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Quantum corrections from a path integral over reparametrizations
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We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson
loops in the large-N QCD and reproduces the area law in the classical limit of large loops. We show that a
semiclassical expansion for a rectangular loop captures the Liischer term associated with d = 26
dimensions and propose a modification of the ansatz that reproduces the Liischer term in other
dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse
advocating the emergence of an analog of the Liischer term and verify this result by a direct computation
of the determinant of the Laplace operator and the conformal anomaly.
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I. INTRODUCTION

Quantum fluctuations of surfaces are important in many
physical phenomena. It is less known that these fluctua-
tions can sometimes be expressed in terms of a functional
integral over reparametrizations of variables relevant in the
Feynman path integral. In this paper we shall consider the
expression

W(C) = f Do KAL), (1)

where x(6) is the boundary curve C and where

2 (6(0(0)) = x(0(a))?
o
0 1 = cos(o — o)

2

The functional (2) is known in mathematics as the Douglas
integral [1], whose minimum with respect to variations of
the reparametrizations 6 gives the minimal area

Here 6.(o) is the saddle point of the integral (1). The
functional integration (1) thus gives the area law to leading
order.

The path integral over reparametrizations (1) was intro-
duced in this context in Ref. [2] in connection with an off-
shell string propagator. More recently it was proposed by
Polyakov [3] as an ansatz for the Wilson loop in large N
QCD. The leading behavior obviously gives the leading
behavior of the Wilson loop, found in most string models,
where the bulk field X#(7, o) satisfies the Dirichlet bound-
ary condition

Alx(0)] = é LZW do
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X# (’T, U)lboundary = x# (0-) (4)

To derive Eq. (3) from the Nambu-Goto action one can
follow Douglas [1], or the more recent elegant paper by
Migdal [4].

The functional integral (1) can be expanded around the
saddle point 6... With 8(o) = 6.(o) + B(o) we obtain the
first nonvanishing contribution

K 21T 27
a9 / 40'5(0) - 5(0')
0

2787 Jo
(B(6) — B(0))
1 — cos(o.(0) — o.(0"))"

A

(&)

Here o.(0) is the inverse function of 0.(o).

Some dynamical consequences of Eq. (5) have been
discussed by Rychkov [5] and by the authors [6].
However, it is perhaps fair to say that the physical meaning
of the fluctuation integral (5) is not so clear.

In this paper we shall show that the leading part of the
fluctuations of large loops from (5) are transverse fluctua-
tions of the minimal surface embedded by the curve x(6.,).
This we have shown for a rectangle and an ellipse, but we
suspect the result to be more general.

To explain our result we mention that in the Nambu-
Goto action transverse fluctuations add a contribution

d—2 o d=2)7T
3 trlog(—9*) 4 R

to the area term for a large R X T rectangle with 7 > R.
These quantum fluctuations (6) are called the Liischer term
[7]. By lattice Monte Carlo calculations in three and four
dimensions, this term has been found to occur [8] in
quenched SU(N) for various N’s. Thus, for large distances
the two leading terms from the Nambu-Goto action de-
scribe QCD quite well. Therefore, for a rectangular bound-
ary curve the T/R term can be identified with transverse
fluctuations of the minimal surface.

(6)
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With these remarks in mind we now give our main
result: after integration over the fluctuations S in the func-
tional integral

f DBe 4, 7

we obtain as the leading contribution the Liischer term
corresponding to d = 26. In general, we obtain the
d-dimensional contribution (plus the area term) from

f TDQe_KA[X(")](detO)_(d_26)/48. (8)

Here O is the operator which emerges in the semiclassical
expansion of A[x(#)] to quadratic order as exhibited in
Eq. (5). This modification of Eq. (1) does not effect the
classical limit leading to the area law, and has the meaning
of a preexponential in the semiclassical approximation.
Thus, this equation gives the leading effective QCD string
behavior in terms of functional integration over
reparametrizations.

We mention that our considerations may have potential
applications in condensed matter. For example, in the
inverse square XY model one encounters expressions
somewhat similar to Eq. (5); see, for example, Ref. [9].
We shall, however, not pursue this track in the present
paper.

