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We study a model for the ‘‘GSI anomaly’’ in which we obtain the time evolution of the population of

parent and daughter particles directly in real time, considering explicitly the quantum entanglement

between the daughter particle and neutrino mass eigenstates in the two-body decay. We confirm that the

decay rate of the parent particle and the growth rate of the daughter particle do not feature a time

modulation from interference of neutrino mass eigenstates. The lack of interference is a consequence of

the orthogonality of the mass eigenstates. This result also follows from the density matrix obtained by

tracing out the unobserved neutrino states. We confirm this result by providing a complementary

explanation based on Cutkosky rules applied to the Feynman diagram that describes the self energy of

the parent particle.
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I. INTRODUCTION

Recent experiments at the Experimental Storage Ring at
GSI in Darmstadt have revealed an unexpected time-
dependent modulation in the population of parent ions
140Pr58þ and 142Pm62þ from the electron capture (EC)
decays 140Pr58þ ! 140Ce58þ þ �e and 142Pm62þ !
142Nd62þ þ �e [1], a phenomenon that has been dubbed
the ‘‘GSI anomaly.’’ In this experiment, changes of the
ions’ revolution frequencies are detected by the technique
of time-resolved Schottky mass spectrometry. For a small
number of stored ions, every decay can be resolved. Thus, a
time distribution of EC decays of the parent ions can be
measured. On top of the experimental decay curve, the GSI
experiment observed an unexpected time modulation with
a period of about T ’ 7 s. Such a behavior is summarized
in Figs. 3–5 of [1].

A theoretical explanation of this remarkable time-
dependent modulation of the decay rate of the parent ion
suggests that it is a consequence of the interference be-
tween the neutrino mass eigenstates in the final state of the
two-body decay [1–5]. The authors in Refs. [2,3,5] argue
that the total amplitude of an EC decay is a coherent sum of
contributions from difference neutrino mass eigenstates.
The decay probability is obtained by squaring the total
amplitude, thus the interference between neutrino mass
eigenstates gives rise to the observed modulation feature
as a consequence of their mixing and oscillations.

If indeed periodic modulations of EC-decay rates are a
consequence of neutrino mixing, these experiments would
bring an interesting alternative to long-baseline neutrino
experiments for the determination of neutrino mass
differences.

However, this interpretation has been reexamined and
criticized in Refs. [6–9] on the basis that it is not the
amplitudes that must be summed coherently but the prob-
abilities, corresponding to an incoherent addition of the
contributions from the different mass eigenstates. This
approach does not lead to any modulation, as the proba-
bilities for the decay channels into the different mass
eigenstates do not interfere. A similar conclusion is
reached in Ref. [10] by comparing the GSI experiment to
other quantum processes, both within quantum field theory
and with quantum mechanical probabilities.
The theoretical and experimental importance of under-

standing whether neutrino mixing and oscillations could
lead to time-dependent modulations in two-body decays
where neutrinos are a component of the final state warrants
an alternative exploration of these questions.
Rather than focusing on any one of these approaches,

either summing amplitudes or probabilities, in this article,
we analyze the two-body decay process differently, by
obtaining the time evolution of the population of the parent
and daughter particles and considering explicitly the en-
tanglement between the daughter particle and neutrino
mass eigenstates.
We apply the method developed in Ref. [11] to an

analysis of the GSI anomaly, examining whether neutrino
mixing and oscillations could be responsible for time-
dependent modulations in the two-body decay rate. In
this approach, we obtain the kinetic equations for the
populations of the parent and daughter particles directly
in real timewithout the necessity to invoke a coherent sum
over amplitudes or a sum over probabilities, thereby by-
passing the theoretical controversy.
If the time modulation is a consequence of neutrino

mixing and oscillations, then this phenomenon is robust
and does not depend on the details of the parent and
daughter nuclei. Therefore, a simple model of charged-
current interactions which incorporates neutrino mixing
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but is stripped of the peripheral complications of nuclear
matrix elements should describe the essential physical
phenomena.

