj��Þ�1����r

�1����r
here given by the tensor representation of

the Lorentz group:

iðj��Þ�1����r
�1����r

¼ ð���1��
�1
� ���1�

�
�1
Þ��2

�2
� � ���r

�r
þ � � �

þ ð���r��
�r
� ���r��

�r
Þ��1

�1
� � ���r�1

�r�1
:

(19)

In this paper we will instead show this by a less direct but
more illuminating method.

It is shown in the Appendix that the usual conformal
transformation rules of tensor fields just amount to the
statement that under general conformal transformations a
tensor of rank r and conformal dimensionality d transforms
as a tensor density of weight

w ¼ �ðdþ rÞ=4: (20)

So this is the condition that must be satisfied by the field
(17). To show that this condition is satisfied, we note by
differentiating Eq. (8) that

@x�ðXÞ
@XK

¼ ðX5 þ X6Þ�1e
�
KðxÞ;

so that the field (17) can be written

t�1����rðxÞ � ðX5 þ X6Þdþr

� @x�1ðXÞ
@XK1

� � � @x
�rðXÞ
@XKr

TK1���KrðXÞ:

Hence, under a coordinate transformation X � X0 ¼
�K

LX
L, we have

t�1����rðxÞ � ðX05 þ X06Þdþr @x
�1ðX0Þ
@XK1

� � � @x
�rðX0Þ
@XKr

��L1

K1�Lr

KrTL1���LrðX0Þ:

Now, for any displacement dX on the hypercone (6), we
have

@x�ðX0Þ
@X0L dX0L ¼ @x�ðX0Þ

@XK dXK ¼ @x�ðX0Þ
@XK �L

KdX0L:

But this is only for dX0L on the hypercone, i.e. for
X0
LdX

0L ¼ 0, so

@x�ðX0Þ
@X0L � @x�ðX0Þ

@XK �L
K / X0

L:

Under the transversality condition (16), the term propor-
tional to X0

L makes no contribution, so we see that
@x�1 ðXÞ
@XK1

� � � @x�r ðXÞ
@XKr TK1���KrðXÞ transforms as a tensor under

general conformal transformations. Furthermore, it is
straightforward to show that under general conformal
transformations x � x0, the quantity X5 þ X6 transforms
as a scalar density of weight �1=4:

X05 þ X06

X5 þ X6
¼

��������
@x0

@x

��������
�1=4

:

Hence t�1����rðxÞ does indeed transform under general
conformal transformations as a tensor density of weight
given by Eq. (20), the condition for conformal invariance.
It may be noted that e

�
KðxÞXK ¼ 0, so t�1����rðxÞ is un-

changed if we shift TK1���KrðXÞ by an amount proportional
to any of XK1 or XK2 etc. This lowers the number of
physically relevant components of TK1���KrðXÞ from 6r to
5r, and the transversality conditions (16) lowers it further
to 4r, the appropriate number for a four-dimensional tensor
of rank r.
It may also be noted, as a consequence of Eq. (16), that

traces of the four-dimensional tensor t�1����rðxÞ are propor-
tional to the corresponding traces of the six-dimensional
tensor TK1���KrðXÞ. For instance,

��1�2
t�1�2����rðxÞ ¼ ðX5 þ X5Þde�3

K3
ðxÞe�4

K4
ðxÞ

� � ��K1K2
TK1K2���KrðXÞ:

In particular, the condition of being traceless carries over
from a six-dimensional tensor TK1���KrðXÞ to the corre-
sponding four-dimensional tensor t�1����rðxÞ. The same is

SIX-DIMENSIONAL METHODS FOR FOUR-DIMENSIONAL . . . PHYSICAL REVIEW D 82, 045031 (2010)

045031-3



obviously also true for conditions of symmetry or antisym-
metry. Hence, six-dimensional tensors belonging to irre-
ducible representations of SOð4; 2Þ yield four-dimensional
tensors belonging to the corresponding irreducible repre-
sentations of SOð3; 1Þ.

III. TENSOR APPLICATIONS

We will first apply the method described in the previous
section to a few familiar simple examples, and then turn to
more complicated applications.

