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Constraints of the ospð6j4Þ symmetry on tree-level scattering amplitudes in N ¼ 6 superconformal

Chern-Simons theory are derived. Supplemented by Feynman diagram calculations, solutions to these

constraints, namely, the four- and six-point superamplitudes, are presented and shown to be invariant

under Yangian symmetry. This introduces integrability into the amplitude sector of the theory.
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I. INTRODUCTION

While the prime example of the AdS/CFT correspon-
dence is the duality between four-dimensional N ¼ 4
super Yang-Mills (SYM) theory and type IIB superstring
theory on AdS5 � S5 [1], another remarkable instance
equatesN ¼ 6 superconformal Chern-Simons (SCS) the-
ory in three dimensions and type IIA strings on AdS4 �
CP3 [2]. In the study of the spectrum on both sides of these
two correspondences, the discovery of integrability [3–10]
in the planar limit has been of crucial importance and has
lead to the belief that the planar theories might be exactly
solvable.

Exact solvability would suggest that integrability also
manifests itself in the scattering amplitudes of the above
theories. For the AdS5=CFT4 correspondence, this is in-
deed the case. Motivated by a duality between Wilson
loops and scattering amplitudes in N ¼ 4 SYM theory
[11], a dual superconformal symmetry of scattering ampli-
tudes was found at weak coupling [12]. This dual symme-
try can be traced back to a T-self-duality of the AdS5 � S5

string background [13,14] (see also [15] for a review). In
addition to the standard superconformal symmetry, the
dual realization acts on dual momentum variables leaving
all N ¼ 4 SYM tree-level amplitudes invariant [16].
Integrability at weak coupling then arises as the closure
of standard and dual superconformal symmetry into a
Yangian symmetry algebra for tree-level scattering ampli-
tudes [17]. In fact, N ¼ 4 SYM tree-level amplitudes
seem to be uniquely determined by a modified Yangian
representation that takes into account the peculiarities of
collinear configurations due to conformal symmetry [18–
20]. There has also been remarkable progress on the ap-
plication of integrable methods to the strong-coupling
regime of scattering amplitudes in N ¼ 4 SYM theory
[21].

On the other hand, little is known about scattering
amplitudes in the AdS4=CFT3 correspondence. For N ¼
6 SCS, so far only four-point amplitudes have been com-

puted [22]. In particular, while some possibilities for T-
self-duality have been explored [23], no direct analog of
dual superconformal symmetry was found for this theory.
Given the perturbative integrability of the spectral prob-

lem of N ¼ 6 SCS theory paralleling the discoveries in
the AdS5=CFT4 case, and the recent findings on scattering
amplitudes in the latter, it seems reasonable to search for
integrable structures (alias Yangian symmetry) in N ¼ 6
SCS scattering amplitudes. In the absence of a dual sym-
metry, a straightforward generalization of the develop-
ments in N ¼ 4 SYM appears to be obscured. Even
without a dual symmetry, however, a procedure to consis-
tently promote certain standard Lie algebra representations
to Yangian representations is well known [17,24,25]. That
is, Yangian generators that act on scattering amplitudes in a
similar way as inN ¼ 4 SYM can be constructed directly.
However, a priori it is not true that invariants of the
standard Lie algebra representation are also invariant under
the Yangian algebra. Invariance of scattering amplitudes
under the Yangian generators would be a manifestation of
integrability.
The standard ospð6j4Þ symmetry of N ¼ 6 SCS is

realized on the tree-level amplitudes Atree
n as a sum of

the action of the free generators Jð0Þ
�;k on the individual legs

k,

J
ð0Þ
� Atree

n ¼ Xn
k¼1

J
ð0Þ
�;kA

tree
n ¼ 0: (1.1)

For scattering amplitudes in N ¼ 4 SYM, as well as for
local gauge invariant operators both in N ¼ 4 SYM and

in N ¼ 6 SCS, the Yangian generators Jð1Þ
� at tree level

are realized according to the construction of [24,25]: They
act as bilocal compositions of standard symmetry gener-
ators,

J
ð1Þ
� � f�

��
X
j<k

J
ð0Þ
�;jJ

ð0Þ
�;k: (1.2)

Hence these are also natural candidates for Yangian sym-
metry generators for N ¼ 6 SCS scattering amplitudes.
In this paper, the constraints of the ospð6j4Þ (level-zero)

symmetry algebra on n-point scattering amplitudes are
analyzed. The four- and six-point superamplitudes of
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N ¼ 6 SCS theory are given as solutions to these con-
straints and are shown to be invariant under the Yangian
(level-one) algebra constructed as described above. This
introduces integrability into the amplitude sector of N ¼
6 SCS theory.

The paper is structured as follows: In Sec. II, the kine-
matics for three-dimensional field theories are discussed,
and momentum spinors are introduced. An on-shell super-
space and the corresponding superfields for N ¼ 6 SCS
are presented in Sec. III, where also color ordering is
discussed. The realization of the symmetry algebra
ospð6j4Þ in terms of the superspace variables is exhibited
in Sec. IV. In Sec. V the invariants of this realization are
studied. The four- and six-point tree-level superamplitudes
are presented in Sec. VI. In Sec. VII, the realization of the
ospð6j4Þ Yangian algebra is analyzed and shown to be
consistent by means of the Serre relations. Yangian invari-
ance of the four- and six-point amplitudes is shown. After
concluding our results in Sec. VIII, finally, our conventions
as well as several technical details, including the compu-
tation of two six-point component amplitudes from
Feynman diagrams, are presented in the Appendixes.

II. THREE-DIMENSIONAL KINEMATICS

A. Momentum spinors

The Lorentz algebra in three dimensions is given by
soð2; 1Þ being isomorphic to slð2;RÞ. Thanks to this iso-
morphism, an soð2; 1Þ vector equivalently is an slð2;RÞ
bispinor. More explicitly, three-dimensional vectors can be
expanded in a basis of symmetric matrices ��,

pab ¼ ð��Þabp� ¼ p0 � p1 p2

p2 p0 þ p1

� �
; (2.1)

and any symmetric 2� 2 matrix pab can be written as

pab ¼ �ða�bÞ: (2.2)

By means of the identifications (2.1) and (2.2), the
square norm of the vector p� equals the determinant of
the corresponding matrix:

p�p� ¼ � detðpabÞ ¼ �ð�a"ab�
bÞ2: (2.3)

In particular, this means that the masslessness condition
p2 ¼ 0 can be explicitly solved

pab ¼ �a�b: (2.4)

Given a massless momentum, the choice of �a in (2.4) is
unique up to a sign being the manifestation of the fact that
the group SLð2;RÞ is the double cover of SOð2; 1Þ. That the
sign is the only freedom in the choice of �a is due to the
fact that the little group of massless particles1 is discrete in
three dimensions. For massive momenta on the other hand,
the choice of �a, �a in (2.2) has an Rþ �Uð1Þ freedom

�a ! c�a; �a ! �a=c; c 2 Cnf0g: (2.5)

In particular this contains the little group Uð1Þ of massive
particles2 in three dimensions.
Some comments on reality conditions for �a are in order.

Physical momenta are real; this means that �a can be either
purely real or purely imaginary. For positive-energy mo-
menta (p0 > 0), �a is purely real, while it is purely imagi-
nary for negative-energy momenta. Even for complex
momenta, pab is expressed in terms of a single complex
� as in (2.4). This seems very different to the four-
dimensional case, where momenta can be written as

pa _b
d¼4 ¼ �a ~�

_b; (2.6)

and �a and ~�
_b are independent in complexified kinematics.

In Minkowski signature, �a and ~�
_b are actually complex

conjugate to each other. This is the origin of the holomor-
phic anomaly [26]. Looking at (2.4), nothing similar ap-
pears to happen in three dimensions if one imposes the
correct reality conditions.
It is worth noting that the existence of a spinor-helicity

framework in a certain dimension is intimately connected
to the existence of superconformal symmetry in that di-
mension; cf. Table I. For the six-dimensional case the
spinor-helicity formalism has been recently applied to
scattering amplitudes in [27].

B. Kinematical invariants

In terms of momentum spinors, two-particle Lorentz
invariants can be conveniently expressed as

���p
�
1 p

�
2 ¼ �1

2h12i2; hjki :¼ �a
j "ab�

b
k: (2.7)

It is easy to count the number of (independent) Poincaré
invariants that can be built out of n massless three-
dimensional momenta. Every spinor carries 2 degrees of
freedom resulting in 2n variables for n massless momenta.
The number of two-particle Lorentz invariants one can
build from these is 2n� 3, where 3 is the number of
Lorentz generators. This can be explicitly done using
Schouten’s identity

hklihiji þ hkiihjli þ hkjihlii ¼ 0: (2.8)

Finally, total momentum conservation imposes three fur-
ther constraints, such that the number of Poincaré invari-
ants is 2n� 6. Note that for n ¼ 3 there is no Poincaré
invariant, even in complex kinematics.

C. One-particle states

One-particle states are solutions of the linearized equa-
tion of motion. This equation is an irreducibility condition
for the representation of the Poincaré group. For massless
particles, these Poincaré representations are lifted to rep-

1SOðd� 2Þ in d dimensions. 2SOðd� 1Þ in d dimensions.
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resentations of the conformal group SOðd; 2Þ. Once again,
the existence of the spinor formulation in three dimensions
makes it possible to explicitly solve the irreducibility
condition.

For scalars, the irreducibility condition is trivially sat-
isfied by an arbitrary function of the massless momentum:

p2	ðpabÞ ¼ 0 ) 	ðpabÞ ¼ 	ð�a�bÞ: (2.9)

For fermions, the irreducibility condition is given by the
Dirac equation, which forces the fermionic state �a to be
proportional to "ab�

b,

pab�bðpcdÞ ¼ 0 ) �aðpcdÞ ¼ "ab�
bc ð�c�dÞ: (2.10)

Thus when �a changes its sign, the scalar state is invariant,
while the fermionic state picks up a minus sign. Once
again, this just corresponds to the fact that fermions are
representations of Spinð2; 1Þ � SLð2;RÞ, which is the
double cover of SOð2; 1Þ. Put differently,

exp

�
i
�a @

@�a

�
jStatei ¼ ð�1ÞF jStatei; (2.11)

where F denotes the fermion number operator.
It is worth mentioning that these representations of the

conformal group SOð3; 2Þ � Spð4;RÞ have a long history.
They go back to Dirac [28] and were particularly studied
by Flato and Fronsdal in an ancestor form of the AdS/CFT
correspondence [29].

III. SUPERFIELDS AND COLOR ORDERING

A. Field content

The matter fields of N ¼ 6 superconformal Chern-
Simons theory comprise eight scalar fields and eight fer-
mion fields that form four fundamental multiplets of the
internal suð4Þ symmetry:

	Að�Þ; �	Að�Þ; c Að�Þ;
�c Að�Þ; A 2 f1; 2; 3; 4g: (3.1)

The fields 	A and c A transform in the ðN; �NÞ representa-
tion, while �	A, �c A transform in the ð �N;NÞ representation
of the gauge group UðNÞ �UðNÞ.3 The former shall be
called ‘‘particles,’’ the latter ‘‘antiparticles.’’ In addition,

the theory contains gauge fields A�, Â� that transform in

ðad; 1Þ, ð1; adÞ representations of the gauge group. The

gauge fields however cannot appear as external fields in
scattering amplitudes, as their free equations of motion

@½�A�� ¼ 0 ¼ @½�Â�� do not allow for excitations.

B. Superfields

For the construction of scattering amplitudes, it is con-
venient to employ a superspace formalism, in which the
fundamental fields of N ¼ 6 superconformal Chern-
Simons theory combine into superfields and supersymme-
try becomes manifest. In N ¼ 4 SYM, the fields (gluons,
fermions, scalars) transform in different representations of
the internal symmetry group. Thus in the superfield of
N ¼ 4 SYM, the fields can be multiplied by different
powers of the fermionic coordinates �A according to their
different representation. Internal symmetry, realized as
RA

B � �A@=@�B, is then manifest. All particles in N ¼
6 SCS form (anti)fundamental multiplets of the internal
suð4Þ symmetry. Thus an analogous superfield construc-
tion, i.e. one in which R symmetry only acts on the fermi-
onic variables, seems obstructed for this theory.
Nevertheless, by breaking manifest R symmetry, one can
employ N ¼ 3 superspace, in which the fundamental
fields combine into one bosonic and one fermionic super-
field with the help of an suð3Þ Grassmann spinor �A,

�ð�Þ ¼ 	4ð�Þ þ �Ac Að�Þ þ 1

2
"ABC�

A�B	Cð�Þ

þ 1

3!
"ABC�

A�B�Cc 4ð�Þ;

��ð�Þ ¼ �c 4ð�Þ þ �A �	Að�Þ þ 1

2
"ABC�

A�B �c Cð�Þ

þ 1

3!
"ABC�

A�B�C �	4ð�Þ:

(3.2)

Here and in the following, � is used as a shorthand
notation for the pair of variables ð�;�Þ. Introducing these
superfields amounts to splitting the internal suð4Þ symme-
try into a manifest uð3Þ, realized asRA

B � �A@=@�B, plus
a nonmanifest remainder, realized as multiplication and
second-order derivative operators. For the complete repre-
sentation of the symmetry group on the superfields, see the
following Sec. IV.
Using the superfields, scattering amplitudes conven-

iently combine into superamplitudes

Â n ¼ Ânð�1; ��2;�3; . . . ; ��nÞ; �k :¼ �ð�kÞ:
(3.3)

TABLE I. Spinor-helicity formalism and superconformal symmetry in various dimensions.

Lorentz SOðd� 1; 1Þ Conformal SOðd; 2Þ Lightlike momentum Little group Superconformal group

d ¼ 3 SLð2;RÞ SPð4;RÞ pab ¼ �a�b Z2 OSPðN �8j4Þ
d ¼ 4 SLð2;CÞ SUð2; 2Þ pa _b ¼ �a ��

_b Uð1Þ ðPÞSUð2; 2jN �4Þ
d ¼ 6 SLð2;HÞ ’ SU�ð4Þ SO�ð8Þ p½AB� ¼ �ab�

Aa�Bb p½AB� ¼ � _a _b
~� _a
A
~�
_b
B SUð2Þ2 OSPð8j2Þ, OSPð8j4Þ

3N: fundamental representation of UðNÞ; �N: antifundamental
representation of UðNÞ.
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Component amplitudes for all possible configurations of

fields then appear as coefficients of Ân in the fermionic
variables �A

1 ; . . . ; �
A
n .

C. Color ordering

In all tree-level Feynman diagrams, each external parti-
cle (antiparticle) is connected to one antiparticle (particle)
by a fundamental color line and to another antiparticle
(particle) by an antifundamental color line.4 Tree-level
scattering amplitudes can therefore conveniently be ex-
panded in their color factors:

Ânð� A1

1 �A1
; ��

�B2

2B2
;� A3

3 �A3
; . . . ; ��

�Bn

nBn
Þ

¼ X
�2ðSn=2�Sn=2Þ=Cn=2

Anð��1
; . . . ;��n

Þ

� �
A�1

B�2
�

�B�2
�A�3

�
A�3

B�4
� � �� �B�n

�A�1

: (3.4)

Here, the sum extends over permutations � of n sites that
only mix even and odd sites among themselves, modulo
cyclic permutations by two sites. By definition, the color-
ordered amplitudesAn do not depend on the color indices

of the external superfields. The total amplitude Ân is
invariant up to a fermionic sign under all permutations of
its arguments. Therefore the color-ordered amplitudesAn

are invariant under cyclic permutations of their arguments
by two sites,

A nð�3; . . . ;�n;�1;�2Þ ¼ ð�1Þðn�2Þ=2Anð�1; . . . ;�nÞ;
(3.5)

where the sign is due to the fact that� is bosonic and �� is
fermionic. While the color-ordered component amplitudes
can at most change by a sign under shifts of the arguments
by one site,5 the superamplitudeAn might transform non-
trivially under single-site shifts, as the definition of
Anð�1; . . . ;�nÞ in (3.4) implies that �odd=even belong to

bosonic/fermionic superfields.
For the color-ordered amplitudes An, the superanalog

of the condition (2.11) takes the form

expi


�
�a
k

@

@�a
k

þ �A
k

@

@�A
k

�
An ¼ ð�1ÞkAn: (3.6)

Note that this local constraint looks similar to the (local)
central charge condition in four dimensions. Moreover,
expi
ð�a

k
@

@�a
k
þ �A

k
@

@�A
k

Þ is central for the ospð6j4Þ realiza-
tion given in the next Sec. IV.