Therefore, in Sec. II, we introduce a model for the GSI
experiment which captures the relevant physical ingre-
dients while neglecting all unnecessary technical compli-
cations. In Sec. III, we obtain the time-evolved state
emerging from the two-body decay of the parent particle.
This is a quantum mechanically entangled state [12] be-
tween the daughter particle and the neutrino, whose time
evolution determines completely the number densities of
parent and daughter particles, unambiguously yielding the
time dependence of their population. The result of this
study confirms that interference between neutrino mass
eigenstates is not responsible for any modulation in the
parent or daughter population, therefore neutrino mixing is
not the reason behind the GSI anomaly. Section IV sum-
marizes our conclusions and comments on more recent
experimental results.

II. A MODEL FOR THE GSI ANOMALY

The EC decays of heavy hydrogenlike particles are
governed by charged-current weak interactions, as shown
in Fig. 1(a). If the observed GSI anomaly is a direct
consequence of interference between different neutrino
mass eigenstates in the final state as proposed in
Refs. [2,3,5], the technical complications associated with
the details of the interaction vertices, e.g., spin dependence
of fermionic and gauge fields, are irrelevant. In order to
simplify our calculation, we introduce a bosonic model that
captures the main features of these EC decays without any
unnecessary complication. The two-body decay now can
be represented by the process shown in Fig. 1(b). Our
model is specified by the following Lagrangian density:

L ¼ L0½M;D� þL0½�� þLint½M;D; �e�; (2.1)

with

L 0½�� ¼ 1

2
½@��T@����TM��; (2.2)

where � is a flavor doublet representing the neutrinos

� ¼ �e

��

� �
; (2.3)

and M is the mass matrix

M ¼ mee me�

me� m��

� �
: (2.4)

Here,M and D represent the parent and daughter particles,
respectively. Their free Lagrangian density is specified by
L0½M;D�. Also, we consider the simple case of only two
neutrino flavors.
The interaction Lagrangian is analogous to the charged-

current interaction of the standard model, namely

L intð ~x; tÞ ¼ gMð ~x; tÞDð ~x; tÞ�eð ~x; tÞ; (2.5)

where g is the coupling constant proportional to the Fermi
constant GF. We note that only electron neutrinos enter the
interaction because we are considering EC decays.
The mass matrix is diagonalized by a unitary transfor-

mation

U�1ð�ÞMUð�Þ ¼ m1 0

0 m2

 !
;

Uð�Þ ¼ cos� sin�

� sin� cos�

 !
:

(2.6)

In terms of the doublet of mass eigenstates, the flavor
doublet can be expressed as

�e

��

� �
¼ Uð�Þ �1

�2

� �
: (2.7)

In particular, �e ¼ cos��1 þ sin��2.

III. NUMBER DENSITIES OF THE PARENTAND
THE DAUGHTER PARTICLES

Let us consider an initial parent particle state jMð ~kÞi at
time t ¼ 0. For the GSI experiment, the parent ions are
produced with a center velocity of 71% of the speed of
light, and with a velocity spread �v=v ’ 5� 10�7 [1].
The evolution of the number density of parent (M) and
daughter (D) particles is obtained from

NMðtÞ ¼ hMð ~kÞjeiHtayMð ~kÞaMð ~kÞe�iHtjMð ~kÞi;
nDðtÞ ¼

X
~Q

nDð ~Q; tÞ

¼ X
~Q

hMð ~kÞjeiHtayDð ~QÞaDð ~QÞe�iHtjMð ~kÞi; (3.1)

where nDð ~Q; tÞ is the number density of daughter particles

with momentum ~Q. Here, the annihilation and creation
operators are in the Schroedinger picture. We note that
e�iHt ¼ e�iH0tUðt; 0Þ and that the number operators com-
mute with the free-field Hamiltonian. Uðt; 0Þ is the time
evolution operator in the interaction picture, namely,

(b)(a)

FIG. 1. (a) Exact interaction of EC decays of a parent particle.
(b) Approximated interaction of EC decays in our model.
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Uðt; 0Þ ¼ T½ei
R

t

0
dt0d3xLintð ~x;t0Þ�; (3.2)

where T is the time-ordering operator.

