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We demonstrate that a Jackiw-Nohl-Rebbi solution, as the most general two-instanton, generates a

circular loop of magnetic monopole in four-dimensional Euclidean SUð2Þ Yang-Mills theory, in contrast

to the one-instanton solution in the regular gauge for which no such magnetic monopole loops exist. These

results together with our previous result indicate that a two-instanton solution and a two-meron solution

with the same asymptotic behavior in the long distance are responsible for quark confinement based on the

dual superconductivity picture.
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I. INTRODUCTION

The quark confinement criterion à laWilson [1] is given
by the area decay of the Wilson loop average hWC½A�i,
i.e., the vacuum expectation value of the Wilson loop
operator WC½A� written in terms of the Yang-Mills field
[2] A�ðxÞ. In order to clarify the mechanism of quark

confinement, it would be efficient to construct ensembles
of gauge fields which exhibit confinement. One anticipates
that a class of solutions of the classical Yang-Mills equa-
tion may give the dominant contribution to quark confine-
ment. Among them, especially, topological (soliton)
solutions [3] with nontrivial topological charge QP, i.e.,
the Pontryagin index, are good candidates for a first
examination.

The well-known topological solutions are instantons [4–
10] and merons [11–13]: The instanton is a solution of the
self-duality equation �F ¼ �F (first-order differential
equation) and has an integer-valued topological charge
QP ¼ �1;�2; . . . , while the meron is a solution of the
original second-order differential equation obtained with-
out imposing the self-duality condition and has a half-
integer- or integer-valued topological charge QP ¼
�1=2;�1; . . . . Remarkably, the instanton has a finite
Euclidean action proportional to the topological charge
S ¼ 8�2jQPj=g2 due to self-duality, while the meron has
the logarithmically divergent Euclidean action due to short
distance singularity, since the meron has no collective
coordinate corresponding to the size. Therefore, the re-
quirement of finite action inevitably excludes the meron
solution from the candidates. However, it has been pointed
out in [14] that merons can be responsible for the occur-
rence of the confinement phase, if we take into account the
free energy based on the action-entropy argument, since
the logarithmic divergent action is comparable with the

entropy associated with the meron configurations calcu-
lable from the integration measure in the path-integral
formulation.
It is believed that a promising mechanism for quark

confinement is a dual superconductivity [15,16]. For this
mechanism to work, however, magnetic monopoles must
exist and be condensed to cause the dual superconductivity.
In this picture, magnetic monopoles are considered to be
the most important degrees of freedom relevant to confine-
ment in the dual description. Therefore, we are lead to
estimate howmagnetic monopoles contribute to theWilson
loop average to fulfill the confinement criterion [17].
On the other hand, we can ask which configuration of the

Yang-Mills field can be the source for such magnetic
monopoles relevant to confinement in the dual description.
The simplest configuration examined first was the one-
instanton solution [4]. However, it has been confirmed in
[18–21] that magnetic monopole loops are not generated
from the one-instanton configuration, as briefly reviewed
in the introduction of our previous paper [18]. Note that the
magnetic monopole expressed by the current k is a topo-
logical object of codimension 3, therefore, it is a one-
dimensional object (a closed current due to the topological
conservation �k ¼ 0) in the four-dimensional space, while
it is a pointlike object in the three-dimensional space.
In previous papers, we have shown that a two-meron

solution with a unit total topological charge jQPj ¼ 1 leads
to circular loops of magnetic monopole joining a pair of
merons in an analytical way [18] and a numerical way [22],
although a one-instanton and a two-meron have the same
total topological charge. This result is in good agreement
with the numerical result [23] obtained in the Laplacian
Abelian gauge.
In this paper we examine the two-instanton solution of

Jackiw-Nohl-Rebbi (JNR) [9] from the viewpoint raised
above. In the conventional studies on quark confinement,
the multi-instanton solution of ’t Hooft type [6] has been
used extensively to see the interplay between instantons
and magnetic monopoles [20,24–28]. However, the
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’t Hooft instanton is not the most general instanton solu-
tions except for the one-instanton case in which the
’t Hooft one-instanton agrees with the well-known one-
instanton solution in the singular gauge. In contrast, the
JNR two-instanton solution is the most general two-
instanton solution with the full collective coordinates
(moduli parameters), while the ’t Hooft two-instanton
solution [6] is obtained as a special limit of the JNR
solution. We demonstrate in a numerical way that a circular
loop of magnetic current k is generated for a JNR two-
instanton solution. In addition, we present the configura-
tion of the color field which plays the crucial role in our
formulation. The implications of this result for quark con-
finement will be discussed in the final section.

