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It can be shown in a solvable field theory model that the couplings of the composite vector bosons made

of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon

may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of

bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The

functional formalism not only facilitates computation but also provides us with a better insight into the

generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global

current conservation conspire to generate such an approximate symmetry. Remarks are made on its

possible relevance or irrelevance to electroweak and higher symmetries.
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I. INTRODUCTION

Gauge symmetry is no doubt the underlying principle of
contemporary particle theory. It is a mathematical or geo-
metrical input rather than a dynamical consequence.
However, some people wonder if there is any physical or
dynamical reason that necessitates gauge symmetry [1,2].
Aside from such attempts, one suggestion was made dec-
ades ago [3] that when spin-one bosons are generated as
tightly bound composite particles their couplings obey
gauge invariance in the limit of vanishing mass. This was
indeed demonstrated in a solvable model with fermions as
constituents [4]. As in most other attempts, the model was
based on the Lagrangian of the Nambu-Jona-Lasinio type
with a vector coupling and was, therefore, unrenormaliz-
able, which is the price to pay for solvability. The con-
clusion was that all gauge-symmetry breakings as well as
unrenormalizability are transformed into the mass of the
composite spin-one bosons and that the composite boson
mass can be made as small as one likes, but never zero, by
making the binding force stronger, that is, infinitely close
to gauge bosons but not exactly. Failure to realize genuine
gauge invariance is obvious since the Lagrangian written in
the fields of fermion constituents explicitly violates gauge
invariance; perfect gauge symmetry should not arise where
underlying dynamics explicitly violates it. Nonetheless, it
is remarkable that gauge noninvariance is entirely trans-
formed into the composite boson mass term.

The gauge boson sector of the electroweak model with-
out a Higgs boson was built by the present author [4] along
this line 20 years ago incorporating the proposal of Bjorken
[5] and of Hung and Sakurai [6]. Consistency of the largeN
expansion as an effective low-energy field theory was
analyzed for this model by Cohen, Georgi, and Simmons
[7], who also suggested how to incorporate quarks and
leptons in this heretic electroweak model. It was immedi-
ately after production of the W and Z bosons were con-
firmed at CERN for the first time. Since then, precision of
the experimental measurement on the electroweak interac-

tion has risen to test the standard model at the level of the
loop corrections. Consequently, the phenomenological
models of the late 1980’s are no longer viable, but other
options may still exist. Until we see an outcome of the
Large Hadron Collider experiment, we should be prepared
for possible surprises and leave all options open for phe-
nomenology. It should be emphasized, however, that the
purpose of the present paper is not to build a phenomeno-
logically viable alternative to the standard electroweak
theory, but to obtain a better understanding of the genera-
tion mechanism of approximate gauge invariance. Even if
this mechanism may not turn out to be of use to model
building in near future, it is an interesting theoretical
subject of discussion in field theory.
We shall find in this paper that the dynamical generation

of approximate gauge symmetry is not an accident in the
Nambu-Jona-Lasinio model or special to the fermionic
constituents. A natural question arises as to how general
this phenomenon is and which inputs are really necessary
for this phenomenon to occur. The present paper first
investigates the original fermionic constituent model by a
different method and then moves on to explore how the
approximate gauge symmetries are generated in the case of
bosonic constituents, if at all. After studying the bosonic
case, we understand the generation mechanism better and
feel more confident that the mechanism is quite general and
independent of specific models.
It may appear that our study has some technical resem-

blance with the phenomenon known as hidden symmetry,
the name coined by Bando, Kugo, and Yamawaki [8].
However, the hidden symmetry is something that is built
in a theory at the beginning in one way or another. In
contrast, we are concerned with the dynamics in which a
relevant local symmetry does not exist, hidden or other-
wise, at the fundamental level, but emerges only as an
approximate symmetry in the low-energy effective
Lagrangian. In our case the local symmetry is explicitly
broken at all levels. We study how the explicit breakings of
local symmetries transform into the Lagrangian of com-
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posite vector bosons. Our study focuses on a different
subject, technically and conceptually, as we shall later
comment more.

II. CASE OF FERMION CONSTITUENTS

We start with a short summary of the results from an
earlier paper [4]. Let us think of forming tightly bound
vector bosons out of fermions with heavy mass M. We
choose that the fermions transform like the fundamental
representation of SU(n), which we refer to as the ‘‘flavor
group’’. The flavor group may be any other group. In order
to solve field theory explicitly, we choose the Lagrangian
of the Nambu-Jona-Lasinio–type model with N families of
fermions and make the large N expansion.

In reasonably short-handed notations, the Lagrangian is
written as

Lð �c ; c Þ ¼ �c ði6@�MÞc � ðG=2NÞX
a

ja�j
�
a ;

ja� ¼
XN
i¼1

�c ��ð�a=2Þc : (1)

where 1
2�a (a ¼ 1; 2; 3 . . . n2 � 1) are the generators of the

flavor SUðnÞ in the n� n matrices, and the currents ja�
(a ¼ 1; 2; 3 . . . n2 � 1) are singlets of the U(N) family
symmetry. The summation over flavor and family indices
has been entirely suppressed in the kinetic energy and mass
term. While this Lagrangian is symmetric under the global
SUðnÞ � UðNÞ symmetry, it is obviously not invariant
under gauge rotations of SU(n) or U(N) on c = �c . When
the coupling constant G is positive and larger than some
critical value, the interaction generates vector bound states
of a family singlet that form the adjoint representation of
the flavor SU(n). In the leading N order, explicit compu-
tation of the infinite fermion chain in Fig. 1 allows us to
obtain for the bound states not only the mass and the
coupling to the fermions but also the triple and quartic
self-couplings [4]. Although quadratic divergence does not
appear in the loop diagrams thanks to global current con-
servation, logarithmic divergences do. We regularize them
by the dimensional regularization. The result is remark-
able: All the couplings of the composite vector bosons
obey SU(n) gauge invariance. The effective Lagrangian
written in terms of A� and c =c y reads in the standard

notation

LðA�; �c ; c Þ ¼ �1
2 trG��G

�� þm2 trA�A
�

þ �c ði6@� gA6 �MÞc ; (2)

whereA� denotes the SU(n) adjoint vector fields in an n�
n matrix and G�� ¼ @�A� � @�A� þ ig½A�;A��. The

gauge coupling constant g and the boson mass are obtained
from the loop diagram as

g2 ¼ 24�2=N lnð ��2=M2Þ;
m2 ¼ 24�2=G lnð ��2=M2Þ;

(3)

where ln ��2 � ð2�D=2Þ�1 þ ln4�� �E in the dimen-
sional regularization. It is only the mass term of the com-
posite vector-boson fields A� that is not gauge invariant in

the effective Lagrangian of Eq. (2). Furthermore, the four-
fermion interactions of the original Lagrangian of the
constituent fermions disappear from LðA�; �c ; c Þ, i.e.,

nonrenormalizability of the current-current interaction is
also transferred entirely into this composite boson mass
term.
The composite boson mass squared m2 can be made as

small as one likes by increasing the magnitude of the
coupling of binding G, but it can never reach zero for
any finite value of G. This is because each loop of the
fermion self-energy chain is of the transverse form
ð�g�� þ q�q�=q

2Þ�ðq2Þ with �ð0Þ ¼ 0 by the global

current conservation of SU(n) symmetry and consequently
iteration of the loops leads to the fermion-antifermion
scattering amplitude of the form,

T ¼ �
�
G

N

�
ð1�G�ðq2Þ þ ðG�ðq2ÞÞ2

�GðG�ðq2ÞÞ3 þ � � �Þ;
¼ �

�
G

N

�
1

1þG�ðq2Þ :
(4)

(a)

(b)

(c)

FIG. 1. The infinite chain of fermion loops that generate (a) a
bound state and its coupling to the fermions, (b) the triple self-
coupling, and (c) the quartic self-coupling. The thin double lines
denote bound states here and also in the figures in the rest of the
paper.
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Since �ðq2Þ ! �0ð0Þq2 with �0ð0Þ< 0 near q2 ¼ 0, the
location of the bound-state pole determined by 1þ
G�ðq2Þ ¼ 0 is at q2 ’ 1=Gj�0ð0Þj. Notice the importance
of �ð0Þ ¼ 0 in order to have m2 � 1=G. This cannot be
realized without global SU(n) current conservation. For
bound states other than spin-parity 1�, the natural scale
of mass squared is OðM2Þ or else Oð�2Þ (� ¼
momentum cutoff). Furthermore we should appreciate
that the same global current conservation prevents us
from bringing the vector bound-state pole to q2 ¼ 0. This
is consistent with the general theorem [9] by Case-
Gasiorowicz and Weinberg-Witten that asserts incompati-
bility of the charged massless vector bosons with the
Lorentz-covariant conserved currents carrying nonvanish-
ing charges. Putting it more simply, a massless spin-one
boson cannot be obtained in the continuous limit of a
massive spin-one boson, as we all know. If we took literally
the limit of G! 1, the mass m2 would become zero, i.e.,
the composite bosons would look like gauge bosons. In this
limit the entire Lagrangian would become / �ja�j�a alone

after rescaling of the fields and therefore trivially gauge
invariant. However, the global currents would not exist by
the Noether theorem in this pathological gauge-invariant
limit. Conflict with the theorem could be thus evaded, but
this limit is a case of no interest, physically or
mathematically.