Note that the above color structure (3.4) is very similar
to the structure of quark-antiquark scattering in QCD; see
e.g. [30].

IV. SINGLETON REALIZATION OF ospð6j4Þ
The ospð6j4Þ algebra is spanned by the spð4Þ generators

of translations Pab, Lorentz transformations La
b, special

conformal transformations Kab, and dilatations D, by the
soð6Þ R symmetries RAB, RA

B, and RAB as well as 24
superchargesQaA,Qa

A,Sa
A, andSaA. Here we use slð2Þ

indices a; b; . . . ¼ 1; 2 and suð3Þ indices A; B; . . . ¼
1; 2; 3. As mentioned above, the internal soð6Þ symmetry
is not manifest in this realization of the algebra. The
generators RAB and RAB are antisymmetric in their indi-
ces, whileRA

B does contain a nonvanishing trace and thus
generates suð3Þ þ uð1Þ. Hence, in total we have 15 inde-
pendent R-symmetry generators corresponding to soð6Þ �
suð4Þ; cf. also Fig. 1.

A. Commutators

The generators of ospð6j4Þ obey the following commu-
tation relations: Lorentz and internal rotations read

½La
b;J

c� ¼ þ�c
bJ

a � 1
2�

a
bJ

c;

½La
b;Jc� ¼ ��a

cJb þ 1
2�

a
bJc;

(4.1)

½RA
B;J

C� ¼ þ�C
BJ

A; ½RA
B;JC� ¼ ��A

CJB; (4.2)

½RAB;J
C� ¼ �C

BJA � �C
AJB;

½RAB;JC� ¼ �B
CJ

A � �A
CJ

B:
(4.3)

Commutators including translations and special conformal
transformations take the form

FIG. 1. The generators of ospð6j4Þ can be arranged according
to their dilatation charge and their uð1Þ charge under RC

C.

4This implies, in particular, that only scattering processes
involving the same number of particles and antiparticles are
nonvanishing.

5A single-site shift amounts to exchanging the fundamental
with the antifundamental gauge group, which equals a parity
transformation in N ¼ 6 SCS [2].
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½Kab;P
cd� ¼ �d

bL
c
a þ �c

bL
d
a þ �d

aL
c
b þ �c

aL
d
b

þ 2�d
b�

c
aDþ 2�c

b�
d
aD; (4.4)

½Pab;SA
c � ¼ ��a

cQ
bA � �b

cQ
aA;

½Kab;Q
cA� ¼ �c

bS
A
a þ �c

aS
A
b ;

(4.5)

½Pab;ScA� ¼ ��a
cQ

b
A � �b

cQ
a
A;

½Kab;Q
c
A� ¼ �c

aSbA þ �c
bSaA;

(4.6)

while the supercharges commute into translations and
rotations:

fQaA;Qb
Bg ¼ �A

BP
ab; fSaA;S

B
b g ¼ �B

AKab; (4.7)

fQaA;SbBg ¼ �A
BL

a
b � �a

bR
A
B þ �A

B�
a
bD;

fQaA;SB
b g ¼ ��a

bR
AB;

(4.8)

fQa
A;S

B
b g ¼ �B

AL
a
b þ �a

bR
B
A þ �A

B�
a
bD;

fQa
A;SbBg ¼ ��a

bRAB:
(4.9)

Furthermore the nonvanishing dilatation weights are given
by

½D;Pab� ¼ þPab; ½D;QaA� ¼ þ1
2Q

aA;

½D;Qa
A� ¼ þ1

2Q
a
A;

(4.10)

½D;Kab� ¼ �Kab; ½D;SA
a � ¼ �1

2S
A
a ;

½D;SaA� ¼ �1
2SaA:

(4.11)

All other commutators vanish. Note that in contrast to the
psuð2; 2j4Þ symmetry algebra of N ¼ 4 SYM theory, all
fermionic generators are connected by commutation rela-
tions with bosonic generators.

B. Singleton realization

The above algebra ospð6j4Þ can be realized in terms of
the bosonic and fermionic spinor variables �a and �A

introduced in Secs. II and III. Acting on one-particle states
the representation takes the form (cf. also [31], used in the
present context in [7,32]):

La
b ¼ �a@b � 1

2�
a
b�

c@c; Pab ¼ �a�b;

D ¼ 1
2�

a@a þ 1
2; Kab ¼ @a@b; RAB ¼ �A�B;

RA
B ¼ �A@B � 1

2�
A
B; RAB ¼ @A@B;

QaA ¼ �a�A; SA
a ¼ �A@a; Qa

A ¼ �a@A;

SaA ¼ @a@A: (4.12)

For a general discussion of representations of this type,
cf. Appendix A. The multiparticle generalization of these
generators at tree level is given by a sum over single-
particle generators (4.12) acting on each individual particle

k, i.e.

J multi
� ¼ Xn

k¼1

J
single
�;k ; J� 2 ospð6j4Þ: (4.13)

As opposed to psuð2; 2j4Þ, the symmetry algebra ofN ¼
4 SYM, the algebra ospð6j4Þ cannot be enhanced by a
central and/or a hypercharge. Since inN ¼ 4 SYM theory
the hypercharge of psuð2; 2j4Þ measures the helicity, this
can be considered the algebraic manifestation of the lack of
helicity in three dimensions. Still we can define some
central element like in (3.6).

V. CONSTRAINTS ON SYMMETRY INVARIANTS

We are interested in the determination of tree-level
scattering amplitudes of n particles inN ¼ 6 SCS theory.
These should be functions of the superspace coordinates
introduced in Sec. III and be invariant under the symmetry
algebra ospð6j4Þ of the N ¼ 6 SCS Lagrangian. In order
to approach this problem, this section is concerned with the
symmetry constraints imposed on generic functions of n
bosonic and n fermionic variables �a

i and �
A
i , respectively.

That is, we study the form of invariants Inð�i; �iÞ under the
above representation of ospð6j4Þ. It is demonstrated that
requiring invariance under the symmetry reduces to finding
soð6Þ singlets plus solving a set of first-order partial dif-
ferential equations, the latter following from invariance
under the superconformal generator S. Invariance under
all other generators will then be manifest in our
construction.
Because of the color decomposition discussed in

Sec. III, scattering amplitudes are expected to be invariant
under two-site cyclic shifts. Since the generators given in
the previous section are invariant under arbitrary permuta-
tions of the particle sites, they do not impose any cyclicity
constraints. Those constraints as well as analyticity con-
ditions are important ingredients for the determination of
amplitudes, but are not studied in the following. Note that
apart from assuming a specific realization of the symmetry
algebra, the investigations in this section are completely
general. In Sec. VI, we will specialize to four and six
particles and give explicit solutions to the constraints.
The following discussion will be rather technical. For
convenience, the main results are summarized at the end
of this section.

A. Invariance under spð4Þ
The subalgebra spð4Þ of ospð6j4Þ is spanned by the

generators of translations Pab, Lorentz transformations
La

b, special conformal transformations Kab, and dilata-

tions D. Invariance under the multiplication operator
Pab ¼ �a�b constrains an invariant of spð4Þ to be of the
form

Inð�i; �iÞ ¼ �3ðPÞGð�i; �iÞ; (5.1)
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where Pab ¼ P
n
i¼1 �

a
i �

b
i is the overall momentum and

Gð�i; �iÞ some function to be determined. The momentum
delta function is Lorentz invariant on its own so that
Gð�i; �iÞ has to be invariant under La

b as well. As �3ðPÞ
has weight �3 in P, dilatation invariance furthermore
requires that

P
n
k¼1 �

a
k@kaG ¼ ð6� nÞG. We will not spec-

ify any invariance condition for the conformal boost here,
since invariance under Kab will follow from invariance
under the superconformal generators SaA, S

B
b using the

algebra.

B. Invariance under Q and R

Invariance under the multiplicative supermomentum
QaA requires the invariant In to be proportional to a
corresponding supermomentum delta function:

Inð�i; �iÞ ¼ �3ðPÞ�6ðQÞFð�i; �iÞ; (5.2)

where one way to define the delta function is given by

�6ðQÞ ¼ Y
a¼1;2
A¼1;2;3

QaA; QaA ¼ Xn
i¼1

�a
i �

A
i : (5.3)

Again, the function Fð�i; �iÞ should be Lorentz invariant,
and dilatation invariance implies

Xn
k¼1

�a
k@kaF ¼ �nF: (5.4)

Invariance under the second momentum supercharge Qa
A

will follow from R symmetry, but will also be discussed in
(5.19).

In order to construct a singlet under the multiplicative
R-symmetry generatorRAB ¼ P

n
i¼1 �

A
i �

B
i one might want

to add another delta function �ðRÞ to our invariant. Things,
however, turn out to be not as straightforward as for the
generators P and Q. As a function of the bosonic object
RAB made out of fermionic quantities, �ðRÞ is not well
defined.

We first of all note that invariance under the uð1Þ
R-symmetry generator

R C
C ¼ �C@C � 3

2n (5.5)

fixes the power m of Grassmann parameters � in the n-leg
invariant In to

m ¼ 3
2n: (5.6)

Hence, increasing the number of legs of the invariant by 2
increases the Grassmann degree of the invariant by 3
(remember that amplitudes with an odd number of external
particles vanish). This is a crucial difference to scattering
amplitudes inN ¼ 4 SYM theory. As a consequence, the
complexity of amplitudes in N ¼ 6 SCS automatically
increases with the number of legs. There are no amplitudes
with a similar simplicity as the maximally helicity violat-
ing (MHV) amplitudes for all numbers of external particles
as in the four-dimensional counterpart. Rather, the n-point

amplitude resembles the Nðn�4Þ=2MHV amplitude inN ¼
4 SYM theory (being the most complicated).
We can ask ourselves what happens to the R-symmetry

generators in the presence of �3ðPÞ�6ðQÞ. To approach this
problem, we introduce a new basis for the fermionic pa-
rameters �A

i :

�A
i ; i ¼ 1; . . . ; n ! �A

J ; �
A
J ; Q

aA; YaA;

J ¼ 1; . . . ;
n� 4

2
:

(5.7)

That is, we trade n anticommuting parameters �A for n ¼
2� ðn� 4Þ=2þ 4 new fermionic variables. The new
quantities are defined as

�A
J
:¼ xþJ � �A ¼ Xn

i¼1

xþJi�A
i ;

�A
J
:¼ x�J � �A ¼ Xn

i¼1

x�Ji�A
i ;

(5.8)

YaA :¼ ya � �A ¼ Xn
i¼1

yai �
A
i ; (5.9)

where the coordinate vectors x�Jið�kÞ and yai ð�kÞ express the
new variables �J, �J, and Ya in terms of the old variables
�i. At first sight, introducing this new set of variables
might seem unnatural. It will, however, be very convenient
for treating invariants of ospð6j4Þ and appears to be a
natural basis for scattering amplitudes in N ¼ 6 SCS
theory.
In order for the new set of Grassmann variables (5.7) to

provide n independent parameters, the coordinates have to
satisfy some independence conditions. Since the two var-
iables Qa are given by the coordinate n vectors �a

i for a ¼
1, 2, a natural choice are the orthogonality conditions

x�J � �b ¼ 0; ya � �b ¼ "ab; ya � x�J ¼ 0;

(5.10)

where the dot represents the contraction of two n vectors as
in (5.8) and (5.9). For convenience we furthermore choose
the following normalizations:

x�I � x�J ¼ 0; xþI � x�J ¼ �IJ; ya � yb ¼ 0:

(5.11)

Given �a
i such that �

a � �b ¼ 0, (5.10) and (5.11) do not fix
x�I and ya uniquely. The leftover freedom can be split into
an irrelevant part and a relevant one. The irrelevant free-
dom is

x�Ii ! x�Ii þ v�
aI�

a
i ; ya ! ya þ w�a; (5.12)

where v�
aI andw are functions of �. The freedom expressed

in (5.12) is nothing but the freedom of shifting the fermi-
onic variables defined in (5.8) and (5.9) by terms propor-
tional to QaB. In the presence of �6ðQÞ this freedom is
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obviously irrelevant. The relevant freedom corresponds to
�-dependentOðn� 4Þ rotations of x�I ; see Appendix B for
more details.

We can now explicitly express �i in terms of the new
parameters,

�A
i ¼ Xðn�4Þ=2

M¼1

x�Mi�
A
M þ Xðn�4Þ=2

M¼1

xþMi�
A
M �ab y

a
i Q

bA

þab �
a
i Y

bA: (5.13)

Since for general momentum spinors �a
i obeying overall

momentum conservation the two operators

Aij ¼
Xðn�4Þ=2

J¼1

xþJðix
�
JjÞ; Bij ¼ "ab�

a
ðiy

b
jÞ; (5.14)

define projectors on the x� and �-y subspace, respectively,
the statement that the new variables span the whole space
of Grassmann parameters can be rephrased as

�ij ¼
Xðn�4Þ=2

J¼1

xþJðix
�
JjÞ þ "ab�

a
ðiy

b
jÞ: (5.15)

Here ð� � �Þ denotes symmetrization in the indices, whereas
½� � �� will be used for antisymmetrization in the following.
Equation (5.15), however, only represents the coordinate
version of rewriting the multiplicative R-symmetry gen-
erator in terms of the new parameters:

�3ðPÞRAB ¼ �3ðPÞXn
i¼1

�A
i �

B
i

¼ �3ðPÞ
� Xðn�4Þ=2

J¼1

�½A
J �B�

J þ "abQ
a½AYaB�

�
:

(5.16)

Introducing the new set of variables f�;�;Q; Yg was origi-
nally motivated by this rewriting. In particular, we now find
that the R-symmetry generators further simplify under the
supermomentum delta function

�3ðPÞ�6ðQÞRAB ¼ �3ðPÞ�6ðQÞ Xðn�4Þ=2

J¼1

�½A
J �B�

J : (5.17)

In order to investigate the properties of the unknown
function F in (5.2)

Inð�i; �; �; Y;QÞ ¼ �3ðPÞ�6ðQÞFð�i; �; �; Y;QÞ (5.18)

in terms of the new fermionic variables, we act withQa
A on

the invariant and use the properties of x�, ya, and �a under
the momentum delta function to obtain

Q a
AIn ¼ ��3ðPÞ�6ðQÞ"ab @F

@YbA
: (5.19)

Since Qa
A invariance forces this to vanish, the

Y dependence of F is constrained to

@F

@Y
�Q: (5.20)

All terms of F proportional to Q vanish in (5.18) such that
under �6ðQÞ we find

F ¼ Fð�i; �; �Þ: (5.21)

This guarantees invariance under Qa
A. Hence, introducing

the new set of fermionic variables and making use of QaA

and Qa
A invariance, we fixed the dependence of the invari-

ant on 12 of the Grassmann variables. Rewriting the
R symmetries in terms of the new variables we obtain the
conditions

RABIn ¼ �3ðPÞ�6ðQÞ Xðn�4Þ=2

J¼1

�½A
J �B�

J Fð�i; �; �Þ¼! 0;

RABIn ¼ �3ðPÞ�6ðQÞ Xðn�4Þ=2

J¼1

@

@�½A
J

@

@�B�
J

Fð�i; �; �Þ¼! 0:

(5.22)

Note that since �, � are independent of Q, these equations
equivalently have to hold in the absence of the supermo-
mentum delta function. Solutions to these equations for
n ¼ 6 will be given in Sec. VI. Invariance under

R A
B ¼ Xp

J¼1

�
�A
J

@

@�B
J

þ �A
J

@

@�B
J

� �A
B

�
(5.23)

follows from (5.22) using the algebra relations (4.3). For
more details on the solutions to these equations, see
Appendix B (cf. also [31]).
The analysis up to here concerns only the super-Poincaré

and R-symmetry part of ospð6j4Þ. Since this part of the
symmetry is believed to not receive quantum corrections,
the considerations up to now are valid at the full quantum
level.