A. Scalar fields

First, consider the Green’s function h’1ðxÞ’2ðyÞi0 for a
pair of scalar fields ’1ðxÞ and ’2ðyÞ of conformal dimen-
sionality d1 and d2, with x� y spacelike. According to the
scaling condition (15), the Green’s function for the corre-
sponding six-dimensional fields �1ðXÞ and �2ðYÞ must be
of order �d1 in X and�d2 in Y, but it can only depend on
the scalar X � Y, so there must be an equal number of
factors of X and Y, and therefore d1 ¼ d2 � d. As is
well-known, this is the one thing beyond scale invariance
that we learn in this case from conformal symmetry. To
check that the Green’s function in four dimensions has the
familiar form dictated by Poincaré and scale invariance, we
note by using Eq. (8) that the scalar here is

X � Y ¼ X�Y
� þ 1

2
ðX5 þ X6ÞðY5 � Y6Þ

þ 1

2
ðX5 � X6ÞðY5 þ Y6Þ

¼ ðX5 þ X6ÞðY5 þ Y6Þ
�
x � y� x2

2
� y2

2

�

¼ � 1

2
ðX5 þ X6ÞðY5 þ Y6Þðx� yÞ2; (21)

so the six-dimensional Green’s function is proportional to

ðX � YÞ�d ¼ ½�1
2ðX5 þ X6ÞðY5 þ Y6Þðx� yÞ2��d:

But according to Eq. (17), the four-dimensional scalars are
related to the six-dimensional scalars by

’1ðxÞ ¼ ðX5 þ X6Þd�1ðXÞ;
’2ðyÞ ¼ ðY5 þ Y6Þd�2ðYÞ;

(22)

so the factors X5 þ X6 and Y5 þ Y6 cancel in the four-
dimensional Green’s function, which we see is propor-
tional to ½ðx� yÞ2��d, the well-known result of Poincaré
and scale invariance.

It is almost as easy to deal with the three-point function
h’1ðxÞ’2ðyÞ’3ðzÞi0. According to the scaling condition

(15), the corresponding six-dimensional three-point func-
tion for �1ðXÞ, �2ðYÞ, and �3ðZÞ must be of order �d1 in
X, �d2 in Y, and �d2 in Z, so it must be proportional to

ðX � YÞ�aðY � ZÞ�bðZ � XÞ�c;

where aþ c ¼ d1, aþ b ¼ d2, and bþ c ¼ d3, and thus
must be proportional to

ðX � YÞðd3�d1�d2Þ=2ðY � ZÞðd1�d2�d3Þ=2ðZ � XÞðd2�d1�d3Þ=2

/ ðX5 þ X6Þ�d1ðY5 þ Y6Þ�d2ðZ5 þ Z6Þ�d3

� ððx� yÞ2Þðd3�d1�d2Þ=2ððy� zÞ2Þðd1�d2�d3Þ=2

� ððz� xÞ2Þðd2�d1�d3Þ=2:

The factors ðX5 þ X6Þ�d1 , ðY5 þ Y6Þ�d2 , and ðZ5 þ Z6Þ�d3

are canceled by similar factors in the relation (22) between
the ’s and �s, leaving us with a three-point function
h’1ðxÞ’2ðyÞ’3ðzÞi0 proportional to

ððx� yÞ2Þðd3�d1�d2Þ=2ððy� zÞ2Þðd1�d2�d3Þ=2

� ððz� zÞ2Þðd2�d1�d3Þ=2; (23)

another known result.

B. Vector fields

We next turn to vector fields. The two-point function of
the six-vector fields VK

1 ðXÞ and VL
2 ðYÞ must be a linear

combination of the two tensors that vanish when contracted
with either XK or YL:

�KL � YKXL

X � Y ; XKYL;

with coefficients that are functions only of X � Y. Because
XKe

�
KðxÞ ¼ 0, the second of these makes no contribution to

the four-dimensional Green’s function, and can be ignored.
Each term in the first transverse tensor contains zero net
factors of X and Y, while the scaling condition (8) requires
that the two-point function be of order �d1 in X and of
order�d2 in Y, so we see again that the two-point function
vanishes unless d1 ¼ d2 � d, in which case it is propor-
tional to

ðX � YÞ�d

�
�KL � YKXL

X � Y
�
;

with a constant coefficient. Using Eq. (17), we see that the
four-dimensional Green’s function hv�ðxÞv�ðyÞi0 is pro-
portional to

ðX5 þ X6ÞdðY5 þ Y6ÞdðX � YÞ�de
�
KðxÞe�LðYÞ

�
�KL � YKXL

X � Y
�
:

Now, we note that
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e
�
KðxÞe�LðyÞ�KL ¼ ���; (24)

and

YKe
�
KðxÞ ¼ Y� � x�ðY5 þ Y6Þ ¼ ðY5 þ Y6Þðy� � x�Þ;

(25)

and likewise XKe
�
KðyÞ ¼ ðX5 þ X6Þðx� � y�Þ. Equa-

tion (21) then shows that the factors (X5 þ X6) and (Y5 þ
Y6) all cancel, leaving us with the result that hv�ðxÞv�ðyÞi0
is proportional to

ððx� yÞ2Þ�d

�
��� � 2

ðx� yÞ�ðx� yÞ�
ðx� yÞ2

�
: (26)

Here the conformal dimensionality d is arbitrary, but if we
now impose the further condition that these vectors are
conserved currents, we find that d must have the canonical
value d ¼ 3.

