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We consider a real massless scalar field inside a cavity with two moving mirrors in a two-dimensional

spacetime, satisfying the Dirichlet boundary condition at the instantaneous position of the boundaries, for

arbitrary and relativistic laws of motion. Considering vacuum as the initial field state, we obtain formulas

for the exact value of the energy density of the field and the quantum force acting on the boundaries, which

extend results found in previous papers [D. T. Alves, E. R. Granhen, H.O. Silva, and M.G. Lima, Phys.

Rev. D 81, 025016 (2010); L. Li and B.-Z. Li, Phys. Lett. A 300, 27 (2002); L. Li and B.-Z. Li, Chin. Phys.

Lett. 19, 1061 (2002); L. Li and B.-Z. Li, Acta Phys. Sin. 52, 2762 (2003); C. K. Cole and W.C. Schieve,

Phys. Rev. A 64, 023813 (2001)]. For the particular cases of a cavity with just one moving boundary,

nonrelativistic velocities, or in the limit of infinity length of the cavity (a single mirror), our results

coincide with those found in the literature.
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The dynamical Casimir effect has been investigated
since the 1970s [1–3], and has attracted growing attention.
It is related to problems like particle creation in cosmo-
logical models and radiation emitted by collapsing black
holes [2,4], decoherence [5], entanglement [6], and the
Unruh effect [7], among others. Models of a single mirror
have been investigated and also cavities with one moving
boundary have been studied in many papers (for a review
see Ref. [8]). In contrast, the problem of a cavity with two
moving boundaries has been investigated recently and
relatively few papers on this subject are found in the
literature (for instance, Refs. [9–14]). A cavity with two
oscillating mirrors can exhibit situations of constructive
and destructive interference in the number of created par-
ticles, depending on the relation among the phase differ-
ence of each boundary, the amplitudes, and frequencies of
oscillation [9,10,13]. Ji, Jung, and Soh [9], considering the
expansion of the quantizing field over a instantaneous basis
and a perturbative approach, investigated the problem of
interference in the particle creation for a one-dimensional
cavity with two boundaries moving according to pre-
scribed, nonrelativistic, and oscillatory (small amplitudes)
laws of motion. Dalvit and Mazzitelli [10] extended the
field solution obtained by Moore [1] for the case of a one-
dimensional cavity with two moving boundaries, deriving
a set of generalized Moore’s equations, also obtaining the
expected energy-momentum tensor for this model, gener-
alizing the corresponding formula obtained by Fulling and
Davies [2]. In Ref. [10] the set of generalized Moore’s
equations was solved for the case of a resonant oscillatory
movement with small amplitude, via the renormalization-
group procedure. Li and Li [15] applied the geometrical
method, proposed by Cole and Schieve [16], to solve
exactly the generalized Moore equations obtained by

Dalvit and Mazzitelli [10]. Lambrecht, Jaekel, and
Reynaud investigated the problem of the radiation emitted
outside of a cavity with two moving mirrors (with trans-
mission amplitudes different from zero) moving in vacuum
[14]. They deduced, for arbitrary laws of motion, an exact
formula for the field outside the cavity, using a method
analogous to the one described in Ref. [16], and also they
used the field solution to get an exact formula for the
energy density radiated to the right of the cavity, applying
their results to a specific class of harmonic motions as well
as calculating the energy stored inside the cavity for this
case [14]. The method developed in Ref. [14], if applied to
find the general solution of the field inside a cavity with
two moving mirrors, transmission coefficient equal to zero,
and arbitrary trajectories, naturally must result in a solution
for the field equivalent to the recursive exact solution found
in Ref. [15]. This field solution, inserted in the renormal-
ized formula for the energy-momentum tensor found in
Ref. [10], enables the achievement of the exact value of the
energy density inside the cavity. However, this procedure
requires, in general, numerical and recursive calculations
to get the first, second, and third derivatives of each func-
tion found in the set of generalized Moore’s equations
proposed in Ref. [10]. In this context, Li and Li obtained
the exact behavior of the energy density in a cavity for
particular sinusoidal laws of motion, with small amplitude
[17].
In the present paper, we deduce formulas that give