Incidentally, the JNR two-instanton was used to study
the relationship between dyonic instantons as a supertube
connecting two parallel D4-branes and the magnetic mono-
pole string loop as the supertube cross section in (4þ 1)-
dimensional Yang-Mills-Higgs theory [29], since dyonic
instantons of ’t Hooft type do not showmagnetic string and
four-dimensional branes meet on isolated points, instead of
some loop. These facts became one of the motivations to
study the JNR solution from our point of view.

II. MAGNETIC MONOPOLE CURRENT
ON A LATTICE

It is a nontrivial question how to realize the magnetic
monopole in the pure Yang-Mills theory without a matter
field, while in the Yang-Mills-Higgs system such as the
Georgi-Glashow model, the magnetic monopole in a non-
Abelian gauge theory has been constructed long ago [30].

In pure Yang-Mills theory in the absence of matter
fields, two methods are currently known (to the best of
our knowledge) for extracting magnetic monopole degrees
of freedom:

(1) Abelian projection due to ’t Hooft [31].
(2) Field decomposition due to Cho, Duan and Ge,

Faddeev and Niemi, and Shabanov [32–35].

The first method (Abelian projection) has succeeded to
exhibit the Abelian dominance [36,37] and magnetic
monopole dominance [38] for quark confinement by adopt-
ing the maximally Abelian (MA) gauge [39]. See, e.g., [40]
for a review. However, the following questions were raised
for results obtained in the MA gauge, which are funda-
mental questions to be answered to establish the gauge-
independent dual superconductivity in Yang-Mills theory:
(1) how to extract the ‘‘Abelian’’ part responsible for quark
confinement from the non-Abelian gauge theory in the
gauge-independent way; and (2) how to define the mag-
netic monopole to be condensed in Yang-Mills theory in
the gauge-invariant way even in the absence of any funda-
mental scalar field, in sharp contrast to the Georgi-Glashow
model.

The MA gauge is reproduced as a special limit of the
second method. In fact, the first method is nothing but a

gauge-fixed version of the second method. In other words,
the second method is a manifestly gauge-covariant refor-
mulation of the first one. Therefore, the second method
enables us to answer the above questions. From this view-
point, the second method has been developed in a series of
our papers [41–48], for SUð2Þ gauge group and [49–51] for
SUð3Þ or SUðNÞ gauge group. In the second method, a
magnetic monopole can be defined in a manifestly gauge-
invariant way using new variables obtained from the origi-
nal Yang-Mills field by change of variables. Moreover, the
Wilson loop operator can be exactly rewritten in terms of
the magnetic monopole defined in this way through a non-
Abelian Stokes theorem [52–54].
In order to define the magnetic monopole on a lattice, we

recall the second method based on a nonlinear change of
variables in a continuum SUð2Þ Yang-Mills theory. We
introduce a color field nðxÞ with a unit length

n ðxÞ ¼ nAðxÞTA; ðTA :¼ �A=2Þ (1)

nAðxÞnAðxÞ ¼ 1; (2)

where �A (A ¼ 1; 2; 3) are Pauli matrices.
The color field is determined by imposing a condition

which we call the reduction condition. A reduction condi-
tion is given by minimizing the functional

Fred :¼
Z

d4x
1

2
tr½fD�½A�nðxÞg2�: (3)

The local minima are given by the differential equation
which we call the reduction differential equation (RDE)
[18]

�D�½A�D�½A�nðxÞ ¼ �ðxÞnðxÞ: (4)

In this theory, a composite field

V �ðxÞ :¼ c�ðxÞnðxÞ � ig�1½@�nðxÞ;nðxÞ� (5)

plays an important role where c�ðxÞ :¼ 2 trðnðxÞA�ðxÞÞ.
For instance, the field strength of V�ðxÞ is parallel to

nðxÞ:
F��½V� ¼ @�V� � @�V� � ig½V�;V��

¼ f@�c� � @�c� þ 2ig�1 trðn½@�n; @�n�Þgn
:¼ G��n: (6)

Thus, we can define the gauge-invariant field strength
G��ðxÞ ¼ 2 trðnF��½V�Þ and the gauge-invariant mono-

pole current as

k�ðxÞ :¼ @�
�G��ðxÞ ¼ 1

2
�����@�G��ðxÞ: (7)

Once the reduction condition is solved, thus, we can obtain
the monopole current k� from the original gauge field A�.