C. Invariance under S

In this paragraph we consider the implications of
S invariance on the function In. This is the most involved
part of the invariance conditions in this section and will
imply invariance under the conformal boost Kab by means
of the algebra relation fSaA;S

B
b g ¼ �B

AKab. We apply the

generator SA
a to the invariant In after imposing invariance

under P, L, D, Q, and R as above:

SA
aInð�; �;�;QÞ ¼ �3ðPÞ

�
@�6ðQÞ
@QaB RABFþ �6ðQÞSA

aF

�
:

(5.24)

Expressing the R-symmetry generator in terms of the
parameters � and �

S A
aIn ¼ �3ðPÞ

�
@�6ðQÞ
@QaB

Xðn�4Þ=2

J¼1

�½A
J �B�

J F

þ "bcY
c½BFQbA� @�

6ðQÞ
@QaB þ �6ðQÞSA

aF

�
;

(5.25)
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the first term vanishes by means of (5.22). Using
QbA@�6ðQÞ=@QaB ¼ �b

a�
A
B�

6ðQÞ, we can rewrite this as

S A
aIn ¼ �3ðPÞ�6ðQÞð2"caYcA þSA

a ÞF; (5.26)

and express the second term in this sum in the form of

SA
aF ¼ Xn

j;k¼1

Xðn�4Þ=2

J¼1

�A
k�

B
j

�@xþJj
@�a

k

@

@�B
J

þ @x�Jj
@�a

k

@

@�B
J

�
F

þ �A � Fa: (5.27)

Here we have defined the partial derivative of F as

Fai ¼ @Fð�;�;�Þ
@�a

i

���������;�¼const
: (5.28)

If we now expand �i in (5.27) in terms of the new fermi-
onic basis (5.13) and use the conditions (5.10) and (5.11),
the first term in (5.26) cancels and the invariance condition
for the S symmetry takes the form of a differential equation
for the unknown function F:

SA
aIn ¼ �3ðPÞ�6ðQÞ Xðn�4Þ=2

J¼1

�
� Xðn�4Þ=2

M;N¼1

�
ð�A

MZ
��þ
MNJa � �A

MZ
þþ�
MNJaÞ�B

N

@

@�B
J

þ ð�A
MZ

þ��
MNJa þ �A

MZ
���
MNJaÞ�B

N

@

@�B
J

�
F

þ ðx�J � FaÞ�A
J þ fð�;þÞ $ ð�;�Þg

�
: (5.29)

Here we have defined for convenience

Z���
MNJa ¼

Xn
j;k¼1

x�Mkx
�
Nj

@x�Jj
@�a

k

: (5.30)

Once the differential equation (5.29) is satisfied, invariance
under SaA follows from the commutation relations of
ospð6j4Þ. While this equation is trivially satisfied for n ¼
4, we will give explicit solutions to it for n ¼ 6 in Sec. VI.

D. Summary

To summarize the previous analysis, a general n-point
invariant In of the superalgebra can be expanded in a basis
of R-symmetry invariants Fn;k,

6

In ¼ �3ðPÞ�6ðQÞXK
k¼1

fn;kð�ÞFn;k; (5.31)

where a priori some fn;kð�Þ could be zero. The number K
of basis elements Fn;k is given by the number of singlets in

the representation ð4 	 �4Þ
ðn�4Þ; cf. Appendix B. We have
introduced a new basis f�I; �I; Y;Qg for the fermionic
superspace coordinates. Using invariance under QaA and
Qa

A these are very helpful to fix the dependence of the
invariant on 12 of the Grassmann variables: The basis
elements Fn;k are functions only of the n� 4 Grassmann

spinors �A
1 ; �

A
1 ; . . . ; �

A
ðn�4Þ=2; �

A
ðn�4Þ=2, multiplied by the

supermomentum delta function �6ðQÞ. They have to satisfy
the invariance conditions (5.22). In particular this implies,
via the uð1Þ R charge (5.5), that they have to be homoge-
neous polynomials of degree 3ðn� 4Þ=2 in the f�I; �Ig
variables. This is very different than in N ¼ 4 SYM,
where the n-point amplitude is inhomogeneous in the
fermionic variables, and the coefficients of the lowest
and highest powers (MHV amplitudes) have the simplest
form. Here, the n-point amplitude rather resembles the

most complicated (Nðn�4Þ=2MHV) part of the N ¼ 4
SYM amplitude. When expanding a general invariant in
the basis fFn;kg, the momentum-dependent coefficients

must be Lorentz invariant and are further constrained by
the S-invariance equation (5.29). The analysis of that
equation for general n is beyond the scope of the present
paper. One would have to analyze whether and how the
basic R-symmetry invariants Fn;k mix under (5.29).

Moreover, the invariants Fn;k transform into each other

under a change in the choice of f�I; �Ig (for more details
see Appendix B). One nice thing about (5.29) is that it
expands into a set of purely bosonic first-order differential
equations.

VI. AMPLITUDES FOR FOUR AND SIX POINTS

After the general analysis of ospð6j4Þ n-point invariants
in Sec. V, the simplest cases n ¼ 4 and n ¼ 6 are discussed
in this section.

A. Four-point amplitude

After imposing (super)momentum conservation via the
factor �3ðPÞ�6ðQÞ, invariance under the uð1Þ R charge
(5.5) already requires the four-point superamplitude to be
of the form

A 4 ¼ �3ðPÞ�6ðQÞfð�Þ; (6.1)

where fð�Þ is a Lorentz-invariant function of the �k with
weight �4. A4 then trivially satisfies the R- and
S-invariance conditions (5.25) and (5.29) and as a conse-
quence is ospð6j4Þ invariant. A field-theory computation
[22] shows that indeed the superamplitude is given by7

6More precisely, the quantities Fn;k have to be multiplied by
�6ðQÞ in order to be actual R-symmetry invariants. In a slight
abuse of notation, we refer to the Fn;k themselves as R-symmetry
invariants.

7The two expressions are equal due to the identity 0 ¼
�3ðPÞh2jPj4i ¼ �3ðPÞðh21ih14i þ h23ih34iÞ. Note that we could
also write A4 ¼ i sgnðh12ih14iÞ�3ðPÞ�6ðQÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih12ih23ih34ih41ip

,
which seems more natural comparing to MHV amplitudes in
N ¼ 4 SYM theory. Then, however, one has to deal with the
sign factor such that we decided not to use this square root form
of the four-point amplitude.

TILL BARGHEER, FLORIAN LOEBBERT, AND CARLO MENEGHELLI PHYSICAL REVIEW D 82, 045016 (2010)

045016-8



A 4 ¼ �3ðPÞ�6ðQÞ
h21ih14i ¼ �3ðPÞ�6ðQÞ

�h23ih34i ; (6.2)

where we neglect an overall constant. For later reference,
we state the component amplitudes for four fermions and
for four scalars:

A4c :¼ A4ðc 4; �c
4; c 4; �c

4Þ ¼ �3ðPÞh13i3
h21ih14i ;

A4	 :¼ A4ð	4; �	4; 	
4; �	4Þ ¼ �3ðPÞh24i3

h21ih14i :

(6.3)

B. Six-point invariants

In the case of six points, there is only one pair of
fermionic variables �, �. The space of R-symmetry invar-
iants in these variables is spanned by the two elements
(cf. Appendix B)

�3ð�Þ ¼ 1

3!
"ABC�

A�B�C ¼ �1�2�3;

�3ð�Þ ¼ 1

3!
"ABC�

A�B�C ¼ �1�2�3:

(6.4)

Thus the most general six-point function that is ospð6j4Þ
invariant is given by

I6 ¼ �3ðPÞ�6ðQÞðfþð�Þ�3ð�Þ þ f�ð�Þ�3ð�ÞÞ; (6.5)

where � ¼ xþ � �, � ¼ x� � �, and x� satisfy (5.10) and
(5.11). In order to be Lorentz invariant, the functions f�ð�Þ
must only depend on the spinor brackets (2.7). For being
invariant under the dilatation generator (5.4), they further-
more must have weight�6 in the �k’s. Finally, they have to
be chosen such that invariance under SA

a is satisfied. As
there is only one pair of x� in the case of six particles,
many of the quantities Z���

a defined in (5.30) vanish.
Namely, 0 ¼ Zþ��

a ¼ Z���
a , as can be seen by acting

with x� � @=@�a on 0 ¼ x� � x� (5.11). TheSA
a invariance

equation (5.29) thus reduces to

SA
aI6 ¼ �3ðPÞ�6ðQÞ

��
xþ � @f

þ

@�a � 3Zþþ�
a fþ

�
�A�3ð�Þ

þ fð�;þ Þ $ ð�;� Þg
�
: (6.6)

Invariance under SA
a is therefore equivalent to

0 ¼ X6
k¼1

x�k
�
1

f�
@f�

@�a
k

� 3
X6
j¼1

x�j
@x�j
@�a

k

�
: (6.7)

For given x�, this eliminates 1 functional degree of free-
dom of f�, which generically depends on 2n� 6jn¼6 ¼ 6
kinematical invariants (cf. Sec. II).

C. Six-point amplitude

It appears very hard to find a solution to (6.7) directly.
Moreover, a solution would not fix the relative constant

between the two terms of (6.5). In order to obtain the six-
point superamplitude, one thus has to calculate at least one
component amplitude from Feynman diagrams. With two
component amplitudes, the invariant (6.5) can be fixed
uniquely, without having to solve (6.7).8 The latter can
then be used as a cross-check on the result. It is reasonable
to compute the amplitudes A6c ¼ A6ðc 4; �c

4; c 4; �c
4;

c 4; �c
4Þ and A6	 ¼ A6ð	4; �	4; 	

4; �	4; 	
4; �	4Þ, as these

have relatively few contributing diagrams.
To obtain the component amplitudes A6c and A6	 from

the superamplitude A6, one has to extract the coefficients
of �3

1�
3
3�

3
5 and �3

2�
3
4�

3
6, respectively, in the expansion of

(6.5). The Grassmann quantities �A
i appear in expressions

of the form

�9ð�A � t�Þ � �6ðQÞ�3ð�Þ; (6.8)

where we introduce t�i � ð�a
i ; x

þ
i Þ (so � ¼ 1, 2, 3). The

�3
i �

3
j�

3
k term in (6.8) is proportional to

det

t1i t2i t3i
t1j t2j t3j
t1k t2k t3k

0
B@

1
CA

3

¼ det

�1
i �2

i xþi
�1
j �2

j xþj
�1
k �2

k xþk

0
B@

1
CA

3

¼ ðhijixþk þ hjkixþi þ hkiixþj Þ3:
(6.9)

In this way one can extract from (6.5) rather simple ex-
pressions for the component amplitudes in terms of f�, x�:

A6c ¼ ðh13ixþ5 þ h35ixþ1 þ h51ixþ3 Þ3fþ
þ ðh13ix�5 þ h35ix�1 þ h51ix�3 Þ3f�;

A6	 ¼ ðh24ixþ6 þ h46ixþ2 þ h62ixþ4 Þ3fþ
þ ðh24ix�6 þ h46ix�2 þ h62ix�4 Þ3f�:

(6.10)

As shown explicitly in Appendix C, the equations (6.10)
indeed determine f� and can be rewritten as

A6c

ð�ðp1 þ p3 þ p5Þ2=2Þ3=2
¼ zfþ þ z�1f�;

isA6	

ð�ðp1 þ p3 þ p5Þ2=2Þ3=2
¼ zfþ � z�1f�;

(6.11)

where s is an undetermined sign and both s and z are
functions of �. The functions s and z parametrize the
relevant Oð2Þ freedom in the choice of x� mentioned
below (5.12) and discussed in Appendix B. z can obviously
be reabsorbed in the definition of f�, and the sign s
corresponds to the interchange of fþ with f�.
Using the explicit form of A6c and A6	 obtained from a

Feynman diagram computation in Appendix D, the equa-
tions (6.10) determine f�ð�Þ and thereby the whole six-
point superamplitude:

8This was noted already in [22].
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A 6 ¼ �3ðPÞ�6ðQÞðfþð�Þ�3ð�Þ þ f�ð�Þ�3ð�ÞÞ: (6.12)

We do not state f�ð�Þ here, as their form is not very
illuminating. Note that an explicit six-point solution of
(5.10) and (5.11) for x� is given by

x�i ¼ 1

2
ffiffiffi
2

p "ijk
hjkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih13i2 þ h35i2 þ h51i2p ; i; j; k odd;

x�i ¼ �i

2
ffiffiffi
2

p "ijk
hjkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih24i2 þ h46i2 þ h62i2p ; i; j; k even:

(6.13)

That the resulting superamplitude indeed satisfies the in-
variance condition (6.7) can be seen by symbolically eval-
uating the latter and plugging random numerical
momentum spinors �k on the support of �ðPÞ into the
result. In fact, as can be seen already in (6.6), invariance
implies that the two terms

�3ðPÞ�6ðQÞfþð�Þ�3ð�Þ; �3ðPÞ�6ðQÞf�ð�Þ�3ð�Þ
(6.14)

are separately S invariant.

D. Factorization and collinear limits

There is a general factorization property (see e.g. [33])
that any color-ordered tree-level scattering amplitude has
to satisfy as an intermediate momentumP1k ¼ p1 þ � � � þ
pk goes on shell9:

~Anð1; . . . ; nÞ !P
2
1k
!0 X

int: part: p

ð�1ÞF p
1

P2
1k

~Akþ1ð1; . . . ; k; �̂Þ

� ~An�kþ1ð�i�̂; kþ 1; . . . ; nÞ: (6.15)

Here An ¼ ~An�
3ðPÞ and �̂a is defined by the equation

�̂a�̂b ¼ Pab
1k , while F p denotes the fermion number of

particle p. The freedom in the choice of the sign of �̂a is
compensated by the term ð�1ÞF p . We sum over all internal
particles such that the amplitudes on the right-hand side of
(6.15) are nonvanishing. Finally, the power 2 of 1=P1k in
(6.15) follows from dimensional analysis, keeping in mind
that

½ ~An�mass dim : ¼ 3� n

2
: (6.16)

The purpose of this paragraph is to consider (6.15) using
the explicit expressions for the component amplitudes A4	,

A4c (6.3) and A6	, A6c (6.10) and check for consistency. In

particular, since in the theory under study only amplitudes
with an even number of legs are nonvanishing, A2n should
be finite in the generic factorization limit of an even
number of legs, i.e. have no pole in P2

1;2k.