directly the exact values of the quantum force and energy
density inside a nonstatic cavity, for arbitrary laws of
motion for the moving boundaries. We explore the geo-
metrical approach already used in Refs. [14–17], but, as
done in Ref. [18], we focus straight on the reflections
process of the energy density itself. Considering vacuum
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as the initial field state, we show that the energy density in
a given point of the spacetime can be obtained by tracing
back a sequence of null lines, connecting the value of the
energy density at the given spacetime point to a certain
known value of the energy at a point in the ‘‘static zone,’’
where the initial field modes are not affected by the dis-
turbance caused by the movement of the boundaries. An
advantage of the formula obtained in the present paper is
that the energy density exhibits a clear structure, with a
factor corresponding to the initial vacuum energy density,
and others depending only on the laws of motion. Our
formulas generalize those found in literature [18], where
this problem is approached for a cavity with only one
moving mirror. For the particular cases of a cavity with
just one moving boundary, nonrelativistic velocities, or in
the limit of large length of the cavity (a single mirror), our
results coincide with those found in the literature [18–20].

We consider a real massless scalar field satisfying
the Klein-Gordon equation (we assume throughout
this paper@ ¼ c ¼ 1): ð@2t � @2xÞ�ðt; xÞ ¼ 0, and obeying
Dirichlet conditions imposed at the left boundary located at
x ¼ LðtÞ, and also at the right boundary located at x ¼
RðtÞ, where LðtÞ and RðtÞ are arbitrary prescribed laws of
motion, with Rðt < 0Þ ¼ L0 and Lðt < 0Þ ¼ 0, where L0 is
the length of the cavity in the static situation. Let us start
considering the field operator, solution of the wave equa-
tion, given by [10]

�̂ðt; xÞ ¼ X1

k¼1

½âkc kðt; xÞ þ âyk c
�
kðt; xÞ�;

where the field modes are

c kðt; xÞ ¼ i
ffiffiffiffiffiffiffiffiffi
4�k

p ½e�ik�GðvÞ � e�ik�FðuÞ�; (1)

with v ¼ tþ x, u ¼ t� x, and

G½tþ LðtÞ� � F½t� LðtÞ� ¼ 0 (2a)

G½tþ RðtÞ� � F½t� RðtÞ� ¼ 2: (2b)

The set of equations (2), obtained by Dalvit and Mazzitelli
exploiting the conformal invariance of the model [10], is a
generalization of the Moore equation [1], which can be
recovered doing LðtÞ ¼ 0 in these equations. The renor-
malized energy density in the cavity is given by [10]

hT00ðt; xÞi ¼ �fGðvÞ � fFðuÞ; (3)

where

fGðzÞ ¼ 1

24�

�
G000ðzÞ
G0ðzÞ � 3

2

�
G00ðzÞ
G0ðzÞ

�
2 þ �2

2
½G0ðzÞ�2

�
; (4a)

fFðzÞ ¼ 1

24�

�
F000ðzÞ
F0ðzÞ � 3

2

�
F00ðzÞ
F0ðzÞ

�
2 þ �2

2
½F0ðzÞ�2

�
: (4b)

Li and Li [15] solved exactly (2a) and (2b), applying the
geometrical method proposed by Cole and Schieve [16].
The explicit formulas for F andG obtained in Ref. [15] can
be used to calculate the energy density (3). However, this
procedure requires, in general, numerical and recursive
calculations to get each one of the functions F0, F00, F000,
G0,G00, andG000. In the present paper, instead of solving (2),
we use Eqs. (2a), (2b), (4a), and (4b) to obtain the follow-
ing set of equations for the functions fG and fF:

fG½tþ RðtÞ� ¼ fF½t� RðtÞ�ARðtÞ þ BRðtÞ; (5a)

fG½tþ LðtÞ� ¼ fF½t� LðtÞ�ALðtÞ þ BLðtÞ; (5b)

with

AqðtÞ ¼
�
1� q0ðtÞ
1þ q0ðtÞ

�
2
; (6)

BqðtÞ ¼ � 1

12�

q000ðtÞ
½1þ q0ðtÞ�3½1� q0ðtÞ�

� 1

4�

q002ðtÞq0ðtÞ
½1þ q0ðtÞ�4½1� q0ðtÞ�2 ; (7)

where, hereafter, q can represent R or L. Equations (5a)
and (5b) are an extension of the corresponding equation for
f, valid for a cavity with just one moving mirror, found
in Ref. [19]. If we consider the particular case of LðtÞ ¼ 0
in Eq. (5), we recover the corresponding result found in