The gauge-invariant magnetic charge is defined
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qm :¼
Z

d3��k
�ðxÞ; (8)

in a Lorentz (or Euclidean rotation) invariant way [17].
In this paper, we carry out the procedures explained in

the above in a numerical way. We use the lattice regulari-
zation for numerical calculations where the link variable
Ux;� is related to a gauge field in a continuum theory by

Ux;� ¼ P exp

�
ig

Z xþa�̂

x
dyA�ðyÞ

�
; (9)

where P represents a path-ordered product, a is a lattice
spacing, and �̂ represents the unit vector in the� direction.
The lattice version of the reduction functional in SUð2Þ
Yang-Mills theory is given by

Fred½n; U� ¼ X
x;�

f1–4 trðUx;�nxþa�̂U
y
x;�nxÞ=trð1Þg; (10)

where nx is a unit color field on a site x,

n x ¼ nAx T
A; nAx n

A
x ¼ 1: (11)

We introduce the Lagrange multiplier �x to incorporate
the constraint of unit length for the color field (11). Then
the stationary condition for the reduction functional is
given by

@

@nAx

�
Fred½n; U� � 1

2

X
x

�xðnAxnAx � 1Þ
�
¼ 0: (12)

When Fred takes a local minimum for a given and fixed
configuration fUx;�g, therefore, a Lagrange multiplier �x

satisfies

WA
x ¼ �xn

A
x ; (13)

and the color field nAx satisfies

nAx n
A
x ¼ 1; (14)

where

WA
x ¼ 4

X4
�¼1

trðUx;�nxþa�̂U
y
x;�TA

þUx�a�̂;�T
AUy

x�a�̂;�nx�a�̂Þ=trð1Þ: (15)

Equation (13) is a lattice version of the reduction differen-
tial equation. We are able to eliminate the Lagrange multi-
plier to rewrite (13) into

nAx ¼ WA
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WB
x W

B
x

p : (16)

A derivation of this equation is given in the appendix. The
color field configurations fnxg are obtained by solving (16)
in a numerical way.

After obtaining the fnxg configuration for given configu-
rations fUx;�g in this way, we introduce a new link variable

Vx;� on a lattice corresponding to the gauge potential (5) by

Vx;� ¼ Lx;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 tr½Lx;�L

y
x;��

q ;

Lx;� :¼ Ux;� þ nxUx;�nxþa�̂:

(17)

Finally, the monopole current kx;� on a lattice is con-

structed as

kx;� ¼ X
�;�;�

�����

4�

�xþa�̂;��½n; V� ��x;��½n; V�
a

; (18)

through the angle variable of the plaquette variable

�x;��½n; V�
¼ a�2 argðtrfð1þ nxÞVx;�Vxþa�̂;�V

y
xþa�̂;�V

y
x;�g=trð1ÞÞ:

(19)

In this definition, kx;� takes an integer value [44,45].

To obtain the fnxg configuration satisfying (16), we
recursively apply (16) to nx on each site x and update it,
keeping nx fixed at a boundary @V of a finite lattice V until
Fred converges. Since we calculate the fkx;�g configuration
for the instanton configuration in this paper, we need to
decide a boundary condition of the fnxg configuration in
the instanton case. We recall that the instanton configura-
tion approaches a pure gauge at infinity:

gA�ðxÞ ! ihyðxÞ@�hðxÞ þOðjxj�2Þ: (20)

Then, nðxÞ as a solution of the reduction condition is
supposed to behave asymptotically

n ðxÞ ! hyðxÞT3hðxÞ þOðjxj�	Þ; (21)

for a certain value of 	> 0. Under this idea, we adopt a
boundary condition as

n bound
x :¼ hyðxÞT3hðxÞ; x 2 @V: (22)

In practice, we start with an initial state of the fnxg con-
figuration: ninit

x ¼ hyðxÞT3hðxÞ for x 2 V. Then, we repeat
updating nx on each site x according to (16) except for the
configuration nbound

x on the boundary @V.
It should be remarked that these asymptotic forms (20)

and (21) satisfy the RDE asymptotically in the sense that

D�½A�nðxÞ ! 0 ðjxj ! 1Þ; (23)

together with

�ðxÞ ! 0 ðjxj ! 1Þ; (24)

which is necessary to obtain a finite value for the reduction
functional [18]

Fred ¼
Z

d4x
1

2
�ðxÞ<1: (25)
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III. ONE-INSTANTON IN THE REGULAR GAUGE