The plan of this paper is the following: in Sec. II we
discuss the general framework for the semiclassical ap-
proximation, and in Sec. III we carry out the functional
integral over reparametrizations for a rectangle. A similar
calculation for an ellipse is done in Sec. IV. In Sec. V we
derive the generalization given by Eq. (8) and in Sec. VI we
make some conclusions. A number of more technical
points have been discussed in the Appendices.

II. A SEMICLASSICAL CORRECTION

The path integral over reparametrizations (1) reproduces
the exponential of the minimal area in the classical limit
KSnin — 0. To calculate the semiclassical correction, we
expand

(o) = 0.(0) + B(o), ©)
or
o(0) = 0.(0) + B(6), (10)
where
B(0) = p2m) =0, D

and expand the Douglas integral to quadratic order in 8
around the classical trajectory 6.(o). This expansion
makes sense because typical trajectories in the path inte-
gral over reparametrizations (1) are smooth as KS,;, — o
and have the Hausdorff dimension one [10].

Substituting (9) into Douglas’ integral (2) and expanding
in B, we find that the linear term vanishes because 6..(o) is
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the minimum, while the quadratic part reads
K 21T 21T . .
alpO) = [ av, [ 05000 5062)
T Jo 0

(B(6,) — B(6,))*
1 — cos(0.(0)) — 0.(0,))

The function B(6) obeys
B'(0) = —oi(0) (13)

for the derivative of the reparametrizing function to be
positive. This is always satisfied if $ is small and smooth
enough.

In order to calculate the semiclassical correction to the
area law, we need to do the Gaussian integral

[Dﬁ(g)e*fb[ﬂ(o)] (14)

with A,[ B(0)] given by Eq. (12).

The typical values of 3, which are essential in the path
integral over B in (14), are 8 ~ 1//KSyn, i.€., small for
VKSnin > 1. Hence, the higher terms of an expansion of
A[60.(o) + B]in B are suppressed [5] at large /K S i,. The
loop expansion goes in the parameter 1/KS,,;, and only
one loop contributes with the given accuracy.

A comment is needed about the measure for the integra-
tion over B(6). As is explained in Appendix A, the measure
for the integration over o () involves a factor

L L LB BY gy

7 E A @ ey O
Because 8 ~ 1//KS,i,, the second and third terms on the
right-hand side are not essential to the given order.
Therefore, the measure for the path integration over B(6)
in Eq. (14) is the usual one for smooth functions B(6),
while this factor will show up to the next order in 1/KS,;,.

(12)

III. PATH INTEGRAL OVER
REPARAMETRIZATIONS: RECTANGLE

In this section we show how the path integral over
reparametrizations captures the Liischer term for a
rectangle.

The conformal map of the upper half plane onto the
interior of a rectangle is given by the Schwarz-Christoffel

mapping

z AKWT = p?)
= AF|—, - 16
“ (x/,u M) l 2 (10
where
Z 4 dx
Fl—, = 17
('\/M M) LJM—XZJ] _,L,sz ( )

is the incomplete elliptic integral of the first kind. The two
parameters A and u are related to the coordinates of the
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vertices of the rectangle by

R
AK(p) =3, AKGL-p)=T.  (8)
where K(u) = F(1, w) is the complete elliptic integral of
the first kind. In deriving Eq. (18) we used the important

identity
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In the limit 7/R — oo, when u — 0, this equation simpli-
fies to
T 4

7T—=In—.
R M

2

When z = s runs along the real axis, the variable w runs

along the boundary of the rectangle with s =
F(1/ i, p) = K() + iK1 — p2). (19) -1/ — @, + /i, +1/ /i (u <1) mapped, respec-
_ _ tively, onto the vertices of the rectangle: ( — R/2, T/2),
Equation (18) relates u to the ratio of R/T as (—R/2, =T/2), (R/2, =T/2), (R/2, T/2). The given
— choice of the argument of the mapping preserves the
2T _ KWl —p?) Vl'U“) (20)  symmetry s — 1/s.
R K(u) When z has positive imaginary part, the coordinates
|
z Z AKW1 — u?)
X@) = AReF(n) (o) = AtmA(2, ) - AR 22)
1 Ji 2 Ji 2
take their values inside the rectangle. These coordinates are conformal. For this reason we have
s s AKHW1 — u?)
56D = ARF( ) na(el) = AlmE(— ) = SR, (23)
1 Ji 2 N >