Ref. [19]. For (t < 0) we have fGðvÞ ¼ fFðuÞ ¼ fðsÞ ¼
�=ð48L2

0Þ, and hT00i ¼ ��=ð24L2
0Þ, which is the Casimir

energy density for this model. Our aim is to solve the
Eqs. (5a) and (5b) recursively, using a geometrical point
of view.
Let us first examine the cavity in the nonstatic situation

(t > 0). The field modes in Eq. (1) are formed by left- and
right-propagating parts. As causality requires, the field in
region I (v < L0 and u < 0) (see Fig. 1) is not affected by

IV

FIG. 1. Boundaries trajectories (solid lines). The dashed lines
are null lines separating region I from II and III, and these from
region IV.

ALVES, GRANHEN, AND PIRES PHYSICAL REVIEW D 82, 045028 (2010)

045028-2



the boundaries motion, so that, in this sense, this region is
considered as a ‘‘static zone.’’ In region II (v > L0 and
u < 0), the right-propagating parts of the field modes
remain unaffected by the boundaries motion, so that region
II is also a static zone for these modes. On the other hand,
the left-propagating parts in region II are, in general,
affected by the boundary movement. Similarly, in region
III (u > 0 and v < L0), the left-propagating parts of the
field modes are not affected by the boundaries motion,
but the right-propagating parts are. In region IV (v > L0

and u > 0), both the left- and right-propagating parts
are affected. In summary, the functions corresponding to
the left- and right-propagating parts of the field modes are
considered in the static zone if their arguments are, respec-

tively v < L0 and u < 0. Then, we have fGðv < L0Þ ¼ fðsÞ

and fGðu < 0Þ ¼ fðsÞ.
For a certain spacetime point ð~t; ~xÞ, the energy tensor

hT00ð~t; ~xÞi is known if its left- and right-propagating parts,
taken over, respectively, the null lines v ¼ z1 and u ¼ z2
(where z1 ¼ ~tþ ~x and z2 ¼ ~t� ~x), are known; or, in other
words, hT00ð~t; ~xÞi is known if fGðvÞjv¼z1 and fFðuÞju¼z2 are

known. Li and Li [15] used a recursive method [16] to
obtain the functions G and F for general laws of motion of
the boundaries, tracing back a sequence of null lines until a
null line gets into the static zone where the G or F func-
tions are known. Here, we adopt this method to obtain fG
and fF, extending the work done in Ref. [15]. Let us
assume that ð~t; ~xÞ belongs to region IV, and that the null
line v ¼ z1 intersects the moving mirror trajectory at the
point ½t1; Rðt1Þ� [see Fig. 2(a)], so that ~tþ ~x ¼ t1 þ Rðt1Þ.
We have fGðvÞjv¼z1 ¼ fG½t1 þ Rðt1Þ�. Using Eq. (5a),

we get fG½t1 þ Rðt1Þ� ¼ fF½t1 � Rðt1Þ�ARðt1Þ þ BRðt1Þ.
If t1 � Rðt1Þ< 0, then the null line u ¼ t1 � Rðt1Þ is
already in the static zone [Fig. 2(a)], so that we can

write fF½t1 � Rðt1Þ� ¼ fðsÞ, and also fG½t1 þ Rðt1Þ� ¼
fðsÞARðt1Þ þ BRðt1Þ, and we can say that the number of
reflections nG to get into the static zone is, in this case,
nG ¼ 1. On the other hand, if t1 � Rðt1Þ> 0 [case
shown in Fig. 2(b)] we can draw another null line
v ¼ t2 þ Lðt2Þ intersecting the world line of the left
boundary at the point ½t2; Lðt2Þ�, with t1 � Rðt1Þ ¼ t2 �
Lðt2Þ. In this case we have, using (5b), fG½t1 þ Rðt1Þ� ¼
ffG½t2 þ Lðt2Þ� � BLðt2ÞgARðt1Þ=ALðt2Þ þ BRðt1Þ. If t2 þ
Lðt2Þ< L0 [see Fig. 2(b)], then fG½t2 þ Lðt2Þ� ¼ fðsÞ,
fG½t1 þ Rðt1Þ� ¼ ffðsÞ � BLðt2ÞgARðt1Þ=ALðt2Þ þ BRðt1Þ,
and nG ¼ 2. If t2 þ Lðt2Þ> L0, we assume that the null
line v ¼ t2 þ Lðt2Þ intersects the right boundary at the
point ½t3; Rðt3Þ�, then t2 þ Lðt2Þ ¼ t3 þ Rðt3Þ and we get
u ¼ t3 � Rðt3Þ. We repeat this procedure until a null line
gets into a static zone, where the function fF or fG is
known. In summary, we obtain for fG:

fGðzÞ ¼ fðsÞ ~AGðzÞ þ ~BGðzÞ; (8)

where, for nGðzÞ even, we have

~AGðzÞ ¼
YðnGðzÞÞ=2

k¼0

�
ð1��k;0ÞAR½t2k�1ðzÞ�

AL½t2kðzÞ� þ�k;0

�
; (9a)

~BGðzÞ ¼
XðnGðzÞÞ=2

k¼0

�
ð1��k;0Þ

�
BR½t2k�1ðzÞ�AL½t2kðzÞ�

AR½t2k�1ðzÞ�

�BL½t2kðzÞ�
�Yk

j¼0

�
ð1��j;0Þ

AR½t2j�1ðzÞ�
AL½t2jðzÞ� þ�j;0

��
;

(9b)

with � symbolizing Kronecker’s delta function. For nGðzÞ
odd we have

~AGðzÞ ¼
YðnGðzÞ�1Þ=2

k¼0

�
AR½t2kþ1ðzÞ�

ð1��k;0ÞAL½t2kðzÞ�þ�k;0

�
; (10a)

~BGðzÞ ¼
XðnGðzÞ�1Þ=2

k¼0

�
½BR½t2kþ1ðzÞ�� ð1��k;0Þ

�BL½t2kðzÞ��
Yk

j¼0

�
ð1��j;0Þ

AR½t2j�1ðzÞ�
AL½t2jðzÞ� þ�j;0

��
:

(10b)

Note that the number nG of reflections and the sequence
of instants t1; . . . ; tnG depend on the argument z. The set

of instants mentioned in Eqs. (9) and (10) are calculated
via [15]

FIG. 2. Sequence of null lines (dotted lines) connecting a point
ð~t; ~xÞ to a static zone. The dashed lines are null lines separating
region I from II and III, and these from region IV, as presented in
Fig. 1. In Fig. 2(a), we see the case of one reflection (nG ¼ 1),
whereas in Fig. 2(b) we see the case nG ¼ 2.
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z ¼ t1 þ Rðt1Þ; t2lþ1 � Rðt2lþ1Þ ¼ t2lþ2 � Lðt2lþ2Þ;
t2lþ2 þ Lðt2lþ2Þ ¼ t2lþ3 þ Rðt2lþ3Þ; l ¼ 0; 1; 2 . . . :

(11)

To solve recursively the set of equations (5) for fF,
we start assuming that the null line u ¼ ~t� ~x intersects
the world line of the left mirror at the point ½�t1; Lð�t1Þ�,
so that ~t� ~x ¼ �t1 � Lð�t1Þ. Thus we have fFðuÞju¼z2 ¼
fF½�t1 � Lð�t1Þ�. Using Eq. (5b), we get fF½�t1 � Lð�t1Þ� ¼
ffG½�t1 þ Lð�t1Þ� � BLð�t1Þg=ALð�t1Þ. If �t1 þ Lð�t1Þ<L0, then
the null line v ¼ �t1 þ Lð�t1Þ is already in the static zone, so
that we can write fG½�t1 þ Lð�t1Þ� ¼ fðsÞ, and also fF½�t1 �
Lð�t1Þ� ¼ ffðsÞ � BLð�t1Þg=ALð�t1Þ, and we can say that the
number of reflections nF to get into the static zone is, in
this case, nF ¼ 1 [see Fig. 3(a)]. On the other hand, if �t1 þ
Lð�t1Þ> L0 [as shown in Fig. 3(b)] we need to find fG½�t1 þ
Lð�t1Þ� recursively via Eq. (8). In general, we get

fFðzÞ ¼ fðsÞ ~AFðzÞ þ ~BFðzÞ; (12)

where

~AFðzÞ ¼
~AGf�t1ðzÞ þ L½�t1ðzÞ�g

AL½�t1ðzÞ� ; (13a)

~BFðzÞ ¼
~BGf�t1ðzÞ þ L½�t1ðzÞ�g � BL½�t1ðzÞ�

AL½�t1ðzÞ� ; (13b)

with the function �t1ðzÞ calculated via

z ¼ �t1 � Lð�t1Þ: (14)

The formulas (9), (10), and (13) generalize those for ~A and
~B found in Ref. [18], which are valid for a cavity with just
the right boundary in movement.