The one-instanton solution in the regular (or nonsingu-
lar) gauge is specified by a constant four-vector represent-
ing the center ðb1; b2; b3; b4Þ 2 R4 and a positive real
constant representing the size (width) � � 0:

gA�ðxÞ ¼ TA
AðþÞ
��

2ðx� � b�Þ
jx� bj2 þ �2

; (26)

where jxj2 ¼ x�x� is the standard Euclidean norm and


Að�Þ
�� is the symbol defined by


Að�Þ
�� ¼ �A��4 � �A���4 � �A���4: (27)

In this case, we obtain from (20) and (21)

hðxÞ ¼ x�

jxj e�; ðe� � ð�i�i; 1ÞÞ; (28)

where 1 is a 2� 2 unit matrix and

hyðxÞT3hðxÞ ¼ 2ðx1x3 � x2x4Þ
x2

T1 þ 2ðx1x4 þ x2x3Þ
x2

T2

þ�x21 � x22 þ x23 þ x24
x2

T3: (29)

This exactly agrees with the standard Hopf map [55].
The topological charge density is maximal at the point

x ¼ b and decreases algebraically with the distance from
this point in such a way that the instanton chargeQV inside
the finite lattice V ¼ ½�aL; aL�4 reproduces the total in-
stanton charge QP ¼ 1. We construct the instanton charge
QV on a lattice from the configuration of link variables
fUx;�g according to

QV ¼ a4
X

x2fV�@Vg
Dx; (30)

Dx :¼ 1

24
a�4

32�2

X�4

�;�;�;�¼�1

�̂���� trð1�Ux;��Ux;��Þ;

(31)

Ux;�� ¼ Ux;�Uxþa�̂;�U
y
xþa�̂;�U

y
x;�; (32)

where Dx is a lattice version of the instanton charge
density, V � @V represents the volumewithout a boundary,
and �̂ is related to the usual � tensor by

�̂ ���� :¼ sgnð�Þsgnð�Þsgnð�Þsgnð�Þ�j�jj�jj�jj�j;

sgnð�Þ :¼ �

j�j :
(33)

Our interest is the support of kx;�, namely, a set of links

fx;�g on which kx;� takes nonzero values kx;� � 0. This

expresses the location of the magnetic monopole current
generated for a given instanton configuration. By definition
(18), the number of configurations fkx;�g are ð2LÞ4 � 4.

[The number of configurations fkx;�g is not equal to ð2Lþ

1Þ4 � 4, because we cannot calculate kx;� at positive sides

of the boundary @V due to the definition of (18) based on
the forward lattice derivative.]
The results are summarized in Table I and Fig. 1. In our

calculations of the monopole current configuration, we fix
the center on the origin

ðb1; b2; b3; b4Þ ¼ ð0; 0; 0; 0Þ; (34)

and change the value of �.
For a choice of L ¼ 31, the total number of configura-

tions fkx;�g are 624 � 4 ¼ 59 105 344. Although the cur-

rent kx;� is zero on almost all the links ðx;�Þ, it has a

nonzero value jkx;�j ¼ 1 on a small number of links, e.g.,

4þ 4 links for � ¼ 5a. The number of links with kx;� ¼
þ1 is equal to one with kx;� ¼ �1, which reflects the fact

that the current kx;� draws a closed path of links. It turns

out that there are no configurations such that jkx;�j> 1.

We see how QV reproduces the total instanton charge
QP ¼ 1 for the choice of �. The instanton charge density is
equal to zero whenA�ðxÞ is a pure gauge, i.e., F��ðxÞ ¼ 0.

Therefore, the more rapidly A�ðxÞ converge to a pure

gauge, the more precisely QV reproduces the proper value
QP for a given L. For one-instanton in the regular gauge,
clearly, A�ðxÞ more rapidly converge to a pure gauge for

smaller �. Indeed, QV for � ¼ 10a reproduces QP ¼ 1
more precisely than � ¼ 15a and � ¼ 20a. On the con-
trary, QV for � ¼ 5a reproduces QP ¼ 1 poorly compared
with � ¼ 10a. This is because the lattice is too coarse (a
lattice spacing is not sufficiently small) to estimate prop-
erly the rapid change of the instanton charge distribution
concentrated to the neighborhood of the origin for small �.
If A�ðxÞ converge rapidly to a pure gauge ihyðxÞ@�hðxÞ

so that QV gives a good approximation for an expected
value QP, then the color field is expected to behave as
nðxÞ ! hyðxÞT3hðxÞ asymptotically and our choice of the
boundary condition nbound

x :¼ hyðxÞT3hðxÞ at the boundary
x 2 @V is well motivated.
In Fig. 1, the support of kx;� is drawn by projecting the

four-dimensional space on the x4 ¼ 0 hyperplane (three-
dimensional space) for the choice of � ¼ 5a, 10a, 15a, and
20a. This figure shows that the nonzero monopole current
forms a small loop. The size of the magnetic monopole
loop hardly changes while � increases. This is an indica-
tion that the magnetic monopole loop for the one-instanton

TABLE I. The distribution of kx;� and the instanton charge QV

for a given r.