How can these gauge-invariant couplings be generated?
It is easy to understand when one works in the functional
integral method [7,8]. The partition function Z in terms of
the c = �c fields is given in the Euclidean metric by

Z ¼
Z

D �cDc exp
Z

Lð �c ; c Þd4x: (5)

We can replace the current-current interaction by introduc-
ing the auxiliary adjoint vector fields A� ¼

P
að�a=2ÞAa�

as

Z ¼
Z

DA�D �cDc exp
Z
ðLð �c ; c Þ

þ LauxðA�; �c ; c ÞÞd4x; (6)

where the added Lagrangian term Laux is defined in the
Minkowski metric by

LauxðA�; �c ; c Þ ¼ 1
2ðmAa� �

ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
ja�Þ

� ðmA�
a �

ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
j�a Þ: (7)

Summation over the flavor a is understood above and in the
following. Equivalence of the two actions in Eqs. (5) and
(6) is obvious since one can trivially integrate out the fields
A� in Eq. (6) after shifting A� in the functional space.

When we open up LauxðA�; �c ; c Þ and add it to Lð �c ; c Þ,
the current-current interactions cancel out between
Lð �c ; c Þ and Laux, leaving the effective Lagrangian Leff

in the Minkowski metric in the form of

LeffðA�; �c ; c Þ ¼ Lð �c ; c Þ þ LauxðA�; �c ; c Þ;
¼ �c ði6@�MÞc þ 1

2m
2Aa�A

�
a

� ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
mja�A

�
a : (8)

The constant in front of ja�A
�
a should be identified with the

gauge coupling g so that

g2 ¼ ðG=NÞm2: (9)

The functional integration over A� in Eq. (6) is equivalent

to rewriting the current-current interaction with the A�

exchange at zero-momentum transfer. This explains the
relation in Eq. (9) as 1

2! g
2=m2 ¼ G=2N. While the diagram

calculation has determined g2 andm2 individually as given
in Eq. (3), the mass m2 in Eq. (8) is still a free parameter.
The reason is that we have not yet incorporated the dy-
namical information of the fermion loop at this stage of the
functional integral formulation.
The Lagrangian LeffðA�; �c ; c Þ has no kinetic energy

term of A� so that its equation of motion for A� reads

Aa� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
=mÞja� ¼ ðg=m2Þ �c��ð�a=2Þc : (10)

It simply means that, before letting the vector-bosons
propagate, they are made of fermion-antifermion pairs.
The global current conservation @�j

�
a ¼ 0 assures that

the composite fields Aa� consist only of spin-one states

by @�A
�
a ¼ ðg=m2Þ@�j�a ¼ 0 leaving out the O(3) scalar

component at this stage.
We can now proceed to generate the kinetic energy term

and the self-couplings of dimension four for A� from the

loop diagrams. With Leff of Eq. (8), iteration of the fermion
loops no longer occurs for the two-point function of A�

since there is no four-fermion interaction left in Leff . The
relevant diagrams are only the single fermion-loop dia-
grams of A� in the leading order of N. [Figure 2(a)]. The

same is true for the three and four-point functions. We
should notice here that LðA�; �c ; c Þ is gauge invariant up
to the mass term of A� since the interaction�gja�A�

a can

be combined with the fermion kinetic energy term into the
gauge-invariant form;

�c ðið6@þ igA6 Þ �MÞc : (11)

The painstaking diagram calculation [4] for the two, three,

(a) (b) (c)

FIG. 2. The diagrams that generate the kinetic energy term and
the self-couplings of the fields A� in the case of fermionic

constituents.

APPROXIMATE GAUGE SYMMETRY OF COMPOSITE . . . PHYSICAL REVIEW D 82, 045026 (2010)

045026-3



and four-point functions of A� was actually unnecessary;

they must come out in the gauge-invariant combination up
to the overall constant since the sole term of gauge non-
invariance, namely, the vector-meson mass term
1
2m

2Aa�A
�
a , does not enter the loop calculation in the

leading N order. Therefore the radiatively produced
Lagrangian of dimension four for the fields A� ought to

be in the form

� Z3 � 1
2 trG��G

��: (12)

An explicit loop-diagram calculation is needed only to
obtain the constant Z3. The fermion loop of Fig. 2(a) gives

Z3 ¼ g2N

24�2
lnð ��2=M2Þ: (13)

The constant Z3 is absorbed into the wave-function renor-
malization of A� by A� ! A�=

ffiffiffiffiffiffi
Z3

p
, which in turn re-

normalizes the coupling and the vector-boson mass too;

g! ffiffiffiffiffiffi
Z3

p
gr; m2 ! Z3m

2
r : (14)

Because of �ð0Þ ¼ 0 there is no additive mass renormal-
ization when the mass is computed at zero momentum.
After the kinetic energy term of A� is computed and the

renormalization of Eq. (14) is performed, the renormalized
coupling is given by

g2r ¼ g2=Z3 ¼ 24�2=N lnð ��2=M2Þ; (15)

and the mass takes the form of

m2
r ¼ m2=Z3 ¼ ðN=GZ3Þg2 ¼ 24�2=G lnð ��2=M2Þ:

(16)

These agree with the results of the loop-diagram iteration,
Eq. (3). Namely, the values for g2 and m2 that were
obtained in the calculation of the infinite chain of loops
actually incorporate the renormalization of Eq. (14). The
complete effective Lagrangian written in c , �c , and A�

thus takes the SU(n) gauge-invariant form up to the boson
mass term as given in Eq. (2) with the understanding that
the renormalization of Eq. (14) has already been done for
the mass and the coupling.

Before moving on, we summarize this section: In the
explicitly solvable model of fermionic constituents a set of
composite spin-one bosons behave exactly like gauge bo-
sons in the small limit of the composite boson mass even
though the fundamental Lagrangian is explicitly gauge
noninvariant. Gauge noninvariance stays but solely in the
mass term of the composite bosons. Since the origin of the
boson mass is not spontaneous breaking of gauge symme-
try, there is no asymmetric vacuum condensate of a scalar
field, elementary nor composite. A hidden symmetry can
be introduced in the fermionic model of the Nambu-Jona-
Lasinio–type, if one wishes, by using its language, but it is
always broken in this case. There is no unbroken phase of

the hidden symmetry except for the pathological limit of
G! 1 [8].
We have chosen the four-fermion binding force here in

order to demonstrate all solutions explicitly in the cutoff
field theory. Rather than going into a discussion of phe-
nomenological relevance, we explore in the succeeding
sections whether this remarkable phenomenon of dynami-
cal gauge-symmetry generation is realized in other models
or not, specifically, in the case that the constituents are
spinless bosons. The option of bosons being fundamental
particles is even more esoteric phenomenologically and
sounds less attractive. Our purpose here is, however, to
obtain a better understanding of this generation mechanism
of an approximate gauge symmetry from other models.