whose implementation for the function ¢,(s) is discussed below.
The boundary contour given by Eq. (23) satisfies Douglas’ minimization [see Appendix B, Eq. (B3)]. Correspondingly,

the Douglas integral

+o00 +o0 1 — Ty 2
1 ] ds f s 2 1) x(2 6DF _ e k(wk(i = 22) = RT, (24)
d7 J - —o0 (S - S/)
as it should. We have verified this equation numerically.
A natural parametrization of the boundary of a rectangle is through 7 € S':
r t r t R < arct R (25a)
X = — tanr, Xy = ——, —arctan— = 7 =< arctan—, a
T2 ’ 2 T T
R R t t R = t R (25b)
=_, = —— cotr, arctan— =< 7 =< 77 — arctan—,
X1 3 X2 3 T T T aa T
T T R
x| = 5 tanT, Xy = > T — arctan? =7<mr, (25¢)
and analogously for negative 7. Introducing
r
t = tan—, 26
an2 (26)
we rewrite Eq. (25) as
t T NT? +R*—T NT? +R*—T
x=T——, X =——, - =t= , (27a)
1—1 2 R R
R Pl NEIR-T _ NETR+T
n==2 m=r == , (27b)
2 4t R R
t T VI? +R*+ T
X1 =Tﬁ, X2=§, #Sl< + 00, (27¢)

To relate 7 to s, we identify
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()
— Fl—, u)=
2K () \Jm
for — ju=s=.u or

R s dx T
2

2K () VE X2 — pafl — ux?

for Ju=s=1//u or

Solving the quadratic equation for ¢ versus s, we obtain the
minimizing function f,(s), which obviously obeys the
boundary condition

10) = 0. (29)

The symmetry s — 1/s plays apparently an important
role. It guarantees that the points —oo, —1, 0, +1, +o00 are
mapped onto themselves under the reparametrization s —
l*(S)i t*(_oo) = X, t*(_l) = -1, l*(O) =0, t*(+1) =
+1, t,(+00) = +o00.

It is convenient to invert Eq. (28) using the Jacobi
elliptic functions. Inverting Eq. (28a), we get

2K(w)T ¢
- R )
for — Ju=s=.,u or (30)
VFIR-T_ _JTER-1
R T R

The function sn has a nice trigonometric expansion in
the parameter (the nome) [see Eq. (8.146.1) in Ref. [11]]

Xp(_ mﬁ))

K(v)

n/4)? <1, 31
giving
(7T t
s = ﬁsm(T m) (32)

This formula is applicable for —R/2T <t < +R/2T,

when — /i <s < +./u.

We can proceed in the same way with Eq. (28b), whose
inverse is
, -1 T
= Vasn(K(w) + K ()5~ 4 g m) G

Using the addition formula ([11], 8.156.1) and the reduc-
tion of sn(x, 0) and c¢n(x, 0) to sinx and cosx, we obtain

5~ \/ﬁcosh[g (r s %T)] (34)

However, this expansion is useless for large t — 2T /R, due
to the imaginary part of the argument of sn the expansion
will involve hyperbolic functions with arguments that can

=R
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t

T—)
1 -7
VETR-T_ _NPAR-T
L = (28a)
R R
2 -1
4¢ "’
NT2+R2—T T+ NT? + R?
#SIS#. (28b)

be large. Instead we can use the expansion of sn in terms of
inverse sines ([11], 8.147.1), where these sines can be large,
so only the first term is relevant:

1
VEsinG +iF (5= 3)

1
- __— . (35)
JEcosh[Z(t — 1! —2D)]

Equation (34) is applicable for t — R/2T from above and
Eq. (35) is applicable when t — 2T /R.

The quadratic action, describing Gaussian fluctuations
around 7.(s), is like (12) rewritten for the real-axis parame-
trization:

) - x(t5)

A[B()] = yp fdtl [d 2m
X [B(1) — B(r) . (36)

The Gaussian approximations is justified for large KRT,
when

1
B(t) ~ TRRT

To calculate the path integral over the quantum fluctua-
tions around the minimizing function 7.(s), we need a
mode expansion of the infinitesimal reparametrizing func-
tion B(). To get rid of the projective symmetry, we keep
fixed 3 points, e.g., —1, 0, +1 or —\/—, 0, \/,ZZ fixed:
B(=1) =0, B(0) =0, B(+1) =0 or B(—t.=yw) =
0. B(0) = 0. Blr.( ) = 0.