� jkx;�j> 1 kx;� ¼ �1 kx;� ¼ 0 kx;� ¼ 1 QV

5 0 4 59 105 336 4 0.9674

10 0 8 59 105 328 8 0.9804

15 0 12 59 105 320 12 0.9490

20 0 12 59 105 320 12 0.8836
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solution disappears in the continuum limit of the lattice
spacing a going to zero.

IV. TWO-INSTANTON OF THE JACKIW-NOHL-
REBBI TYPE

It is known by the Atiyah-Hitchin-Drinfeld-Manin con-
struction [10] that the N-instanton moduli space has di-
mension 8N. For N ¼ 1, the 8 moduli parameters are
interpreted as 4þ 1þ 3 degrees of freedom for the posi-
tion, size, and SUð2Þ orientation (global gauge rotations),
respectively.

For N ¼ 2, the JNR instanton [9] is the most general
two-instanton as explained below. The explicit form of the
JNR two-instanton solution is

gA�ðxÞ ¼ �TA
Að�Þ
�� @� ln�JNR; (35)

¼ TA
Að�Þ
�� ��1

JNR

X2
r¼0

2�2
rðx� � b�r Þ

ðjx� brj2Þ2
; (36)

�JNR :¼ X2
r¼0

�2
r

jx� brj2
: (37)

The JNR two-instanton has 4� 3þ 3þ 3 ¼ 18 parame-
ters, which consist of three pole positions ðb10; b20; b30; b40Þ,
ðb11; b21; b31; b41Þ, ðb12; b22; b32; b42Þ and three scale parameters

�0, �1, �2 including the overall SUð2Þ orientation. Note
that the number of poles is one greater than the number of
the instanton charge. Although the parameter count of the
JNR two-instanton appears to exceed the 16 dimensions of
the N ¼ 2 moduli space, the JNR two-instanton has pre-
cisely the required number of parameters for the N ¼ 2
general solution. In fact, one parameter is reduced by
noting that the multiplication of the scale parameter by a
constant does not alter the solution, so only the ratios
�r=�0 (r ¼ 1; 2) are relevant. Moreover, one of the degrees
of freedom corresponds to a gauge transformation [9].
The ’t Hooft two-instanton, which is more popular and

has been used extensively in the preceding investigations,
is given by

-20
-10

 0
 10

 20 -10
 0

 10
 20

-20

-10

 0

 10

 20

x3

ρ=5, bµ=(0, 0, 0, 0)

x1

x2

x3

-10
 0

 10
 20

-20
-10

 0
 10

 20

x3

x1

x2

x3

0.0e+00
1.0e-04
2.0e-04
3.0e-04
4.0e-04
5.0e-04
6.0e-04
7.0e-04
8.0e-04

(a)

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

-20

-10

 0

 10

 20

x3

ρ=10, bµ=(0, 0, 0, 0)

x1

x2

x3

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

x3

x1

x2

x3

0.0e+00
1.0e-05
2.0e-05
3.0e-05
4.0e-05
5.0e-05
6.0e-05

(b)

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

-20

-10

 0

 10

 20

x3
ρ=15, bµ=(0, 0, 0, 0)

x1

x2

x3

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

x3

x1

x2

x3

0.0e+00
2.0e-06
4.0e-06
6.0e-06
8.0e-06
1.0e-05
1.2e-05

(c)

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

-20

-10

 0

 10

 20

x3
ρ=20, bµ=(0, 0, 0, 0)

x1

x2

x3

-20
-10

 0
 10

 20
-20

-10
 0

 10
 20

x3

x1

x2

x3

0.0e+00
5.0e-07
1.0e-06
1.5e-06
2.0e-06
2.5e-06
3.0e-06
3.5e-06
4.0e-06

(d)

FIG. 1 (color online). One-instanton in the regular gauge and the associated magnetic-monopole current kx;� for various choices of
size parameter �: (a) � ¼ 5a, (b) � ¼ 10a, (c) � ¼ 15a, and (d) � ¼ 20a. The grid shows an instanton charge densityDx on the x1-x2
(x3 ¼ x4 ¼ 0) plane. The black (thick) line on the base shows the magnetic monopole loop projected and the colored (thin) lines show
a contour plot of the instanton charge density. Figures are drawn in units of a.
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�tHooft :¼ 1þ X2
r¼1

�2
r

jx� brj2
: (38)

The ’t Hooft two-instanton has only 4� 2þ 2þ 3 ¼ 13
parameters, which consist of two pole positions
ðb11; b21; b31; b41Þ, ðb12; b22; b32; b42Þ and two scale parameters

�1, �2 including the overall SUð2Þ orientation. The
’t Hooft solution is reproduced from the JNR solution in
the limit �0 ¼ jb0j ! 1, namely, the location of the first
pole b0 is sent to infinity keeping the relation �0 ¼ jb0j.

