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It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero

modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral

over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes

are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics,

the general analytic expression of the metric components in terms of the zero modes is constructed. Such

expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in

the Coulomb gauge, an interesting example being the three-dimensional anti–de Sitter spacetime. Some of

the implications for quantum field theory on curved spacetimes are discussed.
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I. INTRODUCTION

Black hole physics as well as the description of the early
Universe often require the definition of a quantum field
theory on a curved background. This can be particularly
subtle when the theory is of the Yang-Mills type. Indeed, in
order to define the classical and quantum dynamics of a
gauge theory, it is necessary to perform a gauge fixing. This
is already known to be a nontrivial issue in flat spacetime
for non-Abelian gauge theories. The Gribov ambiguity [1],
whose appearance is closely related to the nontrivial to-
pology of the space of non-Abelian gauge connections,
prevents one from achieving a global gauge fixing in linear
derivative gauges like Lorenz, Coulomb, and Landau
gauges.1 These copies appear when the gauge potential is
large enough, in a sense that is explained in the following
section. Another way to see this problem is to notice that
whenever copies appear, the Faddeev-Popov (FP) operator
acquires zero modes, so that the FP determinant vanishes,
and this prevents one from defining properly the path
integral. Since the presence of the copies in QCD is a
nonperturbative phenomenon one can safely compute
Feynman diagrams in linear derivative gauges for the
perturbative regime. Indeed, it was pointed out for the first
time in [1], that the Gribov ambiguity could also provide a
natural explanation for confinement in QCD, once the path
integral is restricted to a region in which the FP operator is
positive definite and therefore free of zero modes (see e.g.
[2]; other reviews containing more recent results are [3–
5]). These ambiguities in the global fixing, of a gauge
which is linear in the derivatives, may also arise in the

context of Abelian gauge theories [6], since they can also
get a nontrivial structure of the fiber bundle due, for
example, to finite temperature effects [7,8].
All the cited examples have in common that at least for

small enough vector potentials, the Coulomb or the
Euclidean Lorenz gauge fixings are well defined. The
aim of this work is to point out the existence of an infinite
number of zero modes for the FP operator for the Coulomb
gauge, on certain curved spacetimes, independently of
whether the gauge connection is large or not.2 This is
due to the basic fact that on a curved background, the
gauge fixings which are linear in the derivative are defined
in terms of the covariant derivative instead of a simple
partial derivative. Therefore the equation for the zero
modes of the Faddeev-Popov operator depends explicitly
on the metric tensor of the background, through the
Christoffel symbols. In particular in the Coulomb gauge,
the equation for the zero modes of the FP operator is the
curved Laplace equation, ririU ¼ 0, where i is an index
on the spacelike section, and in a curved spacetime, non-
singular solutions to this equation may exist. These solu-
tions may fulfill strong enough falloff conditions in order
to define a proper (normalizable) gauge transformation.
When this occurs, the restriction of the path integral to
some region of the functional space of vector potential
does not help in eliminating the zero modes, since these
appear due to the properties of the background.
Here the appearance of these ‘‘gravitationally’’ induced

zero modes is studied for static spherically symmetric
backgrounds in arbitrary dimensions. We construct a static
spherically symmetric background, which generates zero
modes of the Coulomb gauge FP operator. We probe also
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1The mentioned gauge conditions, being linear in the deriva-

tive of the gauge field, define suitable gauge fixings in the
Euclidean path integral framework.

2There are many other results that also show the subtleties
involved in defining a proper quantization of gauge theories on
curved spacetimes, as for example [9]; the classic review of these
effects being [10].
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that the three-dimensional anti–de Sitter (AdS3) spacetime
belongs to this family. This is of special importance for the
AdS/CFT correspondence [11].

The structure of the paper is the following: in Sec. II, an
introduction to the subtleties of gauge fixing in Yang-Mills
theory is given. In Sec. III, we discuss a set of necessary
conditions that a spherically symmetric spacetime should
satisfy in order to induce zero modes of the FP operator in
the Coulomb gauge. In Sec. IV, a number of simple ex-
amples are considered, including AdS3, the three-
dimensional Bañados-Teitelboim-Zanelli (BTZ) black
hole [12], and a four-dimensional wormhole [13]. Some
discussion is given and possible solutions to the problem of
gauge fixing are finally drawn in the last section.