C. Symmetric second-rank tensor fields

The two-point function of two symmetric six-tensors
TKL
I ðXÞ and TMN

2 ðYÞ is required by SOð4; 2Þ invariance

and the transversality condition (16) to be a linear combi-
nation of the transverse tensors

�
�KM � YKXM

X � Y
��
�LN � YLXN

X � Y
�
þ

�
�LM � YLXM

X � Y
�

�
�
�KN � YKXN

X � Y
��
�KL � YKXL þ YLXK

X � Y
�

�
�
�MN � XMYN þ YMXN

X � Y
�

and

XKXLYMYN;

in all three cases with coefficients that are functions only of
the scalar X � Y. Each term in these three tensors (including
their coefficients) has equal numbers of factors of X and Y,
while the scaling condition (15) requires the number of
factors of X and Y to equal �d1 and �d2, respectively, so
we must have d1 ¼ d2 � d, just as for scalars and vectors.
Because XKe�KðxÞ ¼ YMe�MðyÞ ¼ 0, the third of these ten-
sors makes no contribution to the four-dimensional two-
point function and will therefore be ignored. So the six-
dimensional Green’s function must be a linear combination
of the first two tensors, with coefficients proportional to
ðX � YÞ�d. Using Eqs. (21), (24), and (25), the two-point
function of the four-dimensional tensors defined by
Eq. (17) is then

ht��ðxÞt��ðyÞi0 ¼ A½r2��d

�
������ þ ������ � 2

r�r���� þ r�r���� þ r�r���� þ r�r����

r2
þ 8

r�r�r�r�

ðr2Þ2
�

þ B½r2��d������; (27)

where r � x� y, and A and B are constants.
So far, d like A andB is an arbitrary number, but all these

constants become tightly constrained if we require that the
tensor is conserved. Operating on Eq. (27) with @=@x�

gives a quantity proportional to

ð2d� 8Þðr���� þ r����Þ � ð4Aþ 2dBÞr����

þ Að32� 8dÞ r
�r�r�

r2
;

so the conservation condition tells us that d ¼ 4 and A ¼
�2B. These are just the properties we expect for the
energy-momentum tensor in a conformally-invariant the-
ory—its canonical dimension is d ¼ 4, while the condition
A ¼ �2B tells us that the tensor is traceless.

IV. SPINOR FIELDS

We now consider how to convert information about the
Green’s functions of spinor fields on the hypercone in six-
dimensional projective space into information about the
Green’s functions of spinors in four-dimensional space-
time. Let us first recall some well-known facts about
spinors in six dimensions.

The Clifford algebra for SOð4; 2Þ has a 26=2 ¼
8-dimensional irreducible representation:

�� ¼ 0 i�5�
�

i�5�
� 0

� �
; �5 ¼ 0 �5

�5 0

� �
;

�6 ¼ 0 1
�1 0

� �
;

(28)

which obeys the anticommutation relations

f�K;�Lg ¼ 2�KL: (29)

(Here �� is the usual 4� 4 Dirac matrix,2 and �5 �
�i�0�2�2�3.) From these matrices, we can construct the
8-component Dirac representation of the SOð4; 2Þ Lie al-
gebra

J KL ¼ � i

4
½�K;�L� (30)

for which

2Our notation for Dirac matrices is the same as used in [11].
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i½J KL;�M� ¼ �K�LM � �L�KM; (31)

and so

i½J KL;JMN� ¼ �LMJ KN � �KMJ LN � �LNJ KM

þ �KNJ LM: (32)

Explicitly,

J �� ¼ j�� 0
0 j��

� �
; J 5� ¼ 1

2

�� 0
0 ��

� �
;

J 6� ¼ 1

2

�5�
� 0

0 ��5�
�

� �
; J 56 ¼ i

2

�5 0
0 ��5

� �
;

(33)

where j�� is the Dirac representation of the Lorentz group
Lie algebra:

j�� ¼ � i

4
½��; ���: (34)

The block diagonal form of the matrices (33) indicates that
this representation of the Lie algebra of SOð4; 2Þ is reduc-
ible, the top and bottom blocks furnishing the two different
irreducible four-component spinor representations of the
Lie algebra of SOð4; 2Þ.