For each segment from ¢; to tr, we consider the mode
expansion

(37)

B(1) = ch sm(7m tf tt) (38)
obeying the boundary condition B(#;) = B(ty) = 0. This
set of sines forms a complete basis on the given interval.
Actually, we shall need the mode expansion for 4 segments
attached to r = t,(*=./w) = £ R/2T because the large con-
tribution of 1/u will appear in A, only for those.

The appearance of the large factor 1/u is seen already
from Eqgs. (30) and (33) because s, in the denominator in
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Eg. (36) is proportional to /. We need, however, to show
that this 1/ is multiplied by a factor ~1.

Let us analyze the contribution to (36) that comes from
—R/2T < 1,1, < +R/2T i.e., from the bottom side of the
rectangle. Introducing the variable

2T

y=—h

—1<y<l, 39
R y (39)

and using Eq. (32), we write the contribution of this

domain to A, as
KT? f / (B1) — B(y))*
47T,LL i (Sm(ﬂ')’l/z) sin(7ry,/2))?

—C, 40
R (40)

with a positive constant C. A similar contribution appears
if ty, — R/2T ~ t, — R/2T ~ R?/(2T)? as is prescribed by
Eq. (34) for both 1, > R/2T and t, > R/2T. An analogous
contribution [with possibly some powers of T/R o
In(4/w)] emerges also when t; < R/2T and t, > R/2T
orf; > R/2T and 1, < R/2T.

Therefore, the path integral over the quantum fluctua-
tions around the minimizing function £, (s) gives, using the
{-function regularization and Eq. (21) (and disregarding
the logs to the order in consideration)

l_[ N/ ({/lﬁ)“ o exp(%T), 41)

modes

where the 4th power is due to the four sets of modes." This
remarkably reproduces the Liischer term (6) in d = 26.

There was a subtlety in the derivation—the appearance
of a logarithmic divergence at the corners of the rectangle
if B(corners) # 0. It is seen from Eq. (40), where the
region near y; =y, =1 or y; =y, = —1 (associated
with 1, = t, = R/2T or t; = t, — —R/2T) produces the
logarithmic divergence

fl+6d /1+5 ()’1"‘;2?2)2

with the upper (lower) sign referring to y =1 (y = —1).
The coefficient is nonvanishing if B(*1) # 0.
Analogously, the integral is logarithmically divergent at
the corner, when 7, t, > R/2T.

The logarithmic divergence can be regularized by
smoothing the corners like in Refs. [7,13]. It is clear
from such a regularization that the contribution of trajec-
tories with B(R/2T) # 0 to the path integral over B(z) will
be suppressed as the smoothing is removed. Consequently,
this corner divergence does not effect the result of this

B2(+1) lné,
(42)

'This is like in the computation of the static potential for the
Polyakov string in Ref. [12].
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section. In the next section we repeat the consideration for
the case of an ellipse, when there are no corners.

If d # 26, the asymptotic ansatz for the Wilson loops
has to be improved to get the correct factor (d — 2)/24 in
the Liischer term (6). This issue will be described in Sec. V.

IV. PATH INTEGRAL OVER
REPARAMETRIZATIONS: ELLIPSE

In this section we evaluate the path integral over repar-
ametrizations for an ellipse and obtain a prediction for the
associated Liischer term.

The necessary formulas are given in Appendix B of [6]
and are partially reproduced in Appendix B. We are inter-
ested in the case of a very long ellipse when the ratio
b/a — 0 and v — 1 according to

1Pa+b_7TK(\/1—V2) 43)
a—b 2K(v)
Using the asymptote
V—»l 1 8
K n——, 44
we simplify Eq. (43) to
2
b7 (45)
a 41n—(1_v)

As v — 1 the elliptic function simplifies and we have

20++/402+(1—v)?

1
0.(c) = W(“—g + 1) (46)
ln—(lfy)
for —m/2 < o < /2. Inverting Eq. (46), we find
26 8
o.(0) = Y si h(— In ) 47)
T 1l—v

This is quite similar to Eqgs. (32) and (34) for a rectangle
with /i replaced by (1 — »).