II. GAUGE-FIXING PROBLEMS IN NON-ABELIAN
YANG-MILLS THEORY

In this section a short discussion of the well-known
gauge-fixing problems in non-Abelian Yang-Mills theory
will be presented. These results will suggest later a very
natural and simple solution (yet, the physical consequences
of such a solution are highly nontrivial) to the gravitation-
ally induced gauge-fixing problems analyzed in the next
sections.

The appearance of zero modes in the FP operator in non-
Abelian Yang-Mills on flat backgrounds is related to the
well-known Gribov problem. In theories with local sym-
metries the path integral measure is ill-defined: the action
is invariant under a very large class of local symmetries
acting on the fields, so that path integrating over all the
field configurations gives rise to an overcounting, since
many configurations are gauge equivalent. The idea is then
to choose only one field configuration in each equivalence
class, which is achieved by a gauge-fixing term. The gauge
fixing is in general not well defined, since, when the field
amplitude is large enough, the gauge-fixing functional may
have the same value when evaluated in gauge-equivalent
configurations, violating then the assumption that only one
configuration in each class will fulfill the gauge-fixing
expression. In gauge theories such a problem can be
avoided, for instance, by using the axial gauge or the
temporal,3 which possesses its own subtleties (see, for
instance, [14]).

The Yang-Mills Lagrangian depends on a Lie algebra
valued differential one-form Aa

� (the most studied case

being the one in which the vector potential is in the adjoint
representation of the gauge group) as follows:

L ¼ � 1

4g2
trF��F

��;

ðF��Þa ¼ ð@�A� � @�A� þ ½A�; A��Þa:

Such a Lagrangian is invariant under the following (finite)
gauge transformations:

A� ! A0
� ¼ UyA�UþUy@�U; Uy ¼ U�1; (1)

where U is a group-valued scalar.4

Because of the above mentioned invariance, the
Lagrangian contains nonphysical degrees of freedom
which would imply an overcounting of configurations in
the Euclidean path integral, and for this reason a gauge
fixing is needed. Two of the most common gauge fixings
are the Euclidean Lorenz gauge and the Coulomb gauge,
respectively, given by

@�A
� ¼ 0; @iA

i ¼ 0; (2)

where � ¼ 0; . . . ; 3, while the spatial indices go from i ¼
1; . . . ; 3. A natural question then arises: does condition (2)
uniquely fix the vector potential for each class of configu-
rations which are related by gauge transformations with
suitable falloff conditions at infinity? As it was shown by
Gribov, the answer is in general negative and many gauge-
equivalent fields can satisfy the same Coulomb, Euclidean
Lorenz, or Landau gauge condition. As stated above, these
gauge fields are related by gauge transformations which
are well defined, and this will produce an overcounting of
configurations in the path integral approach.
Let us consider the Coulomb gauge. In order for two

gauge-equivalent fields A
�
ð1Þ and A

�
ð2Þ to satisfy the gauge-

fixing condition, a group-valued scalar function U has to
exist and it should fulfill the following equations:

Að2Þ
i ¼ UyAð1Þ

i UþUy@iU (3)

@iAð2Þ
i ¼ @iAð1Þ

i ¼ 0: (4)

On flat spacetime, in the case of non-Abelian gauge
theories, even when Að1Þ vanishes, there could exist solu-

tions of Eqs. (3) and (4), giving rise to Að2Þ whose spatial

components decrease at spatial infinity as r�� (r being the
Euclidean distance and �> 0). Anyway these solutions do
not decrease fast enough to define a proper gauge trans-
formation. Even more, a proper gauge transformation must
not only decrease fast enough but must also be nonsingular
everywhere. However, if Að1Þ is large enough:

kAð1Þk * kAGk; (5)

where A
�
G is the critical Gribov field and k:k is a suitable

norm,5 then Eqs. (3) and (4) have smooth solutions in
which Að2Þ decreases rapidly at infinity and therefore the

gauge field is affected by the Gribov ambiguity. As s well
known, the Gribov ambiguity affects a proper definition of
the path integral, since due to the presence of nontrivial

3Other methods to deal with this issue can be found in the
original reference [1] and, for instance, in the review [4].

4In this section the SUðNÞ case will be considered and the
spacetime will be considered flat and Euclidean.

5This norm is discussed in detail in the classic papers [15–18].
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Gribov copies, the FP operator acquires zero modes and
then the FP determinant vanishes.

In the path integral approach, a possible solution for this
ambiguity is to restrict the integration range in the func-
tional space to a region in which the FP operator is positive
definite. In such a way the gauge related configurations
would be counted only once (a detailed analysis of this
approach can be found in [15–18]).