The 8-component spinor fields in six dimensions have an
SOð4; 2Þ transformation given by the commutation rela-
tions

i½JKL;�nðXÞ� ¼
�
XL @

@XK

� XK @

@XL

�
�nðXÞ

� iðJ KLÞnm�mðXÞ: (35)

We note that the matrices �K and J KL obey reality con-
ditions

ð�KÞy ¼ �b�Kb; ðJ KLÞy ¼ bJ KLb;

b � �0�5 0
0 �0�5

� �
¼ b�1;

(36)

so the adjoint of Eq. (35) gives

i½JKL; ��ðXÞ� ¼
�
XL @

@XK

� XK @

@XL

�
��ðXÞ þ i ��ðXÞJ KL;

(37)

where

��ðXÞ � �yðXÞb: (38)

We can therefore form six-tensors from bilinears in�: For
any 8� 8 matrix M, we have

i½JKL; ð ��ðXÞM�ðXÞÞ�
¼

�
XL @

@XK

� XK @

@XL

�
ð ��ðXÞM�ðXÞÞ

þ ið ��ðXÞ½J KL;M��ðXÞÞ; (39)

so for instance [ ��ðXÞ�K�ðXÞ] is a vector field,

[ ��ðXÞJ KL�ðXÞ] is an antisymmetric tensor, etc.
As in the case of tensor fields, we assume that �ðXÞ

obeys a scaling law,

�ð�XÞ ¼ ��dþ1=2�ðXÞ (40)

so that ðX5 þ X6Þd�1=2�ðXÞ is a function only of ratios of
the XK. So far, d� 1=2 is just some unknown number; the
reason for writing it in this form will become apparent
soon. With X5 � X6 eliminated in favor of X5 þ X6 and

X�X� by use of Eq. (6), we can regard ðX5 þ
X6Þd�1=2�ðXÞ as a function only of the coordinate x� given
by Eq. (8):

ðX5 þ X6Þd�1=2�ðXÞ � 	ðxÞ: (41)

It will be convenient to separate �ðxÞ and 	ðxÞ into four-
component segments

�ðxÞ ¼ �þðxÞ
��ðxÞ

� �
; 	�ðxÞ ¼ ðX5 þ X6Þd�1=2��ðXÞ:

(42)

Equation (33) shows that the �� transform according to
the two fundamental spinor irreducible representations of
SOð4; 2Þ. Although the 	�ðxÞ are functions only of x�,
neither of these four-component fields have the right con-
formal (or even translation) transformation properties (1)–
(4) to serve as conventional four-dimensional spinor fields,
but they will be ingredients in the construction of such
fields.
Using Eqs. (35) and (33), we can work out the commu-

tators of the 	� fields with the generators J�� of Lorentz
transformations; the generators P� ¼ J5� þ J6� of trans-
lations, the generators K� ¼ J6� � J5� of special confor-
mal transformations, and the generator S ¼ �J56 of scale
transformations:

i½J��; 	�ðxÞ� ¼
�
x�

@

@x�
� x�

@

@x�

�
	�ðxÞ � ij��	�ðxÞ;

(43)

i½P�; 	�ðxÞ� ¼ � @

@x�
	�ðxÞ � i

2
ð1� �5Þ��	�ðxÞ; (44)

i½K�; 	�ðxÞ� ¼
�
2x�x�

@

@x�
� x2

@

@x�
þ ð2d� 1Þx�

�
	�ðxÞ

þ i

2
ð1� �5Þ��	�ðxÞ; (45)
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i½S; 	�ðxÞ� ¼
�
x�

@

@x�
þ d� 1

2

�
	�ðxÞ � 1

2
�5	�ðxÞ: (46)

The second terms in Eqs. (44) through (46) are very
different from the matrix terms in the commutation rela-
tions (1)–(4) of general fields in four dimensions. In par-
ticular, the presence of a matrix term in the commutation
relation (44) shows that 	�ðxÞ does not have the usual
transformation rule under translations. In order to construct
suitable four-dimensional spinor fields, we must impose a
condition on �ðXÞ analogous to the transversality condi-
tion imposed on tensors in Sec. II, and we must apply a
projection matrix to 	�ðXÞ, analogous to the quantities
e�KðxÞ in Eq. (17).

First, to eliminate the matrix term in Eq. (44), we define
a pair of chiral fields

c�ðxÞ � 1
2ð1� �5Þ	�ðxÞ: (47)

Because �5 commutes with j��, multiplying Eq. (43) with
ð1� �5Þ=2 gives the same Lorentz transformation rule:

i½J��; c�ðxÞ� ¼
�
x�

@

@x�
� x�

@

@x�

�
c�ðxÞ � ij��c�ðxÞ;

(48)

while multiplying Eq. (44) with ð1� �5Þ=2 gives what is
now a conventional transformation under spacetime trans-
lations:

i½P�; c�ðxÞ� ¼ � @

@x�
c�ðxÞ: (49)

When we multiply Eq. (46) with ð1� �5Þ=2, the second
term becomes just c�ðxÞ=2, canceling the�1=2 in the first
term:

i½S; c�ðxÞ� ¼
�
x�

@

@x�
þ d

�
c�ðxÞ: (50)

This is why we wrote the scaling relation for fermions in
the form (40); Eq. (50) shows that with this form of the
scaling relation, d is the conformal dimension of the spinor
fields. Finally, multiplying the commutation relation (45)
with ð1� �5Þ=2 gives

i½K�; c�ðxÞ� ¼
�
2x�x�

@

@x�
� x2

@

@x�
þ ð2d� 1Þx�

�

� c�ðxÞ þ i��
�ðxÞ; (51)

where 
� is the opposite-chirality part of 	�:


�ðxÞ � 1
2ð1� �5Þ	�ðxÞ: (52)

This is still very different from the desired transformation
rule under special conformal transformations.

