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We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson

loops in the large-N QCD and reproduces the area law in the classical limit of large loops. We show that a

semiclassical expansion for a rectangular loop captures the Lüscher term associated with d ¼ 26

dimensions and propose a modification of the ansatz that reproduces the Lüscher term in other

dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse

advocating the emergence of an analog of the Lüscher term and verify this result by a direct computation

of the determinant of the Laplace operator and the conformal anomaly.
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I. INTRODUCTION

Quantum fluctuations of surfaces are important in many
physical phenomena. It is less known that these fluctua-
tions can sometimes be expressed in terms of a functional
integral over reparametrizations of variables relevant in the
Feynman path integral. In this paper we shall consider the
expression

WðCÞ �
Z

D�e�KA½xð�Þ�; (1)

where xð�Þ is the boundary curve C and where

A½xð�Þ� ¼ 1

8�

Z 2�

0
d�

Z 2�

0
d�0 ðxð�ð�ÞÞ � xð�ð�0ÞÞÞ2

1� cosð�� �0Þ :

(2)

The functional (2) is known in mathematics as the Douglas
integral [1], whose minimum with respect to variations of
the reparametrizations � gives the minimal area

A½xð��Þ� ¼ SminðCÞ: (3)

Here ��ð�Þ is the saddle point of the integral (1). The
functional integration (1) thus gives the area law to leading
order.

The path integral over reparametrizations (1) was intro-
duced in this context in Ref. [2] in connection with an off-
shell string propagator. More recently it was proposed by
Polyakov [3] as an ansatz for the Wilson loop in large N
QCD. The leading behavior obviously gives the leading
behavior of the Wilson loop, found in most string models,
where the bulk field X�ð�; �Þ satisfies the Dirichlet bound-
ary condition

X�ð�; �Þjboundary ¼ x�ð�Þ: (4)

To derive Eq. (3) from the Nambu-Goto action one can
follow Douglas [1], or the more recent elegant paper by
Migdal [4].
The functional integral (1) can be expanded around the

saddle point ��. With �ð�Þ ¼ ��ð�Þ þ �ð�Þ we obtain the
first nonvanishing contribution

A2 ¼ K

8�

Z 2�

0
d�

Z 2�

0
d�0 _xð�Þ � _xð�0Þ

� ð�ð�Þ � �ð�0ÞÞ2
1� cosð��ð�Þ � ��ð�0ÞÞ : (5)

Here ��ð�Þ is the inverse function of ��ð�Þ.
Some dynamical consequences of Eq. (5) have been

discussed by Rychkov [5] and by the authors [6].
However, it is perhaps fair to say that the physical meaning
of the fluctuation integral (5) is not so clear.
In this paper we shall show that the leading part of the

fluctuations of large loops from (5) are transverse fluctua-
tions of the minimal surface embedded by the curve xð��Þ.
This we have shown for a rectangle and an ellipse, but we
suspect the result to be more general.
To explain our result we mention that in the Nambu-

Goto action transverse fluctuations add a contribution

� d� 2

2
tr logð�@2Þ ¼ ðd� 2Þ�

24

T

R
(6)

to the area term for a large R� T rectangle with T � R.
These quantum fluctuations (6) are called the Lüscher term
[7]. By lattice Monte Carlo calculations in three and four
dimensions, this term has been found to occur [8] in
quenched SUðNÞ for various N’s. Thus, for large distances
the two leading terms from the Nambu-Goto action de-
scribe QCD quite well. Therefore, for a rectangular bound-
ary curve the T=R term can be identified with transverse
fluctuations of the minimal surface.
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With these remarks in mind we now give our main
result: after integration over the fluctuations � in the func-
tional integral Z

D�e�A2 ; (7)

we obtain as the leading contribution the Lüscher term
corresponding to d ¼ 26. In general, we obtain the
d-dimensional contribution (plus the area term) fromZ

D�e�KA½xð�Þ�ðdetOÞ�ðd�26Þ=48: (8)

Here O is the operator which emerges in the semiclassical
expansion of A½xð�Þ� to quadratic order as exhibited in
Eq. (5). This modification of Eq. (1) does not effect the
classical limit leading to the area law, and has the meaning
of a preexponential in the semiclassical approximation.
Thus, this equation gives the leading effective QCD string
behavior in terms of functional integration over
reparametrizations.

We mention that our considerations may have potential
applications in condensed matter. For example, in the
inverse square XY model one encounters expressions
somewhat similar to Eq. (5); see, for example, Ref. [9].
We shall, however, not pursue this track in the present
paper.

The plan of this paper is the following: in Sec. II we
discuss the general framework for the semiclassical ap-
proximation, and in Sec. III we carry out the functional
integral over reparametrizations for a rectangle. A similar
calculation for an ellipse is done in Sec. IV. In Sec. V we
derive the generalization given by Eq. (8) and in Sec. VI we
make some conclusions. A number of more technical
points have been discussed in the Appendices.