On the other hand, in the Abelian case on flat back-
grounds, being

U ¼ expði�Þ; (6)

the condition for the appearance of zero modes of the FP
operator in the Euclidean Lorenz gauge reduces to

hE� ¼ 0; (7)

while in the Coulomb gauge reduces to

�� ¼ 0: (8)

Here � is the three-dimensional Laplace operator and hE

is the Euclidean d’Alambert operator, in which the time has
been Wick-rotated t ! it.

This means that the gauge field does not enter explicitly
in the equation for the Gribov copies, so that in the Abelian
case the existence of the Gribov ambiguities cannot be
eliminated by restricting the path integral to a given region
as it occurs in the non-Abelian case. As is well known, on
flat spacetime, suitable boundary conditions make inverti-
ble both hE and �, or in other words, there are no non-
singular solutions with a strong enough falloff condition of
the Laplace equation, avoiding the appearance of copies in
Coulomb and Euclidean Lorenz gauges. However, on
curved spacetimes, and depending on the exact form of
the metric, nonsingular and normalizable copies may exist.
This is shown in the next section.

In the Coulomb gauge, suitable boundary conditions
(see, for instance, [15–19]; for two detailed reviews, see
also [3,4]) on the gauge transformation are

� !
r!10; (9)

N ð�Þ :¼
Z
�

ffiffiffiffi
�

p
d3�ðri�Þðri�Þ<1; (10)

where � is the determinant of the induced metric on the
spatial section �. On flat spacetimes, ri reduces to the
partial derivative @i and the indices are raised and lowered
a with Minkowski metric. On the other hand on a curved
background, the metric g�� and the corresponding cova-

riant derivatives have to be used. The above condition (10)
on the norm is derived from the requirement that, if before
the gauge transformation one has

Z
�

ffiffiffiffi
�

p
d3�AiA

i <1; (11)

then, after the gauge transformation,

Ai ! ðA�Þi ¼ Ai þ @i�; (12)

and one should also have

Z
�

ffiffiffiffi
�

p
d3�ðA�ÞiðA�Þi <1: (13)

In other words, one should ask for ri� to satisfy the same
falloff conditions that one requires for A. Unlike the non-
Abelian case, to avoid zero modes of the FP operator in the
Abelian case, it is enough to consider nonsingular fields
decreasing at infinity and to notice that, on flat back-
grounds, the Laplace operator does not possess everywhere
smooth and nonsingular solutions, decreasing fast enough
at infinity.
On the other hand, when defining the path integral on a

curved background in the Coulomb gauge for an Abelian
gauge theory, the FP determinant explicitly appears and is
given by

J ¼ detriri; (14)

which represents the Jacobian of the change of coordinates
in the functional space. Therefore, if there exist nontrivial
and everywhere smooth regular solutions of the equation

riri� ¼ 0; (15)

then the determinant in Eq. (14) vanishes and the path
integral in the Coulomb gauge cannot be defined properly.6

On curved backgrounds, the operator ri is the covariant
derivative along the spatial directions on which one would
like to define a path integral quantization of an Abelian
gauge theory. Therefore, in some interesting cases non-
trivial smooth-everywhere regular solutions of Eq. (15) do
indeed exist as will be shown in the next sections. One
could still try to insist in factoring out the zero modes of the
FP operator riri when computing the determinant: this
procedure seems to be reasonable when the operator just
has one or few zero modes. Nevertheless in what follows,
we will construct examples in which the FP operator riri

has infinitely many zero modes and, in these cases, the
factorizing-out procedure appears quite unnatural. It is
worth emphasizing that one cannot exclude the existence
of zero modes by just imposing stronger asymptotic falloff
conditions on the gauge potential since this would corre-
spond to arbitrarily ‘‘mutilating’’ the solution space of the
gauge field [20].

III. COULOMB GAUGE IN STATIC SPHERICALLY
SYMMETRIC SPACETIMES

Let us consider a static spherically symmetric metric in
d dimensions of the form

6In flat spacetimes the operators ri are nothing but the usual
partial derivatives (ri ¼ @i) so that, as has been already dis-
cussed, the FP determinant J ¼ det@i@

i does not vanish.
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ds2d ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
d�2; (16)

where the spatial section is the warped product of the real
line and a d� 2-dimensional sphere Sd�2.