For the four-point amplitude we can distinguish two
cases for the two-particle factorization ( ¼ collinear) limit.
Using momentum conservation we have ðp1 þ p2 þ
p3Þ2 ¼ p2

4 ¼ 0. If we take P2
12 ! 0, i.e. �a

1 ¼ x�a
2 for

some constant x, this gives

0 ¼ ðp1 þ p2 þ p3Þ2 ¼ 2ð1þ x2Þp2 � p3: (6.17)

For generic x, this equation implies p2 � p3 ¼ 0, yielding
that all momenta are collinear and therefore all kinematical
invariants vanish, hjki � h12i, i.e.

~A 4 � h12i for h12i ! 0: (6.18)

On the other hand (6.17) is satisfied if x ¼ �i or in other
words10

p�
1 þ p�

2 ¼ 0; p�
3 þ p�

4 ¼ 0: (6.19)

For this special momentum configuration ~A4 does not
vanish in the two-particle collinear limit, but is singular.
For the six-point amplitudes there are two different

limits to be considered11:
(i) k ¼ 3: ðp1 þ p2 þ p3Þ2 ! 0. In this case (6.15)

reads

~A 6 ! 1

P2
13

~A4
~A4 þ finite: (6.20)

(ii) k ¼ 2: ðp1 þ p2Þ2 ¼ 2p1p2 ! 0, p1 þ p2 � 0. In
this case (6.15) reads

~A 6 ! 1

P2
12

~A3
~A5 þ finite ¼ finite: (6.21)

The latter case is supposed to give a finite result since
amplitudes with an odd number of legs vanish. We checked
that (6.20) and (6.21) are indeed satisfied for the amplitudes
A6	 and A6c given in (6.10).

What are the implications of the pole structure of A6c ,

A6	 on the functions f�ð�Þ? First note that (6.3)

A4c ð�1; . . . ; �4Þ ¼ h24i
h13iA4	ð�1; . . . ; �4Þ

¼ �A4	ð�1; . . . ; �4Þ; (6.22)

because p1 þ p3 ¼ �p2 � p4 and thus h13i2 ¼ h24i2;
therefore the sign depends on �k. This implies that in the
three-particle factorization limit

Res P2
13
¼0

~A6c ¼ �ResP2
13
¼0

~A6	: (6.23)

9Since we are dealing with cyclically invariant amplitudes,
there is no loss of generality in this choice of momenta.

10We thank Yu-tin Huang for pointing our attention to this
second case.
11For the two six-point amplitudes we computed (6.10), there is
no sum over internal particles.
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Comparing this to (6.11) shows that either fþð�Þ or f�ð�Þ
does not contribute to the factorization limit. Note that this
is consistent with Appendix E, where the superanalog of
(6.15) is worked out. In the three-particle factorization
limit, only one of the basic R-symmetry invariants �3ð�Þ,
�3ð�Þ survives.

To finish this section, we comment on the limit of three
momenta becoming collinear. This kinematical configura-
tion is nothing but the intersection of the two limits con-
sidered above. If we first take the sum of three momenta to
be on shell and further restrict to the configuration where
these three momenta become collinear we obtain

~A6ð1; 2; 3; 4; 5; 6Þ !P
2
13!0 ~A4ð1; 2; 3; �̂Þ ~A4ð�̂; 4; 5; 6Þ

h12i2 þ h23i2 þ h13i2

!1jj2jj3 h12i
h12i2

~A4ð4; 5; 6; �̂Þ; (6.24)

where P2
13 � h12i2 þ h23i2 þ h13i2. Hence, the h12i�2 di-

vergence in (6.20) becomes h12i�1 because ~A4ð1; 2; 3; �̂Þ
goes to zero as in (6.18). On the other hand we could start
from the two-particle collinear limit (6.21) and see that the
finite part on the right-hand side diverges as h12i�1 if the
third particle becomes collinear to the (already collinear)
first two particles (cf. Fig. 2).

Note, in particular, the difference to N ¼ 4 SYM the-
ory, where the two-particle factorization limit already re-
sults in a pole proportional to a nonvanishing lower-point
scattering amplitude. Furthermore the two-particle factori-
zation and the two-particle collinear limit are equivalent as
opposed to the limits for three particles relevant for N ¼
6 SCS theory.

VII. INTEGRABILITYALIAS YANGIAN
INVARIANCE

In this section, we show that the four- and six-point
scattering amplitudes of N ¼ 6 SCS theory given above
are invariant under a Yangian symmetry. In the following,
we will refer to the local Lie algebra representation of
ospð6j4Þ given in Sec. IV as the level-zero symmetry

with generators Jð0Þ
� , e.g. P ! Pð0Þ. Based on this level-

zero symmetry, we will construct a level-one symmetry

with generators Jð1Þ
� using a method due to Drinfel’d [24]:

We bilocally compose two level-zero generators forming a
level-one generator and neglect possible additional local
contributions. This results in the bilocal structure of the
level-one generators that also appear in the context of
N ¼ 4 SYM theory; see e.g. [25,34]. Up to additional
constraints in the form of the Serre relations, the closure of
level-zero and level-one generators then forms the Yangian
algebra. Note, in particular, that, while the dual super-
conformal symmetry in N ¼ 4 SYM theory was very
helpful for identifying the Yangian symmetry on scattering
amplitudes [17], it is not a necessary ingredient for con-
structing a Yangian.
To be precise, a Yangian superalgebra is given by a set of

level-zero and level-one generators Jð0Þ
� and Jð1Þ

� obeying

the (graded) commutation relations

½Jð0Þ
� ;Jð0Þ

� g ¼ f��
�J

ð0Þ
� ; ½Jð0Þ

� ;Jð1Þ
� g ¼ f��

�J
ð1Þ
� ;

(7.1)

as well as the Serre relations12

½Jð1Þ
� ; ½Jð1Þ

� ;Jð0Þ
� gg þ ð�1Þj�jðj�jþj�jÞ½Jð1Þ

� ; ½Jð1Þ
� ;Jð0Þ

� gg
þ ð�1Þj�jðj�jþj�jÞ½Jð1Þ

� ; ½Jð1Þ
� ;Jð0Þ

� gg

¼ h2

24
ð�1Þj
jj�jþj�jj�jf�
�f���f��

�f
��fJ�;J�;J��:
(7.2)

Here, h is a convention dependent constant corresponding
to the quantum deformation (in the sense of quantum
groups) of the level-zero algebra. The symbol j�j denotes
the Grassmann degree of the generator J� and f:; :; :�
represents the graded totally symmetric product of three

generators. Given invariance under J
ð0Þ
� and J

ð1Þ
� , succes-

sive commutation of the level-zero and level-one genera-
tors then implies an infinite set of generators.

In the case at hand the level-zero generators J
ð0Þ
� can be

identified with the standard ospð6j4Þ generators defined in
Sec. IV, where indices �;�; . . . label the different gener-
ators. We define the level-one generators by the bilocal
composition

J ð1Þ
� ¼ f���

X
1�j<i�n

Jð0Þ
i�J

ð0Þ
j� : (7.3)

The definition (7.3) implies that the level-one generators
transform in the adjoint of the level-zero symmetry (7.1).
Note that in contrast to the local level-zero symmetry, these
bilocal generators incorporate a notion of ordered sites.
Also note that (7.3) singles out two ‘‘boundary legs’’ (1 and
n in this case), while in the amplitudes An all legs are on
an equal footing. It was demonstrated in [17] that for

FIG. 2. Generic collinear (k) and factorization (P2 ! 0) limits
of the six-point amplitude.

12Note that there is a second set of Serre relations that for finite-
dimensional semisimple Lie algebras follows from (7.2); see
[35].
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ospð2kþ 2j2kÞ this definition of the Yangian is still com-
patible with the cyclicity of the scattering amplitudes. That

is to say, ½Jð1Þ
� ;U� vanishes on the amplitudes An, where

U is the site-shift operator.
In explicitly determining the Yangian for ospð6j4Þ, we

follow the lines of [17], where similar computations were
performed for psuð2; 2j4Þ. To evaluate (7.3), we require
the structure constants f��

� of ospð6j4Þ that can be easily

read off from the commutation relations in Sec. IV. In order
to raise or lower their indices we also need the metric
associated with the algebra whose explicit form is given
in Appendix F. That the Yangian indeed satisfies the Serre
relations (7.2) is shown further below.

We want to show Yangian invariance of the four- and
six-point scattering amplitudes. In order to do so, we need

to compute only one level-one generator J
ð1Þ
� by means of

(7.3). All other level-one generators can be obtained by
commutation with level-zero generators of the ospð6j4Þ
algebra (7.1). Hence invariance under all other level-one
generators follows from the algebra provided we have
shown invariance under the level-zero algebra as well as
under one level-one generator. The former was done above,
the latter will be demonstrated here. We will therefore only

compute the simplest generatorPð1Þab and show invariance
of the scattering amplitudes under this generator. As dem-
onstrated more explicitly in Appendix G, the level-one
generator reads

Pð1Þab ¼ 1

2

X
j<i

ðQð0ÞðaA
i Q

ð0ÞbÞ
j A � Y

ð0Þða
i cP

ð0ÞcbÞ
j � ði $ jÞÞ;

(7.4)

after we have changed the basis of generators for conve-
nience by combining the dilatation and Lorentz generator
into

Y ð0Þa
b ¼ Lð0Þa

b þ �a
bD

ð0Þ: (7.5)

A. Yangian invariance of the four-point amplitude

We now check that the four-point scattering amplitude
introduced in Sec. VI

A 4 ¼ �3ðPÞ�6ðQÞfð�Þ ¼ �3ðPÞ�6ðQÞ
h12ih41i ¼ ��3ðPÞ�6ðQÞ

h23ih34i
(7.6)

is annihilated by the Yangian level-one generator Pð1Þab
given in (7.4). To this end we make use of

@is�ðQÞ ¼ �A
i

@�ðQÞ
@QsA

; @is�ðPÞ ¼ 2�b
i

@�ðPÞ
@Psb

;

@iA�ðQÞ ¼ �a
i

@�ðQÞ
@QaA

;

(7.7)

such that plugging in the explicit form of the generators

straightforwardly yields the action of Pð1Þ on A4 in the
following form:

Pð1ÞabA4 ¼ 1

2

X
j<i

ðQð0ÞðaR
i Q

ð0ÞbÞ
j R � Y

ð0Þða
i rP

ð0ÞbÞr
j

� ði $ jÞÞA4

¼ 1

2
�ðPÞ�ðQÞX

j<i

�
�Pð0Þrðb

j ð"rs"st�aÞ
i @it

þ 1

2
�aÞ
r fð�Þ � ði $ jÞ

�
: (7.8)

Using the different expressions in (7.6) we can rewrite fð�Þ
in the form of

fð�Þ ¼ 1

2

�
1

h12ih41i �
1

h23ih34i
�
; (7.9)

which yields the following derivative with respect to one of
the spinors:

@itfð�Þ ¼ "st
1

2

�
�s
iþ1

hi; iþ 1i �
�s
i�1

hi� 1; ii
�
fð�Þ: (7.10)

Now we make use of this property of the function fð�Þ.
First of all defining the quantity

Uas
i ¼ "st�a

i @itfð�Þ; (7.11)

we find that for all j, the symmetric part Uas
sym;i ¼ UðasÞ

i

satisfies (here n ¼ 4)

Xn
i¼jþ1

Uas
sym;i ¼

1

2

� �ða
j �

sÞ
jþ1

hj; jþ 1i �
�ða
n �

sÞ
nþ1

hn; nþ 1i
�
fð�Þ; (7.12)

where we have used momentum conservation Pab ¼ 0.
This implies that Uas

sym;i does not contribute to (7.8),

X
j<i

"rsP
rðb
j UaÞs

sym;i ¼ 0: (7.13)

Hence, in (7.8) only the antisymmetric piece Uas
asym;i ¼

U½as�
i survives and can be shown to take the form

Uas
asym;i ¼ "asfð�Þ: (7.14)

Thus the four-point scattering amplitude is invariant under

the action of the level-one generator Pð1Þab:

Pð1ÞabA4 ¼ 1

2
�ðPÞ�ðQÞ

�X
j<i

�
Pð0Þrðb

j

�
1

2
�aÞ
r � 1

2
�aÞ
r

�
fð�Þ � ði $ jÞ

�

¼ 0: (7.15)

As indicated above, invariance ofA4 under all other level-
one generators follows from the algebra and hence the
four-point scattering amplitude is Yangian invariant.
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B. An n-point invariant of Pð1Þ

Note that the proof of Pð1Þ invariance of the four-point
scattering amplitude is based on the property (7.10) of the
function fð�Þ. Hence we can build an n-point invariant of

the level-one generator Pð1Þ:

B n ¼ �3ðPÞ�6ðQÞfð�Þ; (7.16)

where the only constraint on fð�Þ is given by (7.10). In
particular, this holds for the choice

fð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih12ih23i � � � hn1ip : (7.17)

The Grassmann degree ofBn, however, is too low for being
invariant under the level-zero uð1Þ R symmetry (5.6), and
thus Bn cannot be an invariant of the whole Yangian.

C. Yangian invariance of the six-point amplitude

The six-point superamplitude was introduced in (6.5)

A 6 ¼ �3ðPÞ�6ðQÞðfþð�Þ�3ð�Þ þ f�ð�Þ�3ð�ÞÞ; (7.18)

with f�ð�Þ as defined in (6.10). We will show that in fact
each part of this scattering amplitude

Aþ
6 ¼ �3ðPÞ�6ðQÞfþð�Þ�3ð�Þ;

A�
6 ¼ �3ðPÞ�6ðQÞf�ð�Þ�3ð�Þ;

(7.19)

is separately invariant under Yangian symmetry.
Demonstrating this for Aþ

6 , invariance of A�
6 follows

by interchanging þ, � and �, � in the following
calculation.

In the above paragraph we have seen that

P ð1ÞabB6 ¼ Pð1Þab�3ðPÞ�6ðQÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih12ih23i � � � h61ip ¼ 0:

(7.20)

Since Pð1Þ is a first-order differential operator up to con-
stant terms, we can factor out the invariant B6 in the
invariance equation for the six-point amplitude in order
to simplify the calculation

P ð1ÞabAþ
6 ¼ B6

~Pð1Þab ~fþð�Þ�3ð�Þ
þ ~fþð�Þ�3ð�ÞPð1ÞabB6: (7.21)

Here, of course, the second term vanishes. We have defined

~f þð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h12ih23i � � � h61i

p
fþð�Þ; (7.22)

and have to drop constant terms inPð1Þ since they are used
up for the invariance of B6:

~P ð1Þab ¼ Pð1Þabjconstants dropped: (7.23)

Now we rewrite (7.21) as

B6
~Pð1Þab ~fþð�Þ�3ð�Þ ¼ 1

2
B6

X
j<i

ð�ða
i �

bÞ
j ð�R

i @jR � �r
j@irÞ

� ði $ jÞÞ~fþ�3ð�Þ: (7.24)

After expanding �i in terms of �, �, Q, and Y (5.13) and
using

X6
k¼1

xþk
@xþk
@�ic

¼ 0; (7.25)

which follows from (5.10), this yields a differential equa-
tion for the function fþð�Þ in (7.18)

Pð1ÞabAþ
6 ¼ 1

2
B6

X
j<i

�
�ða
i �

bÞ
j

�
3x�i xþj � 3�r

jx
�
k

@xþk
@�r

i

� �r
j@ir log

~fþ
�
� ði $ jÞ

�
~fþ�3ð�Þ¼! 0:

(7.26)

We have evaluated this equation symbolically using ex-
plicit solutions of (5.10) and (5.11) for the coordinates x�
as well as the explicit form of fþ given in (6.10). Plugging
in specific numerical momentum configurations then
shows that (7.26) is indeed satisfied. Hence, both sum-
mands of the six-point scattering amplitude Aþ

6 and

A�
6 are independently invariant under the level-one gen-

erator Pð1Þ and thereby, as argued above, under the whole
Yangian algebra. Note, in particular, that bothA�

6 as well

as (7.26) are independent of the choice of coordinates x�.