II. A SEMICLASSICAL CORRECTION

The path integral over reparametrizations (1) reproduces
the exponential of the minimal area in the classical limit
KSmin ! 1. To calculate the semiclassical correction, we
expand

�ð�Þ ¼ ��ð�Þ þ �ð�Þ; (9)

or

�ð�Þ ¼ ��ð�Þ þ �ð�Þ; (10)

where

�ð0Þ ¼ �ð2�Þ ¼ 0; (11)

and expand the Douglas integral to quadratic order in �
around the classical trajectory ��ð�Þ. This expansion
makes sense because typical trajectories in the path inte-
gral over reparametrizations (1) are smooth as KSmin ! 1
and have the Hausdorff dimension one [10].

Substituting (9) into Douglas’ integral (2) and expanding
in �, we find that the linear term vanishes because ��ð�Þ is

the minimum, while the quadratic part reads

A2½�ð�Þ� ¼ K

8�

Z 2�

0
d�1

Z 2�

0
d�2 _xð�1Þ � _xð�2Þ

� ð�ð�1Þ � �ð�2ÞÞ2
1� cosð��ð�1Þ � ��ð�2ÞÞ : (12)

The function �ð�Þ obeys
�0ð�Þ � ��0�ð�Þ (13)

for the derivative of the reparametrizing function to be
positive. This is always satisfied if � is small and smooth
enough.
In order to calculate the semiclassical correction to the

area law, we need to do the Gaussian integralZ
D�ð�Þe�A2½�ð�Þ� (14)

with A2½�ð�Þ� given by Eq. (12).
The typical values of �, which are essential in the path

integral over � in (14), are �	 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KSmin

p
, i.e., small forffiffiffiffiffiffiffiffiffiffiffiffiffi

KSmin

p � 1. Hence, the higher terms of an expansion of
A½��ð�Þ þ �� in� are suppressed [5] at large

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KSmin

p
. The

loop expansion goes in the parameter 1=KSmin and only
one loop contributes with the given accuracy.
A comment is needed about the measure for the integra-

tion over�ð�Þ. As is explained in Appendix A, the measure
for the integration over �ð�Þ involves a factor

1

�0 ¼
1

�0� þ �0 ¼
1

�0�
� �0

ð�0�Þ2
þ ð�0Þ2

ð�0�Þ3
þOðð�0Þ3Þ: (15)

Because �	 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KSmin

p
, the second and third terms on the

right-hand side are not essential to the given order.
Therefore, the measure for the path integration over �ð�Þ
in Eq. (14) is the usual one for smooth functions �ð�Þ,
while this factor will show up to the next order in 1=KSmin.

III. PATH INTEGRAL OVER
REPARAMETRIZATIONS: RECTANGLE

In this section we show how the path integral over
reparametrizations captures the Lüscher term for a
rectangle.
The conformal map of the upper half plane onto the

interior of a rectangle is given by the Schwarz-Christoffel
mapping

! ¼ AF

�
zffiffiffiffi
�

p ; �

�
� i

AKð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p Þ
2

; (16)

where

F

�
zffiffiffiffi
�

p ; �

�
¼

Z z

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��x2

p (17)

is the incomplete elliptic integral of the first kind. The two
parameters A and � are related to the coordinates of the
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vertices of the rectangle by

AKð�Þ ¼ R

2
; AKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
Þ ¼ T; (18)

where Kð�Þ ¼ Fð1; �Þ is the complete elliptic integral of
the first kind. In deriving Eq. (18) we used the important
identity

Fð1=�;�Þ ¼ Kð�Þ þ iKð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
Þ: (19)

Equation (18) relates � to the ratio of R=T as

2T

R
¼ Kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p Þ
Kð�Þ : (20)

In the limit T=R ! 1, when � ! 0, this equation simpli-
fies to

�
T

R
¼ ln

4

�
: (21)

When z ¼ s runs along the real axis, the variable ! runs
along the boundary of the rectangle with s ¼
�1=

ffiffiffiffi
�

p
;� ffiffiffiffi

�
p

;þ ffiffiffiffi
�

p
;þ1=

ffiffiffiffi
�

p
(�< 1) mapped, respec-

tively, onto the vertices of the rectangle: (� R=2, T=2),
(� R=2, �T=2), (R=2, �T=2), (R=2, T=2). The given
choice of the argument of the mapping preserves the
symmetry s ! 1=s.
When z has positive imaginary part, the coordinates

X1ðzÞ ¼ AReF

�
zffiffiffiffi
�

p ; �

�
; X2ðzÞ ¼ A ImF

�
zffiffiffiffi
�

p ; �

�
� AKð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p Þ
2

(22)

take their values inside the rectangle. These coordinates are conformal. For this reason we have

x1ðt�ðsÞÞ ¼ AReF

�
sffiffiffiffi
�

p ; �

�
; x2ðt�ðsÞÞ ¼ A ImF

�
sffiffiffiffi
�

p ; �

�
� AKð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p Þ
2

; (23)

whose implementation for the function t�ðsÞ is discussed below.
The boundary contour given by Eq. (23) satisfies Douglas’ minimization [see Appendix B, Eq. (B3)]. Correspondingly,

the Douglas integral

1

4�

Z þ1

�1
ds

Z þ1

�1
ds0

½xðt�ðs1ÞÞ � xðt�ðs2ÞÞ�2
ðs� s0Þ2 ¼ 2A2Kð�ÞKð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
Þ ¼ RT; (24)