III. CASE OF BOSONIC CONSTITUENTS:
ABELIAN SYMMETRY

We would like to see whether the gauge-symmetry
generation of the preceding section works in the bosonic
constituent models or not. We emphasize that we do not
slip an unbroken local symmetry in our models to look for
massless vector bosons as dynamical gauge boson modes.
Such a study was done in the CPN�1 a few decades ago; a
local symmetry is present at the beginning as redundancy
when its Lagrangian is written in some form, then a com-
posite massless vector boson is searched for. Instead we
choose models in which there is no local symmetry to start
with. We study whether the explicit breaking can be trans-
formed into the mass term alone in the case of tightly
bound vector bosons. Unlike the fermionic model, to our
knowledge, our bosonic models have never been studied in
the literature. They show us more clearly what realizes an
approximate gauge symmetry as a consequence of
compositeness.
Let us first study the case of an Abelian vector boson

since it gives us a good insight into the problem leaving out
unnecessary complications. We form a neutral composite
vector boson (a massive photon) with charged spinless
bosons like �� having heavy mass M. We introduce N
families of the heavy �� for the large N expansion. Our
fundamental Lagrangian is written in the nonpolynomial
form as

Lð�y; �Þ ¼ @��
y@���M2�y�

�
�
G

2N

�
j�j

�

1þ 2ðG=NÞ�y� ;

j� ¼ i
X
i

�yðiÞ@
$
��

ðiÞ;

(17)

with the charged spinless bosons �ðiÞ and �ðiÞy (i ¼
1; 2; 3; . . .N) of N families. No constraint is imposed on
the fields � and the classical vacuum is at h�i ¼ 0 so that
the Lagrangian is invariant under the global U(1) charge
rotation,
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�ðxÞ ! ei��ðxÞ; �yðxÞ ! e�i��yðxÞ; (18)

and trivially invariant under global U(N) family rotations.
The current-current interaction has been so chosen that not
only a tightly bound state can be formed but also its mass is
explicitly calculable in the large N limit.1

A natural extension of the fermionic model might sug-
gest the current-current interaction ðG=2NÞj�j� of �=�y

in the bosonic case. However, this simple current-current
interaction does not generate a tightly bound vector boson
in the scattering amplitude for the following reasons:

(1) The current j� ¼ i�y@
$
��, is not a conserved cur-

rent in the case that the interaction is
�ðG=2NÞj�j�. Because derivatives of �=�y enter
�ðG=2NÞj�j�, the conserved current2 J� derivable

by the Noether theorem in the Abelian case,

J� ¼ �i
�

@L

@ð@��Þ��
@L

@ð@��yÞ�
y
�

(19)

contains a term which depends on the interaction
ðG=2NÞj�j�. If we went ahead with this naive

current-current interaction Lint ¼ �ðG=2NÞj�j�,
the current j� would not conserve, @�j� � 0. Its

immediate consequence is that the self-energy loop
���ðqÞ is not transverse [q��ðqÞ�� � 0]and an

additional term of quadratic divergence Oð�2Þ
arises with the coefficient g��. This moves the

pole to q2 � 1=G�Oð�2Þ that cannot be physi-
cally interpreted as mass square of a bound state.

(2) From the standpoint of the functional formalism,
choosing the simple interaction �ðG=2NÞj�j�
would amount to postulating that the composite
vector field A� be proportional to j� and conse-

quently lead to @�A
� / @�j

� � 0. That is, A�

would not be purely a field of spin-one, but contain
a spin-zero component.

We were fortunate in the model of fermionic constitu-
ents since the binding interaction contains no derivative of
fields and therefore the choice of the interaction was
deceptively simple. In contrast, for the bosonic constitu-
ents we must choose the interaction carefully such that the
auxiliary composite field A� is proportional to the Noether

current. If so chosen, the field A� obeys @�A� ¼ 0 and its

proper self-energy part ���ðqÞ turns out to be transverse.

Only in this situation can the composite boson mass be

made as small as one likes by increasing the binding
interaction constant G. The factor ½1þ 2ðG=NÞ�y�� in
the denominator of the interaction in Eq. (17) serves this
purpose and realizes m2 / 1=G! 0. [See the second rela-
tion in Eq. (3).]

A. Diagram computation

A neutral vector bound-state is formed with the loop and
bubble diagrams of�=�y. We compute for the bound-state
in elastic scattering

�þðp1Þ þ��ðp2Þ ! �þðp3Þ þ��ðp4Þ: (20)

Although we are interested in physics at largeG, we cannot
make the 1=G expansion in the Lagrangian since the
potential term behaves at large G as

Lint ¼ �
�

j�j
�

4ð�y�Þ
��

1� N

2Gð�y�Þ þ � � �
�
: (21)

The behavior of Lint ! 1 at �y� ¼ 0 makes the pertur-
bative vacuum ill-defined and prevents diagram calcula-
tion. We must instead perform diagram calculation in the
perturbative expansion in powers ofG to all orders, sum up
the perturbative series, and then take G to large values.
Such computation is possible only in the leading N
order. In the large N limit the relevant diagrams are chains
of loops with bubbles added. (See Fig. 3.) Each loop
comes from the diagram of h0jTð�ðxÞ�yðyÞÞji�
h0jTð�ðyÞ�yðxÞÞj0i, while the bubble diagram arise from
h0jTð�ðxÞ�yðxÞÞj0i in the power series expansion of the
factor 1=½1þ 2ðG=NÞ�yðxÞ�ðxÞ�. If the loops and the
bubbles of OðGnÞ in the JP ¼ 1� channel sum into the
transverse form as

ð�g�� þ q�q�=q
2Þ�ðq2Þ; �ð0Þ ¼ 0;

ðq ¼ p1 þ p2Þ;
(22)

(b)

(c)

(a)

FIG. 3. The diagrams in each order of OðGnÞ that sum up into
the transverse form and therefore generate a tightly bound
vector-boson. (a) OðGÞ, (b) OðG2Þ, and (c) OðG3Þ.

1It may look that the factor of 1=½1þ 2ðG=NÞ�y�� in this
Lagrangian has some vague resemblance with that of the CPN�1
model written in the constrained fields [10]. But our �=�y are
unconstrained here.

2Hereafter we denote the Noether currents with the capital
letters and distinguish them from the naive bosonic currents
j� ¼ i�y@

$
�� that originates from the kinetic energy term

alone.
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the perturbation series turns into the total scattering am-
plitude in the form of Eq. (4) so that the bound-state mass
m2 comes out to be / 1=G. Transversality of Eq. (22) is
indeed realized after summing the loops and the bubbles of
the same order in the power of G, as shown in Fig. 3. In
OðGÞ the tree diagram is the only diagram [Fig. 3(a)]. A
single-loop diagram and a single-bubble diagram enter
OðG2Þ [Fig. 3(b)]. The single-loop diagram alone would
not make ���ðqÞ transverse in OðG2Þ, as we know from

the photon self-energy in electrodynamics of the charged
pions in which the bubble generated by the interaction
e2�y�A�A

� makes the photon self-energy transverse

and keeps the photon massless even after loop corrections.
In OðG3Þ we sum a diagram with two bubbles, a pair of
diagrams with one-loop and one-bubble, and the diagram
of two bubbles [Fig. 3(c)]. We can keep on going to higher
orders ofG and obtain a scattering amplitude of the form of
Eq. (22) in the 1� channel. Consequently, the location of
the pole is found at q2 � 1=G as we desire. In order to
realize this behavior, therefore, the factor 1=½1þ
2ðG=NÞ�y�� is needed in the interaction term of the
Lagrangian, Eq. (17).

When we sum up an infinite series of the loop plus
bubble diagrams of Fig. 3 in a compact form, the resulting
invariant amplitude for the elastic scattering of Eq. (20) is

T ¼ ðG=NÞg��ðp3 � p4Þ�ðp1 � p2Þ�½1�G�ðq2Þ
þ ð�G�ðq2ÞÞ2 þ � � ��;

¼
�
G

N

� ðp3 � p4Þ�ðp1 � p2Þ�
1þG�ðq2Þ ; (23)

where

�ðq2Þ ¼ � q2

48�2

�
ln ��2 � 3

Z 1

0
ð1� 2�Þ2

� lnðM2 � �ð1� �Þq2Þd�
�
: (24)

The bound-state pole appears in T at the location deter-
mined by 1þG�ðq2Þ ¼ 0. For large G the mass of the
bound state is found at

m2 ¼ 48�2

G lnð ��2=M2Þ ; (25)

and its coupling to �� is given by

g2 ¼ 48�2

N lnð ��2=M2Þ ; (26)

so that the bound-state mass and the coupling are related at
GM2 � 1 by

g2 ¼ ðG=NÞm2: (27)

Here again the composite mass vanishes if one takes the
limit of G! 1 in Eq. (25). Going back to the original
Lagrangian, Eq. (17), we find in this limit3

lim
G!1

Lð�y; �Þ ¼ @��
y@���M2�y�� j�j

�=4ð�y�Þ:
(28)

It is not difficult to check that this Lagrangian is U(1)-

gauge invariant under �ðxÞ=�yðxÞ ! ei�ðxÞ�ðxÞ=
e�i�ðxÞ�yðxÞ. The U(1)-gauge invariance is nontrivial in
this form unlike that in the fermionic model. In the non-
linear representation, however, this limiting Lagrangian
turns out to be the free Lagrangian of the radial fields
and the phase fields do not enter. That is, this Lagrangian
is trivially gauge invariant and of little physical content.
The Noether current of Eq. (19) vanishes

J� ¼ 0 ðG! 1Þ: (29)

Since there is not a conserved global U(1) current, the
massless limit of our composite boson would not contradict
the general theorem [9]. But it is obvious that a massless
vector boson cannot be formed with the limiting
Lagrangian that contains only the Hermitian radial field.
The Lagrangian of Eq. (28) would be identical to that of

the CPn�1 model if �=�y were constrained with �y� ¼
const. However, the �=�y fields are the unconstrained
fields in our case; we have gone through the Feynman
diagram calculation with the standard (unconstrained)
spinless-boson propagator.