The calculation of the path integral over reparametriza-
tions at one loop is quite analogous to that for the rectangle
described in the previous section. We see that the large
factor of (1 — v)~2 emerges in Eq. (12) because o, « (1 —
v) from Eq. (47). To evaluate the coefficient, let us con-
sider the domain of small 6, and 6,:

8
91, 02 < (ln
1—v

)_1, (48)

which contributes to the integral in (12)

K > 2 BX(0,)(0, — 6,)
(1 — )2 fdﬁl [d@z(a 9102 + b )(92 — 01)21112%

1
(1-»7

modulo the powers of b/a o (ln

(49)

= ! The same contri-

045025-5



YURI MAKEENKO AND POUL OLESEN

bution comes also from the domain of both €; and 6, near
7. We thus have

1

Ay oc ——
(1 - )2

(50)
for every mode.

Integrating the Gaussian integral for every mode and
using the {-function regularization, we get (disregarding
the logs to this order) a prefactor of the type

[o-0=(r) ool o

modes

where the product runs over 4 sets of modes, which results
in a factor of 4 in the exponent. This coincides with the
Liischer term (6) for a rectangle of the size R X T in d =
26 dimensions provided®

T Ta

=, 52

R 2b (52)
In Appendices C and D we confirm this by an explicit
calculation of the determinant of the Laplace operator and
the conformal anomaly for an outstretched ellipse.

V. A GENERALIZATION TO ARBITRARY
DIMENSIONS

The results of two previous sections demonstrate the
already mentioned fact that the ansatz (1) has to be modi-
fied in order to describe the Liischer term in d =4
dimensions.

A simple modification is based on the form of the path
integral for a rectangle

f@lg(t)e—Az[ﬁ(t)] o T>R e7TT/R (53)

with quadratic action A,[B(1)] given by Eq. (36).

For an arbitrary curve this path integral can be expressed
through the determinant of the corresponding operator, that
enters A,, which we denote as O

f DB(1)e A1BO] = (det0)~1/2. (54)

It is now clear that the following modification of the ansatz
(1) will provide the correct value of the Liischer term (6) in
d dimensions:

f Die~ KALXD(det0)~(d-20)/48, (55)

This modification of Eq. (1) does not effect the classical
limit, leading to the area law, and has the meaning

21t is worth noting that the Wilson loops for a rectangle and
ellipse then coincide [14] in d = 4 (the only dimension with a
T/R Coulomb term) to the second order of perturbation theory.
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of altering a preexponential in the semiclassical
approximation.

To make the structure of the operator O more explicit, it
is convenient to use the expansion (9) of the direct function
0(o) rather than that (10) of the inverse function o (6) as

above. Using the identity
1
Bt(s)) = = 775 Bls), (56)
Tds

which stems from the definitions (9) and (10), we then
obtain for the real-axis parametrization:

alpol = [ s [as, xu*((s;l))_- jg,;(szn

X [B(s)) = Bls2) P (57)

which determines the ‘“momentum” (with respect to s)
space operator

0. p2) = g~ [ dalalCstp, + ) i(=p2 = 0
—x(py —p2tq) - x(—q)
—x(q) - ¥(py — p2 — @), (58)

with
i(p) = f dsePi(1,(s)). (59)

We can finally substitute z,(s) by #(s) in this formula
without changing the semiclassical approximation.

It is worth noting that in contrast to the Laplace operator
of Ref. [13], where the Liischer term was obtained for the
Polyakov string, the present operator O lives in the bound-
ary, which makes the construction nontrivial.

VI. CONCLUSIONS

The conclusion is that the reparametrization of the
boundary curve involved in Eq. (1) carries information
on the transverse fluctuations in 26 dimensions. As is
shown in the previous section, it is possible to generalize
this to any dimensions.