Expanding Uðt; 0Þ perturbatively, we obtain Uðt; 0ÞjMi ¼ jMi þ j�DðtÞið1Þ þ j�DðtÞið2Þ þ . . . , where

j�DðtÞið1Þ ¼ ig
Z t

0
dt1

Z
d3x1½Mð ~x1; t1ÞDð ~x1; t1Þ�eð ~x1; t1ÞÞ�jMð ~kÞi; (3.3)

and

j�DðtÞið2Þ ¼ �g2
Z t

0
dt1

Z
d3x1

Z t1

0
dt2

Z
d3x2½Mð ~x1; t1ÞDð ~x1; t1Þ�eð ~x1; t1ÞÞ�½Mð ~x2; t2ÞDð ~x2; t2Þ�eð ~x2; t2ÞÞ�jMð ~kÞi; (3.4)

with �e ¼ cos��1 þ sin��2. Since j�DðtÞið1Þ creates one
daughter particle and the initial state has none, it is clear
that to lowest order, the number of daughter particles is

nDð ~Q; tÞ ¼ 1h�DðtÞjayDð ~QÞaDð ~QÞj�DðtÞi1: (3.5)

The calculation of the parent population is slightly more
involved. The first order state has contributions from Fock
states with zero or two parent particles M; however, the
state with two parent particles does not conserve energy,
and its phase varies very rapidly in time and averages out in
short time scales of order of the inverse mass of the parent
particle. Therefore, to obtain a nonvanishing contribution
to the parent population, we must consider the second-
order state (3.4).

To second order, there are several contributions, but the
only one that is relevant is the process in which the first
vertex at ð ~x2; t2Þ annihilates the initial M creating the
intermediate state with one ðD; �eÞ entangled pair, while

the second interaction vertex at ð ~x1; t1Þ annihilates this
ðD; �eÞ pair in the intermediate state and creates the M,
which has nonvanishing overlap with jMi. This process is
depicted in Fig. 2 and is recognized as the self energy of the
parent particle.
Thus, to lowest order in g,

NMðtÞ ¼ 1þ 2Re½hMj�DðtÞið2Þ�: (3.6)

A. Number density of daughter particles: The entangled
daughter neutrino state

As pointed out previously, for the number density of
daughter particles, we only need to consider the interaction
Lagrangian up to the first order, namely, Eq. (3.3).
Expanding the field �e in terms of the fields that create
or annihilate the mass eigenstates �1 and �2, and carrying
out a standard quantum field theory calculation, we obtain

j�DðtÞið1Þ ’ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8VEM

~k
ED

~q

q X
~q

�
sin�ffiffiffiffiffiffiffiffiffiffi
�2; ~p

q e
iðEM

~k
�ED

~q
��2; ~pÞðt=2Þj�2; ~p; D~qi

�sinððEM
~k
� ED

~q ��2; ~pÞ t2Þ
ðEM

~k
� ED

~q ��2; ~pÞ=2
�

þ cos�ffiffiffiffiffiffiffiffiffiffi
�1; ~p

q e
iðEM

~k
�ED

~q
��1; ~pÞðt=2Þj�1; ~p; D~qi

�sinððEM
~k
� ED

~q ��1; ~pÞ t
2Þ

ðEM
~k
� ED

~q ��1; ~pÞ=2
��
; (3.7)

in which the daughter particle and the neutrinos are en-
tangled [11]. Momentum conservation, a consequence of
translational invariance manifest in the Lagrangian density