as it should. We have verified this equation numerically.
A natural parametrization of the boundary of a rectangle is through � 2 S1:

x1 ¼ T

2
tan�; x2 ¼ �T

2
; � arctan

R

T

 � 
 arctan

R

T
; (25a)

x1 ¼ R

2
; x2 ¼ �R

2
cot�; arctan

R

T

 � 
 �� arctan

R

T
; (25b)

x1 ¼ T

2
tan�; x2 ¼ T

2
; �� arctan

R

T

 � < �; (25c)

and analogously for negative �. Introducing

t ¼ tan
�

2
; (26)

we rewrite Eq. (25) as

x1 ¼ T
t

1� t2
; x2 ¼ �T

2
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R

 t 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R
; (27a)

x1 ¼ R

2
; x2 ¼ R

t2 � 1

4t
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R

 t 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
þ T

R
; (27b)

x1 ¼ T
t

t2 � 1
; x2 ¼ T

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
þ T

R

 t <þ1: (27c)

To relate t to s, we identify
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R

2Kð�ÞF
�

sffiffiffiffi
�

p ; �

�
¼ T

t

1� t2
;

(28a)for � ffiffiffiffi
�

p 
 s 
 ffiffiffiffi
�

p
or �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R

 t 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R
R

2Kð�Þ
Z sffiffiffi

�
p

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��x2

p � T

2
¼ R

t2 � 1

4t
;

for
ffiffiffiffi
�

p 
 s 
 1=
ffiffiffiffi
�

p
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R

 t 
 T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p

R
: (28b)

Solving the quadratic equation for t versus s, we obtain the
minimizing function t�ðsÞ, which obviously obeys the
boundary condition

tð0Þ ¼ 0: (29)

The symmetry s ! 1=s plays apparently an important
role. It guarantees that the points �1, �1, 0, þ1, þ1 are
mapped onto themselves under the reparametrization s !
t�ðsÞ: t�ð�1Þ ¼ �1, t�ð�1Þ ¼ �1, t�ð0Þ ¼ 0, t�ðþ1Þ ¼
þ1, t�ðþ1Þ ¼ þ1.

It is convenient to invert Eq. (28) using the Jacobi
elliptic functions. Inverting Eq. (28a), we get

s ¼ ffiffiffiffi
�

p
sn

�
2Kð�ÞT

R

t

1� t2
; �

�
;

for � ffiffiffiffi
�

p 
 s 
 ffiffiffiffi
�

p
or

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R

 t 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ R2

p
� T

R
:

(30)

The function sn has a nice trigonometric expansion in
the parameter (the nome) [see Eq. (8.146.1) in Ref. [11] ]

exp

�
��

Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Þ

Kð�Þ
�
� ð�=4Þ2 � 1; (31)

giving

s � ffiffiffiffi
�

p
sin

�
�T

R

t

ð1� t2Þ
�
: (32)

This formula is applicable for �R=2T < t <þR=2T,
when � ffiffiffiffi

�
p

< s <þ ffiffiffiffi
�

p
.

We can proceed in the same way with Eq. (28b), whose
inverse is

s ¼ ffiffiffiffi
�

p
sn

�
Kð�Þ þ iKð�Þ

�
t2 � 1

2t
þ T

R

�
; �

�
: (33)

Using the addition formula ([11], 8.156.1) and the reduc-
tion of snðx; 0Þ and cnðx; 0Þ to sinx and cosx, we obtain

s � ffiffiffiffi
�

p
cosh

�
�

4

�
t� t�1 þ 2T

R

��
: (34)

However, this expansion is useless for large t ! 2T=R, due
to the imaginary part of the argument of sn the expansion
will involve hyperbolic functions with arguments that can

be large. Instead we can use the expansion of sn in terms of
inverse sines ([11], 8.147.1), where these sines can be large,
so only the first term is relevant:

s � 1ffiffiffiffi
�

p
sinð�2 þ i �4 ðt

2�1
t � 2T

R ÞÞ

¼ 1ffiffiffiffi
�

p
cosh½�4 ðt� t�1 � 2T

R Þ�
: (35)

Equation (34) is applicable for t ! R=2T from above and
Eq. (35) is applicable when t ! 2T=R.
The quadratic action, describing Gaussian fluctuations

around t�ðsÞ, is like (12) rewritten for the real-axis parame-
trization:

A2½�ðtÞ� ¼ K

4�

Z
dt1

Z
dt2

_xðt1Þ � _xðt2Þ
ðs�ðt1Þ � s�ðt2ÞÞ2

� ½�ðt1Þ � �ðt2Þ�2: (36)

The Gaussian approximations is justified for large KRT,
when

�ðtÞ 	 1ffiffiffiffiffiffiffiffiffiffiffi
KRT

p : (37)

To calculate the path integral over the quantum fluctua-
tions around the minimizing function t�ðsÞ, we need a
mode expansion of the infinitesimal reparametrizing func-
tion �ðtÞ. To get rid of the projective symmetry, we keep
fixed 3 points, e.g., �1, 0, þ1 or � ffiffiffiffi

�
p

, 0,
ffiffiffiffi
�

p
fixed:

�ð�1Þ ¼ 0, �ð0Þ ¼ 0, �ðþ1Þ ¼ 0 or �ð�t�ð� ffiffiffiffi
�

p ÞÞ ¼
0, �ð0Þ ¼ 0, �ðt�ð ffiffiffiffi

�
p ÞÞ ¼ 0.