To proceed, we must impose a transversality condition
on the spinor fields �ðXÞ in six dimensions. The natural
such condition is

XK�
K�ðXÞ ¼ 0: (53)

This manifestly respects SOð4; 2Þ invariance, and it is
consistent with the fact that ðX � �Þ2 ¼ ðX � XÞ ¼ 0, so
that zero is the sole eigenvalue of X � �. Equation (53)
has the immediate consequence that the vector field

( ���K�) obeys the same transversality condition

XKð ���K�Þ ¼ 0 that we imposed on vector fields in
Sec. II. The same transversality holds for the other vector

field ( ���7�
K�), where

�7 � �i�0�1�2�3�5�6 ¼ 1 0
0 �1

� �
; (54)

and also for the antisymmetric tensors ( ��½�K;�L��) and

( ���7½�K;�L��). The only other six-dimensional tensors
that can be formed from bilinears in �ðXÞ are the totally
antisymmetric tensors of third rank

ð ���½K�L�M��Þ; ð ���7�
½K�L�M��Þ;

the square brackets indicating antisymmetrization. These
are not strictly transverse; instead, Eq. (53) gives

XKð ���½K�L�M��Þ ¼ XLð ���M�Þ � XMð ���L�Þ;
and similarly for XKð ���7�

½K�L�M��Þ. If we think of
these tensors as three-forms

ð ���½K�L�M��ÞdXKdXLdXM;

ð ���7�
½K�L�M��ÞdXKdXLdXM

with anticommuting differentials dXK tangent to the hyper-
cone (6), so that XKdXK ¼ 0, then these 3-forms are
transverse, in the sense that they vanish if we replace any
dXK with XK. But the real justification for the transversal-
ity condition (53) is that, as we shall now see, it gives the
results we need in four dimensions.
By multiplying the transversality condition Eq. (53) with

the matrix

1� �5 0
0 1þ �5

� �
;

we find a simple formula for 
� in terms of c�:


� ¼ �ix��
�c�: (55)

Thus, the last term in Eq. (51) is

i��
� ¼ ����x�c� ¼ ðx� þ 2ij��x�Þc�:

The special conformal transformation rule (51) thus reads

i½K�; c�ðxÞ� ¼
�
2x�x�

@

@x�
� x2

@

@x�
þ 2dx�

�
c�ðxÞ

þ 2ij��x�c�ðxÞ: (56)

Equations (48)–(50) and (56) show that the fields c�ðxÞ
are conventional four-dimensional Dirac fields, satisfying
the commutation relations (1)–(4) with the generators of
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the conformal group, and with conformal dimension d. The
other fields 
� have no obvious physical interpretation. Of
course, we can assemble the chiral fields c� into a four-
component Dirac field

c ðxÞ ¼ cþðxÞ þ c�ðxÞ
¼ ðX5 þ X6Þd�1=2

��
1� �5

2

�
�þðXÞ

þ
�
1þ �5

2

�
��ðXÞ

�
: (57)

It is this form of the spinor field that will be used to work
out the consequences of conformal symmetry for Green’s
functions involving spinor fields.

By combining the methods of this section and of Sec. II,
we can see that a field �K1���KrðXÞ with tensor indices as
well as an 8-component spinor index, if subjected to the
transversality conditions,

XK1
�K1���KrðXÞ ¼ � � � ¼ XKr

�K1���KrðXÞ
¼ ðX � �Þ�K1���KrðXÞ ¼ 0

yields a spinor-tensor in four dimensions

c �1����rðxÞ ¼ ðX5 þ X6Þd�1=2e�1

K1
ðxÞ � � � e�r

Kr
ðxÞ

�
�ð1� �5Þ

2
�K1���Krþ ðXÞ

þ ð1þ �5Þ
2

�K1���Kr� ðXÞ
�
;

(where �þ and �� are the upper and lower four compo-
nents of �, with �7 ¼ þ1 and �7 ¼ �1, respectively),
which transforms under conformal transformations accord-
ing to Eqs. (1)–(4), with conformal dimensionality d.