(2.1), enforces ~pþ ~q ¼ ~0, where ~p and ~q label the mo-
menta of the neutrinos and the daughter particle. Also, EM

~k
and ED

~q are the energies of the parent and daughter particles
with momentum ~k and ~q, respectively. �1; ~p and �2; ~p are
the energies of the neutrino mass eigenstates with momen-
tum ~p. In other words,

EM
~k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

M

q
; ED

~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

D

q
;

�1; ~p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
; �2; ~p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
:

(3.8)

In order to manifestly study the time evolution of the
populations and possible time-dependent phenomena re-
sulting from the mixing of mass eigenstates, we explicitly
keep the finite time dependence explicitly. As is familiar
from Fermi’s golden rule, taking t to infinity results in

FIG. 2. Self energy of the parent particle M; the neutrino line
corresponds to a propagator of a mass eigenstate.
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replacing

sinððEM
~k
� ED

~q ��i; ~pÞ t2Þ
ðEM

~k
� ED

~q ��i; ~pÞ=2
��������t!1

’ ��ðEM
~k
� ED

~q ��i; ~pÞ;

(3.9)

which leads to the standard S matrix result with the energy
conservation at each vertex. Here i ¼ 1; 2 stand for the
neutrino mass eigenstates.

It is straightforward to calculate (3.5) with the state (3.7).
We find

nDð ~Q; tÞ ¼ g2

8VEM
~k
ED

~Q

�
cos2�

�1

sin2½ðEM
~k
� ED

~Q
��1Þ t2�

½ðEM
~k
� ED

~Q
��1Þ2=4�

þ sin2�

�2

sin2½ðEM
~k
� ED

~Q
��2Þ t

2�
½ðEM

~k
� ED

~Q
��2Þ2�=4

�
; (3.10)

where�1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~k� ~Qj2 þm2

1;2

q
, corresponding to the spe-

cific momentum ~Q of the daughter particle.
The result (3.10) is a consequence of the orthogonality

of the Fock states associated with the mass eigenstates.
The production rate of the daughter particle is given by

dnDð ~Q; tÞ
dt

¼ g2

8VEM
~k
ED

~Q

�
cos2�

�1

2 sin½ðEM
~k
� ED

~Q
��1Þt�

ðEM
~k
� ED

~Q
��1Þ

þ sin2�

�2

2 sin½ðEM
~k
� ED

~Q
��2Þt�

ðEM
~k
� ED

~Q
��2Þ

�
: (3.11)

The time scale of the GSI experiment is about 10–
100 seconds, corresponding to an energy uncertainty�E�
@=t ’ 10�16–10�17 eV. Therefore, we can safely take the
long time limit (3.9), leading to a constant production rate
of daughter particles, and the total number of daughter
particles produced as a function of time is given by

nDðtÞ ¼
X
~Q

nDð ~Q; tÞ ¼ ½�1cos
2�þ �2sin

2��t; (3.12)

where

�1;2 ¼ 2�g2

8EM
~k

Z d3 ~Q

ð2�Þ3ED
~Q
�1;2

�ðEM
~k
� ED

~Q
��1;2Þ:

(3.13)

�1;2 are the partial widths, while cos2� and sin2� are the

probabilities (or branching ratios) associated with each
neutrino mass eigenstate.
From the rate (3.11), we see that there is no interference

between the mass eigenstates. This is a consequence of the
orthogonality of the Fock states associated with mass
eigenstates. The parent particle decays through two chan-
nels, either j�1i or j�2i, with probabilities cos2� and sin2�,
respectively, without interference between them.
Obviously, when the masses of the neutrino vanish, the
result reduces to the ‘‘standard model’’ decay rate, since
�1 ¼ �2.
This argument becomes clearer upon considering the

process of disentanglement of the state (3.3). The en-
tangled state is disentangled by the measurement resulting
in the ‘‘collapsed’’ state [11]