B. Functional integral formulation

In the diagram computation above, we need careful
bookkeeping in summing up the perturbation series into
the scattering amplitude. After our study of the fermionic
model, however, we are able to carry out an equivalent
calculation by the functional integral method in a simpler
way. We see underlying issues and their new aspects more
clearly in a new light.
The first step is to introduce the auxiliary neutral vector

field A�. The Lagrangian of Eq. (17) in�=�y suggests the
form for the partition function,

Z ¼
Z

DA�D�yD�

� exp

�Z
d4x½Lð�y; �Þ þ LauxðA�;�

y; �Þ�
�
; (30)

where Lð�y; �Þ is given by Eq. (17) and LauxðA�;�
y; �Þ is

defined by

3This limiting Lagrangian appeared in Ref. [11] in a different
context.
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LauxðA�;�
y; �Þ ¼ 1

2
ð1þ 2ðG=NÞ�y�Þ

�
�
mA� �

ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
j�

1þ 2ðG=NÞ�y�
�

�
�
mA� �

ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
j�

1þ 2ðG=NÞ�y�
�

þ 2	4ð0Þ lnð1þ 2ðG=NÞ�y�Þ: (31)

Upon integration over A�, the factor [1þ 2ðG=NÞ�y�] in

front of the first term of Eq. (31) generates exp½�2	4ð0Þ�R
lnð1þ 2ðG=NÞ�y�Þd4x�, as is shown in the Appendix,

and cancels the last term of Laux so that Eq. (30) reduces to
the partition function written in �= �� alone,

Z ¼
Z

D�yD� exp
Z

Lð�y; �Þd4x: (32)

The diagrammatic content of this logarithmic term is also
shown in the Appendix. The infinite factor 	4ð0Þ represents
the total functional phase space

R
d4k=ð2�Þ4, which should

be properly regularized. Physically, it is a large finite
number since the unrenormalizable Lagrangian of
Eq. (17) is valid only up to some limited energy range.
However, if one regularizes it dimensionally as the M2 !
0 limit of

Z dDk

ð2�ÞD
k2

k2 �M2
¼ i

16�2
M4

�
ln

��2

M2
þ 1

�
; (33)

one would set this 	4ð0Þ to zero using the formula

Z dDk

ð2�ÞD
k2

ðk2 �M2ÞN ¼
i

2

ð�1ÞN�1
ð4�ÞD=2

�ðN � 1�D=2Þ
�ðNÞ

� D

ðM2ÞN�1�D=2
: (34)

Containing no derivative, the term 2	4ð0Þ lnð1þ
2ðG=NÞ�y�Þ is manifestly gauge invariant by itself and,
in the leading N order, does not contribute to the calcu-
lation of the bound state in the JP ¼ 1� channel. It affects
only the 0þ channel of ��y scattering in the leading N
order. We leave this singular term as proportional to 	4ð0Þ
as it is, while it does not affect our diagrammatic calcu-
lation in the rest of the paper.

When we sum Lð�y; �Þ and LauxðA�;�
y; �Þ, no

current-current interaction is left in the sum,

Lð�y; �Þ þ LauxðA�;�
y; �Þ

¼ @��
y@���M2�y�þ 2	4ð0Þ lnð1þ 2ðG=NÞ�y�Þ

þ 1
2m

2ð1þ 2ðG=NÞ�y�ÞA�A
� � ffiffiffiffiffiffiffiffiffiffiffi

G=N
p

mj�A
�: (35)

In fact, we have chosen Laux in Eq. (31) so that the current-
current interaction is absent from the sum in Eq. (35). We
have not obtained Eq. (35) by simply gauging Lð�y; �Þ
with @� ! D� in Eq. (17). We identify the constant

ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
m in front of j�A

� with the gauge coupling g in

Eq. (35). Therefore, we obtain g2 ¼ ðG=NÞm2, which is
the relation between g2 and m2 that has been obtained in
Eq. (27) by the diagram calculation. Furthermore a new
four-point interaction of �y�A�A

� arises in Lð�y; �Þ þ
LauxðA�;�

y; �Þ,
ðm2G=NÞ�y�A�A

�; (36)

which is equal to g2�y�A�A
� thanks to g2 ¼ ðG=NÞm2.

Therefore the Lagrangian in Eq. (35) can be rearranged
into the gauge-invariant form up to the mass term of A�:

LeffðA�;�
y; �Þ � Lð�y; �Þ þ LauxðA�;�

y; �Þ
¼ ð@� � igA�Þ�yð@� þ igA�Þ�

þm2

2
A�A

� þ 2	4ð0Þ
� lnð1þ 2ðG=NÞ�y�Þ: (37)

The Lagrangian of Eq. (37) leads to the equation of motion
for A�,

m2ð1þ ð2G=NÞ�y�ÞA� �
ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
mj� ¼ 0: (38)

The Noether current J� in terms of � and �y can be

computed with Eq. (19) from Lð�y; �Þ as

J� ¼ i
�y@��� @��

y�
1þ 2ðG=NÞ�y� : (39)

Therefore, the equation of motion, Eq. (38), together with
g2 ¼ ðG=NÞm2 says that, with our choice of Lagrangian,
A� is proportional to the Noether current J� of the con-

stituent fields before propagation;

A� ¼ g

m2
J�: (40)

Consequently it satisfies @�A
� ¼ 0 so that its self-energy

is transverse. Therefore, the bound-state mass square can
behave asm2 � 1=G. The relation @�A

� ¼ 0 also tells that

this vector boson is not a gauge boson since it holds by the
equation of motion, not by choice of fixing ambiguities.
Nor does A� transform like A� ! A� þ ði=gÞ@�� under

�=�y ! ei��=e�i��y either. That is, we are studying
something very different from the gauge boson of the
CPN�1 model [10] or its hidden symmetry [8].
We now proceed to obtain the kinetic energy term

through loop diagrams. No three-point function or non-
derivative four-point function of A� is generated in the

Abelian case. It is only the two-point functions that arise
from loop and bubble diagrams. The computation is
straightforward by the diagrams of Fig. 4 with the interac-
tion �gj�A� þ g2�y�A�A

�.

Since the interaction �gj�A� þ g2A�A
��y� added

with @��
y@�� is gauge invariant and since the mass

term of A� enters nowhere in this loop and bubble calcu-
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lation, the resulting kinetic energy is also gauge invariant:

� Z3

4
ð@�A� � @�A�Þð@�A� � @�A�Þ; (41)

where the constant Z3 is computed with the loop diagram
from the Lagrangian of Eq. (37);

Z3 ¼ g2

48�2
ln

��2

M2
: (42)

This constant Z3 is removed by the wave-function renor-
malization of the field A� and renormalization of the

coupling g, and the mass m2:

A� ! A�=
ffiffiffiffiffiffi
Z3

p
; g! ffiffiffiffiffiffi

Z3

p
g; m2 ! Z3m

2: (43)

The renormalized mass and coupling are what the diagram
computation has given in Eqs. (25) and (26) as in the
fermionic model. Even after they are renormalized, they
maintain the relation g2 ¼ ðG=NÞm2 of Eq. (27). We have
thus confirmed the results of our preceding diagram calcu-
lation in the bosonic model and have reaffirmed our finding
in the fermionic model: In the small limit of the composite
boson mass the bosonic theory also approaches the gauge
theory as closely as possible although the mass m2 can
never be brought to zero for any large but finite value of G.