D. The Serre relations

In this paragraph we show that the Serre relations are
indeed satisfied for the Yangian generators defined above.
We do not try to prove the relations by brute force but first
analyze their actual content; cf. also [24,35,36]. This leads
to helpful insights simplifying the application to the case at
hand.
The Yangian algebra YðgÞ of some finite-dimensional

semisimple Lie algebra g [here ospð6j4Þ] is an associative

Hopf algebra generated by the elements J ð0Þ
� and J ð1Þ

�

transforming in the adjoint representation of J ð0Þ,

½J ð0Þ
� ;J ð0Þ

� � ¼ f��
�J ð0Þ

� ; ½J ð0Þ
� ;J ð1Þ

� � ¼ f��
�J ð1Þ

� :

(7.27)

In all other parts of this paper we do not distinguish
between the abstract algebra elements J and their repre-
sentationJ. For the purposes of this paragraph, however, it
seems reasonable to make this distinction. Making contact
to the paragraphs above, we note that defining a represen-
tation 
 of the Yangian algebra YðgÞ, we have


: YðgÞ ! EndðVÞ; 
ðJ ð0ÞÞ ¼ Jð0Þ;


ðJ ð1ÞÞ ¼ Jð1Þ:
(7.28)
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The level-zero and level-one generators are promoted to
tensor product operators of YðgÞ 
 YðgÞ by means of the
Hopf algebra coproduct defined by

� ðJ ð0Þ
� Þ ¼ J ð0Þ

� 
 1þ 1 
 J ð0Þ
� ; (7.29)

� ðJ ð1Þ
� Þ ¼ J ð1Þ

� 
 1þ 1 
 J ð1Þ
� þ h

2
f�

��J ð0Þ
� 
 J ð0Þ

� :

(7.30)

For consistency of the Yangian, the coproduct has to be an
algebra homomorphism, i.e.

� ð½X;Y�Þ ¼ ½�ðXÞ; �ðYÞ� (7.31)

for any X, Y in YðgÞ. This equation trivially holds for X,

Y being J ð0Þ
� , J ð0Þ

� and forX,Y being J ð0Þ
� , J ð1Þ

� . The case

� ð½J ð1Þ
� ;J ð1Þ

� �Þ ¼ ½�J ð1Þ
� ; �J ð1Þ

� �; (7.32)

however, is not automatically satisfied and will lead to the
Serre relations. We will now derive a rather simple crite-
rion for (7.32) to be satisfied by a specific representation. In
particular, this criterion will be satisfied by the Yangian
representation of ospð6j4Þ given above.

First of all note that both sides of (7.32) are contained in
the asymmetric part of the tensor product of the adjoint
representation with itself. We decompose this as13

ðAdj 
 AdjÞasym ¼ Adj 	 X; (7.33)

which defines the representation X (not containing the
adjoint). The adjoint component of (7.32) defines the cop-
roduct for the level-two Yangian generators. The Serre
relations imply the vanishing of the X component of the
equation. For seeing this, one can expand the right-hand
side of (7.32) using (7.30), and project out the adjoint
component. As shown explicitly in Appendix H, this yields
an equation of the form

0 ¼ �ðK���Þ � K��� 
 1� 1 
 K���: (7.34)

The Serre relations then are nothing butK��� ¼ 0, or more

explicitly

½J ð1Þ
� ; ½J ð1Þ

� ;J ð0Þ
� �� þ ½J ð1Þ

� ; ½J ð1Þ
� ;J ð0Þ

� ��
þ ½J ð1Þ

� ; ½J ð1Þ
� ;J ð0Þ

� ��

¼ h2

24
f�


�f��
�f��

�f
��fJ ð0Þ
� ;J ð0Þ

� ;J ð0Þ
� g: (7.35)

It is very important to note that only the X component of
fJ ;J ;J g contributes to the right-hand side of these equa-
tions; cf. Appendix H. This will be useful in the following.

It is standard knowledge (cf. also Appendix H) that one
can construct a representation of the Yangian algebra

starting from certain representations of the following form:


ðJ ð0ÞÞ ¼ Jð0Þ; 
ðJ ð1ÞÞ ¼ 0; (7.36)

where Jð0Þ is a representation of the level-zero part. The

representations Jð0Þ for which this construction is consis-
tent with (7.31) are singled out by the Serre relations. In the
language of the present paper, 
 is nothing but (4.13) and
(7.3) for one site, i.e. n ¼ 1. For the representation (7.36),
the Serre relations boil down to the vanishing of the right-
hand side of (7.35). As we have seen that the Serre relations
are the result of a projection onto the representation X, this
is equivalent to

fJð0Þ
� ;Jð0Þ

� ;Jð0Þ
� gjX ¼ 0: (7.37)

By repeated application of the coproduct to the generators,
the representation 
 is lifted to a nontrivial representation
of the Yangian algebra. The consistency of the construction
is ensured by the homomorphicity of the coproduct (7.32).
The form (4.13) and (7.3) for generic n follows from this
construction.
In the following we explicitly show that (7.37) is satis-

fied for the singleton representation of ospð2kj2‘Þ relevant
to this paper; cf. (4.12) and (A14). Let us start with the case
k ¼ 0 or ‘ ¼ 0. As demonstrated in Appendix A, the
representation we are using is the superanalog of the spinor
representation of soð2kÞ and the metaplectic representa-
tion of spð2‘Þ.14
Consider the decomposition (7.33) of the antisymmetric

part of the tensor product of two adjoint representations:

where g and � are the relevant symmetric and symplectic
form, respectively. Note that the second contribution in
these two cases corresponds to what was called X above.
As explained in detail in Appendix A, the generators of the
spinor and metaplectic representations acting on one site
take the form

Tij � ½�i; �j�; Sij � f�i; �jg; (7.39)

respectively, where

f�i; �jg ¼ gij; ½�i; �j� ¼ �ij: (7.40)

This means that for any product of the generators (7.39) the
symmetrized g-traceless or antisymmetrized �-traceless
part in two indices vanishes, respectively. Hence, in par-
ticular, the quantity fJ;J;Jg evaluated for (7.39) cannot
contain the representation X defined in Eq. (7.38). In full

13This is a standard property of all finite-dimensional semi-
simple Lie algebras. 14The treatment generalizes to soð2kþ 1Þ.
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detail:

Thus the right-hand side of (7.35) vanishes for these two
cases.

For the generalization to the super case ospð2kj2‘Þ,
notice that the two equations in (7.38) are related to each
other by flipping the tableaux. They generalize to

where in the tableaux for superalgebras, symmetrization
and antisymmetrization are graded. Symmetrization in the

tableaux by convention is defined as (anti)symmetrization
in the (sp) so indices. Antisymmetrization is defined
analogously. The form G is composed of the metric g
and the symplectic form �; cf. Appendix A. Equations
(7.39) and (7.40) generalize to

½�A;�Bg ¼ GAB; JAB � f�A;�B�: (7.43)

The right-hand side of (7.35) generalizes to the graded
totally symmetrized product of three generators. It contains
only the representations

in particular it does not contain the representation X. This
proves the Serre relations.

Note that only the last part of this proof used the explicit
choice of the algebra and form of the representation.
Hence, adapting these last steps might help to prove the
Serre relations for different algebras and representations.

E. Note on the determination of amplitudes

As shown in Sec. V, all n-point ospð6j4Þ invariants are
given by (5.31)

In ¼ �3ðPÞ�6ðQÞXK
k¼1

fn;kð�ÞFn;k; (7.45)

where �6ðQÞFn;k is a linear basis of R-symmetry invari-

ants; that is Fn;k are homogeneous polynomials of degree

3ðn� 4Þ=2 of the Grassmann variables �J, �J; . . . ; �n�4,
�n�4 such that (5.22) is satisfied. As is explained in
Appendix B, the number K of R-symmetry invariants is

given by the number of singlets in the representation ð4 	
�4Þ
ðn�4Þ.
Assuming that invariance under the Yangian algebra not

only holds for the four- and six-point amplitudes, but for all
tree-level amplitudes, one can ask to what extent the am-
plitudes are constrained by Yangian symmetry. Before
addressing this question for the general n-point case, let
us summarize the cases n ¼ 4 and n ¼ 6. After imposing
Poincaré invariance, the K functions fn;kð�Þ a priori de-

pend on 2n� 6 kinematical invariants; cf. Sec. II. Further

requiring dilatation invariance reduces this number to 2n�
7. Hence for four points, there remains only one functional
degree of freedom. Since there are no fermionic variables
�, � in this case, S invariance (5.29) is automatically

satisfied. Invariance under Pð1Þ (7.4) imposes one first-
order differential equation on fð�Þ and thus completely
constrains the four-point superamplitude up to an overall
constant. In the case of six points, fþð�Þ and f�ð�Þ (6.5)
depend on 2n� 7 ¼ 5 parameters. Both S and

Pð1Þ invariance impose one differential equation on each
fþ and f� (6.7) and (7.26) without mixing the two func-
tions. Thus after satisfying these equations, three of the
functional degrees of freedom of fþ and f� remain un-
determined, and they constitute two independent Yangian
invariants.
For a general number of points n, the S-invariance

Eq. (5.29) expands to

S A
aIn ¼ �3ðPÞ�6ðQÞXK

k¼1

� Xðn�4Þ=2

J¼1

ð�A
J x

�
J þ �A

J x
þ
J Þ

� @afn;kð�ÞFn;k þ fn;kð�ÞB̂A
aFn;k

�
; (7.46)

where B̂A
a is a first-order differential operator in the fermi-

onic variables �J, �J. Since the Fn;k are independent as

functions of �J, �J, also all elements of f�AFn;k; �
AFn;kg

are independent (but some of them might vanish). Thus
expanding (7.46) in the fermionic variables yields at most
n� 4 first-order differential equations for each of the
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functions fn;kð�Þ. From the term
P

kB̂
A
aFn;k it might yield

additional equations which only depend on the coordinates
x�J that define �J, �J. Given that the x

�
J only parametrize a

change of basis in the fermionic variables, assuming that
there exists an invariant In already implies that these addi-
tional equations can be solved by some choice of x�J .
Furthermore requiring Yangian invariance, i.e. invariance

under Pð1Þ (7.4), yields another first-order differential
equation for each function fn;kð�Þ:

P ð1ÞabIn ¼ �3ðPÞ�6ðQÞXK
k¼1

ððĈabfn;kð�ÞÞFn;k

þ fn;kð�ÞD̂abFn;kÞ; (7.47)

where Ĉab is a first-order differential operator in �j, while

D̂ab is a first-order differential operator in �J, �J. Again,

the term
P

kD̂
abFn;k might yield additional equations

which are solved by some x�J , assuming existence of an
invariant. In conclusion, there remain at least ð2n� 7Þ �
ðn� 4Þ � 1 ¼ n� 4 functional degrees of freedom for
each function fn;kð�Þ.

While for six-point functions, the two basic R-symmetry

invariants do not mix under the S- and Pð1Þ-invariance
equations, for a higher number of points the mixing prob-
lem is less trivial. Nevertheless, an analysis of the relevant
freedom (B7) suggests that the mixing should take place (at
most) among the soð6ÞR singlets contained in the same
soðn� 4Þrelevant multiplet (see Table II and Appendix B for
details). This point deserves further investigation.

The above analysis shows that the invariant (7.45) and
thus the n-point amplitude cannot be uniquely determined
by Yangian symmetry as constructed in Sec. VII.
Moreover, Yangian invariance not only leaves constant
coefficients but functional degrees of freedom undeter-

mined. As in the case of N ¼ 4 SYM [18,19], in order
to fully determine the amplitudes, symmetry constraints
have to be supplemented by further requirements. First of
all, the color-ordered superamplitude An must be invari-
ant under shifts of its arguments by two sites. This is a
strong requirement that has not been included in the analy-
sis above. Furthermore, one can require analyticity prop-
erties such as the behavior of the amplitudes in collinear or
more general multiparticle factorization limits.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have determined symmetry constraints
on tree-level scattering amplitudes in N ¼ 6 SCS theory.
Supplemented by Feynman diagram calculations, explicit
solutions to these constraints, namely, the four- and six-
point superamplitudes of this theory were given. Most
notably we have shown that these scattering amplitudes
are invariant under a Yangian symmetry constructed from
the level-zero ospð6j4Þ symmetry of the theory.
In order to deal with supersymmetric scattering ampli-

tudes, we have set up an on-shell superspace formulation
for N ¼ 6 SCS theory. This formulation is similar to the
one for N ¼ 4 SYM theory, but contains two superfields
corresponding to particles and antiparticles. Furthermore,
one of the superfields is fermionic. The realization of the
ospð6j4Þ algebra on superspace was used to determine
constraints on n-point invariants under this symmetry. In
the case at hand, introducing a new basis f�J; �J; Y;Qg for
the fermionic superspace coordinates seems very helpful in
order to find symmetry invariants. In particular it simplifies
the invariance conditions for amplitudes with few numbers
of points. We have demonstrated that the determination of
symmetry invariants can be reduced to finding soð6Þ sin-
glets plus solving a set of linear first-order differential
equations.
In four dimensions, helicity is a very helpful quantum

number for classifying scattering amplitudes according to
their complexity (MHV, NMHV, etc.). In three dimensions,
however, the little group of massless particles does not
allow for such a quantum number, and thus a similar
classification does not seem possible. Furthermore, only
the four-point amplitude in N ¼ 6 SCS theory is of
similar simplicity as MHV amplitudes in N ¼ 4 SYM
theory. The six-point amplitude determined in this paper is
already of higher degree in the fermionic superspace co-
ordinates than the four-point amplitude. Its complexity is
comparable with that of the six-point NMHVamplitude in
N ¼ 4 SYM theory. Except for the four-point case, there
are no simple (MHV-type) scattering amplitudes, but the
amplitude’s complexity increases with the number of scat-
tered particles. In terms of complexity, the n-point ampli-
tude in N ¼ 6 SCS theory seems to be comparable to the

most complicated, i.e. Nðn�4Þ=2MHV amplitude inN ¼ 4
SYM theory.

TABLE II. Summary of the basic R-symmetry invariants and
the freedom in the definition of the fermionic variables �J , �J

(5.8). n is the number of legs. soðn� 4Þ is the relevant freedom
(B7). The Yangian invariants In ¼ �3ðPÞ�6ðQÞ~In are also invari-
ant under this soðn� 4Þ freedom. deg�R means that the
soðn� 4Þ representation R appears deg times among the
R-symmetry invariants. The index � labels this multiplicity,
and the indices ��, ��, �� are soðn� 4Þ fundamental indices.

n R-symm.

invariants

Relevant

soðn� 4Þ
Irreducible rep.

of soðn� 4Þ
Invariants

~In

4 1 fð�Þ !

6
�ð�Þ soð2Þ � uð1Þ þ fþð�Þ�ð�Þ !
�ð�Þ � f�ð�Þ�ð�Þ

8
F � soð4Þ 2� 1 f�ð�ÞF � ?

F �
½�� ��� 2� 6

P
��; ��f

�
½�� ���ð�ÞF �

½�� ���

10
G�

�� soð6Þ 8� 6 � � � ?