For each segment from ti to tf, we consider the mode

expansion

�ðtÞ ¼ X
n

cn sin

�
�n

t� ti
tf � ti

�
; (38)

obeying the boundary condition �ðtiÞ ¼ �ðtfÞ ¼ 0. This

set of sines forms a complete basis on the given interval.
Actually, we shall need the mode expansion for 4 segments
attached to t ¼ t�ð ffiffiffiffi

�
p Þ � R=2T because the large con-

tribution of 1=� will appear in A2 only for those.
The appearance of the large factor 1=� is seen already

from Eqs. (30) and (33) because s� in the denominator in
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Eq. (36) is proportional to
ffiffiffiffi
�

p
. We need, however, to show

that this 1=� is multiplied by a factor 	1.
Let us analyze the contribution to (36) that comes from

�R=2T < t1, t2 <þR=2T i.e., from the bottom side of the
rectangle. Introducing the variable

y ¼ 2T

R
t; �1< y< 1; (39)

and using Eq. (32), we write the contribution of this
domain to A2 as

KT2

4��

Z 1

�1
dy1

Z 1

�1
dy2

ð�ðy1Þ � �ðy2ÞÞ2
ðsinð�y1=2Þ � sinð�y2=2ÞÞ2

/ T

�R
C; (40)

with a positive constant C. A similar contribution appears
if t1 � R=2T 	 t2 � R=2T 	 R2=ð2TÞ2 as is prescribed by
Eq. (34) for both t1 >R=2T and t2 >R=2T. An analogous
contribution [with possibly some powers of T=R /
lnð4=�Þ] emerges also when t1 < R=2T and t2 > R=2T
or t1 > R=2T and t2 < R=2T.

Therefore, the path integral over the quantum fluctua-
tions around the minimizing function t�ðsÞ gives, using the
�-function regularization and Eq. (21) (and disregarding
the logs to the order in consideration)

Y
modes

ffiffiffiffi
�

p /
�
1ffiffiffiffi
�4

p
�
4 / exp

�
�T

R

�
; (41)

where the 4th power is due to the four sets of modes.1 This
remarkably reproduces the Lüscher term (6) in d ¼ 26.

There was a subtlety in the derivation—the appearance
of a logarithmic divergence at the corners of the rectangle
if _�ðcornersÞ � 0. It is seen from Eq. (40), where the
region near y1 ¼ y2 ¼ 1 or y1 ¼ y2 ¼ �1 (associated
with t1 ¼ t2 ! R=2T or t1 ¼ t2 ! �R=2T) produces the
logarithmic divergence

Z 1�	

�1þ	
dy1

Z 1�	

�1þ	
dy2

_�2ð1Þ
ðy1 þ y2 � 2Þ2 ¼

_�2ð1Þ ln1
	
;

(42)

with the upper (lower) sign referring to y ¼ 1 (y ¼ �1).
The coefficient is nonvanishing if _�ð1Þ � 0.
Analogously, the integral is logarithmically divergent at
the corner, when t1, t2 > R=2T.

The logarithmic divergence can be regularized by
smoothing the corners like in Refs. [7,13]. It is clear
from such a regularization that the contribution of trajec-
tories with _�ðR=2TÞ � 0 to the path integral over �ðtÞ will
be suppressed as the smoothing is removed. Consequently,
this corner divergence does not effect the result of this

section. In the next section we repeat the consideration for
the case of an ellipse, when there are no corners.
If d � 26, the asymptotic ansatz for the Wilson loops

has to be improved to get the correct factor ðd� 2Þ=24 in
the Lüscher term (6). This issue will be described in Sec. V.

IV. PATH INTEGRAL OVER
REPARAMETRIZATIONS: ELLIPSE

In this section we evaluate the path integral over repar-
ametrizations for an ellipse and obtain a prediction for the
associated Lüscher term.
The necessary formulas are given in Appendix B of [6]

and are partially reproduced in Appendix B. We are inter-
ested in the case of a very long ellipse when the ratio
b=a ! 0 and � ! 1 according to

ln
aþ b

a� b
¼ �Kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Þ

2Kð�Þ : (43)

Using the asymptote

Kð�Þ !�!1 1

2
ln

8

ð1� �Þ ; (44)

we simplify Eq. (43) to

b

a
¼ �2

4 ln 8
ð1��Þ

: (45)

As � ! 1 the elliptic function simplifies and we have

��ð�Þ ¼ �

�
ln

2�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2þð1��Þ2

p
8

ln 8
ð1��Þ

þ 1

�
(46)

for ��=2<�<�=2. Inverting Eq. (46), we find

��ð�Þ ¼ 1� �

2
sinh

�
2�

�
ln

8

1� �

�
: (47)

This is quite similar to Eqs. (32) and (34) for a rectangle
with

ffiffiffiffi
�

p
replaced by (1� �).