We have a little deeper understanding of the relation
between gauge invariance and the small composite boson
mass in the bosonic constituent model than in the fermionic
model. In the case of the bosonic constituents we must be
very careful in choosing the binding interaction; the com-
posite boson mass approaches zero in the limit of strong
coupling G! 1 if we multiply the naive current-current
interaction with the factor 1=½1þ ð2G=NÞ�y��. This fac-
tor conspires with j�j

� and generates part of the gauge

interaction g2�y�A�A
� with the correct strength when

we move to the effective theory in terms of the composite
field A�. The equation of motion for A� prior to generation

of the kinetic energy is of the form,

A� ¼
gj�

m2 þ 2g2�y�
; (44)

where the right-hand side is proportional to the Noether
current. Expanding the denominator 1=½m2 þ 2g2�y�� in
the power series of �y�, we interpret the series as the
composite vector boson consisting not only of a single pair
of �y� in p wave, but also of many additional �y� pairs

in s wave. Even with this additional factor 1=½1þ
2ðG=NÞ�y��, the original Lagrangian Lð�y; �Þ written
in the �=�y fields is not gauge invariant at all. After we
introduce the composite vector field A�, however, gauge

noninvariance is swept entirely into its mass term and we
reach the correct form of the gauge boson Lagrangian (up
to mass).
Before we proceed to the non-Abelian case, we summa-

rize what we have learned from the models that we have so
far studied.
(1) In order to generate composite vector bosons with

small mass, their proper self-energy part ���ðqÞ
must be of the transverse form ð�g�� þ
q�q�=q

2Þ�ðq2Þ without an additional term

�g���0ðq2Þ (�0ð0Þ � 0) since this transverse

form guarantees that the composite mass square is
inversely proportional to strength of binding
interaction.
This transversality is realized in our models with the
conserved currents of a global symmetry. For this
reason, presence of a global symmetry is a prereq-
uisite for a generation of (approximate) gauge sym-
metry though it may not be surprising. If conserved
currents of a global symmetry do not exist, the
composite boson mass cannot be made small. By
turning the argument around, we may say that if a
tightly bound state of JP ¼ 1� exists, there must be
some dynamical reason why such tight binding oc-
curs. Without a good reason the bound-state mass
would only be some fraction of 2M. In the JP ¼ 1�
channel a very strong current-current interaction of
right properties can generate a tightly bound state of
mass scale much lower than 2M, at least theoreti-
cally, as we have seen above.

(2) Keeping this observation in mind, we should set up a
model Lagrangian possessing a global symmetry
and introduce nonpropagating composite vector-
boson fields that are proportional to the Noether
currents. Then the resulting Lagrangian of the com-
posite fields is gauge invariant except for the mass
term. When the Lagrangian is written in the con-
stituent particle fields alone, gauge symmetry does
not exist since it is broken by their kinetic energy
and, in the case of boson constituents, by the binding
interaction too. However, after composite vector
bosons are generated dynamically, the gauge sym-
metry breaking is entirely absorbed into the boson
mass term.

IV. CASE OF BOSONIC CONSTITUENTS:
NONABELIAN SYMMETRY

After we have gone through the functional integral for-
mulation of the Abelian model, it is not difficult to extend
the results to the non-Abelian case. We choose here the
bosonic constituents that transform like the fundamental

FIG. 4. The diagrams that generate the kinetic energy term of
the composite boson field. No further chain of loops and bubbles
enter in the leading N order.
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representation under flavor SU(n) symmetry. The bosonic
fields � that carry n flavors are replicated with N families

as �ðiÞ (i ¼ 1; 2; 3 � � �N). As we have learned in the
Abelian case, the simplest current-current interaction
ðG=NÞja�j�a summed over flavors að¼ 1; 2; 3 . . . n2 � 1Þ
does not serve our purpose since ja� are not conserved

currents in the presence of the bosonic current-current
interaction. We need the non-Abelian version of the factor
1=½1þ 2ðG=NÞ�y�] given in Eq. (17). The right factor in
the non-Abelian case is an ðn2 � 1Þ � ðn2 � 1Þ matrix in
the flavor space. It is expressed as the inverse matrix of

ð1þ �Þab � 	ab þ
�
G

N

�
�y

�
�a

2
;
�b

2

�
�; (45)

where �a

2 are the n-dimensional representation matrices of

SU(n). The matrix (1þ�) is symmetric in the ða; bÞ of
flavors and independent of families. In the special case of
SU(2), (1þ�) turns out to be a diagonal matrix in flavors
thanks to f
a; 
bg ¼ 2	ab. For notational simplicity, we
suppress hereafter the family indices and often even flavor
indices when they are obvious. Our Lagrangian is chosen
as

Lð�y; �Þ ¼ @��
y@���M2�y�

�
�
G

2N

�
ja�

�
1

1þ �

�
ab
j
�
b ; (46)

where summation is understood over flavors ða; bÞ
(1; 2; 3 . . . n2 � 1) in the interaction term, and ja� are the

‘‘naive’’ currents defined by

ja� ¼ i
XN
i¼1

�yðiÞð�a=2Þ@
$
��

ðiÞ: (47)

The flavor and family indices are suppressed altogether in
the kinetic energy and mass terms. Between the currents
ja� and j�b is the (ab)element of the inverse matrix of (1þ
�), not the inverse of ð1þ �Þab. This is the right current-
current interaction that generates tightly bound vector-
boson states of SU(n).

The Noether currents of SU(n) can be computed with
Eq. (46) by using the non-Abelian version of Eq. (19) as

Ja� ¼
�

1

1þ�

�
ab
jb�: (48)

Being the Noether currents, Ja� satisfy the conservation

law, @�J
�
a ¼ 0. By choosing the auxiliary composite fields

Aa� proportional to the Noether currents Ja�, we imple-

ment @�A
�
a ¼ 0. In order to accomplish it, we add

LauxðA�;�
y; �Þ to Lð�y; �Þ as

LeffðA�;�
y; �Þ ¼ Lð�y; �Þ þ LauxðA�;�

y; �Þ; (49)

where

LauxðA�;�
y; �Þ ¼ 1

2
m2 ~Aa�ð1þ�Þab ~A�

b

þ 2ðn2 � 1Þ	4ð0Þ lnðdetð1þ�ÞÞ;
~Aa� ¼ Aa� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Nm2

q �
1

1þ�

�
ab
jb�: (50)

The determinant of (1þ �) here means the determinant in
the flavor SU(n) space. It compensates the same term of the
opposite sign that arises upon the functional integrationR
DA� in the partition function,

Z ¼
Z

DA�D�yD� exp
Z

LeffðA�;�
y; �Þd4x; (51)

so that Z is equal to what we have before introducing the
fields A�. Just as in the Abelian case, the logarithmic term

does not contribute to our calculation of bound states in the
leading N order.
Let us examine the Lagrangian LeffðA�;�

y; �Þ of

Eq. (49). Opening up the mass term of ~Aa� and adding it

to Lð�y; �Þ, we find the simple form,

LeffðA�;�
y; �Þ ¼ @��

y@���M2�y�

þ 2ðn2 � 1Þ	4ð0Þ lnðdetð1þ�ÞÞ
þ 1

2m
2A�ð1þ�ÞA� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm2=N

q
j�A

�;

(52)

where the flavor indices have been suppressed; the term
j�A

� in the last term stands for
P

aja�A
�
a . The current-

current interaction in Lð�y; �Þ is cancelled out by the term
arising from 1

2m
2 ~A�

~A� in LeffðA�;�
y; �Þ.

The coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm2=N

p
of j�A

� is identified with the

gauge coupling g in Eq. (52);

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm2=N

q
: (53)

With this relation in mind, we can write the part
1
2m

2A��A
� of the term 1

2m
2A�ð1þ�ÞA� in Eq. (52)

explicitly in the form

1

2
m2A��A

� ¼ 1

2
g2Aa�

�
�y

�
�a

2
;
�b

2

�
�

�
Ab�: (54)

Therefore the three terms, @��
y@��, �gj�A�, and

1
2m

2A��A
�, add up in the gauge-invariant kinetic energy

term;

@��
y@��� gj�A

� þ 1

2
m2A��A

�

¼ �y
�
@
 
� � ig

�a

2
Aa�

��
@� þ ig

�b

2
A�
b

�
�: (55)

The remaining task is to generate the kinetic energy term
of A�. We compute the non-Abelian counterpart of the

loop and the bubble in Fig. 4 for the two-point function
and, in addition, the three-point and four-point functions in
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the leading N order. Since Leff is gauge-invariant up to the
mass of Aa� and no composite boson loop enters in the

leading order, this calculation inevitably generates the
gauge-invariant combination of A�A

�, A�A�A�, and

A�A�A�A� as

� Z3

2
trG��G

��; (56)

where G�� ¼ 1
2�aGa�� is the covariant field tensors in

matrix,

Ga�� ¼ @�Aa� � @�Aa� � gfabcAb�Ac�: (57)