V. SPINOR APPLICATIONS

First, let us consider the Green’s function hc 1ðxÞ �c 2ðyÞi,
where �c � c y�0�5. Invariance under SOð4; 2Þ tells us
that the corresponding two-point function of �1ðXÞ and
��2ðYÞ in six dimensions must be a linear combination

Aþ BðX � �Þ þ CðY � �Þ þD½X � �; Y � ��;
with A, B, C, and D all functions only of the scalar X � Y.
(Here we are ignoring the possibility of including terms
involving the matrix �7. We will consider such terms
presently.) The transversality condition that ðX �
�Þ�1ðXÞ ¼ 0 tells us that C ¼ 0 and A ¼ 2DX � Y, while
the condition that ��2ðYÞðY � �Þ ¼ 0 tells us B ¼ 0 and,
again, A ¼ 2DX � Y. So the six-dimensional Green’s func-
tion must have the form

A

�
1þ ½X � �; Y � ��

2X � Y
�
¼ AðX � �ÞðY � �Þ

ðX � YÞ :

Every term here has equal numbers of factors of XK and YK

(including those in A), while the scaling condition (40) tells

us that the Green’s function must be of order�d1 þ 1=2 in
XK and of the order �d2 þ 1=2 in YK, so we must have
d1 ¼ d2 � d, and the whole Green’s function must be
proportional to

ðX � YÞ1=2�d

�
1þ ½X � �; Y � ��

2X � Y
�
; (58)

with a constant proportionality coefficient.
From Eqs. (30) and (33), we find

½X � �; Y � �� ¼ 4iXKYLJ KL ¼ 4i
Mþ 0
0 M�

� �
;

where

M� ¼ j��X�Y� þ 1

2
ð1� �5Þ��ðX5Y� � Y5X�Þ

� �5�
�ðX6Y� � Y6X�Þ � i

2
�5ðX5Y6 � Y5X6Þ:

From Eq. (57), we then have

hc 1ðxÞ �c 2ðyÞi / ðX5 þX6Þd�1=2ðY5 þY6Þd�1=2ðX �YÞ�d�1=2

�X
�

�
1��5

2

�
M�

�
1��5

2

�
:

Only the vector and axial vector terms in M� survive, so
this simplifies to

hc 1ðxÞ �c 2ðyÞi / ðX5þX6Þd�1=2ðY5þY6Þd�1=2ðX �YÞ�d�1=2

���ððX5þX6ÞY��ðY5þY6ÞX�Þ:
From (8) and (21), we have then

hc 1ðxÞ �c 2ðyÞi / ððx� yÞ2Þ�d�1=2��ðx� � y�Þ: (59)

This is of course just what we should expect in a Poincaré
invariant and scale invariant theory with spinor fields of
equal dimensionality d.
Now let us return to the possibility of including the

matrix �7 defined by Eq. (54) in the six-dimensional
Green’s function. That is, we consider the possibility of
multiplying Eq. (58) with a factor (1þ ��7), with some
arbitrary �, so that the Green’s function in six dimensions
is proportional to

ð1þ ��7ÞðX � YÞ1=2�d

�
1þ ½X � �; Y � ��

2X � Y
�
: (60)

The effect is to multiply the termsM� with (1� �), so that
the Green’s function (59) becomes

hc 1ðxÞ �c 2ðyÞi / ððx� yÞ2Þ�d�1=2ð1� ��5Þ��ðx� � y�Þ:
(61)

This is allowed by SOð4; 2Þ invariance, since �7 commutes
with all the generatorsJ KL, but it is not allowed in a theory
that is invariant under Oð4; 2Þ, since �7 changes sign under
transformations (9) with Det� ¼ �1. In particular, �7

terms seem to be ruled out if we impose invariance under
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the inversion x� � �x�=x2, which just amounts to the
reflection that changes the sign of X6 and leaves all other
XK unchanged.

The presence of a �7 term in the six-dimensional
Green’s function (60) or a �5 term in the corresponding
four-dimensional Green’s function (61) does not in itself
violate invariance under Oð4; 2Þ, because we can eliminate
these terms by a redefinition of the fermion fields. It is only
necessary to replace � with

�0 ¼
�
ð1þ �Þ�1=2

�
1þ �7

2

�
þ ð1� �Þ�1=2

�
1� �7

2

��
�

(62)

so that instead of Eq. (56), we have

c ðxÞ ¼ ðX5 þ X6Þd�1=2

�
ð1þ �Þ�1=2

�
1� �5

2

�
�þðXÞ

þ ð1� �Þ�1=2

�
1þ �5

2

�
��ðXÞ

�
: (63)

The real sign of a breakdown of Oð4; 2Þ to SOð4; 2Þ is the
presence, in one or more Green’s functions, of
Oð4; 2Þ-breaking �7 terms that cannot all be eliminated
by redefinition of the fermion fields.