G�
½�� �� ��� 6� 20

..

. ..
. ..

. ..
. ..

.
?
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We have checked that the six-point amplitudes consis-
tently factorize into two four-point amplitudes when the
sum of three external momenta becomes on shell. The two-
particle factorization limit on the other hand results in a
product of scattering amplitudes with an odd number of
external legs which vanish in N ¼ 6 SCS theory. This is
an important difference toN ¼ 4 SYM theory, where the
two-particle collinear limit results in nonvanishing lower-
point amplitudes. In particular, this was used to relate
N ¼ 4 SYM scattering amplitudes with different num-
bers of external legs. Symmetry plus the collinear behavior
seems to completely fix all tree-level amplitudes in N ¼
4 SYM theory [18,19]. Note that similar arguments for
N ¼ 6 SCS theory would have to make use of a three-
particle factorization or collinear limit (which are not
equivalent).

In [18], this relation of differentN ¼ 4 SYM scattering
amplitudes in the collinear limit was implemented into the
representation of the psuð2; 2j4Þ symmetry on the scatter-
ing amplitudes. This implementation makes use of the so-
called holomorphic anomaly [26], which originates in the
fact that four-dimensional massless momenta factorize into
complex conjugate spinors (p4d ¼ � ��). In three dimen-
sions, on the other hand, massless momenta are determined
by a single real spinor (p3d ¼ ��) which does not allow for
a holomorphic anomaly. Hence, a straightforward general-
ization of the symmetry relation between amplitudes in the
collinear or factorization limit toN ¼ 6 SCS theory is not
obvious. It lacks a source for a similar anomaly as in the
four-dimensional case.

In N ¼ 4 SYM theory, studying the duality between
scattering amplitudes and Wilson loops revealed a dual
superconformal symmetry. The presence of this extra sym-
metry then leads to the finding of Yangian symmetry of the
scattering amplitudes. Even more, the dual symmetry was
identified with the level-one Yangian generators [17].
Though in N ¼ 6 SCS theory a similar extra symmetry
is not known, there is a straightforward way to construct
level-one generators from the local ospð6j4Þ symmetry
yielding a Yangian algebra. We showed that the four- and
six-point tree-level amplitudes of N ¼ 6 SCS theory are
indeed invariant under this Yangian algebra, and that the
Yangian generators obey the Serre relations, which ensures
that the Yangian algebra is consistent.

The fact that N ¼ 6 SCS theory in the planar limit
gains extra symmetries in the form of integrability seems to
be related to special properties of the underlying symmetry
algebra ospð6j4Þ, namely, the vanishing of the quadratic
Casimir in the adjoint representation (see also [37]). It is
interesting to notice that, while in the four-dimensional
case the algebra with this special property is the maximal
superconformal algebra psuð2; 2j4Þ, in three dimensions it
is not the maximal superconformal algebra ospð8j4Þ, but
ospð6j4Þ that has this special property.

Our findings point toward further investigations. Among
others, one should consider the AdS/CFT dual of N ¼ 6

SCS theory, since in N ¼ 4 SYM theory the comparison
with results from AdS5 � S5 strings has been extremely
useful. The dual superconformal symmetry of scattering
amplitudes inN ¼ 4 SYM theory can be traced back to a
T-self-duality of the AdS5 � S5 background of the dual
string theory [13,14]. Such a duality seems to not be
admitted by AdS4 � CP3, the string theory background
corresponding to N ¼ 6 SCS theory [23]. Can this prob-
lem be reconsidered?
In their search for a T dualization, the authors of [23]

assume that the dualization does not involve the CP3

coordinates. On the other hand, the structure of the
ospð6j4Þ algebra seems to call for a T dualization of 3þ
3 bosonic and 6 fermionic coordinates dual to the gener-
ators fPab;RAB;QaAg (cf. Fig. 3). The contributions to the
dilaton shift coming from bosonic and fermionic dualiza-
tion seem to cancel out. However, this formal T duality is
not compatible with the reality conditions of the coordi-
nates; still it seems worthwhile to investigate it further.15

The problem with T dualizing the coordinates of CP3

appears to be connected to the lack of a definition of
�ðRÞ in our setup.
Other hints for rephrasing the Yangian symmetry in

terms of some dual symmetry could come from perturba-
tive computations in N ¼ 6 SCS. In particular, the IR
divergences for scattering amplitudes could possibly be
mapped to the UV divergences of some other object
(maybe a Wilson loop in higher dimensions). Any results
in this direction might also shed light on the duality be-
tween non-MHV amplitudes and Wilson loops in N ¼ 4
SYM theory, since the amplitudes in N ¼ 6 SCS theory
are very similar to those. A starting point for the inves-
tigation of Wilson loops inN ¼ 6 SCS was set in the very
recent work [38].
There are many more open questions and directions for

further study. They comprise the extension of our results to
higher point amplitudes, their extension to loop level and,
in particular, the understanding of corresponding quantities
in the AdS/CFT dual of the three-dimensional gauge the-
ory. One of the most interesting problems seems to be
whether one can find a systematic way to determine
(tree-level) scattering amplitudes in N ¼ 6 SCS theory.
An apparent ansatz would be an adaption of the BCFW
recursion relations [39] of N ¼ 4 SYM theory. This
problem is currently under investigation.
Recently, a remarkable generating functional for N ¼

4 SYM scattering amplitudes was proposed [40]. The
functional takes the form of a Grassmannian integral that
reproduces different contributions to scattering amplitudes.
These contributions have been shown to be (cyclic by

15The T duality we are proposing is very similar to another
formal T duality noticed in Sec. (3.1) of [13]. In that case one
T dualizes the coordinates dual to fPa _a;Rrr0 ;Qar0 ; �Qr _ag. Here,
the indices r, r0 correspond to the breaking suð4ÞR ! suð2Þ �
suð2Þ. This version of the T duality has not been used so far.
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construction) Yangian invariants [41]. It would be interest-
ing to investigate whether an analogous formula exists
for the three-dimensional case studied in this paper. The
(S)Clifford realization presented in Appendix A could play
a similar role for ospð2kþ 2j2kÞ as the twistorial realiza-
tions play in the case of psuðmjmÞ.
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APPENDIX A: FROM (S)CLIFFORD ALGEBRATO
SPINOR/METAPLECTIC REPRESENTATIONS

In this Appendix we want to stress that the singleton
representation of ospð6j4Þ we are using in this paper (see
Sec. IV) is nothing but the natural generalization16 of the
familiar spinor representation of soð2kÞ. Moreover we will
emphasize some special properties of this realization that
make the Yangian generators defined in Sec. VII satisfy the
Serre relations (7.2).

Let us first review the familiar soð2kÞ case. It is well
known that if one has a representation of the Clifford
algebra:

f�i; �jg ¼ gij; (A1)

for a given symmetric form gij, where i, j ¼ 1; . . . ; 2k,
then the objects

Tij � ½�i; �j�; (A2)

satisfy the soð2kÞ algebra commutation relations

½Tij; Tkl� � gjkTil þ � � � ; (A3)

where the dots mean the following: Add three more terms
such that the symmetry properties of the indices are the
same as on the right-hand side. The realization (A2) still
does not look like the R-symmetry generators in (4.12). To
obtain (4.12) from (A2) one has to choose an embedding of
uðkÞ into soð2kÞ and define creation/annihilation-type fer-
mionic variables

�A � AþA
j �j;

@

@�A
� A�

Aj�
j; (A4)

where A ¼ 1; . . . ; k is a uðkÞ index andAþA
j ,A�

Aj have to

satisfy

AþA
i gijA�

Bj ¼ �A
B; AþA

i gijAþB
j ¼ 0;

A�
Aig

ijA�
Bj ¼ 0;

(A5)

in order that �A, @
@�A satisfy canonical anticommutation

relations. More explicitly, the R-symmetry generators in
(4.12) are related to the ones in (A2) via

R AB �AþA
i AþB

j Tij; RA
B �AþA

i A�
BjT

ij;

RAB �A�
AiA

�
BjT

ij:
(A6)

The realization one obtains in this way is not irreducible,
but splits into two irreducible representations (with oppo-
site chirality). Indeed, the full space of functions (neces-
sarily polynomials) of the variables �A splits into two

FIG. 3. The symmetry generators of ospð6j4Þ (left-hand side) and psuð2; 2j4Þ (right-hand side). In psuð2; 2j4Þ the generators can be
arranged according to their hyper- and dilatation charge. Similarly, we can arrange the generators of ospð6j4Þ if we replace the
hypercharge by a uð1Þ R-symmetry charge. In N ¼ 4 SYM theory, the dual or level-one Yangian generators Pð1Þ and Qð1Þ were
identified with the generatorsSð0Þ and Kð0Þ, respectively. The picture on the left suggests a similar dualization forN ¼ 6 SCS theory
incorporating the R symmetry.

16See also [42] for ospðN j4Þ and [43] for spð2‘Þ.

TILL BARGHEER, FLORIAN LOEBBERT, AND CARLO MENEGHELLI PHYSICAL REVIEW D 82, 045016 (2010)

045016-18



spaces: one made of polynomials with only even powers of
�A, the other with only odd powers of �A. None of the
generators in (4.12) connects the two.

This construction works in the very same way for
spð2‘Þ, the main difference is that in this case the repre-
sentation one obtains is infinite dimensional. This repre-
sentation is the direct analog of the spinor representation
and is usually called metaplectic representation. If one
starts with a representation of the algebra:

½�i; �j� ¼ �ij (A7)

for a given antisymmetric (nondegenerate) form �ij, then
the objects

Sij � f�i; �jg (A8)

satisfy the spð2‘Þ algebra commutation relations

½Sij; Skl� ��jkSil þ � � � ; (A9)

where again the dots mean the following: Add three more
terms such that the symmetry properties of the indices are
the same as on the right-hand side. As before, one has to
choose an embedding of uð‘Þ into spð2‘Þ and define
creation/annihilation-type bosonic variables

�a � Bþa
j �j;

@

@�a � B�
aj�

j; (A10)

where a ¼ 1; . . . ; k is a uð‘Þ index and Bþa
j , B�

aj have to

satisfy

Bþa
i �ijB�

bj ¼ �b
a; Bþa

i �ijBþb
j ¼ 0;

B�
ai�

ijB�
bj ¼ 0

(A11)

in order that �a, @
@�a satisfy canonical commutation rela-

tions. More explicitly, the bosonic generators in (4.12) and
(7.5) are related to the ones in (A8) via

P ab �Bþa
i Bþb

j Sij; Ya
b
�Bþa

i B�
bjS

ij;

Kab �B�
aiB

�
bjS

ij:
(A12)

Let us stress that at the group level spinor and metaplectic
representations are representations of Spinð2kÞ, Mtð2‘Þ,
respectively, which are the double covers of SOð2kÞ,
Spð2‘Þ.

All this easily generalizes to ospð2kj2‘Þ algebras. If one
starts with objects satisfying

½�A;�Bg ¼ GAB; (A13)

where A, B label the 2kþ 2‘-dimensional fundamental

representation of ospð2kj2‘Þ, then

JAB � f�A;�B�; (A14)

satisfy ospð2kj2‘Þ algebra commutation relations. After
choosing an embedding of uðkj‘Þ into ospð2kj2‘Þ, one
obtains oscillator-type realizations, like the one in (4.12).

APPENDIX B: soð6Þ INVARIANTS
In this Appendix we will study the problem of determin-

ing invariants under the following realization of soð6Þ:

R AB ¼ Xp
J¼1

�½A
J �B�

J ; (B1)

R AB ¼ Xp
J¼1

@

@�½A
J

@

@�B�
J

; (B2)

R A
B ¼ Xp

J¼1

�
�A
J

@

@�B
J

� @

@�B
J

�A
J

�
; (B3)

where �A
I , �

A
I are anticommuting fermionic variables and

A, B are SUð3Þ indices. p is some integer; it is related to the
number n of amplitude legs as 2p ¼ n� 4. This realiza-
tion is completely equivalent to the following one:

R AB ¼ X2p
��¼1


A
�� 


B
�� ; (B4)

R AB ¼ X2p
��¼1

@

@
A
��

@

@
B
��

; (B5)

R A
B ¼ X2p

��¼1

1

2

�

A
��

@

@
B
��

� @

@
B
��


A
��

�
; (B6)

where 
�� are linearly related to �
A
I , �

A
I , the map between 


and �, � is parametrized by a Oð2pÞ freedom. Notice that
this last realization makes sense also for odd 2p.
All the generators written above are invariant under

Oð2pÞ rotations among the family indices. In the following
we will refer to this group as dual. Oð2pÞdual rotation
symmetry is manifest in the form of the generators written
in terms of 
A

�� as a rotation of the indices ��. On the
generators written in terms of �, � Oð2pÞdual acts in the
following way:
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�I ! �J
I�J; �I ! ð��1ÞIJ�J; UðpÞ; p2 d:o:f:;

�I ! �I þ�IJþ�J; �I ! �I þ�IJ��J;
SOð2pÞ
UðpÞ ; pðp� 1Þ d:o:f:;

�I ! �I; �I ! �I; Z2 � Oð2pÞ
SOð2pÞ ;

(B7)

where �IJ� ¼ ��JI� . The Z2 is the conjugation of suðpÞ
(outer automorphism). Notice that we raised the family
index of �. We have to do this in order to interpret the
family index as a uðpÞ index.

In the following, we will show how the soð6Þ invariants
can be obtained and classified. Since the description in
terms of �, � is equivalent (for integer p) to the one in
terms of 
, we will switch between the two depending on
convenience.

It is instructive to first study the case 2p ¼ 1. This case
obviously makes sense only in the 
 realization. In this
case the full fermionic Fock space is 23 ¼ 8 dimensional
and split into 4 	 �4 representations of soð6Þ. The two
correspond to even or odd functions (just polynomials up
to degree 3) in 
, respectively.

Let us now consider the next case: p ¼ 1. The study of
this case is particularly transparent in terms of �, �. To
classify the states it is useful to introduce an extra operator
g

g ¼ �A @

@�A
� �A @

@�A
: (B8)

This operator is central with respect to soð6Þ and is nothing
but the generator of the previously mentioned dual
soð2pÞjp¼1 � uð1Þ. In this case the full Fock space is 26 ¼
64 dimensional; it decomposes into irreducible representa-
tions of soð6Þ as
ð4 	 �4Þ2 ¼ 13 	 62 	 151 	 100 	 100 	 15�1;	6�2 	 1�3;

(B9)

where the subscript refers to the charge under g (B8). This
decomposition is concretely realized by the solutions to the
equation

R ABjStatei ¼ @

@�½A
@

@�B� jStatei ¼ 0: (B10)

We can be more explicit and show what these states look
like in the space of Grassmann variables�A,�A. For clarity
we also explicitly write down the decomposition under
SOð6Þ ! SUð3Þ.