The calculation of the path integral over reparametriza-
tions at one loop is quite analogous to that for the rectangle
described in the previous section. We see that the large
factor of ð1� �Þ�2 emerges in Eq. (12) because �� / ð1�
�Þ from Eq. (47). To evaluate the coefficient, let us con-
sider the domain of small �1 and �2:

�1; �2 �
�
ln

8

1� �

��1
; (48)

which contributes to the integral in (12)

K

ð1� �Þ2
Z

d�1
Z

d�2ða2�1�2 þ b2Þ
_�2ð�1Þð�2 � �1Þ2
ð�2 � �1Þ2ln2 8

1��

/ 1

ð1� �Þ2 (49)

modulo the powers of b=a / ðln 8
ð1��ÞÞ�1. The same contri-

1This is like in the computation of the static potential for the
Polyakov string in Ref. [12].
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bution comes also from the domain of both �1 and �2 near
�. We thus have

A2 / 1

ð1� �Þ2 (50)

for every mode.
Integrating the Gaussian integral for every mode and

using the �-function regularization, we get (disregarding
the logs to this order) a prefactor of the type

Y
modes

ð1� �Þ /
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
4 / exp

�
�2

2

a

b

�
; (51)

where the product runs over 4 sets of modes, which results
in a factor of 4 in the exponent. This coincides with the
Lüscher term (6) for a rectangle of the size R� T in d ¼
26 dimensions provided2

T

R
¼ �a

2b
: (52)

In Appendices C and D we confirm this by an explicit
calculation of the determinant of the Laplace operator and
the conformal anomaly for an outstretched ellipse.

V. A GENERALIZATION TO ARBITRARY
DIMENSIONS

The results of two previous sections demonstrate the
already mentioned fact that the ansatz (1) has to be modi-
fied in order to describe the Lüscher term in d ¼ 4
dimensions.

A simple modification is based on the form of the path
integral for a rectangleZ

D�ðtÞe�A2½�ðtÞ� /T�R e�T=R (53)

with quadratic action A2½�ðtÞ� given by Eq. (36).
For an arbitrary curve this path integral can be expressed

through the determinant of the corresponding operator, that
enters A2, which we denote as OZ

D�ðtÞe�A2½�ðtÞ� ¼ ðdetOÞ�1=2: (54)

It is now clear that the following modification of the ansatz
(1) will provide the correct value of the Lüscher term (6) in
d dimensions:Z

Dte�KA½xðtÞ�ðdetOÞ�ðd�26Þ=48: (55)

This modification of Eq. (1) does not effect the classical
limit, leading to the area law, and has the meaning

of altering a preexponential in the semiclassical
approximation.
To make the structure of the operator O more explicit, it

is convenient to use the expansion (9) of the direct function
�ð�Þ rather than that (10) of the inverse function �ð�Þ as
above. Using the identity

�ðt�ðsÞÞ ¼ � 1
dt�ðsÞ
ds

�ðsÞ; (56)

which stems from the definitions (9) and (10), we then
obtain for the real-axis parametrization:

A2½�ðsÞ� ¼ K

4�

Z
ds1

Z
ds2

_xðt�ðs1ÞÞ � _xðt�ðs2ÞÞ
ðs1 � s2Þ2

� ½�ðs1Þ � �ðs2Þ�2; (57)

which determines the ‘‘momentum’’ (with respect to s)
space operator

Oðp1; p2Þ ¼ K

8�

Z
dqjqjð2 _xðp1 þ qÞ � _xð�p2 � qÞ

� _xðp1 � p2 þ qÞ � _xð�qÞ
� _xðqÞ � _xðp1 � p2 � qÞÞ; (58)

with

_xðpÞ �
Z

dseips _xðt�ðsÞÞ: (59)

We can finally substitute t�ðsÞ by tðsÞ in this formula
without changing the semiclassical approximation.
It is worth noting that in contrast to the Laplace operator

of Ref. [13], where the Lüscher term was obtained for the
Polyakov string, the present operator O lives in the bound-
ary, which makes the construction nontrivial.

VI. CONCLUSIONS

The conclusion is that the reparametrization of the
boundary curve involved in Eq. (1) carries information
on the transverse fluctuations in 26 dimensions. As is
shown in the previous section, it is possible to generalize
this to any dimensions.
Our motivation for the present paper is our previous

work on the QCD/string scattering amplitudes [15], where
we used that the amplitude can be expressed in terms of a
Wilson loop through Feynman path integration. There we
only considered the leading area behavior. However, hav-
ing developed a path integral expression for the next term,
we hope that the x� integrals can be performed, thereby
providing a momentum space analogue of the Lüscher
term. We hope this may help to answer a very interesting
question as to how the intercept of the Regge trajectory
changes under such a modification of the ansatz for the
Wilson loops.