The crucial difference between the JNR and the ’t Hooft
solutions is the asymptotic behavior. The JNR solution
goes to zero slowly, while the gauge potential produced
by the ’t Hooft ansatz tends rapidly to zero at spatial
infinity jxj ! 1. In fact, for N ¼ 1 the ’t Hooft ansatz
gives the one-instanton in the singular gauge with the
asymptotic behavior

A �ðxÞ 	Oðjxj�3Þ jxj ! 1; (39)

while the one-instanton in the regular gauge exhibits the
asymptotic behavior

A �ðxÞ 	Oðjxj�1Þ jxj ! 1: (40)

In the case of the JNR two-instanton, we obtain

hðxÞ ¼ x�

jxj �e�; ð �e� � ey� ¼ ði�i; 1ÞÞ (41)

and

hyðxÞT3hðxÞ ¼ 2ðx1x3 þ x2x4Þ
x2

T1 þ 2ð�x1x4 þ x2x3Þ
x2

T2

þ�x21 � x22 þ x23 þ x24
x2

T3: (42)

This is another form of the standard Hopf map [55].
We equate three size parameters and put three pole

positions ðb10; b20; b30; b40Þ, ðb11; b21; b31; b41Þ, ðb12; b22; b32; b42Þ on
the x3 ¼ x4 ¼ 0 plane, so that the three poles are located at
the vertices of an equilateral triangle:

�0 ¼ �1 ¼ �2 � �; (43)

ðb10; b20; b30; b40Þ ¼ ðr; 0; 0; 0Þ þ�; (44)

ðb11; b21; b31; b41Þ ¼
�
� r

2
;

ffiffiffi
3

p
2

r; 0; 0

�
þ�; (45)

ðb12; b22; b32; b42Þ ¼
�
� r

2
;�

ffiffiffi
3

p
2

r; 0; 0

�
þ �; (46)

where � is a small parameter introduced to avoid the pole
singularities at x ¼ br.

In the numerical calculation, we choose

� ¼ ð0:1a; 0:1a; 0:1a; 0:1aÞ: (47)

Then we have searched for monopole currents by changing

r. We have adopted L ¼ 31. In this paper we focus on the
special case �0 ¼ �1 ¼ �2 � � of the JNR solution. Then
the ratio is uniquely fixed: �1=�0 ¼ �2=�0 ¼ �=�0 � 1,
and hence � can be set to an arbitrary value without loss of
generality in this class. In the following, we put � ¼ �0 ¼
3a.
The results are summarized in Table II and Figs. 2 and 3.

In Fig. 2, as in the case of one-instanton in the regular
gauge, we draw the distribution of the instanton charge
density Dx and the support of the magnetic monopole
current kx;� projected on the x4 ¼ 0 hyperspace for r ¼
5a, 10a, 15a, 20a.
The instanton charge density Dx of the JNR two-

instanton takes the maximal value at a circle with radius
RI, rather than on the origin, on the x1-x2 plane. This is not
the case for the ’t Hooft two-instanton in which the in-
stanton charge distribution concentrates near the two pole
positions, as is well-known.
We have found that nonvanishing monopole currents

originating from the JNR two-instanton forms a circular
loop. The circular loops of the magnetic monopole current
are located on the same plane as that specified by three
poles b0, b1, b2. The size of the circular loop, e.g., the
radius R, increases proportionally as r increases and the
circular loops constitute concentric circles with the center
at the origin, within the accuracy of our numerical
calculations.
To reproduce the correct distribution of the instanton

charge densityDx in the numerical calculations, we need to
further approximate the link variable Ux;� defined by (9)

using a discretization with a width � ¼ a=n for the line
integral on a link:

Ux;� 
 exp

�
i�

Xn
k¼1

1

2
½gA�ðxþ ðk� 1Þ��̂Þ

þ gA�ðxþ k��̂Þ�
�
: (48)