jVDð ~Q; tÞi ¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8VEM

~k
ED

~Q

q
�
sin�ffiffiffiffiffiffiffi
�2

p e
iðEM

~k
�ED

~Q
��2Þðt=2Þj�2; ~Pi

�sinððEM
~k
� ED

~Q
��2Þ t

2Þ
ðEM

~k
� ED

~Q
��2Þ=2

�

þ cos�ffiffiffiffiffiffiffi
�1

p e
iðEM

~k
�ED

~Q
��1Þðt=2Þj�1; ~Pi

�sinððEM
~k
� ED

~Q
��1Þ t2Þ

ðEM
~k
� ED

~Q
��1Þ=2

��
; (3.14)

where ~P ¼ ~k� ~Q. It is straightforward to confirm that

nDðtÞ ¼
X
~Q

hVDð ~Q; tÞjVDð ~Q; tÞi: (3.15)

Because j�1; ~Pi and j�2; ~Pi are orthogonal with each other, there is no interference between these two mass eigenstates. The
result (3.12) is obtained in the long time limit.

We can further confirm our previous result of the number density of daughter particles from the density matrix. The

entangled state j�DðtÞið1Þ is produced from the decay of a parent particle; correspondingly, the density matrix describing
this entangled state is
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�̂ðtÞ ¼ j�DðtÞið1Þð1Þh�DðtÞj

¼ g2

8VEM
~k

X
~q

1

ED
~q

�
sin2�

�2; ~p

jD~q; �2; ~pihD~q; �2; ~pj
�sinððEM

~k
� ED

~q ��2; ~pÞ t
2Þ

ðEM
~k
� ED

~q ��2; ~pÞ=2
�
2

þ cos2�

�1; ~p

jD~q; �1; ~pihD~q; �1; ~pj
�sinððEM

~k
� ED

~q ��1; ~pÞ t2Þ
ðEM

~k
� ED

~q ��1; ~pÞ=2
�
2 þ sin2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2; ~p�1; ~p

q
�sinððEM

~k
� ED

~q ��2; ~pÞ t2Þ
ðEM

~k
� ED

~q ��2; ~pÞ=2
�

�
�sinððEM

~k
� ED

~q ��1; ~pÞ t
2Þ

ðEM
~k
� ED

~q ��1; ~pÞ=2
�
�
�
e�ið�m2=4 ��ÞtjD~q; �2; ~pihD~q; �1; ~pj þ eið�m2=4 ��ÞtjD~q; �1; ~pihD~q; �2; ~pj

��
; (3.16)

where �m2 ¼ m2
2 �m2

1, and
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm2

2 þm2
1Þ=2

q
is

the average energy. The density matrix contains both di-
agonal terms, which describe the time evolution of the
populations of the neutrino mass eigenstates, and off-
diagonal terms, which display their interference [11]. In
the GSI experiment, these neutrinos are not measured;
therefore, to calculate the number density of daughter
particles, we trace out the neutrino states, namely

nDðtÞ ¼ Tr�j

�
�̂ðtÞX

~Q

ayDð ~QÞaDð ~QÞ
�
: (3.17)

Only diagonal terms contribute to the trace because of the
orthogonality of the neutrino mass eigenstates. Therefore,
the number density of daughter particles has nothing to do
with the interference between neutrino mass eigenstates,
which is manifest in the off-diagonal density matrix ele-
ments (coherence). This is consistent with the arguments in
Ref. [8] stating that the GSI experiment must be described
by an incoherent sum over different neutrino states. Once
again, the answer is Eq. (3.11) in the long time limit.