From Eqs. (3), (8), and (12), we get the exact formula for
the renormalized energy density as

hT00ðt; xÞi ¼ �fðsÞ½ ~AGðvÞ þ ~AFðuÞ� � ~BGðvÞ � ~BFðuÞ:
(15)

Equation (15) gives directly the exact values for the energy
density in a nonstatic cavity for arbitrary laws of motion
RðtÞ and LðtÞ. Since T00 ¼ T11 in this model, we have the
following exact formulas for the renormalized quantum
forces F R ¼ hT00½t; RðtÞ�i and F L ¼ �hT00½t; LðtÞ�i (see
Refs. [20,21]) acting, respectively, on the right and left
boundaries:

F RðtÞ ¼ �fðsÞf ~AG½tþ RðtÞ� þ ~AF½t� RðtÞ�g
� ~BG½tþ RðtÞ� � ~BF½t� RðtÞ�; (16)

F LðtÞ ¼ fðsÞf ~AG½tþ LðtÞ� þ ~AF½t� LðtÞ�g
þ ~BG½tþ LðtÞ� þ ~BF½t� LðtÞ�: (17)

Next we examine the behavior of these forces in each
region pointed out in Fig. 1.
In region I (Fig. 1), we have nG ¼ nF ¼ 0. Then,

Eqs. (9) and (13) give ~AGðzÞ ¼ ~AFðzÞ ¼ 1 and ~BGðzÞ ¼
~BFðzÞ ¼ 0. This results, as expected, in the static Casimir
force

F ðCasÞ
R ¼ �F ðCasÞ

L ¼ ��=ð24L2
0Þ;

acting on the boundaries.
In region II, we have nG ¼ 1 and nF ¼ 0. For this case,

Eq. (13) gives ~AFðuÞ ¼ 1 and ~BFðuÞ ¼ 0, whereas from

Eq. (10) we have ~AGðvÞ ¼ AR½t1ðvÞ� and ~BGðvÞ ¼
BR½t1ðvÞ�. To calculate the force F RðtÞ in Eq. (16) we do
v ! tþ RðtÞ, and obtain t1ðvÞ as already discussed: tþ
RðtÞ ¼ t1 þ Rðt1Þ ) t1 ¼ t. Then we get ~AG½tþ RðtÞ� ¼
ARðtÞ and ~BG½tþ RðtÞ� ¼ BRðtÞ. The force F RðtÞ on the

right boundary in region II, now relabeled as F ðIIÞ
R ðtÞ, is

F ðIIÞ
R ðtÞ ¼ �fðsÞ½1þ ARðtÞ� � BRðtÞ: (18)

From this formula, we can obtain an analytical result for
an arbitrary law of motion RðtÞ. Note that in Eq. (18) the
subscript L is not found, since the quantum force for the
world line in region II has no influence of the movement of
the left boundary. Considering the limit L0 ! 1 we re-

cover the quantum radiation force F ð�uÞ
q corresponding to

the unbounded field, acting on the left side of a single

mirror: limL0!1F
ðIIÞ
R ðtÞ ¼ F ð�uÞ

R ðtÞ, where

F ð�uÞ
q ðtÞ ¼ �BqðtÞ: (19)

In the nonrelativistic limit, from (18) we get F ðIIÞ
R ðtÞ �

F ðCasÞ
R þ R

:::
=ð12�Þ, and adding the limit L0 ! 1

FIG. 3. Sequence of null lines (dotted lines) connecting a point
ð~t; ~xÞ to a static zone. The dashed lines are null lines separating
region I from II and III, and these from region IV, as presented in
Fig. 1. In Fig. 3(a), we see the case of one reflection (nF ¼ 1),
whereas in Fig. 3(b) we see the case nF ¼ 2.
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we recover the approximate quantum radiation force