We have chosen the lattice spacing a ¼ 1 and the total
number of partition points n ¼ 20. If n is relatively small,
the numerical result for the instanton charge density Dx

gives a wrong distribution with remnant of three poles.
In Table II, we find that the ratio between the length ‘ :¼P
x;�jkx;�j of the magnetic monopole current kx;� and the

size r of the equilateral triangle of JNR is nearly constant,

TABLE II. The distribution of kx;� and the instanton charge
QV for a given r.

r jkx;�j> 1 kx;� ¼ �1 kx;� ¼ 0 kx;� ¼ 1 l=r QV

5 0 14 59 105 316 14 5.6 1.903

10 0 26 59 105 292 26 5.2 1.969

15 0 40 59 105 264 40 5.3 1.950

20 0 51 59 105 242 51 5.1 1.862
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FIG. 2 (color online). JNR two-instanton and the associated circular loop of the magnetic monopole current kx;�. The JNR two-
instanton is defined by fixing three scales �0 ¼ �1 ¼ �2 ¼ 3a and three pole positions b

�
0 , b

�
1 , b

�
2 which are arranged to be three

vertices of an equilateral triangle specified by r: (a) r ¼ 5a, (b) r ¼ 10a, (c) r ¼ 15a, and (d) r ¼ 20a. The grid shows an instanton
charge density Dx on the x1-x2 (x3 ¼ x4 ¼ 0) plane. The associated circular loop of the magnetic monopole current is located on the
same plane as that specified by three poles. The black (thick) line on the base shows the magnetic monopole loop projected on the x1-x2
plane and the arrow indicates the direction of the monopole current, while colored (thin) lines on the base show the contour plot for the
equi-Dx lines. Figures are drawn in units of a.
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FIG. 3 (color online). The configuration of the color field nx ¼ ðn1x; n2x; n3xÞ and a circular loop of the magnetic monopole current kx;�
obtained from the JNR two-instanton solution (r ¼ 20a), viewed in (a) the x2-x3 (x1 ¼ x4 ¼ 0) plane which is off three poles, and (b)
the x1-x3 (x2 ¼ x4 ¼ 0) plane which goes through a pole b

�
0 . The magnetic monopole current kx;� and the three poles of the JNR

solution are projected onto the same plane. Here the SUð2Þ color field ðn1x; n2x; n3xÞ is identified with a unit vector in the three-
dimensional space ðx1; x2; x3Þ. Figures are drawn in units of a.
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‘=r ’ 5:2; (49)

which implies

Rm=r ’ 0:65; (50)

where we have used a relation ‘ ’ 8Rm for large ‘ since a
closed current kx;� consists of links on a lattice and the

relation ‘ ’ 2�Rm in the continuum does not hold.
Moreover, the magnetic monopole loop passes along the
neighborhood of contour giving the absolute maxima of the
instanton charge density

Rm=RI ’ 0:65=0:54 ’ 1:2; (51)

where RI ’ 0:54r.
Figure 3 shows the relationship between the magnetic

monopole loop kx;� and the color field nx configuration.

The vector field fnxg is winding around the loop, and it is
indeterminate at points where the loop pass. This is the first
time that an explicit configuration of a color field leading to
the magnetic monopole loop has been obtained from an
instanton solution based on the new reformulation of Yang-
Mills theory.

V. CONCLUSION AND DISCUSSION

For given instanton solutions of the classical Yang-Mills
equation in the four-dimensional Euclidean space, we have
solved in a numerical way the reduction condition to obtain
the color field which plays the key role to define a gauge-
invariant magnetic monopole in our reformulation of the
Yang-Mills theory written in terms of new variables. Here
we have used a lattice regularization [44] for performing
numerical calculations. Then we have constructed the
magnetic monopole current k� on a dual lattice where

the resulting magnetic charge is gauge invariant and quan-
tized according to the quantization condition of the Dirac
type.

For the two-instanton solution of the Jackiw-Nohl-Rebbi
type, we have discovered that the magnetic monopole
current k� has the support on a circular loop which is

located near the maxima of the instanton charge density.
Thus, we have shown that the two-instanton solution of the
Jackiw-Nohl-Rebbi type generates the magnetic monopole
loop in four-dimensional SUð2Þ Yang-Mills theory. In the
same setting, we have found that the magnetic current has
the support only on a plaquette around the center of the
one-instanton. This result confirms that no magnetic mono-
pole loop is generated for a one-instanton solution in the
continuum limit.