Since we know that the final result should come out to be
proportional to � 1

2 trG��G
��, we have only to compute

one of its terms, say, the two-point function. We find
through an explicit diagram calculation

Z3 ¼ g2

96�2
ln

��2

M2
: (58)

As before, the constant Z3 is renormalized away by

A � ! A�=
ffiffiffiffiffiffi
Z3

p
; g! ffiffiffiffiffiffi

Z3

p
g; m2 ! Z3m

2:

(59)

Therefore the final Lagrangian is

LðA�;�
y;�Þ ¼�1

2
trG��G

��þm2 trA�A
�

þ�y
�
@
 
�� ig

�a

2
Aa�

��
@�þ ig

�b

2
A�
b

�
�

�M2�y�þ 2ðn2� 1Þ	4ð0Þ
� lnðdetð1þ�ÞÞ; (60)

where it is understood that renormalization has been made
for g and m2 as in Eq. (59). This completes our derivation
in the non-Abelian case. Clever use of the functional

integral method streamlines the whole derivation and
greatly alleviates the calculation that would be quite cum-
bersome in the diagrammatic method.
A final remark is again on distinction of our study from

theCPN�1 model. In the strong coupling limit ofG! 1 at
which the composite boson mass goes to zero, the non-
Abelian Lagrangian in terms of�=�y approaches the form

lim
G!1

Lð�y; �Þ ¼ @��
y@���M2�y�

� 2ja�½1=ð�yD�Þ�abj�b ; (61)

whereDab ¼ f�a; �bg. It has no resemblance to the CPN�1
model in any respect. In this limit the composite bosons of
SU(n) turn massless and the Lagrangian becomes gauge
invariant under the flavor SU(n). The Noether currents,
Eq. (48), vanish at G! 1 so that there is no conflict
with the no-go theorem [9]. However, it is questionable
whether such gauge bosons have any physical significance
or even exist at all. (See the remark made on this limit in
the Abelian case.) As for the large N expansion, our large
N is the number of families not of flavors while it is the
number of our flavors n that is made large in the compu-
tation of the CPN�1 model.

V. EXTENDED MODEL OF FERMIONIC
CONSTITUENTS

The condition of tight binding imposes strong con-
straints on the binding interaction. In fact, it determines
the form of interaction almost uniquely. After we have
gone through our models, we are able to extend the original
fermionic model a little by adding the 3D1 force propor-

tional to ð �c @
$
�c Þð �c @

$�
c Þ to the 3S1 force. Let us discuss

briefly such a model of abelian symmetry. We study the
Lagrangian defined by

Lð �c ; c Þ ¼ �c ði6@�MÞc �
�
G

2N

� ðj� þ ðG=NÞð�=M2Þð �c c Þs�Þðj� þ ðG=NÞð�=M2Þð �c c Þs�Þ
1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2 þ

�
G

4N

��
�

M2

�
s�s

�;

ð� > 0Þ; (62)

where

j� ¼ �c��c ; s� ¼ i �c @
$
�c : (63)

Summation over families (1� N) is understood in �c c ,
j�, and s�, while the flavor of c is a simple Abelian
charge. In Eq. (62) � is a free dimensionless parameter
that determines the amount of D-wave mixing. The value
of � must be positive in order for the well-defined vacuum
to exist. The interaction has been so chosen that the
Noether current comes out in a reasonably simple form:

J� ¼
j� þ ðG=NÞð�=M2Þð �c c Þs�
1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2 : (64)

Although the term s�s
� has been introduced to generate

the 3D1 force with the same order in strength as the 3S1
force, the 3D1 current s� enters the Noether current J� by
one power higher in (G=N) than the 3S1 current since j�
arises from the kinetic energy term too. Following the
procedure in the previous models, we introduce the auxil-
iary field A� with the Lagrangian term
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LauxðA�; �c ; c Þ ¼ ðm2=2Þð1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2Þ
� ~A�

~A� þ 2	4ð0Þ lnð1þ 2ðG=NÞ2
� ð�=M2Þð �c c Þ2Þ; (65)

where

~A� ¼ A� �
ffiffiffiffiffiffiffiffiffiffi
G

Nm2

s
j� þ ðG=NÞð�=M2Þð �c c Þs�
1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2 : (66)

The Lagrangian Laux leads to the equation of motion for
A�,

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Nm2

q
J�: (67)

The field A� obeys @�A
� ¼ 0 and the proper self-energy

part is transverse. Adding Laux to Lð �c ; c Þ, we have
LeffðA�; �c ; c Þ ¼ ðm2=2ÞA�A

� þ �c ði6@�MÞc � gj�A
�

þ
�

�G

4NM2

�
ðs�s� � 4gð �c c Þs�A�

þ 4g2ð �c c Þ2A�A
�Þ þ 2	4ð0Þ

� lnð1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2Þ; (68)

where g � m
ffiffiffiffiffiffiffiffiffiffiffi
G=N

p
. Note that the field A� enters Leff

precisely in the gauge-invariant form up to the mass
term. Therefore, upon generating the kinetic energy of
A� by loops and bubbles and renormalizing Z3 away by
A� ! A�=

ffiffiffiffiffiffi
Z3

p
, g! g=

ffiffiffiffiffiffi
Z3

p
, and m2 ! m2=Z3, we reach

in terms of the renormalized mass and coupling

LðA�; �c ; c Þ ¼ � 1

4
F��F

�� þm2

2
A�A

� þ �c ði 6D�MÞc

þ �G

4NM2
ði �cD

$
�c Þði �cD

$�
c Þ

þ 2	4ð0Þ lnð1þ 2ðG=NÞ2ð�=M2Þð �c c Þ2Þ;
(69)

where F�� ¼ @�A� � @�A�, D� ¼ @� þ igA�. The
3D1

four-fermion interaction does not go away in Eq. (69) but is
gauged with A�. The sole gauge-noninvariant term is the
mass term 1

2m
2A�A

�. Although it looks tempting to in-
troduce another auxiliary vector field B� to remove the
‘‘gauged s�s

� term’’ from the Lagrangian of Eq. (69), it is
not possible since the coefficient of s�s

� is positive
(repulsive).4

Since the 3D1 four-fermion interaction stays in the
Lagrangian LeffðA�; �c ; c Þ, the wave-function renormal-

ization Z3 and therefore the mass m2 and the coupling g2

are to be computed in the perturbation series with respect

to �. We rewrite G=N in terms of g and m2 by use of
G=N ¼ g2=m2 and carry out the computation. In the zeroth
order of � the simple one-loop-diagram of fermion is

transverse by itself and generates Z3 ¼ ðg2N=12�2Þ�
lnð ��2=M2Þ. In the first order of � there exist four diagrams
which sum up to the transverse form. (See Figure 5.) When
we compute divergent integrals by the dimensional regu-
larization, we find that theOð�Þ correction to Z3 happens to
vanish by cancellation among the four diagrams.
In the order of �2 there are again four diagrams, which

differ from the diagrams of Oð�Þ by the insertion of a
single fermion loop

R
eiqxh0jTðs�ðxÞs�ð0ÞÞj0id4x. This in-

sertion maintains the cancellation that occurs among the
four diagrams ofOð�Þ. The same cancellation repeats to all
higher orders of �. Consequently we have no � correction
to Z3:

Z3 ¼ ðg2N=12�2Þ lnð ��2=M2Þ (70)

to all orders of � in the large N expansion. Therefore, the

renormalized mass and coupling are given by m2 ¼
12�2=G lnð ��2=M2Þ and g2 ¼ 12�2=N lnð ��2=M2Þ. Ab-
sence of the � correction is unexpected. We are unable to
appreciate if it has an important implication or not.
This extended fermionic model reinforces the claim that

the generation mechanism of approximate gauge symme-
try is not an accident but more of a general phenomenon.
As we have emphasized repeatedly, however, it would be a
futile effort to try to improve the Lagrangian further so as
to generate genuine gauge bosons of zero mass as com-
posite states unless some local symmetry is slipped in. It is
because it would contradict with the simple general theo-
rem [9]. In our cases the Lorentz-covariant conserved
currents with nonzero charge do exist in the composite
vector-boson theories as we can write them in terms of the
constituent particle fields. We have shown for each model
in this paper that the conserved (Noether) currents would
disappear and the fundamental Lagrangian would become
meaningless when one took the massless limit. In the
extended fermion model the Noether current would dis-

FIG. 5. The self-energy diagrams of Oð�Þ. The filled small
circles denote the locations where the interaction proportional to
� enters.