The Coulomb gauge condition reads

riAi ¼ 0; (17)

where ri is the covariant derivative along the spatial
directions (i ¼ 1; 2; . . . ; d� 1) of the metric (16), and the
Ai are the spatial components of the Abelian vector poten-
tial. Therefore, the equation which determines the appear-
ance of a zero mode � of the FP operator in the Coulomb
gauge simply reduces to the Laplace equation on the
spatial section of (16), i.e.,

riri� ¼ 0: (18)

Let us now decompose the gauge parameter � as follows:

� ¼ FðrÞYðSd�2Þ; (19)

where YðSd�2Þ is a generalized spherical harmonic on the
d� 2-dimensional sphere

r2
Sd�2Y ¼ �QY; (20)

with Q being the corresponding eigenvalue lðlþ d� 3Þ.
Equation (18) reduces to

2fF00 þ ð2ðd� 2Þfþ rf0Þr�1F0 � 2Qr�2F ¼ 0; (21)

where prime denotes derivative with respect to the
argument.

Interestingly enough, Eq. (21) allows one to integrate the
metric function fðrÞ in terms of the radial part FðrÞ of the
zero mode:

fðrÞ ¼ r�2dþ4ðRr QðF2ðxÞÞ0x2d�6dxþ I1Þ
ðF0Þ2 ; (22)

where I1 is an integration constant. This simple relation
allows one to draw some general conclusions about how a
static spherically symmetric gravitational field has to be-
have, in order to induce zero modes of the FP operator in
the Coulomb gauge. In other words, assuming that � is an
everywhere-regular smooth gauge transformation, it is
possible to determine the asymptotic behavior of the metric
for r ! 1. It is worth stressing here the close similarity of
the present procedure, which allows one to express the
gravitational field in terms of the zero modes of the FP
operator, with the well-known technique in supersymmet-
ric quantum mechanics, which allows one to write the
quantum Hamiltonian in terms of the corresponding zero
mode (see, in particular, [21–23]).

IV. SOME COMMENTS ON THE GENERIC
BEHAVIOR OF BACKGROUNDS INDUCING ZERO

MODES OF THE FP OPERATOR

In this section we will concentrate on the asymptotic
behavior of the metric function fðrÞ obtained from Eq. (22)
at infinity, i.e., when r ! 1.
Since the hypothesis is that the zero mode � ¼

FðrÞYðSd�2Þ is everywhere regular and smooth, let us
assume that for r ! 1, the behavior of FðrÞ is
FðrÞ �

r!1c0þ
c1
rn

þ��� ; n> 0; c0 � 0; c1 � 0;

(23)

where ( � � � ) denotes subleading terms and c0, c1 are con-
stants (the analysis in the cases in which c0 and/or c1
vanish/es follows along the same lines). Then

F2 �
r!1ðc0Þ

2 þ 2c0c1
rn

þ � � � ; F0 �
r!1� nc1

rnþ1
þ � � � :

(24)

Therefore, in the asymptotic region r ! 1 using (22)
when c0 � 0, one obtains the following expression for
fðrÞ:

fðrÞ �
r!1

I1
c21n

2
r6þ2n�2d� 2Qc0

nc1ð2d�n�6Þr
n� Q

nðd�n�3Þ ;

n�2d�6; and n�d�3: (25)

Then this is the generic expression for the metric function
fðrÞ when the zero mode of the FP operator takes the form
(23).7

On the other hand, when c0 ¼ 0 in Eq. (23), one obtains

fðrÞ �
r!1

I1
c21n

2
r6þ2n�2d � Q

nðd� n� 3Þ ; n � d� 3:

(26)

The requirement that on the spacetime (16), the norm
(10) of the gauge transformation � ¼ FðrÞYðSd�2Þ has to
remain finite reduces to

N ð�Þ :¼
�Z

drrd�2f1=2ðF0Þ2 þ rd�4f�1=2F2Q

�

�
�Z

Sd�2
Y�Y

ffiffiffiffiffiffiffiffiffiffiffiffi
�d�2

p
dd�2x

�
<1: (27)

The angular integral is finite and so one needs to take care
only of the radial integral. When c0 � 0, replacing in the
expressions (23) and (25) in the norm (27), one concludes
that the convergence of the latter is guaranteed when

n > 2ðd� 3Þ or (28)

7For the special values n ¼ 2ðd� 3Þ or n ¼ d� 3, logarith-
mic branches may appear, and the analysis follows along the
same lines.
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n � 2ðd� 3Þ and Q ¼ 0 with I1 � 0: (29)

For c0 ¼ 0, the expression for the metric function fðrÞ is
given by Eq. (26) and the norm (27) converges if

n >
d� 3

2
: (30)

The case with d ¼ 3 must be analyzed separately: the
metric function fðrÞ and the radial part FðrÞ of the zero
mode are given by (22) and (23), respectively. In this case,
the norm (27) always converges at infinity. In the next
section, some explicit three-dimensional spacetimes which
induce zero modes of the FP operator will be constructed.