2It is worth noting that the Wilson loops for a rectangle and
ellipse then coincide [14] in d ¼ 4 (the only dimension with a
T=R Coulomb term) to the second order of perturbation theory.
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APPENDIX A: MEASURE FOR INTEGRATING
OVER REPARAMETRIZATION

Introducing

vi ¼ si � si�1 sN ¼ sf; (A1)

we rewrite the measure of [6] for the integration over
reparametrizations as

Z sf

s0

Ddiffs � lim
N!1

YN�1

i¼2

Z siþ1

s0

dsi
ðsiþ1 � siÞ

�
Z s2

s0

ds1
ðs2 � s1Þðs1 � s0Þ

¼ lim
N!1

YN
i¼1

Z 1

0

dvi

vi

	ð1Þ
�
sf � s0 �

XN
j¼1

vj

�
:

(A2)

The integration over vi’s in Eq. (A2) can be represented
through the integration over a scalar field as follows.
Writing

vi ¼ ec i=2; (A3)

we have Z 1

0

dvi

vi

. . . ¼ 1

2

Z þ1

�1
dc i; (A4)

and

Z sf

s0

Ddiffs ¼ lim
N!1

1

2N
YN
i¼1

Z þ1

�1
dc i

� 	ð1Þ
�
sf � s0 �

XN
j¼1

e�c j=2

�
: (A5)

This represents the continuous measure asZ sf

s0

Ddiffs ¼
Z

Dc	ð1Þ
�
sf � s0 �

Z sf

s0

dte�c ðtÞ=2
�
;

(A6)

where t is a certain parametrization of the contour (e.g.,
through the proper time) and Dc is the usual measure

Z
Dc ¼ Ysf

s¼s0

Z þ1

�1
dc ðsÞ: (A7)

The scalar field c , that appears in Eqs. (A1) and (A3), is
in fact the boundary value of the Liouville field

’ð�; sÞjboundary ¼ c ðsÞ; (A8)

which is related to the boundary metric:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx�ðsÞ
ds

�
2

s
¼ ec ðsÞ=2: (A9)

Under the reparametrization s ! fðsÞ (df=ds � 0), the
boundary value of the Liouville field c ðsÞ transforms as

c ðsÞ ! c ðfðsÞÞ ¼ c ðsÞ � 2 ln
dfðsÞ
ds

; (A10)

that clarifies its relation to reparametrizations.
The results of this Appendix make it possible to relate

the ansatz (1) with Eq. (17) of Ref. [13], where the path
integral over c is the same as the path integral over
reparametrization in view of Eq. (11) of [13]. They coin-
cide in d ¼ 26 provided Scl is the Douglas integral.

APPENDIX B: DOUGLAS’ ALGORITHM FOR
PLANE CONTOURS: CONFORMAL MAP

The construction of the coordinates of the minimal
surface, enclosed by a plane contour, is given by conformal
mappings. Let us describe such a contour by two functions
x1ðtÞ and x2ðtÞ. Motivated by Appendix H of Ref. [4], we
define the analytic functions

��ðzÞ ¼
Z þ1

�1
ds0

�

½x�ðt�ðs0ÞÞ � x�ðt�ðzÞÞ�
ðs0 � zÞ2 : (B1)

The real and imaginary parts of �� are

Re��ðsÞ ¼ 6
Z þ1

�1
ds0

s0 � s
_x�ðt�ðs0ÞÞ; (B2a)

Im��ðsÞ ¼
dx�ðt�ðsÞÞ

ds
¼ _x�ðt�ðsÞÞ dt�ðsÞds

: (B2b)

Therefore, Douglas’ minimization equation

6
Z þ1

�1
ds0

_xðt�ðsÞÞ � ½xðt�ðsÞÞ � xðt�ðs0ÞÞ�
ðs� s0Þ2 ¼ 0 (B3)

is satisfied if X
�

Im�2
�ðsÞ ¼ 0 (B4)

at the real axis.
For the circle we have

x1ðtÞ þ ix2ðtÞ � CðtÞ ¼ i� t

iþ t
; (B5)

so Eq. (B1) gives

�1ðzÞ ¼ i�2ðzÞ ¼ 2

ðiþ zÞ2 ; (B6)

with X
�

�2
�ðsÞ ¼ 0; (B7)

which obviously obeys Eq. (B4). From Eqs. (B6) and (B5)
we find
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Im�1ðsÞ ¼� 2s

ð1þ s2Þ2 ;
1

2
_x1ðtÞ ¼� 2t

ð1þ t2Þ2 ; (B8a)

Im�2ðsÞ ¼ 1� s2

ð1þ s2Þ2 ;
1

2
_x2ðtÞ ¼ 1� t2

ð1þ t2Þ2 ; (B8b)

and from Eq. (B2b) we conclude that t�ðsÞ ¼ s, as it should
be for the circle.

For the functions obeying Eq. (B7) we always have
�1ðsÞ ¼ i�2ðsÞ and

�ðsÞ � �1ðsÞ þ i�2ðsÞ ¼ 2�1ðsÞ; (B9a)
Im�1ðsÞ þ i Im�2ðsÞ ¼ � i

2
�ðsÞ: (B9b)

Equation (B2b) can then be rewritten as

� i

2
�ðsÞ ¼ dCðt�ðsÞÞ

ds
¼ _Cðt�ðsÞÞ dt�ðsÞds

: (B10)

For the given analytic function CðzÞ it determines the
reparametrizing function t�ðsÞ.

For the circle and ellipse it is more convenient to use the
unit-disk parametrization, when

�ð!Þ ¼ ð!þ 1Þ2
I
S1

d!