B. Number density of parent particles

Now, let us consider the number density of the parent
particles, which follows the same line of argument. It

proves more convenient to calculate dNMð ~k; tÞ=dt, for
which we find1

dNMð ~k; tÞ
dt

¼ � g2

4EM
~k

Z d3 ~Q

ð2�Þ3ED
~Q

�
�
cos2�

�1

sin½ðEM
~k
� ED

~Q
��1Þt�

ðEM
~k
� ED

~Q
��1Þ

þ sin2�

�2

sin½ðEM
~k
� ED

~Q
��2Þt�

ðEM
~k
� ED

~Q
��2Þ

�
: (3.18)

In the long time limit, this becomes

dNMð ~k; tÞ
dt

¼ �½�1cos
2�þ �2sin

2��: (3.19)

Clearly, dNMð ~k; tÞ=dt ¼ �dnDðtÞ=dt, as the decay of the
parent population results in the growth of the daughter
population with the same rate. This is a consequence of
unitarity and we can see this by substituting (3.15) and
(3.6) into the unitarity condition

1 ¼ hMð ~kÞjUyðt; 0ÞUðt; 0ÞjMð ~kÞi
¼ 1þ ð1Þh�DðtÞj�DðtÞið1Þ þ 2Re½hMj�DðtÞið2Þi�

þOðg3Þ þ . . . (3.20)

Although we have used plane waves to describe our
parent and daughter particles in our main result, the lack
of interference of mass eigenstates in the final state is a
direct consequence of the orthogonality of the mass eigen-
states, and this generalizes straightforwardly to the case of
wave packets. In particular, in Ref. [2], the wave-packet
aspect of the parent and daughter nuclei is emphasized as
an important ingredient to allow the neutrino mixing.
However, it is straightforward to show how the main

results generalize to the case of wave packets: a wave
packet is a superposition of plane wave components,
namely,

j�ð ~X0; ~P0; ~x; t ¼ 0Þi ¼
Z

d3pfð ~x; ~X0; ~p; ~P0Þei ~p� ~xj ~pi
(3.21)

at an initial time t ¼ 0. Here, ~X0; ~P0 are the center position
and momentum of the wave packet, respectively, while ~x,
~p, and Ep are the position, momentum, and energy, re-

spectively. The function fð ~x; ~X0; ~p; ~P0Þ specifies the wave
function of the particle.
In our calculation, we obtain the time evolution of each

plane wave component j ~pi, from which it follows that

n�ðtÞ ¼
Z

d3pjfð ~x; ~X0; ~p; ~P0Þj2n�ð ~p; tÞ; (3.22)

where n�ð ~p; tÞ is the parent or daughter population for
plane waves obtained above. The distribution function f

1Effectively, we are obtaining the Boltzmann equation for the
parent particle, neglecting the buildup of the population.
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just weights each plane wave component. As demonstrated
by our calculation in Sec. III, the populations n�ð ~p; tÞ do
not feature oscillations because of the orthogonality of the
mass eigenstates. Therefore, interference between different
neutrino mass eigenstates does not appear either in the
wave-packet treatment, as shown in (3.22). Again, this is
a consequence of the orthogonality of neutrino mass eigen-
states. Obviously, this result is independent of whether the
parent or daughter particles are described by plane waves
or wave packets in agreement with Ref. [13].

A complementary pathway to the same conclusion is
provided by the interpretation of (3.19) in terms of the
Feynmann diagram depicted in Fig. 2. This also manifestly
leads to the conclusion of lack of interference between
mass eigenstates because the decay rate of the parent
particle is the imaginary part of the self energy. Since the
correct propagating degrees of freedom are the neutrino
mass eigenstates, the total self energy is the sum of self
energies with the neutrino mass eigenstates in the inter-
mediate state. As a result, the usual Cutkosky rules indicate
that the total decay width is the sum of the partial decay
widths into the mass eigenstates without interference. The
real time calculations of the decay and production rates
presented above confirm this result directly from the evo-
lution of the parent and daughter populations. Introducing
a complete set of intermediate states between Uyðt; 0Þ and
Uðt; 0Þ in the unitarity condition (3.20), it is straightfor-
ward to find the same result as obtained from Cutkosky
rules, directly in real time.