Our motivation for the present paper is our previous
work on the QCD/string scattering amplitudes [15], where
we used that the amplitude can be expressed in terms of a
Wilson loop through Feynman path integration. There we
only considered the leading area behavior. However, hav-
ing developed a path integral expression for the next term,
we hope that the x* integrals can be performed, thereby
providing a momentum space analogue of the Liischer
term. We hope this may help to answer a very interesting
question as to how the intercept of the Regge trajectory
changes under such a modification of the ansatz for the
Wilson loops.
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APPENDIX A: MEASURE FOR INTEGRATING
OVER REPARAMETRIZATION

Introducing

(AD)

V; =8 — Si—1 Sstf’

we rewrite the measure of [6] for the integration over
reparametrizations as

Sr . Nl Si+1 dSi
fDdiffs = lim l_[ T
S0 N—oo i=2 S0 (si+1 - si)

$2 dSl
50 (Sz - Sl)(Sl - So)
N N
. °°dv,» 1
= [ 50 (s =90 3 0))

i=1 J=1

(A2)

The integration over v;’s in Eq. (A2) can be represented
through the integration over a scalar field as follows.
Writing

v, = eVil?,

o du: 1 +o0
L=< dy,,
/0 'Ul' 2[—00 l/jl

Sf N +00
f Ddiffs = lim N l_[f dl//l
S0 =14~

N
X 5(1)(Sf —s50= ff‘”f/z)- (AS)
j=1

(A3)

we have

(A4)

and

This represents the continuous measure as

[S/ Ddiffs = lepB(l)(Sf — S0 — [Sf d[e_w(t)/2>,
So So
(A6)

where ¢ is a certain parametrization of the contour (e.g.,
through the proper time) and D is the usual measure

[w f di(s).

The scalar field ¢, that appears in Egs. (A1) and (A3), is
in fact the boundary value of the Liouville field

p(s),

which is related to the boundary metric:

(A7)

QD(T’ s)lboundary = (AS)

PHYSICAL REVIEW D 82, 045025 (2010)

(dx“ (s))2
ds

Under the reparametrization s — f(s) (df/ds = 0), the

boundary value of the Liouville field ¢ (s) transforms as

af (s)
ds

= ¥()/2, (A9)

p(s) = (f(s) = ¥(s) = 2In

that clarifies its relation to reparametrizations.

The results of this Appendix make it possible to relate
the ansatz (1) with Eq. (17) of Ref. [13], where the path
integral over ¢ is the same as the path integral over
reparametrization in view of Eq. (11) of [13]. They coin-
cide in d = 26 provided S, is the Douglas integral.

(A10)

APPENDIX B: DOUGLAS’ ALGORITHM FOR
PLANE CONTOURS: CONFORMAL MAP

The construction of the coordinates of the minimal
surface, enclosed by a plane contour, is given by conformal
mappings. Let us describe such a contour by two functions
x(#) and x,(r). Motivated by Appendix H of Ref. [4], we
define the analytic functions

+oods’ [x,(t.(s') — x (t*(z))]
D,(z) = — =k B1
w0 = [T B1)
The real and imaginary parts of ®, are
+0o00 dS/
Redb, () = [ ST (06 (B2a)
dx (t*(s)) dt*(s)
I, (5) = 4720 = &, (14(5) (B2b)
s
Therefore, Douglas’ minimization equation
+00 X . — /
J T R ARG EPe
. (s — )
is satisfied if
Y Imd2(s) =0 (B4)
m
at the real axis.
For the circle we have
X (1) + iyt = €)=, (BS)
1+t
so Eq. (B1) gives
) 2
Dy(z) = iD,y(2) = m, (B6)
with
D di(s) =0, (B7)
M

which obviously obeys Eq. (B4). From Egs. (B6) and (B5)
we find
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2 1. 2t
Im®,(s) = (1 sz)z’ Exl(t) = _m, (B8a)
1-— ' 1—17
ImCDZ(S) (1 s2)2r EXZ(t) = (] t2)2) (ng)

and from Eq. (B2b) we conclude that z..(s) = s, as it should
be for the circle.
For the functions obeying Eq. (B7) we always have

D, (s) = iP,(s) and
D(s) = Dy(s) + iD,y(s) = 2P (s), (Ba)
Im,(5) + i by (s) = = £ (s). (Bob)
Equation (B2b) can then be rewritten as
L) = D e () ) g
s

For the given analytic function C(z) it determines the
reparametrizing function 7.(s).

For the circle and ellipse it is more convenient to use the
unit-disk parametrization, when

do [C(w) = C()]

B(w) = (0 + 1)23(

st 2

For the ellipse C(w) is given by the conformal map [where
v is the same as s in Eq. (B26) of [6] ]

Clw) =Va? — b? sin[TTV) F(% ,,)] (B12)
and from Eq. (B11) we obtain
>
Vo) =P e e
S,
= (?+ 1) dcf:’) (B13)

The final step is to extract df.(o)/do from Eq. (B10).
Remembering that

C(0) = acosf + ib siné, (B14)

we find

de _ 1
dw Vv — V1 — vw?