F ðIIÞ
R ðtÞ � R

:::
=ð12�Þ, which acts on the left side of a single

mirror [22].
In region III, we have nG ¼ 0 and nF ¼ 1. For this case,

Eqs. (9) and (13) give ~AFðuÞ ¼ 1=AL½�t1ðuÞ�; ~BFðuÞ ¼
�BL½�t1ðuÞ�=AL½�t1ðuÞ�; ~AGðvÞ ¼ 1; ~BGðvÞ ¼ 0.
Considering u ! t� LðtÞ and t� LðtÞ ¼ �t1 � Lð�t1Þ )
�t1 ¼ t, the force F LðtÞ on the left boundary in this region,

now relabeled as F ðIIIÞ
L ðtÞ, is

F ðIIIÞ
L ðtÞ ¼ fðsÞ

�
1þ 1

ALðtÞ
�
� BLðtÞ

ALðtÞ : (20)

Considering the limit L0 ! 1 we recover the quantum

radiation force F ðþuÞ
q corresponding to the unbounded

field, acting on the right side of a single mirror:

limL0!1F
ðIIIÞ
L ðtÞ ¼ F ðþuÞ

L ðtÞ, where

F ðþuÞ
q ðtÞ ¼ �BqðtÞ

AqðtÞ : (21)

From Eqs. (19) and (21) we recover the total quantum force

F ðuÞ
q ðtÞ acting on a single mirror at vacuum, with a pre-

scribed trajectory x ¼ qðtÞ:

F ðuÞ
q ðtÞ ¼ F ð�uÞ

q ðtÞ þF ðþuÞ
q ðtÞ

¼ ð1þ _q2Þf½ €q2 _q=ð2�Þ�=ð1� _q2Þ4
þ ½q:::=ð6�Þ�=ð1� _q2Þ3g;

which is in agreement with that found in the literature (see
Ref. [20]). In the nonrelativistic limit, we reobtain the

approximate quantum radiation force F ðuÞ
q ðtÞ � q

:::
=ð6�Þ

[22].

To compute the total forces F ðtotÞ
R and F ðtotÞ

L acting on,
respectively, the right and left boundaries, for any of the
regions II, III, or IV shown in Fig. 1, we need, in addition to
Eqs. (16) and (17), to take into account the remaining
dynamical Casimir forces corresponding to the vacuum
field outside the cavity, which are given by Eqs. (19) and
(21). We write

F ðtotÞ
R ¼ F RðtÞ þF ðþuÞ

R ðtÞ; (22)

F ðtotÞ
L ¼ F LðtÞ þF ð�uÞ

L ðtÞ: (23)

Equations (22) and (23) enable us to calculate directly and
analytically the total quantum forces acting on both mirrors
for arbitrary laws of motion RðtÞ and LðtÞ, in regions II or
III, because for these regions Eqs. (16) and (17) are re-
placed by their particular cases given by Eqs. (18) and (20).

In region IV (see Fig. 1), in general it is difficult
to obtain exact analytical results for the quantum forces
(16) and (17), for arbitrary trajectories RðtÞ and LðtÞ.

The difficulty is in solving equations like t1 � Rðt1Þ ¼
t2 � Lðt2Þ [see Eq. (11)], which arise after a second reflec-
tion (nG � 2 or/and nF � 2). Trajectories can be con-
structed to give analytical solutions to these equations,
but a large class of relevant laws of motion do not result
in exact analytical solutions. However, our results enable
us to obtain exact numerical results for the quantum force
acting on the moving boundaries of a cavity for an arbitrary
law of movement, including nonoscillating movements
with large amplitudes, which are out of reach of the per-
turbative approaches found in the literature, as we will
examine next. In this context, let us apply our formulas
to the following particular nontrivial trajectory, which is
based on the one proposed by Haro in Ref. [23]:

LðtÞ ¼ �L ln½coshðtÞ�; (24a)

RðtÞ ¼ L0 þ �R ln½coshðtÞ�: (24b)

Considering, for instance, �R ¼ ��L ¼ 0:1 [Fig. 4(a)],
we have an expanding cavity with large amplitude and
relativistic velocities. If we consider �R ¼ �L ¼ 0:1
[Fig. 4(b)], we have the mirrors in movement with relativ-
istic velocities, but keeping constant the cavity length.
In Figs. 5 and 6, using our formulas (9)–(13) and (22),

we plot the time evolution of the quantum force F ðtotÞ
R ðtÞ

and F RðtÞ for, respectively, the cases �R ¼ ��L ¼ 0:1
[see Fig. 4(a)], and �R ¼ �L ¼ 0:1 [see Fig. 4(b)]. We

can see discontinuities of the derivatives for F ðtotÞ
R and

F RðtÞ. These discontinuities always occur when the front
of the wave in the energy density meets the right boundary.
In the case, for instance, shown in Fig. 5, when t ¼ 0
the left boundary starts to move and generate a wave in
the energy density, propagating rightward and meeting the
right boundary at the instant t ¼ �1 � 1:05, calculated
via equation �1 � Rð�1Þ ¼ 0, and which corresponds to
the first discontinuity of the derivative shown in Fig. 5.
At t ¼ 0, another front of wave is generated by the right
boundary, propagating leftward and meeting the left