Based on the above discussion, it is possible to draw
some interesting conclusions.

If the spacetime is asymptotically locally flat, fðrÞ in
(16) should behave as follows:

f �
r!1 1þ c

rp
þ � � � ; p > 0; (31)

with c and p being constants. Thus, in such cases, induced
zero modes of the FP operator in the Coulomb gauge could
appear only when c0 ¼ 0 and n < d� 3 [see Eq. (26)].
However when c0 ¼ 0, the finiteness of the normN ð�Þ in
(27) implies Eq. (30), and consequently8 in this case zero
modes of the FP operator would exist provided

ðd� 3Þ=2< n< d� 3: (32)

From this analysis it is also clear that an asymptotically
Schwarzschild spacetime, for which the asymptotic behav-
ior of fðrÞ is given by (31) with p ¼ d� 3, will not
generate zero modes of the FP operator. This is due to
the fact that comparing (26) and (31) one obtains n ¼ ðd�
3Þ=2, giving rise to a non-normalizable zero mode [see
Eq. (32)].

Another interesting asymptotic behavior is defined by
the AdS spacetimes. In AdS and asymptotically AdS met-
rics, fields propagating in the bulk have been conjectured to
be dual to a conformal field theory in the boundary [11]:
the so-called AdS/CFT correspondence opens the remark-
able possibility to explore the nonperturbative regime of
supersymmetric Yang-Mills theories by performing semi-
classical computations in the bulk of asymptotically AdS
background (see also [24]). Furthermore, this idea also has
been used to give a consistent microscopic interpretation of
the black hole entropy. In particular, unlike the higher
dimensional cases, in 2þ 1 dimensions the algebra of
the asymptotic symmetries of an asymptotically AdS
spacetime is enlarged to two copies of the infinite dimen-
sional Virasoro algebra, whose central charge can be used
to compute the entropy of the BTZ black hole [12] by
means of the Cardy formula [25,26]. These reasons make
AdS3 as well as the BTZ black hole two of the most

important curved geometries in high-energy physics. In
the next section, it will be shown that the problem of
finding normalizable zero modes of the FP operator both
onAdS3 and on the BTZ black hole can be solved in a quite
elegant and simple way. It also will be shown how to
construct normalizable zero modes of the FP operator on
an interesting four-dimensional wormhole spacetime.

V. EXPLICIT EXAMPLES OF BACKGROUNDS
GENERATING ZERO MODES OF THE FP

OPERATOR

A. AdS3 spacetime

As mentioned above, the three-dimensional AdS space-
time is of special interest for high-energy physics in view
of the AdS/CFT correspondence [11]. The AdS3 metric is
given by

ds2 ¼ �
�
r2

l2
þ 1

�
dt2 þ dr2

r2

l2
þ 1

þ r2dc 2; (33)

where �1< t <þ1, the radial coordinate runs in the
range 0 � r <þ1, and the angular coordinates fulfill 0 �
c � 2�, 0 being identified with 2�. This spacetime is of
constant and negative curvature. It solves the Einstein
equations with a negative cosmological constant � ¼
� 1

l2
, where l is the AdS radius. Assuming the separation

(19) for the zero mode, where now the spherical harmonics
are

YðS1Þ � eimc ; (34)

with m an integer, Eq. (18) reduces to

2r2fF00 þ rð2fþ rf0ÞF0 � 2m2F ¼ 0; (35)

where fðrÞ ¼ r2

l2
þ 1. For positivem, the regular solution at

the origin reads

FðrÞ ¼ C
ðr=lÞm�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
þ 1

q �
m
; (36)

C being an integration constant.9 This solution is regular
everywhere and when r goes to infinity FðrÞ tends to the
constant C. The norm (27) in this case reduces to

N ð�Þ ¼ 4�C2m2
Z 1

0

lr2m�1ðr2 þ 2l2 þ 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ l2
p

ðlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
Þ2mþ2

dr:

(37)

This integral converges, since the integrand (denoted by
HAdS3) is smooth, it goes to zero at the origin and also goes

to zero when r goes to infinity as

8Note that again these bounds suggest that the case d ¼ 3
should be analyzed separately.