: (B15)

which for @ = €' reproduces Eq. (B32) of [6].
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APPENDIX C: CALCULATING THE LUSCHER
TERM FOR AN ELLIPSE

1. Elliptical coordinates and Mathieu functions

Let us consider an ellipse as the boundary contour. To
calculate the determinant of the Laplace operator with this
boundary conditions, we parametrize the surface by ellip-
tical (Lamé) coordinates
(ChH

x; = hcoshtcosa, X, = hsinhtsing,

or
X, + ix, = hcosh(t + io). (C2)

Here o €[0,27) and 7 € [0, 7,]. The boundary is ap-
proached for 7 = 7, = arctanh b/a and foci are at ( = h,
0) with

h=+va*— b~ (C3)
The elliptic coordinates are conformal:
ds?* = h*(sinh®7 + sino)(dr? + do?), (C4)
so the area in the conformal gauge reads
1 2 X 90X 00X 09X
A=—jT°de”d (— iRy —) (C5)
2 Jo 0 dr It do 0
The Laplacian reads in elliptic coordinates as
1 % o7
= —+—) Co6
h2(sinh®7 + sin?0) (67’2 80’2) (€6)

The Laplace equation separates in elliptic coordinates to
the Mathieu equations

d*F
152 + (@ — 2gcos20)F =0 (C7a)
o
d’G
= — (a — 2g cosh27)G =0 (C7b)
-

where « is a separation constant and ¢ is related to the
eigenvalue A by

q=A—. (C8)
A complete set of solutions for F and G is given, respec-
tively, by the Mathieu functions ce,, (o, q), se,,(o, g) and
the modified Mathieu functions Ce,,(7, g), Se,,(7, g) of
integral order m.

While the characteristic numbers «,,(¢) and B,,(q) for
the ce,, and se,, modes are not explicitly known for large
g ~ m?, which would be the case for an outstretched
ellipse with b/a < 1, two asymptotic formulas exist [16]
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. m2_>>q 2 1q2 5 q 9 q6
G =B = e e m®
1 1 m
=B, "= 2q + 4mg"? — —m? — — = —
m 3 2t 41

These expansions are not formally applicable for
¢ = q/m*~ 1, but the first formula works numerically
for ¢ = 0.7, while second formula works numerically for
¢ = 0.4-0.5, so there is an overlap. Special values of ¢ are
¢ = 0.61 and ¢ = 0.64, when

a,,(cm?) = B,,(cm?) = 2cm? = 24. (C10)
They are obtained numerically with MATHEMATICA, but are
derivable from the expansions (C9a) and (C9b), corre-
spondingly. As we see from Fig. 1, the difference 2q —
a,,(q) is positive for ¢ > 0.64, where the expansion (C9b)
is applicable.

The boundary condition requires Ce,,(7y) =0 and
Se,,(79) = 0, which implies
T0 = L (Cl11)

where Z,,,, are the corresponding zeros. This determines
the eigenvalues of the Laplacian with m and n playing the
role of angular and radial quantum numbers, respectively.
For small 7, ( = large a/b) we have [16]

Ce,,(7) = const X cos(y2¢g — a,,7),  (Cl2a)
Se,,(7) = const X sin(y2¢ — B,,7),  (C12b)
so that
V2 — e,y = % (C13)
because «,, = B,, for large m. Here n is odd or even for the

Ce or Se modes, respectively. We conclude therefore that

mTna\?
2q — =|— Cl4
q— ay ( b ) (Cl14)
has to be large and justify large g ~ m?.
2. Evaluating the determinant
Each mode contributes

> (A%

det(A™1/?) = l_[/\n W= i : (C15)

Since a is large, the sum over m can be replaced by an
integral over w = m/a like in Ref. [18] and we have for
large ¢'/2 ~m ~ a/b

*Some results concerning the Mathieu characteristic numbers
for large ¢ ~ m?* can be found in Ref. [17].
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10
7
%%_§%‘§—i%—%%— (C9b)
[

Al = rf( ) (C16)

where
r= Z—Z, (C17)

so that
Zln T [0 Y dw 1n[rf($)]. (C18)