Combining the result in this paper with the previous one
[18], we have found that both the JNR two-instanton
solution and two-meron solution with the same asymptotic
behavior at spatial infinity

A �ðxÞ 	Oðjxj�1Þ jxj ! 1 (52)

generate circular loops of magnetic monopole, which
should be compared with the ’t Hooft multi-instanton
with the asymptotic behavior at spatial infinity

A �ðxÞ 	Oðjxj�3Þ jxj ! 1: (53)

We expect that these loops of magnetic monopole are
responsible for confinement in the dual superconductivity
picture. This result seems to be consistent with the claim
made in [56,57]. However, the correspondence between the
instanton and magnetic monopole loop is not one-to-one.
To draw the final conclusion, we need to collect more data
for supporting this claim. In particular, it is not yet clear
which relationship between instanton charge and the mag-
netic charge holds in our case, as studied in [58–60].
Moreover, it is known at finite temperature that there

exist self-dual solutions with nontrivial holonomy (calo-
rons) [61] which exhibit a nontrivial monopole content by
construction. It will be interesting to study how magnetic
monopoles, to be obtained in our approach from calorons,
are related to dyons inherent in calorons. These issues will
be investigated in future works.
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APPENDIX: DERIVING THE REDUCTION
EQUATION ON A LATTICE

Taking the square root of both sides of (13) yields

�x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WA

x W
A
x

q
; (A1)

which is substituted into (13) to obtain

nAx ¼ � WA
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WB
x W

B
x

p : (A2)

We must choose a correct sign in the right-hand side of
Eq. (A2) so that a solution of this equation gives a solution
of the original Eq. (13).
In what follows, we adopt a direct method of choosing a

correct sign of the right-hand side by examining whether
Eq. (A2) converges to the RDE in the continuum limit a !
0. By substituting Ux;� ¼ e�iagA�ðxÞ into (15) and expand-

ing it in powers of a, WA
x is written as
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WA
x ¼ 4

X4
�¼1

tr½fe�iagA�ðxÞnðxþa�̂ÞeiagA�ðxÞ þ eiagA�ðx�a�̂Þnðx�a�̂Þe�iagA�ðx�a�̂ÞgTA�=trð1Þ

¼ 4
X4
�¼1

tr

��
nðxþa�̂Þ� ia½gA�ðxÞ;nðxþa�̂Þ�� a2

2
½gA�ðxÞ; ½gA�ðxÞ;nðxþ a�̂Þ��þnðx�a�̂Þ

þ ia½gA�ðx� a�̂Þ;nðx�a�̂Þ��a2

2
½gA�ðx�a�̂Þ; ½gA�ðx�a�̂Þ;nðx� a�̂Þ��

�
TA

�
=trð1ÞþOða3Þ

¼ 4
X4
�¼1

tr½f2nðxÞþa2@�@�nðxÞ� 2ia2½gA�ðxÞ; @�nðxÞ�� ia2½g@�A�ðxÞ;nðxÞ�

�a2½gA�ðxÞ; ½gA�ðxÞ;nðxÞ��gTA�=trð1ÞþOða3Þ

¼ 4
X4
�¼1

tr½f2nðxÞþa2D�½A�D�½A�nðxÞgTA�=trð1ÞþOða3Þ ¼ 8nAðxÞþa2
X4
�¼1

ðD�½A�D�½A�nðxÞÞAþOða3Þ: (A3)

Then, the magnitude of WA
x is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WA

x W
A
x

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 16a2

X
�

nAðxÞðD�½A�D�½A�nðxÞÞA þOða3Þ
s

¼ 8þ a2
X
�

nAðxÞðD�½A�D�½A�nðxÞÞA þOða3Þ: (A4)

Substituting (A3) and (A4) into (A2), therefore, we obtain

8ð�nAðxÞ � nAðxÞÞ þ a2
�
� X4

�¼1

ðD�½A�D�½A�nðxÞÞA � nAðxÞX
�

nBðxÞðD�½A�D�½A�nðxÞÞB
�
þOða3Þ ¼ 0; (A5)

where the double-signs� in (A2) and (A5) correspond to each other. If we choose the minus sign, we have an unrealistic
result nAðxÞ ¼ 0. Thus, by choosing the plus sign in (16), the leading term vanishes and the next-to-leading term leads to

X4
�¼1

ðD�½A�D�½A�nðxÞÞA ¼ ��ðxÞnAðxÞ; (A6)

�ðxÞ � �X
�

nBðxÞðD�½A�D�½A�nðxÞÞB; (A7)

which is nothing but the RDE in the continuum theory:

�D�½A�D�½A�nðxÞ ¼ �ðxÞnðxÞ: (A8)
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