Thus, we confirm the analysis of Refs. [6–9] that there is
no interference of mass eigenstates and we conclude that
the GSI anomaly cannot be explained in terms of the
interference of mass eigenstates in the decay.

IV. CONCLUSIONS AND DISCUSSIONS

In this article, we reexamine the GSI anomaly within a
framework that is different from and complementary to
previous work of various groups [2–9]. The controversy in
the literature on the theoretical analysis of the GSI anom-
aly mainly focuses on whether probabilities must be
summed incoherently [6–9] or amplitudes must be
summed coherently [2–5]. We offer a completely different
alternative to study this phenomenon: we obtain directly
the time evolution of the population of parent and daughter
particles, taking into account that the quantum state arising
from the decay of the parent particle is an entangled state
of the neutrino mass eigenstates and the daughter particle.
Our method bypasses the issue of summing amplitudes or
probabilities and exhibits directly the time evolution of the
parent and daughter populations.

Recognizing that if the time modulation of the parent
and daughter populations is a result of interference phe-
nomena between neutrino mass eigenstates, hence a fairly
robust consequence is independent of the complexities of
the parent and daughter nuclei, we introduce a simple

bosonic model that captures reliably the relevant
charged-current interaction process for EC and manifestly
includes neutrino mixing. This allows us to extract the
relevant aspects without the peripheral complications as-
sociated with spinors, nuclear wave functions, etc. We
generalize the recent work [11] to analyze the GSI anomaly
by studying the evolution of the distribution functions of
the parent and daughter particles directly in time. Our
starting point is the time evolution of the daughter neutrino
entangled state produced by the decay of the parent parti-
cle. This treatment also allows us to study the dynamics of
the daughter particle from the density matrix upon tracing
the unobserved neutrino degrees of freedom. We show that
both the decay rate of the parent particle and the production
rate of the daughter particle do not feature oscillations
arising from the interference of mass eigenstates in the
final state. This is a direct consequence of the orthogonality
of the mass eigenstates.
Furthermore, we provide an alternative field theoretical

explanation in terms of the imaginary part of the self-
energy diagram of the parent particle. The propagator of
the intermediate neutrino states is that of mass eigenstates,
therefore Cutkosky rules immediately lead to the conclu-
sion that the decay rate is an incoherent sum of probabil-
ities of decay into each different mass eigenstate
(channels), complementing and confirming our previous
analysis. Simple arguments based on superposition clearly
show that a wave packet treatment of parent and daughter
particles yields the same result, namely, no time modula-
tion since there is no interference between mass eigenstates
in the final state, again a direct consequence of orthogo-
nality of mass eigenstates.
Thus our work confirms the result of Refs. [6–9] that if

the GSI anomaly is a real effect, it cannot be explained
from the interference of neutrino mass eigenstates.
More recently, independent experimental efforts have

addressed the GSI anomaly: in Ref. [14], the EC decay
of 180Re is studied and no modulation of the decay rate is
observed. However, this experiment is different from the
one at GSI not only because of the very short-lived initial
state, but also, more importantly, because the daughter
particle moves in a lattice and is restricted to transfer
crystal momentum to phonons.
Another EC decay experiment with 142Pm and an earlier

EC decay experiment with 142Eu reanalyzed by Vetter et al.
[15] did not observe the modulation in the rates reported by
the GSI experiment.
Therefore, our work supports the conclusion against an

explanation of the GSI anomaly as a consequence of
neutrino mixing in agreement with previous work [6–9].
These theoretical results, combined with emerging inde-
pendent experimental evidence, seem to suggest that if the
GSI time modulation anomaly is a real phenomenon, its
cause is probably associated with the details of the GSI
experiment, other mechanisms such as neutrino spin pre-
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cession in the static magnetic field of the storage ring [16],
hyperfine level splitting [17], spin rotation [18], or perhaps
internal nuclear degrees of freedom of the parent particle in
such an experiment [19], but not a consequence of neutrino
mixing.
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