4Positivity of � is required by the existence of a well-defined
classical vacuum. For � < 0 the denominator 1=½1þ 2ðG=NÞ2�
ð�=M2Þð �c c Þ2� would blow up at ð �c c Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1=2�p ðN=GÞM in

Eq. (62).
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appear and the Lagrangian would become singular at
�c c ¼ 0.

VI. DISCUSSION AND OUTLOOK

Gauge symmetries in particle physics are broken sym-
metries except for electrodynamics and chromodynamics.
The prevailing wisdom for broken gauge symmetries is
that they are spontaneously broken since otherwise the
underlying quantum field theory would be unrenormaliz-
able. If we want to construct an ultimate fundamental
theory valid at all possible energies from top down, postu-
lating gauge symmetry is the only option for us. On the
other hand there may still be layers of effective theories
before we reach the ultimate theory at the highest energy.
Indeed this was the case in the history of phenomenologi-
cal particle physics. If one takes this viewpoint, one may
rather build particle theory from the bottom up with effec-
tive theories which are valid only over limited ranges of the
energy scale. It would not be so unreasonable for theorists
in this camp to ask whether there is any dynamical origin
for approximate gauge symmetries other than spontaneous
symmetry breaking.

The purpose of this paper is to show in the solvable
models that even if a gauge symmetry is not implanted at a
fundamental level, it may emerge as an approximate sym-
metry by dynamical necessity in the tightly bound limit of
composite vector bosons if such bosons exist at all. We
know that the Nambu-Goldstone boson can be a tightly
bound composite massless boson: It appears upon sponta-
neous breaking of a global symmetry and a phase transition
occurring. In our case a global symmetry remains unbro-
ken and no phase transition occurs. The tightly bound
composite boson is not unnatural in the JP ¼ 1� channel
when the composite field is proportional to a Lorentz-
covariant conserved current. In contrast, in other channels
one must fine-tune coupling strength if one wants to gen-
erate a very light but nonzero composite boson. We have
postulated a global symmetry as our starting point to derive
an approximate local symmetry. Some may ask why we
accept a global symmetry at the beginning. Are global
symmetries more natural than local symmetries? Frankly,
we cannot make a convincing argument in this regard.

In low-energy strong interactions of mesons and baryons
the relation between vector mesons and conserved had-
ronic currents was emphasized by Sakurai [12] nearly a
half century ago. He strongly advocated that the �, the !,
and the � meson couple to the isospin, the baryonic, and
the hypercharge current, respectively, in the form Lint ¼
�gj�’� incorporating the !�� mixing. A decade later,

from a field theory standpoint, Kroll, Lee, and Zumino [13]
proposed the field-current identity hypothesis’� ¼ fj� in

which the fields of the �, the!, and the�meson are in fact
the isospin, the baryon, and the hypercharge current them-
selves. Our finding in this paper reminds us of this old
hypothesis although in the contemporary picture those

light vector mesons are the loosely bound states by the
long-distance confining forces. Nonetheless, these hypoth-
eses on the light vector mesons were successfully tested,
for instance, in the vector-meson dominance of the elec-
tromagnetic and weak currents albeit within the accuracy
of typical low-energy strong interaction physics. Many
years later, but before high-energy electroweak interaction
data were accumulated, Claudson, Farhi, and Jaffe [14]
proposed that W and Z might be loosely bound composite
bosons by some hypothetical confining force. Criticism
was made by Lee and Shrock [15] with lattice gauge theory
analysis. Beyond that, however, conspicuously missing
was a quantitative study. The idea of the loosely bound
W and Z would have hard time to withstand a test of the
contemporary experimental data with respect to the fast
falling form-factor damping, e.g., large difference between
the on-shell coupling and the zero-momentum limit of
coupling. More recently, however, attempts have been
made for composite W and Z with higher confinement
energy scales involving the extra space-time dimension
[16]. The guage symmetry is placed at onset outside the
four-dimensional space-time in those models.
Our field theory models here are all based on unrenor-

malizable field theories in the largeN limit since otherwise
we cannot solve them explicitly. When the models are
written in the effective Lagrangian of the composite vector
bosons, unrenormalizability is transformed into the longi-
tudinal polarization of the massive vector bosons and, in
the presence of derivative interactions, possibly the non-
derivative gauge-invariant logarithmic term. In this sense
our ignorance in the binding interactions is swept into the
longitudinal polarization state of the composite vector-
boson. As it is well known [17], the tree diagrams involv-
ing the self-coupling of longitudinal polarizations of theW
and Z bosons overshoot the unitarity bound at energies
much higher than the W and Z masses when the Higgs
boson is left out or very heavy (> 1 TeV) in the standard
model. A possibility of building an alternative to the stan-
dard model with composite W and Z was suggested [7] by
introducing a set of sufficiently many new fermions as their
consituents in our simplest fermionic model. In such mod-
els W and Z would interact strongly at very high energies
through the longitudinal polarization modes. This alone
does not rule out the composite W and Z at present.
However, there exists a potential problem of the same
origin at lower energies. That is, the radiative corrections
to the low-energy electroweak parameters. We can exam-
ine the composite vector-boson propagator with the dia-
gram of Fig. 1(a) by taking the external fermion lines off
mass shell. It is given by

D��ðqÞ ¼ i
g�� � ðq�q�=m2ÞFðq2Þ

m2 � q2Fðq2Þ ; (71)

where the form factor Fðq2Þ is defined with ��ðq2Þ �
�ðq2Þ=q2 by
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Fðq2Þ ¼ ��ðq2Þ= ��ð0Þ; (72)

so that Fðq2Þ is normalized as Fð0Þ ¼ 1. The function
D��ðqÞ does not deviate much from that of the lowest-

order perturbation in the region of q2 ¼ Oðm2Þ 	
OðM2Þ.5 Since models of composite W and Z do not
contain the Higgs bosons, the mass singularity term
q�q�=m

2 potentially generates large radiative corrections6

to the low-energy parameters, particularly in the S parame-
ter. However, the diagrams which contain a composite
boson loop are in the next-to-leading order of the large N
expansion. That is, it is technically outside of our scope of
calculation. Nonetheless it may become a problem if we
seriously attempt to build a model of compositeW and Z as
an alternative to the standard model.

We all agree that despite its field theoretical beauty the
standard model has disturbing unnaturalness, the worst of it
being the hierarchy problem, once we go beyond the multi-
TeV energy scale. We should not completely abandon
esoteric possibilities such as composite W and Z at some
very high-energy scale until an experiment rules them out
convincingly. We should keep our mind open for the out-
come of the upcoming accelerator experiment although
admittedly chances may be small. Even if the LHC does
not support the compositeW and Z bosons, it may discover
novel spin-one bosons that interact like gauge bosons.
Aside from an experiment, the quest for the origin of gauge
symmetry will remain a challenge for many theorists [2].
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APPENDIX: THE FUNCTIONAL DETERMINANT

Change of the integral variable from A� to ð1þ
2ðG=NÞ�y�ÞA� in the functional integral of Eq. (30) is

not so trivial as that in the ordinary integrals. Although the
resulting logarithmic term does not contribute to the final
results of our particular computation, a remark should be
made in order to assure that this change of variable does
not generate a new gauge-symmetry breaking.

We go to the Euclidean metric by it! t and iE! E and
examine the functional integral

Z
DA� exp

�
�
Z m2

2
ð1þ 2ðG=NÞ�y�Þ ~A�

~A�d
4x

�
;

(A1)

where ~A� ¼ A� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Nm2

p
j�=½1þ 2ðG=NÞ�y��. We

may drop the tilde of ~A� by shifting the functional space

of A� by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=Nm2

p
j�=½1þ 2ðG=NÞ�y��. The factor 1

2m
2

may also be dropped since the rescaling of A�ðxÞ by a

constant affects only an unphysical constant factor to the
partition function. However, the multiplication of a func-
tion on A� cannot be dropped in general since it deforms

the functional phase space. For notational simplicity, we
study for one of the four space-time components of A�

suppressing its subscript for a while. The integral of our
interest is therefore,Z

DA exp

�
�

Z
ð1þ fðxÞÞAðxÞAðxÞd4x

�
; (A2)

where fðxÞ � 2ðG=NÞ�yðxÞ�ðxÞ. Expand AðxÞ in a com-
plete set of orthonormal functions ’iðxÞ (i ¼ 1; 2; 3; . . .1)
in the 4-dimensional space-time as

AðxÞ ¼X
i

ai’iðxÞ; (A3)

where
R
’iðxÞ’jðxÞd4x ¼ 	ij. The functional integral

Eq. (A2) turns intoZ
� � �

Z
�kdak exp

�
�X

ij

aið	ij þ fijÞaj
�
; (A4)

where fij ¼
R
’iðxÞfðxÞ’jðxÞd4x. If we choose specifi-

cally the complete set with which the matrix fij is diago-

nal, the integral
R
dak can be carried out with the

quadrature integral formula as

�k

Z
dak exp½�ð1þ fkkÞa2k�

¼ const� 1=ð�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fii

p Þ;
¼ const� exp

�
� 1

2
lnð�ið1þ fiiÞÞ

�
: (A5)

Since �ið1þ fiiÞ is the determinant of the infinite-
dimensional diagonal matrix ð1þ fiiÞ	ij, the last line of

Eq. (A5) can be expressed as

const � exp

�
� 1

2
lnðdetð1þ fðDÞÞÞ

�
; (A6)

where we have supplied the superscript D to f in order to

emphasize that fðDÞ is a diagonal matrix. The undetermined
(infinite) multiplicative constant in front of the exponent is
absorbed into the ill-defined measure of a functional phase
space that has no physical effect.