2�i

½Cð!Þ � Cð!0Þ�
ð!�!0Þ2 : (B11)

For the ellipse Cð!Þ is given by the conformal map [where
� is the same as s in Eq. (B26) of [6] ]

Cð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
sin

�
�

2Kð�ÞF
�
!ffiffiffi
�

p ; �

��
; (B12)

and from Eq. (B11) we obtain

�ð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p �

2Kð�Þ
ð!þ 1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��!2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �!2
p

� cos

�
�

2Kð�ÞF
�
!ffiffiffi
�

p ; �

��

¼ ð!2 þ 1Þ dCð!Þ
d!

: (B13)

The final step is to extract d��ð�Þ=d� from Eq. (B10).
Remembering that

Cð�Þ ¼ a cos�þ ib sin�; (B14)

we find

d�

d!
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��!2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �!2
p ; (B15)

which for ! ¼ ei� reproduces Eq. (B32) of [6].

APPENDIX C: CALCULATING THE LÜSCHER
TERM FOR AN ELLIPSE

1. Elliptical coordinates and Mathieu functions

Let us consider an ellipse as the boundary contour. To
calculate the determinant of the Laplace operator with this
boundary conditions, we parametrize the surface by ellip-
tical (Lamé) coordinates

x1 ¼ h cosh� cos�; x2 ¼ h sinh� sin�; (C1)

or

x1 þ ix2 ¼ h coshð�þ i�Þ: (C2)

Here � 2 ½0; 2�Þ and � 2 ½0; �0�. The boundary is ap-
proached for � ¼ �0 ¼ arctanh b=a and foci are at ( h,
0) with

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
: (C3)

The elliptic coordinates are conformal:

ds2 ¼ h2ðsinh2�þ sin2�Þðd�2 þ d�2Þ; (C4)

so the area in the conformal gauge reads

A ¼ 1

2

Z �0

0
d�

Z 2�

0
d�

�
@X

@�
� @X
@�

þ @X

@�
� @X
@�

�
: (C5)

The Laplacian reads in elliptic coordinates as

� ¼ 1

h2ðsinh2�þ sin2�Þ
�
@2

@�2
þ @2

@�2

�
: (C6)

The Laplace equation separates in elliptic coordinates to
the Mathieu equations

d2F

d�2
þ ð
� 2q cos2�ÞF ¼ 0; (C7a)

d2G

d�2
� ð
� 2q cosh2�ÞG ¼ 0; (C7b)

where 
 is a separation constant and q is related to the
eigenvalue � by

q ¼ �
h2

4
: (C8)

A complete set of solutions for F and G is given, respec-
tively, by the Mathieu functions cemð�; qÞ, semð�; qÞ and
the modified Mathieu functions Cemð�; qÞ, Semð�; qÞ of
integral order m.
While the characteristic numbers 
mðqÞ and �mðqÞ for

the cem and sem modes are not explicitly known for large
q	m2, which would be the case for an outstretched
ellipse with b=a � 1, two asymptotic formulas exist [16]
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m ¼ �m ¼m2�q
m2 þ 1

2

q2

m2
þ 5

32

q4

m6
þ 9

64

q6

m10
þ 1469

8192

q8

m14
þ 4471

16 384

q10

m18
þ . . . ; (C9a)


m ¼ �m ¼m2�q�2qþ 4mq1=2 � 1

2
m2 � 1

24
m3

q1=2
� 5

28
m4

q
� 33

212
m5

q3=2
� 63

214
m6

q2
� 527

218
m7

q5=2
� . . . : (C9b)

These expansions are not formally applicable for
c ¼ q=m2 	 1,3 but the first formula works numerically
for c & 0:7, while second formula works numerically for
c * 0:4–0:5, so there is an overlap. Special values of c are
c ¼ 0:61 and c ¼ 0:64, when


mðcm2Þ ¼ �mðcm2Þ ¼ 2cm2 ¼ 2q: (C10)

They are obtained numerically with MATHEMATICA, but are
derivable from the expansions (C9a) and (C9b), corre-
spondingly. As we see from Fig. 1, the difference 2q�

mðqÞ is positive for c > 0:64, where the expansion (C9b)
is applicable.

The boundary condition requires Cemð�0Þ ¼ 0 and
Semð�0Þ ¼ 0, which implies

�0 ¼ Zm;n; (C11)

where Zm;n are the corresponding zeros. This determines

the eigenvalues of the Laplacian with m and n playing the
role of angular and radial quantum numbers, respectively.
For small �0 ( ¼ large a=b) we have [16]

Cemð�Þ � const� cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q� 
m

p
�Þ; (C12a)

Semð�Þ � const� sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q� �m

p
�Þ; (C12b)

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q� 
m

p
�0 ¼ �n

2
; (C13)

because
m ¼ �m for largem. Here n is odd or even for the
Ce or Se modes, respectively. We conclude therefore that

2q� 
m ¼
�
�na

2b

�
2

(C14)

has to be large and justify large q	m2.