Here is an example. Consider the Green’s function
hc 1ðxÞ �c 2ðyÞ’ðzÞi0 of two fermion and one scalar field,
of dimensionality d1, d2, and d3, respectively. Invariance
under Oð4; 2Þ would require the corresponding six-
dimensional Green’s function to take the form

Aþ BðX � �Þ þ CðY � �Þ þDðZ � �Þ
þ E½X � �; Y � ��F½Y � �; Z � �� þG½Z � �; X � ��
þHðX � �ÞðZ � �ÞðY � �Þ;

with A, B, etc. functions of the scalars X � Y, Y � Z, and
Z � X. (Any other ordering of the � matrices in the last
term would differ only by terms of the same form as those
already included.) This must vanish when we multiply with
X � � on the left; the vanishing of the terms proportional to

½X � �; Y � ��, ½X � �; Z � ��, and XKYLZM�
½K�L�M� gives

C ¼ 0,D ¼ 0, and F ¼ 0, while the vanishing of the terms
proportional to X � � gives A ¼ 2EX � Y. It must also
vanish when we multiply on the right with Y � �; the
vanishing of the terms proportional to ½X � �; Y � ��, ½Y �
�; Z � ��, and XKYLZM�

½K�L�M� gives B ¼ 0, D ¼ 0, and
G ¼ 0, while the vanishing of the terms proportional to Y �
� again gives A ¼ 2EX � Y. In both cases the vanishing of
terms proportional to the unit matrix gives nothing new. So
we conclude that the Green’s function in six dimensions is
of the form

A

�
1þ ½X � �; Y � ��

2X � Y
�
þHðX � �ÞðZ � �ÞðY � �Þ:

Now, according to the scaling properties of the fields, the
total number of factors ofX, Y, and Zmust be, respectively,

�d1 þ 1=2, �d2 þ 1=2, �d3, so

A / ðX � YÞ�aðY � ZÞ�bðZ � XÞ�c;

H / ðX � YÞ�a�1=2ðY � ZÞ�b�1=2ðZ � XÞ�c�1=2;

where aþ c ¼ d1 � 1=2, aþ b ¼ d2 � 1=2, bþ c ¼ d3.
The Green’s function for two spinors and a scalar in six
dimensions thus takes the form

ðX � YÞðd3�d1�d2þ1Þ=2ðY � ZÞðd1�d2�d3Þ=2ðZ � XÞðd2�d3�d1Þ=2

�
�
a

�
1þ ½X � �; Y � ��

2X � Y
�
þ h

ðX � �ÞðZ � �ÞðY � �ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX � YÞðY � ZÞðZ � XÞp
�
;

(64)

where a and h are constants.
The contribution of the second term to the four-

dimensional Green’s function is complicated, and is not
needed for the point I wish to make, so I will take h ¼ 0 in
what follows. Then, following the same arguments as for
the two-spinor Green’s function, we have

hc 1ðxÞ �c 2ðyÞ’ðzÞi0
/ ððx� yÞ2Þðd3�d1�d2�1Þ=2ððy� zÞ2Þðd1�d2�d3Þ=2

� ððz� xÞ2Þðd2�d3�d1Þ=2��ðx� yÞ�: (65)

But in a theory that is invariant under SOð4; 2Þ but not
Oð4; 2Þ, we are free to include a factor 1þ ��7 multi-
plying the first term in Eq. (64), so that (for h ¼ 0) in place
of Eq. (65) we have

hc 1ðxÞ �c 2ðyÞ’ðzÞi0
/ ððx� yÞ2Þðd3�d1�d2�1Þ=2ððy� zÞ2Þðd1�d2�d3Þ=2

� ððz� xÞ2Þðd2�d3�d1Þ=2ð1� ��5Þ��ðx� yÞ�: (66)

Now, by redefining the fermion fields we can eliminate the
1þ ��7 factor in the two-point function, which eliminates
the �5 term in Eq. (61), or we can eliminate the 1þ ��7

factor in the three-point function, which eliminates the �5

term in Eq. (66), but unless � ¼ � we cannot do both. We
see then that it makes a difference whether we assume
invariance under Oð4; 2Þ, which includes the inversion
x� � �x�=x2, or only invariance under SOð4; 2Þ, which
does not include the inversion.