(i) 13 ! 1: �ABC�
A�B�C,

(ii) 62 ! �3 	 3: �ABC�
B�C þ descendants,

(iii) 151 ! 3 	 8 	 1 	 �3: �A þ descendants,
(iv) 100 ! 1 	 3 	 6: 1þ descendants,

(v) 100 ! �6 	 �3 	 1: �ðA�BÞ þ descendants,
(vi) 151 ! 3 	 8 	 1 	 �3: �A þ descendants,
(vii) 62 ! �3 	 3: �ABC�

B�C þ descendants,

(viii) 13 ! 1: �ABC�
A�B�C,

where descendants means obtained acting with RAB.
We will now consider the case p ¼ 2, namely,

ð4 	 �4Þ4: (B11)

We can just take the expression (B9) and square it. We will
not write down the whole tensor product decomposition,
but just list the singlets. One can easily check that there are
12 singlets coming from 15�1 
 15�1, 6�2 
 6�2, and
1�3 
 1�3, where the signs have to be considered indepen-

dently, and two further singlets are contained in 100 
 100
(2 times). For convenience we will list the explicit expres-
sions of the singlets:
(i) 15�1 
 15�1 contains 4 singlets:

�ABG�EFC�
A
1�

ðB
1 �CÞ

1 �E
2�

ðF
2 �GÞ

2 ;

ð�1 $ �1Þ and=or ð�2 $ �2Þ:
(B12)

(ii) 6�2 
 6�2 contains 4 singlets:

�ABC�
ADE�B

1�
C
1 �DFG�

F
2�

G
2 �EHI�

H
2 �

I
2;

ð� $ �Þ and=or ð1 $ 2Þ: (B13)

(iii) 1�3 
 1�3 contains 4 singlets:

�ABC�
A
1�

B
1�

C
1 �DEF�

D
2 �

E
2�

F
2 ;

ð�1 $ �1Þ and=or ð�2 $ �2Þ:
(B14)

(iv) 100 
 100 contains 2 singlets:

�ACD�BEF�
A
1�

B
1�

C
2�

D
2 �

E
2�

F
2 ; ð1 $ 2Þ: (B15)

A question one can ask is how these singlets transform
among themselves under the soð2pÞjp¼2 ¼ soð4Þdual
transformations. This question can be answered noticing
that the quantities

gI ¼ �A
I

@

@�A
I

� �A
I

@

@�A
I

(B16)

(no sum over I), are nothing but the Cartan generators of
the soð4Þdual, and these singlets are indeed labeled by
ðg1; g2Þ.
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The soð4Þdual transformation properties of the singlets
can also be obtained considering where the singlets come
from in

ð4 	 �4Þ4: (B17)

The soð4Þdual acts as a rotation of the four factors (4 	 �4) in
the fourfold tensor product above. Keeping in mind that a
tensor product of n4 fundamental with n�4 antifundamental
can contain singlets only if n4 � n�4 ¼ 0ðmod 4Þ, it is easy
to see that singlets can only come from

(i) 4 
 4 
 4 
 4: 1 singlet under soð6ÞR, singlet also
under soð4Þdual,

(ii) �4 
 �4 
 �4 
 �4: 1 singlet under soð6ÞR, singlet also
under soð4Þdual,

(iii) �4 
 �4 
 4 
 4: 2 singlets under soð6ÞR � 6 under
soð4Þdual.

In the last line the combinatorial factor ð42Þ ¼ 6 correspond-

ing to the possible ways of choosing two 4 and two �4 in
(B17) is also the dimension of the soð4Þdual representation
under which these [soð6ÞR] singlets transform.

The cases p ¼ 3

ð4 	 �4Þ6 (B18)

can be considered analogously giving
(i) 4 
 4 
 4 
 4 
 4 
 �4: 4 singlets under soð6ÞR � 6

under soð6Þdual,
(ii) �4 
 �4 
 �4 
 �4 
 �4 
 4: 4 singlets under soð6ÞR � 6

under soð6Þdual,
(iii) �4 
 �4 
 �4 
 4 
 4 
 4: 6 singlets under soð6ÞR �

20 under soð6Þdual,

where again the combinatorial factors ð61Þ ¼ 6, ð63Þ ¼ 20 are

also the dimensions of the soð6Þdual representations.
The general p > 3 cases can be studied similarly.

APPENDIX C: DETERMINABILITY OF THE
SIX-POINT SUPERAMPLITUDE

This Appendix is devoted to the study of the invertibility
of Eq. (6.10). More precisely, we will show under which
conditions one can solve (6.10) for f� in terms of the
component amplitudes A6c , A6	. This is an important

step, as the determination of the six-point superamplitude,
and, thus the determination of all six-point component
amplitudes relies on it. Let us define the following quan-
tities:

Að�Þijk �
�1
i �2

i x�i
�1
j �2

j x�j
�1
k �2

k x�k

0
B@

1
CA; (C1)

D� � detðAð�ÞijkÞ; �D� � detðAð�Þ�i �j �kÞ; (C2)

for some fixed i � j � k, and let f�i; �j; �kg � f1; . . . ; 6g n
fi; j; kg as a set. Equation (6.10) can be inverted iff

D3þ �D3� �D3� �D3þ � 0: (C3)

Using �a � �b ¼ 0, x� � �a ¼ 0, x� � x� ¼ 0, and xþ �
x� ¼ 1, one can show, performing matrix multiplication,
that

ATð�ÞijkAð�Þijk ¼ �ATð�Þ�i �j �kAð�Þ�i �j �k; (C4)

ATð�ÞijkAð�Þijk ¼ �ATð�Þ�i �j �kAð�Þ�i �j �k þ
0 0 0
0 0 0
0 0 1

0
@

1
A;
(C5)

where T means transposition. These two equations imply,
respectively, that

D2� ¼ � �D2� ) �D� ¼ is�D�; (C6)

DþD� þ �Dþ �D� ¼ detððpi þ pj þ pkÞabÞ; (C7)

where s� are undetermined signs. Using (C6) and (C7) can
be rewritten as

DþD�ð1� sþs�Þ ¼ detððpi þ pj þ pkÞabÞ: (C8)

Since for generic momentum configurations ðpi þ pj þ
pkÞ2 is not vanishing, it follows that sþ ¼ s, s� ¼ �s
for some sign s. This shows that, for generic momentum
configurations, (C3) holds, indeed

D3þ �D3� �D3� �D3þ ¼ iðsþ � s�ÞD3þD3� ¼ 2isD3þD3�

¼ is

4
detððpi þ pj þ pkÞabÞ3 � 0:

(C9)

To summarize, the quantities D�, �D� are not independent.
Given ðpi þ pj þ pkÞ2, they are determined up to a sign s

and a single function (which is a phase once we impose the
correct reality conditions). This freedom corresponds to
theOðn� 4Þjn¼6 ¼ Oð2Þ relevant freedom in the choice of
x� mentioned in Sec. V. The sign is Oð2Þ=SOð2Þ, and
corresponds to exchanging xþ and x�; the freedom that
remains,D� ! ��1D�, corresponds to the SOð2Þ �Uð1Þ
freedom of rescaling x� ! ��1=3x�.

APPENDIX D: TWO COMPONENTAMPLITUDE
CALCULATIONS

In the following, the amplitudes between six scalars and
between six fermions are computed. As discussed in
Sec. VI, these two amplitudes uniquely determine the
six-point superamplitude. For simplicity, consider only
(anti)particles of the same flavor; set

	 ¼ 	4; �	 ¼ �	4; c ¼ c 4; �c ¼ �c 4:

(D1)

The action of N ¼ 6 superconformal Chern-Simons the-
ory is S ¼ k=4


R
d3xL. Neglecting terms that are irrele-
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vant for the two specific amplitudes we are interested in,
the Lagrangian reads (see e.g. [2,5,44])

L ¼ Tr

�
"���

�
A�@�A� þ 2

3
A�A�A� � Â�@�Â�

� 2

3
Â�Â�Â�

�
� i

2
�c a 6Dabc

b þD�
�	D�	

�
:

(D2)

The gauge fields A�, Â� transform in ðad; 1Þ, ð1; adÞ
representations of the gauge group. The covariant deriva-
tive D� acts on fields � 2 f	; c g, �� 2 f �	; �c g as

D�� ¼ @��þ A��� �Â�;

D� �� ¼ @� ��þ Â� ��� ��A�; 6Dab ¼ �
�
abD�:

(D3)

The Feynman rules can be straightforwardly derived from
L, using the Faddeev-Popov regularization for the gauge
field propagators.

1. Six-fermion amplitude

The tree-level amplitude

Â6c :¼ Â6ðc A1

1 �A1
; �c

�B2

2B2
; c A3

3 �A3
; �c

�B4

4B4
; c A5

5 �A5
; �c

�B6

6B6
Þ;

c k :¼ c ð�kÞ (D4)

can be color ordered (3.4). The color-ordered amplitude
A6c ð�1; . . . ; �6Þ contains all contributions in which the

fields c 1; . . . ; c 6 are cyclically connected by color con-
tractions,

Â6c ¼ � � � þ A6c ð�Þ� �B2
�A1
�A3

B2
�

�B4
�A3
�A5

B4
�

�B6
�A5
�A1
B6

þ � � � ;
� :¼ ð�1; . . . ; �6Þ: (D5)

Two kinematically different diagrams contribute to
A6c ð�Þ; see Figs. 4 and 5.

FIG. 5 (color online). This diagram contributes to the six-fermion amplitude. When color stripped, the left diagram gives (D8), and
the other two diagrams equal the left one up to relabelings of the external legs.

FIG. 4 (color online). This diagram contributes to the six-fermion amplitude. The blue/dashed lines represent fundamental color
contractions, and the red/solid lines represent antifundamental ones. When color stripped, the left diagram gives (D6), and the right
diagram equals the left one up to a relabeling of the external legs.
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The left diagram in Fig. 4 evaluates to17

A6c ;Að1; . . . ; 6Þ ¼ C6

3

1

h12ih34ih56i2
� ½ðh1jp56j1i � h2jp56j2iðh5jp3j6i
� h5jp4j6i � fð1; 2Þ $ ð3; 4Þg�; (D6)

where Aðk1; . . . ; k6Þ :¼ Að�k1 ; . . . ; �k6Þ, and for any mo-

menta q1; . . . ; qk

hijq1j � � � jqkjji :¼ �a
i "abq

bc
1 "cd � � �"efqfgk "gh�

h
j : (D7)

The overall constantC6 shall be left undetermined. The left
diagram of Fig. 5 reads18

A6c ;Bð1; . . . ; 6Þ ¼ 2C6

�h13ih64ih1jp23j4i
h12ih45ip2

123

þ f1 $ 2g

þ f4 $ 5g þ f1 $ 2; 4 $ 5g
�
: (D8)

The total color-ordered amplitude is a sum over all relab-
elings of the diagrams in Figs. 4 and 5 that respect the color
structure (D5). The result is

A6c ð1; . . . ; 6Þ ¼ þA6c ;Að1; 2; 3; 4; 5; 6Þ þ A6c ;Að1; 6; 5; 4; 3; 2Þ þ A6c ;Bð1; 2; 3; 4; 5; 6Þ � A6c ;Bð6; 5; 4; 3; 2; 1Þ
þ A6c ;Bð1; 2; 3; 6; 5; 4Þ þ A6c ;Bð3; 2; 1; 4; 5; 6Þ þ ftwo cyclicg: (D9)

Here, ‘‘two cyclic’’ stands for two repetitions of all previous terms with the relabelings �k ! �kþ2, �k ! �kþ4 (mod 6)
applied. Using Schouten’s identity and various relations following from momentum conservation (P ¼ 0), this can be
simplified to19

A6c ð1; . . . ; 6Þ ¼ C6 �
��� 1

3 h1jp3jp5j1i þ 1
3 h2jp4jp6j2i � h3jp2jp5;�6j3i
h12ih34ih56i � 2

h2jp3;�4jp234jp5;�6j1i
h34ih56ip2

342

� fshift by oneg
�

� 2
h1jp6jp6;�1;2jp345jp3;�4;5jp3j4i þ h1jp2jp6;�1;2jp345jp3;�4;5jp5j4i

h6jp1j2ih3jp4j5ip2
612

þ ftwo cyclicg; (D10)

where ‘‘shift by one’’ means the relabeling �k ! �kþ1 (mod 6).

2. Six-scalar amplitude

Again the color-ordered amplitude A6	ð�1; . . . ; �6Þ contains all contributions in which the fields 	1; . . . ; 	6 are

cyclically connected by color contractions,

Â6	 :¼ Â6ð	A1

1 �A1
; �	

�B2

2B2
; 	

A3

3 �A3
; �	

�B4

4B4
; 	

A5

5 �A5
; �	

�B6

6B6
Þ; 	k :¼ 	ð�kÞ;

¼ � � � þ A6	ð�Þ� �B2
�A1
�
A3

B2
�

�B4
�A3
�
A5

B4
�

�B6
�A5
�A1

B6
þ � � � ; � :¼ ð�1; . . . ; �6Þ: (D11)

The color-ordered amplitude receives contributions from
three kinematically different diagrams. Two of them are
the diagrams of Figs. 4 and 5, with all fermion lines
replaced by scalar lines. The scalar version of the left
diagram in Fig. 4 reads

A6	;Að1; . . . ; 6Þ ¼ � 4C6

3

1

h12ih34ih562i ðh1jp6j2ih3jp5j4i
� f5 $ 6gÞ; (D12)

while the scalar version of the left diagram in Fig. 5 is

A6	;Bð1; . . . ; 6Þ ¼ 8C6

h1jp3j2ih4jp6j5i
h12ih45ip2

123

: (D13)

A further contribution comes from Fig. 6.
It evaluates to

A6	;Cð1; . . . ; 6Þ ¼ �2C6

h16ih25i þ h15ih26i
h12ih56i : (D14)

Again, the total color-ordered amplitude is a sum over all
relabelings of these diagrams that respect the color struc-
ture. The sum of all contributions is

17Define pab
jk

:¼ pab
j þ pab

k ¼ �a
j �

b
j þ �a

k�
b
k .

18Here, p2 :¼ pabp
ab, i.e. p2

123 ¼ �h122i � h132i � h232i.
19pj;�k;... :¼ pj � pk þ � � � .
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A6	ð1; . . . ; 6Þ ¼ þA6	;Að1; 2; 3; 4; 5; 6Þ þ A6	;Að1; 6; 5; 4; 3; 2Þ þ A6	;Bð1; 2; 3; 4; 5; 6Þ þ A6	;Bð6; 5; 4; 3; 2; 1Þ
� A6	;Bð1; 2; 3; 6; 5; 4Þ � A6	;Bð3; 2; 1; 4; 5; 6Þ þ A6	;Cð1; 2; 3; 4; 5; 6Þ þ A6	;Cð3; 2; 1; 6; 5; 4Þ
� 2A6	;Cð1; 2; 3; 6; 5; 4Þ þ ftwo cyclicg: (D15)

This can be simplified to

A6	ð1; . . . ; 6Þ ¼ C6

�
4
h3jp5jp1jp6jp2jp4j3i þ h14i2h2jp3jp6jp5j2i

h1jp2jp3jp4jp5jp6j1i þ
�
2
1
3 h16ih35ih24i � 1

3 h13ih56ih24i þ h16ih23ih45i
h12ih34ih56i

þ 8
h5jp1j6ih3jp2j4i
h34ih56ip2

342

þ fshift by oneg
�
� 8

h26ih35iðh16i2h34i2 þ h12i2h45i2Þ
h2jp1j6ih3jp4j5ip2

612

þ ftwo cyclicg: (D16)

APPENDIX E: FACTORIZATION OF THE
SIX-POINT SUPERAMPLITUDE

Consider the quantity:

Z
d2j3�̂A4ð�1;�2;�3; �̂Þ 1

P2
13

A4ð�i�̂;�4;�5;�6Þ;
(E1)

where � ¼ ð�a; �AÞ and the result does not depend on the
choice of sign �. The integration can be trivially per-
formed because of the delta functions using

Z
d3�̂�6ðQAa

1 þ �̂A�aÞ�6ðQAa
2 � �̂A�aÞ

¼ �6ðQAa
1 þQAa

2 Þ�3ð�abQAa
1 �bÞ (E2)

and

Z
d2�̂�3ðPab

1 þ �̂a�̂bÞ�3ðPab
2 � �̂a�̂bÞFð�̂Þ

¼ �3ðPab
1 þ Pab

2 Þ�ðP2
1ÞðFð�̂Þ þ Fð��̂ÞÞ; (E3)

where on the right-hand side �̂ is the solution to the

equation �̂a�̂b ¼ Pab
2 . Reminding that (6.2)

A 4ð1; 2; 3; 4Þ ¼ �3ðPÞ�6ðQÞfð�1; �2; �3; �4Þ; (E4)

and using the properties of fð�Þ, we obtain
1

P2
13

�ðP2
13Þ�3ðPÞ�3ðQÞ�3ð�abQAa

13 �̂
bÞfð�1; �2; �3; �̂Þ

� fð�i�̂; �4; �5; �6Þ: (E5)

This can be rewritten as

1

P2
13

�ðP2
13Þ�3ðPÞ�6ðQÞ�3ð�Þfþð�Þ; (E6)

which equals A6 in the limit P2
13 ! 0; cf. Sec. VI.