For large r the integral on the right-hand side is propor-
tional to r and we can get the coefficient of proportionality
by differentiating with respect to r. This gives

> In(A,7) = —ar[ dx[1 — xf'(x)/f(x)], (C19)
and finally we obtain

zmun;/z)— z”"“ f dx[1 = xf'(x)/F()]

=— - 1 —xf! 2
= s [Tt el 20
For a T X R rectangle with T > R, when
mn?  mtm?
Ao = = + 5z rectangle, (C21)
resulting in
f(x) =v1+x*  rectangle, (C22)

we reproduce the well-known result for the Liischer term
by the substitution @ = T/, b = R/2.

0.10

0.05

I S SR S S

0.70

1 n
0.65 0.75

FIG. 1 (color online). Plot of 1 — a,,(g)/2q versus ¢ = q/m?>.
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1 n n n n 1 n n n n 1 n n n n 1

1 2 3 4

FIG. 2 (color online).

For an outstretched ellipse we have from the expansion
(C9b)

f(x)x<=x°1+x+£—x—3—x—4Jr—lsxs—gx6 +
4 16 128 1024 2048 7
(C23)

for x < x, = 1.95, where the series converges, and

0.960520  1.041899
3

X=X
f(x) ="1.600095x +
X

X
N 2418227 7.138640  23.73152

X X! X

_ 84.70585

ey
)Cll

(C24)

for x > xy = 1.95. They match each other pretty well, as is
depicted in Fig. 2. The numerical value of the integral on
the right-hand side of Eq. (C20) is then 2.84 to be com-
pared with 7 as is expected from Eq. (51).

To clarify the calculation, let us keep only three terms on
the right-hand side of Eq. (C9b), when we get a quadratic
equation and analytical formulas are available. We then
find

flx)=x+ \[1 + x2/2,

and expanding it either in x or in 1/x we obtain analogs of
Egs. (C23) and (C24). The two expansions now match at
Xg = V2 = 1.41 to be compared with x, = 1.95 for all
nine terms left on the right-hand side of Eq. (C9b). The
value of the integral is now +/2 log[3 + 2+/2] = 2.49 which
is smaller than 2.84, which may characterize to what extent
the approximation of «,, by the eight term in (C9b) is
better than by the tree terms. In Appendix D we confirm the
value of 7 by another method.

(C25)
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1.90 1.95 2.00 2.05

Matching the expansions (C23) and (C24). The region near x = 1.95 is enlarged in the right figure.

APPENDIX D: LUSCHER TERM FROM
CONFORMAL ANOMALY

A starting point is the formula [7,19]
1
Liischer term = — /dea'aa Inpd, Inp DD
967

that relates the Liischer term to the conformal anomaly.
Here the metric p is

2

dz .
s u=r71+io,

du

(D2)

where

® = hcosh(t + io) (D3)

runs inside the ellipse with 7 and o being elliptic coordi-
nates as in Eq. (C2). The function [inverse to (B23) from

[6]]
Hw) = ﬁsn(%’( (g ot ,))

cn(%K(a —i7))

dn(%K (o —i7))

= Vsn<K—2?K(a'— iT)) = v

(D4)
conformally maps an ellipse onto a unit disk.
To calculate (D2) for a/b > 1, we substitute
cn(3 iy, v) 1
oK = J.(2K (D3)
dn(Sin, v)  dn(u, V')
with
vV =41-1v2—0. (D6)
Differentiating, we get
2K sn(3E u, ven(E y, o/
dz _ 52K G ”2"23( Gur)
du T dn* (2 u, V')

Using the fact that Jacobi elliptic functions reduce to

045025-10



QUANTUM CORRECTIONS FROM A PATH INTEGRAL OVER ...

trigonometric functions as »’ — 0 and substituting

v—1 ’7T2 a
K— — -, DS
2} (D8)
we infer from Eq. (D7)
R R

and

(1]
(2]

(3]
(4]

[10]

1 To~(b/a) 27
Liischer term = —— [ dr [
0 0

PHYSICAL REVIEW D 82, 045025 (2010)

a\2
d —
"(”b)

(D10)

967

7 a

48 b

that confirms the extra 77/2 in Eq. (51) for an ellipse in
comparison with a rectangle.
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