2. Evaluating the determinant

Each mode contributes

detð��1=2Þ ¼ Y
n;m

��1=2
n;m ¼ e

P
n;m

lnð��1=2
n;m Þ

: (C15)

Since a is large, the sum over m can be replaced by an
integral over ! ¼ m=a like in Ref. [18] and we have for

large q1=2 	m	 a=b

�1=2
n;m ¼ rf

�
!

r

�
; (C16)

where

r ¼ �n

2b
; (C17)

so that

X
m

lnð��1=2
n;m Þ ¼ �a

Z 1

0
d! ln

�
rf

�
!

r

��
: (C18)

For large r the integral on the right-hand side is propor-
tional to r and we can get the coefficient of proportionality
by differentiating with respect to r. This givesX

m

lnð��1=2
n;m Þ ¼ �ar

Z 1

0
dx½1� xf0ðxÞ=fðxÞ�; (C19)

and finally we obtainX
n;m

lnð��1=2
n;m Þ ¼ �X

n

�na

2b

Z 1

0
dx½1� xf0ðxÞ=fðxÞ�

¼ �

24

a

b

Z 1

0
dx½1� xf0ðxÞ=fðxÞ�: (C20)

For a T � R rectangle with T � R, when

�n;m ¼ �2n2

R2
þ �2m2

T2
rectangle; (C21)

resulting in

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
rectangle; (C22)

we reproduce the well-known result for the Lüscher term
by the substitution a ¼ T=�, b ¼ R=2.

0.55 0.60 0.65 0.70 0.75

0.20

0.15

0.10

0.05

0.05

0.10

FIG. 1 (color online). Plot of 1� 
mðqÞ=2q versus c ¼ q=m2.

3Some results concerning the Mathieu characteristic numbers
for large q	m2 can be found in Ref. [17].
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For an outstretched ellipse we have from the expansion
(C9b)

fðxÞ ¼x<x0
1þ xþ x2

4
� x3

16
� x4

128
þ 15x5

1024
� 9x6

2048
þ . . . ;

(C23)

for x < x0 � 1:95, where the series converges, and

fðxÞ ¼x>x0
1:600 095xþ 0:960 520

x
� 1:041 899

x3

þ 2:418 227

x5
� 7:138 640

x7
þ 23:731 52

x9

� 84:705 85

x11
þ . . . ; (C24)

for x > x0 � 1:95. They match each other pretty well, as is
depicted in Fig. 2. The numerical value of the integral on
the right-hand side of Eq. (C20) is then 2.84 to be com-
pared with � as is expected from Eq. (51).

To clarify the calculation, let us keep only three terms on
the right-hand side of Eq. (C9b), when we get a quadratic
equation and analytical formulas are available. We then
find

fðxÞ ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=2

q
; (C25)

and expanding it either in x or in 1=x we obtain analogs of
Eqs. (C23) and (C24). The two expansions now match at

x0 ¼
ffiffiffi
2

p ¼ 1:41 to be compared with x0 ¼ 1:95 for all
nine terms left on the right-hand side of Eq. (C9b). The

value of the integral is now
ffiffiffi
2

p
log½3þ 2

ffiffiffi
2

p � ¼ 2:49which
is smaller than 2.84, which may characterize to what extent
the approximation of 
m by the eight term in (C9b) is
better than by the tree terms. In Appendix D we confirm the
value of � by another method.

APPENDIX D: LÜSCHER TERM FROM
CONFORMAL ANOMALY

A starting point is the formula [7,19]

L€uscher term ¼ 1

96�

Z
d�d�@a ln�@a ln� (D1)

that relates the Lüscher term to the conformal anomaly.
Here the metric � is

� ¼
��������dz

du

��������2

; u ¼ �þ i�; (D2)

where

! ¼ h coshð�þ i�Þ (D3)

runs inside the ellipse with � and � being elliptic coordi-
nates as in Eq. (C2). The function [inverse to (B23) from
[6] ]

zð!Þ ¼ ffiffiffi
�

p
sn

�
2K

�

�
�

2
� �þ i�

��

¼ ffiffiffi
�

p
sn

�
K � 2K

�
ð�� i�Þ

�
¼ ffiffiffi

�
p cnð2K� ð�� i�ÞÞ

dnð2K� ð�� i�ÞÞ
(D4)

conformally maps an ellipse onto a unit disk.
To calculate (D2) for a=b � 1, we substitute

cnð2K� iu; �Þ
dnð2K� iu; �Þ ¼ 1

dnð2K� u; �0Þ (D5)

with

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
! 0: (D6)

Differentiating, we get

dz

du
¼ ffiffiffi

�
p 2K

�
ð1� �2Þ snð

2K
� u; �0Þcnð2K� u; �0Þ
dn2ð2K� u; �0Þ : (D7)

Using the fact that Jacobi elliptic functions reduce to

1 2 3 4

2

3

4

5

6

1.90 1.95 2.00 2.05

3.45

3.50

3.55

3.60

3.65

FIG. 2 (color online). Matching the expansions (C23) and (C24). The region near x ¼ 1:95 is enlarged in the right figure.
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trigonometric functions as �0 ! 0 and substituting

K !�!1�2

8

a

b
; (D8)

we infer from Eq. (D7)

dz

du
/ exp

�
�i

�

2

a

b
u

�
) � / exp

�
�
a

b
�

�
; (D9)

and

L€uscher term ¼ 1

96�

Z �0�ðb=aÞ

0
d�

Z 2�

0
d�

�
�
a

b

�
2

¼ �2

48

a

b
(D10)

that confirms the extra �=2 in Eq. (51) for an ellipse in
comparison with a rectangle.
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