5The damping effect of Fðq2Þ is measured by its radius defined
by

ffiffiffiffiffiffiffiffihr2ip
where dFðq2Þ=dq2jq2¼0 ¼ 1

6 hr2i. In our fermionic
model hr2i ¼ 6=½5M2 lnð ��2=M2Þ�, which is Oð1=M2Þ as we
expect.

6It was argued years ago [18] that for some four-fermion
interaction theory may become renormalizable when it is written
in terms of collective modes, i.e., composite fields. It does not
seem to happen in our case of vector bosons.

APPROXIMATE GAUGE SYMMETRY OF COMPOSITE . . . PHYSICAL REVIEW D 82, 045026 (2010)

045026-13



Going back to Eq. (A5), let us expand the logarithm with
the Taylor series expansion formula of lnð1þ 
Þ as

lnð�ið1þ fiiÞÞ ¼
X
i

lnð1þ fiiÞ;

¼ X1
n¼1

X
i

�ð�1Þn�1
n

ðfiiÞn
�
: (A7)

Note that for the diagonal matrix,
P

iðfiiÞn ¼
P

iðfnÞii ¼
trðfnÞ and furthermore that a trace of the matrix element
does not depend on the choice of its basis. Therefore, we
can go to the four-dimensional Fourier basis (i! k1, k2,
k3, k4) and rewrite Eq. (A7) as

lnð�ið1þ fiiÞÞ ¼
X1
n¼1

ð�1Þn�1
n

Z d4k

ð2�Þ4

�
�Z

e�ikxfðxÞneikxd4x
�
;

¼
�Z X1

n¼1

ð�1Þn�1
n

fðxÞnd4x
�
	4ð0Þ;

(A8)

where the last factor 	4ð0Þ comes fromZ
d4k=ð2�Þ4 ¼ lim

y!z

Z
eikðy�zÞd4k=ð2�Þ4 ¼ lim

y!z
	4ðy� zÞ:

(A9)

In the diagram calculation the function 	4ð0Þ arises from
the quartic divergence�4=32�2 of the A�-bubble diagram,

as will be shown later in this Appendix. Putting m2 back in
Eq. (A2), we reach

Z
DA� exp

�
�

Z m2

2
ð1þ fðxÞÞA�A

�d4x

�

¼ exp

�
�2	4ð0Þ

Z X1
n¼1

ð�1Þn�1
n

fðxÞd4x
�
; (A10)

¼ exp

�
�2	4ð0Þ

Z
lnð1þ fðxÞÞd4x

�
; (A11)

where the four space-time components of A� generate four

identical terms to turn 1
2 into 4� 1

2! 2 in the right-hand

side of Eq. (A10). The irrelevant constant in front has been
suppressed above.

Diagrammatic explanation
In the remainder of Appendix we show the diagram-

matic origin of this logarithmic term. Let us expand both
sides of Eq. (A10) in the power series of G and compare
order by order the right-hand side with their corresponding
diagrams computed with LeffðA�;�

y; �Þ of Eq. (37) in the
left-hand side. Our purpose here is pedagogical; We show
that the integration over

R
DA� generates Green’s func-

tions from pairs of A� and indeed leads to the logarithmic

term in Eq. (A10). The vector-boson two-point function for

the Lagrangian of Eq. (37) is given by

h0jTðA�ðxÞA�ðyÞÞj0i ¼ ð1=m2Þ	��	
4ðx� yÞ; (A12)

since there is no kinetic energy term of A� at this stage.

The term of OðGÞ in the right-hand side is �2	4ð0Þ�Rð2G=NÞ�y�d4x. This arises from the diagram of
Fig. 6(a) that contains a single Green’s function of A�:

OðGÞleft ¼ �
Z m2

2
ð2G=NÞ�yðxÞ�ðxÞ

� h0jTðA�ðxÞA�ðxÞÞj0id4x
¼ �4ðG=NÞ	4ð0Þ

Z
�yðxÞ�ðxÞd4x: (A13)

This term is the quartically divergent self-energy of�=�y,
but cancelled out in the final answer by the one-loop

self-energy diagram Oðð ffiffiffiffiffiffiffiffiffiffiffi
G=N

p Þ2Þ of the interactionffiffiffiffiffiffiffiffiffiffiffi
G=N

p
j�A

�.

When we move to the order OðG2Þ and higher, there
exist the contributions of connected and disconnected dia-
grams. The terms of G2 in the expansion of the right-hand
side of Eq. (A10) are

OðG2Þright ¼ ð�2	4ð0ÞÞ � �1
2
ð2ðG=NÞÞ2

�
Z
ð�yðxÞ�ðxÞÞ2d4xþ 1

2!
½OðGÞ�2; (A14)

where ½OðGÞ�2 means the square of the term of OðGÞ in
Eq. (A13), that is, the disconnected diagram of two OðGÞ
bubbles [the first diagram of Fig. 6(b)]. The first term of
Eq. (A14) comes from the connected diagram in Fig. 6(b):

(a)

(b)

+

FIG. 6. Breakdown of the logarithmic term of the functional
integral in terms of diagrams. (a) OðGÞ and (b) OðG2Þ. The small
circle represents the local limit of the two-point Green’s function
of A� while the small square is for the local limit of the

connected Green’s function of four A�’s [Eq. (A15)], while

the ellipse in a broken line represents �yðxÞ�ðxÞ.
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OðG2Þleft connected ¼ 2� ð�1Þ2 � 1

2!

�
1

2
m2

�
2ð2G=NÞ2

�
ZZ
ð�yðxÞ�ðxÞÞð�yðyÞ�ðyÞÞd4xd4y

� h0jTðA�ðxÞA�ðyÞÞj0i
� h0jTðA�ðxÞA�ðyÞÞj0i; (A15)

¼ ð2G=NÞ2	4ð0Þ
Z
ð�yðxÞ�ðxÞÞ2d4x; (A16)

where the first factor of 2 comes from two different ways of
matching A� fields into two-point functions and 1

2! is from

the second-order perturbation expansion. Summation over
subscripts � and � generates the factor of 4 in the last line.
This agrees with the (n ¼ 2) term of Eq. (A10) in the
expansion. The term proportional to

h0jTðA�ðxÞA�ðxÞÞj0ih0jTðA�ðyÞA�ðyÞÞj0i (A17)

appears from the disconnected diagrams in the left-hand

side and matches the second-order Taylor expansion of the
(n ¼ 1) term in the right-hand side of Eq. (A10).
We can go on toOðG3Þ and higher-order terms. The n ¼

3 term in the exponent of the right-hand side is� 2
3	

4ð0Þ�R½2ðG=NÞ�yðxÞ�ðxÞ�3d4x, while the connected diagrams

of OðG3Þ in the left-hand side matches this term:

OðG3Þleft connected ¼ 1

3!
� 8

�
�m2

2

�
3 � 4

�
1

m2

�
3
	4ð0Þ

�
Z
ð2ðG=NÞ3�yðxÞ�ðxÞÞ3d4x;

(A18)

where the factor 1=3! comes from the third-order pertur-
bation expansion, the factor of 8 in front is due to eight
ways to pair A�’s into two-point Green’s functions, the

factor of 4 in front of ð1=m2Þ3 results from the sum over the
polarization subscript of A�, and each (1=m2) comes from

a Green’s function of A�. The disconnected terms match in

much the same way as in the case of OðG2Þ.
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