VI. ADS/CFT

In the preceding sections the six-tensors TK1���KrðXÞ and
eight-component spinors �ðXÞ were fictions, merely
means to the end of calculating Green’s functions for fields
in four spacetime dimensions. But TK1���KrðXÞ and �ðXÞ
may also be regarded as actual fields on five-dimensional
anti-de Sitter space (AdS5). This space is the surface of the
hypersphere in six dimensions

�KLX
KXL ¼ R2 (67)

with the same metric �KL as in Secs. I, II, III, IV, and V,
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and arbitrary R> 0. It is manifestly maximally symmetric,
with isometry group SOð4; 2Þ consisting of the transforma-
tions (9). Tensors TK1���KrðXÞ on AdS5 transform as in
Eq. (12), and without upsetting the isometry can be subject
to the transversality condition (16). We can also introduce
8-component spinor fields �ðXÞ on AdS5, with the same
SOð4; 2Þ transformation properties as in Sec. IV, but we
cannot here adopt the transversality condition (53), which
requires that ðX � �Þ� ¼ 0, because on the hypersphere,
we have

ðX � �Þ2 ¼ X � X ¼ R2;

and so the only eigenvalues of X � � are R and�R. But we
can instead adopt the SOð4; 2Þ-invariant condition

X � ��ðXÞ ¼ R�ðXÞ: (68)

There is no loss of generality in taking the coefficient of
�ðXÞ on the right-hand side to be R rather than �R,
because if �ðXÞ satisfies Eq. (68), then �7�ðXÞ satisfies
the same constraint with R replaced with �R.

Of course, XK and �XK here can not both be on the
hypersphere (67) except for � ¼ �1, so we can not impose
a scale invariance condition like (15) here. But in the limit
that some components XK become much larger than R,
with the ratios of all components held fixed, the hyper-
sphere (67) effectively becomes the hypercone (6), and the
constraint (68) on spinor fields effectively becomes the
transversality condition (53). The AdS/CFT conjecture
deals with fields on AdS5 that approach c-number values

TK1���Kr1 ðXÞ or �1ðXÞ in this limit, satisfying scaling con-
ditions of the form

TK1���Kr1 ð�XÞ ¼ �aTK1���Kr1 ðXÞ; �1ð�XÞ ¼ �a�1ðXÞ:
(69)

Of particular interest are massless degrees of freedom,
represented by fields with a ¼ 0; massive degrees of free-
dom generally have a < 0.

We know from the work of Secs. II and IV that, from

such asymptotic fields TK1���Kr1 ðXÞ and�1ðXÞ, we can form
tensor fields (17) and spinor fields (57) in four dimensions
that transform as usual under the four-dimensional confor-
mal group, with conformal dimensions d ¼ �a for tensors
of any rank and d� 1=2 ¼ �a for spinors, or spinor-
tensors of any rank. In particular, in the important case a ¼
0 for which fields approach finite limits on the boundary
X ! 1 of AdS5, as well known a tensor current on the
boundary must have conformal dimension d ¼ 0, and the
four-dimensional tensor field with which it interacts must
therefore have dimensionality d ¼ 4, the expected dimen-
sionality for the energy-momentum tensor in conformally-
invariant theories. On the other hand, a spinor or spinor-
tensor field, which arises from a spinor or spinor-tensor
field on AdS5 that approaches a finite value on the bound-
ary, has d ¼ 1=2, so the four-dimensional spinor or spinor-
tensor fields with which these fields interact must then have

dimensionality 7=2, the correct expected dimensionality
for the supersymmetry current in conformally-invariant
supersymmetric theories.
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APPENDIX

This Appendix will justify the claim made in Sec. II, that
the usual conformal transformation rules of tensor fields
just amount to the statement that under general conformal
transformations a tensor of rank r and conformal dimen-
sionality d transforms as a tensor density of weight given
by Eq. (17):

t�1�2����rðxÞ �
��������
@x

@x0

��������
�ðrþdÞ=4@x�1

@x0�1

� @x�2

@x0�2
� � � @x

�r

@x0�r
t�1�2����rðx0Þ; (A1)

where j@x=@x0j is the determinant of the matrix @x�=@x0�.
This is trivial for Lorentz transformations and translations.
For the scale transformation x0� ¼ ð1þ bÞx�, Eq. (A1)
gives

t�1�2����N ðxÞ � ð1þ bÞdt�1�2����N ðð1þ bÞxÞ; (A2)

which for infinitesimal b is the same as the scale trans-
formation rule (4). Similarly, for an infinitesimal special
conformal transformation

x� � x0� ¼ x� þ 2ðx � cÞx� � c�x2;

we have

@x�

@x0�
¼ ��

� � 2ðx � cÞ��
� � 2ðx�c� � c�x�Þ;��������

@x

@x0

�������� ¼ 1� 8ðx � cÞ;

so here Eq. (A1) reads

t�1�2����rðxÞ� t�1�2����rðxÞþ 2dðx � cÞt�1�2����rðxÞ
� ð2x�1c� � 2c�1x�Þt��2����rðxÞ
þ � � �� ð2x�rc� � 2c�rx�Þt�1�2����ðxÞ
þ ð2ðx � cÞx� � c�x2Þ@�t�1�2����rðxÞ: (A3)

This is the same as the transformation rule (3) (contracted
with c�), with Lorentz transformation matrix j�� given by
Eq. (19).
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