(a) (b)

FIG. 4. The solid lines show the boundaries trajectories de-
scribed in Eq. (24). Part (a) describes the case �R ¼ ��L ¼ 0:1,
whereas (b) describes the case �R ¼ �L ¼ 0:1.
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boundary at the instant �1 � 1:05, and then reflected back
and meeting the right boundary at the instant �2 � 2:25,
calculated from the equation �2 � Rð�2Þ ¼ �1 � Lð�1Þ.
This instant corresponds to the second discontinuity of
the derivative shown in Fig. 5. Since the length of the
cavity remains the same in the case shown in Fig. 4(b),

the quantum force F ðtotÞ
R ðtÞ oscillates around the static

Casimir force (Fig. 6), whereas it goes to zero in the case
shown in Fig. 5, where the boundaries go to an asymptotic
behavior of infinity length and constant velocity.

Summarizing our results, the formulas obtained in the
present paper enable us to get directly exact values for the
energy density of the field and the quantum force acting on
the boundaries of a nonstatic cavity, for arbitrary laws of
motion for the moving boundaries and vacuum as the
initial state of the field. Equations (5a) and (5b) are an
extension of the corresponding equation for a cavity with
just one moving boundary found in Ref. [19], and the
achievement of fG and fF recursively, tracing back a
sequence of null lines, can be viewed as an extension of
the work done in Ref. [15]. Formulas (9), (10), and (13)
generalize those found in Ref. [18].

From the formulas obtained here, the required calcula-
tions to obtain hT00ðt; xÞi consist of solving the set of
equations (11) for z ¼ tþ x, and directly using the results
in Eqs. (8), (9), (10a), and (10b), as well as solving (11) for
z ¼ �t1 þ Lð�t1Þ, where t� x ¼ �t1 � Lð�t1Þ, and directly us-
ing the results in Eqs. (12), (13a), and (13b). In contrast, the
usual way found in the literature requires the solution of
(11) for tþ x, and also of the set of equations including the

first, second, and third derivatives of (11); the use of
these results to calculate G0, G00, and G000, according to
the recursive formula for G found in Ref. [15]; to get the
solution of (11) for z ¼ �t1 þ Lð�t1Þ, where t� x ¼
�t1 � Lð�t1Þ, and again it is necessary to solve the set of
equations formed by the first, second and third derivatives
of (11); finally, the use of these results to calculate F0, F00,
and F000, from the formula for F also given in Ref. [15].
Then, the method presented here is substantially more
direct and can be straightforward inserted into a computer
routine to provide numerical results for the energy density.
Moreover, Eq. (15) has the advantage of exhibiting a clear
structure for the energy density: the information about the
vacuum energy density (given by the boundary condition)

is stored in fðsÞ, whereas all information about the motion

of the mirrors is stored in the functions ~A and ~B.
For the particular cases of a cavity with just one

moving boundary, nonrelativistic velocities, or in the limit
of infinity length of the cavity (a single mirror), our
results are in agreement with those found in the literature
[2,18–20,22]. The present results enable investigation of
several problems (usually treated by perturbative ap-
proaches in the literature) with an exact approach and
also out of the regime of small amplitudes. For instance,
those related to the inertial forces in the Casimir effect with
two moving mirrors [12], or the interference phenomena in
the photon production [9]. These issues are under inves-
tigation and will be discussed in future papers.
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FIG. 6. The solid line shows the total force F ðtotÞ
R ðtÞ, the dashed

line shows the force F RðtÞ, both for the law of movement (24),
with �R ¼ �L ¼ 0:1 and L0 ¼ 1. The dotted line shows the
static Casimir force.

FIG. 5. The solid line shows the total force F ðtotÞ
R ðtÞ, whereas

the dashed line shows the force F RðtÞ, both for the law of
movement (24), with �R ¼ ��L ¼ 0:1 and L0 ¼ 1.
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