APPENDIX F: THE METRIC OF ospð6j4Þ
Introducing matrices ðEA

BÞij ¼ �Ai�Bj with A, B ¼
a; b; A; B; . . . , the fundamental representation M of
ospð6j4Þ consisting of ð4j6Þ � ð4j6Þ matrices can be writ-
ten as

FIG. 6 (color online). This diagram contributes to the six-scalar amplitude. Again, the blue/dashed lines represent fundamental color
contractions, and the red/solid lines represent antifundamental ones. When color stripped, the left diagram gives (D14), and the other
two diagrams equal the left one up to relabelings of the external legs.
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M

La
b Pab Qa

A QaA

Kab La
b SaA Sa

A

Sa
A QaA RA

B RAB

SaA Qa
A RAB RA

B

0
BBB@

1
CCCA

2
6664

3
7775 ¼

Ea
b � 1

2�
a
bI Eab þ Eba Ea

A �Ea
A

Eab þ Eba Eb
a þ 1

2�
a
bI EaA �EaA

EA
a �EAc EA

B EB
A � EA

B

�EA
a EAc EB

A � EA
B EB

A

0
BBB@

1
CCCA: (F1)

For the Lorentz generator for instance, this equation is to
be understood as

M½La
b� ¼

Ea
b � 1

2�
a
bI 0 0 0

0 Eb
a þ 1

2�
a
bI 0 0

0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; (F2)

where we raise and lower Lorentz indices with "ab, "ab and
have

EB
A ¼ ðEA

BÞT; EA
a ¼ ðEa

AÞT;
EAc ¼ ð"acEc

AÞT:
(F3)

Furthermore, the dilatation generator is defined by

M½D� ¼
1
2 I 0 0 0
0 � 1

2 I 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA: (F4)

The Killing form of ospð6j4Þ vanishes. We compute the
metric defined by

g�� ¼ gðJ�;J�Þ ¼ sTrM½J��M½J��; (F5)

which obeys

g�� ¼ ð�1Þj�jg��; g�� ¼ 0 if j�j � j�j: (F6)

Here, j�j denotes the Grassmann degree of the generator
J�. We change the basis of generators and introduce

Y a
b ¼ La

b þ �a
bD: (F7)

Then the metric has the following nonvanishing compo-
nents

gðYa
b;Y

c
dÞ ¼ 2�a

d�
c
b;

gðPab;KcdÞ ¼ gðKcd;P
abÞ ¼ �2�a

c�
b
d � 2�a

d�
b
c;

gðQaA;SbBÞ ¼ �gðSbB;Q
aAÞ ¼ 2�A

B�
a
b;

gðQa
A;Sb

BÞ ¼ �gðSb
B;Qa

AÞ ¼ 2�B
A�

a
b;

gðRA
B;R

C
DÞ ¼ gðRC

D;R
A
BÞ ¼ �2�A

D�
C
B;

gðRAB;RCDÞ ¼ gðRCD;R
ABÞ ¼ 2�A

C�
B
D � 2�A

D�
B
C: (F8)

The inverse metric g�� ¼ g�1ðJ�;J�Þ satisfies
g��g

�� ¼ ��
� ¼ g��g��: (F9)

Its nonzero components are

g�1ðYa
b;Y

c
dÞ ¼ 1

2�
a
d�

c
b;

g�1ðPab;KcdÞ ¼ g�1ðKcd;P
abÞ ¼ �1

8�
a
c�

b
d � 1

8�
a
d�

b
c;

g�1ðQaA;SbBÞ ¼ �g�1ðSbB;Q
aAÞ ¼ �1

2�
A
B�

a
b;

g�1ðQa
A;Sb

BÞ ¼ �g�1ðSb
B;Qa

AÞ ¼ �1
2�

B
A�

a
b;

g�1ðRA
B;R

C
DÞ ¼ g�1ðRC

D;R
A
BÞ ¼ �1

2�
A
D�

C
B;

g�1ðRAB;RCDÞ ¼ g�1ðRCD;R
ABÞ ¼ 1

8�
A
C�

B
D � 1

8�
A
D�

B
C:

(F10)

APPENDIX G: THE LEVEL-ONE GENERATORS
Pð1Þab AND Qð1ÞaB

We can use the metric and read off the structure con-
stants from the commutation relations of ospð6j4Þ to com-

pute the Yangian level-one generators Pð1Þab and Qð1ÞaA.
According to (7.3) we have

Pð1Þab ¼ f��
Pab

X
j<i

Jð0Þ
i�J

ð0Þ
j� ¼ f

~� ~�
KcdgKcdP

abg
~��g~��

X
j<i

Jð0Þ
i�J

ð0Þ
j�

¼�2ð�a
c�

b
d þ�a

d�
b
cÞ
X
j<i

ðf
KefY

l
m

KcdgY
l
mY

g
hgKefP

rs
Y

ð0Þg
i hP

ð0Þrs
j þ f

Se
ESfF

KcdgSfFQ
gG
gSe

EQh
HQ

ð0ÞgG
i Q

ð0Þh
j H �ði$ jÞÞ

¼ 1

2

X
j<i

ðQð0ÞðaA
i Qð0ÞbÞ

j A�Yð0Þða
i cP

ð0ÞcbÞ
j �ði$ jÞÞ: (G1)

In order to check consistency, we also determine Qð1ÞaA:
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Qð1ÞaA ¼ f��
QaA

X
j<i

Jð0Þ
i�J

ð0Þ
j� ¼ f

~� ~�
SbBgSbBQ

aAg
~��g~��

X
j<i

Jð0Þ
i�J

ð0Þ
j�

¼ �2�A
B�

a
b

X
j<i

ðf
KcdQ

e
E

SbBgKcdP
fg
gQ

e
ESh

H
Sð0ÞH

ih P
ð0Þfg
j þ f

Yc
d
SeE

SbBgY
c
d
Yf

ggSeEQ
hH
Qð0ÞhH

i Y
ð0Þf
j g

þ f
RC

DSeE

SbBgR
C
DR

F
GgSeEQ

hH
Qð0ÞhH

i Rð0ÞF
j G þ f

RCDSe
E
SbBgRCDR

FG
gSe

EQh
HQð0Þh

i HR
ð0ÞFG
j � ði $ jÞÞ

¼ 1

2

X
j<i

ðQð0ÞbA
i Y

ð0Þa
j b þQ

ð0Þa
i BR

ð0ÞBA
j �Q

ð0ÞaB
i R

ð0ÞA
j B �S

ð0ÞA
ib P

ð0Þba
j � ði $ jÞÞ: (G2)

One can easily convince oneself that consistently

fQð1ÞaAQb
Bg ¼ �A

BP
ð1Þab: (G3)

APPENDIX H: THE SERRE RELATIONS

In the following, we will show how the homomorphicity
condition (7.32) of the coproduct (7.29) and (7.30) leads to
the Serre relations (7.35). First, we multiply (7.32) by the
algebra structure constants and take cyclic permutations to
find

f��
��ð½J ð1Þ

� J ð1Þ
� �Þ þ cyclicð�;�; �Þ

¼ f��
�½�ðJ ð1Þ

� Þ; �ðJ ð1Þ
� Þ� þ cyclicð�;�; �Þ: (H1)

It is obvious that (H1) follows from (7.32); how about the
other direction? The answer is that (H1) equals the X
component of (7.32) while the adjoint component is pro-
jected out. The reason for this is rather simple: Eq. (7.32)
can be written in the form f��

�Z� þ X�� ¼ 0, where

X�� 2 X and Z� 2 Adj [cf. (7.33)]. Now showing that

(H1) does not contain the adjoint boils down to using the
Jacobi identity in the form

f��
�f��

� þ cyclicð�;�; �Þ ¼ 0: (H2)

Furthermore that only the adjoint and nothing else is
projected out in going from (7.32) to (H1) follows from

f�
��u�� ¼ 0 ) u�� ¼ f��

�v�; (H3)

for some v� (or equivalently that the second cohomology

of g vanishes). Since X does not contain the adjoint, we
have separately X�� ¼ 0 and f��

�Z� ¼ 0. The first equa-

tion will lead to the Serre relations. The second equation
represents the definition of the coproduct for the level-two
generators.
In order to derive the Serre relations we rewrite the right-

hand side of (7.32) as (cf. [36])

½�ðJ ð1Þ
� Þ�ðJ ð1Þ

� Þ� ¼ ½J ð1Þ
� ;J ð1Þ

� � 
 1þ 1 
 ½J ð1Þ
� ;J ð1Þ

� � þ h

2
ðf���½J ð0Þ

� 
 J ð0Þ
� ;J ð1Þ

� 
 1þ 1 
 J ð1Þ
� �

� ð� $ �ÞÞ þ h2

4
f�

��f�

�½J ð0Þ

� 
 J ð0Þ
� ;J ð0Þ


 
 J ð0Þ
� �: (H4)

It is rather straightforward to rewrite the last two lines in
this equation in the form of

h

2
f��


f

��ðJ ð1Þ

� 
 J ð0Þ
� � J ð0Þ

� 
 J ð1Þ
� Þ; (H5)

h2

4
f�

�
f�
��f��

�ðJ ð0Þ
� 
 J ð0Þ

� J ð0Þ

 þ J ð0Þ

� J ð0Þ

 
 J ð0Þ

� Þ:
(H6)

Now it is easy to see that (H5) vanishes due to the Jacobi
identity when plugged into the right-hand side of (H1).
Using the Jacobi identity twice, the contribution to (H1)
coming from the second piece (H6) reads

h2

8
f�


�f��
�f���f

��
ðfJ ð0Þ
� ;J ð0Þ

� g 
 J ð0Þ
� þ J ð0Þ

�


 fJ ð0Þ
� ;J ð0Þ

� gÞ þ cyclic ð�;�; �Þ: (H7)

Since the coproduct on J ð0Þ has the trivial form (7.29) one
can rewrite this as20

�ðS���Þ � S��� 
 1� 1 
 S���; (H8)

where

S��� ¼ h2

24
f�


�f�
��f�

��f��
fJ ð0Þ

 ;J ð0Þ

� ;J ð0Þ
� g: (H9)

Putting everything together (H1) becomes

0 ¼ �ðK���Þ � K��� 
 1� 1 
 K���; (H10)

where now

20We thank Lucy Gow for discussions on this point and sharing
some of her notes with us.

TILL BARGHEER, FLORIAN LOEBBERT, AND CARLO MENEGHELLI PHYSICAL REVIEW D 82, 045016 (2010)

045016-26



K��� ¼ S��� � ðf���½J ð1Þ
� J ð1Þ

� � þ cyclicð�;�; �ÞÞ:
(H11)

A sufficient condition for (H10) to be satisfied isK��� ¼ 0
which, rewriting f��

�J ð1Þ
� ¼ ½J ð0Þ

� ;J ð1Þ
� �, are the well-

known Serre relations (7.35). One of the reasons for re-
deriving the Serre relations here is to convince the reader
and ourselves that only the X component of fJ ;J ;J g
contributes to the right-hand side of (7.35). As we have
seen in Sec. VII, this is very useful for proving the Serre
relations for specific representations.

In order to show that the Serre relations are indeed
satisfied for a certain representation, one can start with
the case n ¼ 1, i.e. a representation acting on only one
vector space and define


jn¼1ðJ ð0Þ
� Þ ¼ Jð0Þ

� ; 
jn¼1ðJ ð1Þ
� Þ ¼ 0: (H12)

The left-hand side of (7.35) vanishes for the one-site rep-
resentation 
jn¼1. Assuming that also the right-hand side
of this equation vanishes for the one-site representation,
one can promote (7.35) from 1 to n sites. The point is that

the coproduct preserves the Serre relations; that is if J ð0Þ

and J ð1Þ satisfy the Serre relations then also �ðJ ð0ÞÞ and
�ðJ ð1ÞÞ do. The reason behind this is an inductive argu-
ment. Assuming the Serre relations to be satisfied for n
sites implies the coproduct to be a homomorphism (7.31)
for nþ 1 sites. Acting with � on (7.35) thus yields the
Serre relations for nþ 1 sites which in turn implies (7.31)
for nþ 2 sites. This means that the Serre relations will be
automatically satisfied by the choice (H12) promoted to n
vector spaces by successive application of the coproduct.
To be explicit, the action on two sites is given by


jn¼2ð�J ð0Þ
� Þ ¼ 1 
 J

ð0Þ
� þ J

ð0Þ
� 
 1 ¼ X2

i¼1

J
ð0Þ
i� ;


jn¼2ð�J ð1Þ
� Þ ¼ f���J

ð0Þ
� 
 Jð0Þ

� ¼ f���
X

1�j<i�2

Jð0Þ
i�J

ð0Þ
j�;

(H13)

where we recover the original bilocal form of the level-one
generators (7.3). Here,


jn¼2ðA 
 BÞ ¼ ð
jn¼1AÞ 
 ð
jn¼1BÞ: (H14)

Note that the above analysis is completely independent
of the explicit representation 
. The criterion for any

representation to obey the Serre relations is thus the van-
ishing of the right-hand side of (7.35) for that specific
representation. For showing this, it is crucial that the
right-hand side of (7.35) transforms in the representation
X as shown above.

APPENDIX I: CONVENTIONS AND IDENTITIES

Throughout the article, the spacetime metric is fixed to
��� ¼ ��� ¼ diagð� þþÞ. The totally antisymmetric

tensor "��
 is defined such that "012 ¼ �"012 ¼ 1.

"12 ¼ �"12 ¼ 1: (I1)

The relation between spacetime vectors and bispinors is
given by

pab ¼ ð��Þabp�; p� ¼ �1
2ð��Þabpab; (I2)

where a convenient choice for the matrices ð��Þab is

ð�0Þab ¼ �1 0
0 �1

� �
; ð�1Þab ¼ �1 0

0 1

� �
;

ð�2Þab ¼ 0 1
1 0

� �
:

(I3)

They obey the following relations:

��
ab�

�ab ¼ �2���; (I4)

�
�
ab��cd ¼ �"ac"bd � "ad"bc; (I5)

"��
ð��Þabð��Þcdð�
Þef ¼ 1
2ð"ac"be"df þ "ac"bf"de

þ "ad"be"cf þ "ad"bf"ce

þ "ae"bc"df þ "ae"bd"cf

þ "af"bc"de þ "af"bd"ceÞ:
(I6)

The matrices ð��Þab ¼ "bcð��Þac obey the algebra

ð��Þabð��Þbc ¼ g���a
b þ "��
ð�
Þac: (I7)

We use ð� � �Þ and ½� � �� for symmetrization or antisymmet-
rization of indices, respectively, i.e.

XðabÞ ¼ Xab þ Xba; X½ab� ¼ Xab � Xba: (I8)
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