9For negative m the solution which is regular at the origin is
precisely the one we discarded in the case with m positive, and
the solution takes the same expression.
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HAdS3 �r!1
1

r2
þOð1=r3Þ: (38)

Thus AdS3 generates infinite zero modes of the FP opera-
tor. This result is particularly relevant for the AdS/CFT
conjecture, and it would be nice to further analyze the
consequences of the existence of these zero modes from
the point of view of the dual-boundary CFT.

B. Zeromodes of the FP operator on the BTZ black hole

The metric for the static BTZ black hole is given by [12]

ds2 ¼ �
�
r2

l2
��

�
dt2 þ dr2

r2

l2
��

þ r2dc 2; (39)

with 0< c � 2�, and 0 identified with 2�. This space-
time describes an asymptotically AdS black hole whose
mass is proportional to the parameter �. The correspond-
ing event horizon is located at r ¼ rþ ¼ l

ffiffiffiffi
�

p
. The metric

(39) can be also obtained by an identification of the three-
dimensional AdS3 spacetime (33) [27]. For our purposes,
we will consider only the exterior part of the black hole
(39),

l
ffiffiffiffi
�

p
< r <þ1; (40)

since the Euclidean continuation of the black hole metric
(which is necessary to achieve a proper definition of black
hole thermodynamics) covers only the region outside of the
event horizon. It is useful to perform the change of coor-
dinates

r ¼ l
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; (41)

with 0< x < 1, the surfaces x ¼ 0 and x ¼ 1 being the
horizon and spatial infinity, respectively. With this change
of coordinates the BTZ metric (39) reduces to

ds2 ¼ � �x2

1� x2
dt2 þ l2dx2

ð1� x2Þ2 þ
l2�

1� x2
dc 2: (42)

Assuming that the angular part of the zero mode is given by
(34), Eq. (18) for the corresponding radial part reads

�ð1� x2ÞF00ðxÞ ��xF0ðxÞ �m2FðxÞ ¼ 0: (43)

The solution of the above equation is given by

FðxÞ ¼ �1ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þðim=

ffiffiffi
�

p Þ

þ �2ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ�ðim=

ffiffiffi
�

p Þ; (44)

�1 and �2 being integration constants. The norm in this
case reduces to

N ð�Þ ¼ 4�2�1�2�
�1=2m2; (45)

being finite for any value of10 m.

C. FP zero modes in a four-dimensional wormhole
spacetime

Wormholes are some of the most fascinating curved
backgrounds since they possess two (or more) asymptotic
regions connected by one (or more) throat(s). Let us con-
sider the four-dimensional spherically symmetric worm-
hole metric

ds2 ¼ �dt2 þ d�2 þ cosh2�d�2
2; (46)

where d�2
2 is the line element for the two-sphere. The two

asymptotic regions possess geometries locally equivalent
to R�H3 (H3 being a negative three-dimensional con-
stant curvature manifold) and are located at � ! 	1.
These boundaries are connected by the throat being located
at � ¼ 0. As shown in Ref. [13], this spacetime is a
vacuum solution of Weyl conformal gravity in four dimen-
sions11: in this theory the field equations reduce to the
vanishing of the Bach tensor (for some relevant references,
see also [32–34]). It is interesting to note that wormhole
geometries in four dimensions can also arise in general
relativity with matter sources localized around the throat
and violating standard energy conditions (this type of
source can arise from quantum fluctuations [35]). The
metric (46) provides a simple background generating
zero modes of the FP operator.
After the change of coordinates � ¼ tanh�1x, the equa-

tion for the (radial part of the) FP zero mode in this case
acquires a very simple form,

ð1� x2ÞF00ðxÞ �QFðxÞ ¼ 0; (47)

which is integrated in terms of hypergeometric functions.
The norm of the zero mode is finite at both asymptotic
regions x ! 	1 only when Q ¼ 0 (the ‘‘S-wave’’). In this
case, the normalizable zero mode is given by

FðxÞ ¼ �ð1� xÞ; (48)

� being an integration constant. In the original coordinate
system the FP zero mode reads

� ¼ �ffiffiffiffiffiffiffi
4�

p ð1� xÞ ¼ �ffiffiffiffiffiffiffi
4�

p ð1� tanh�Þ; (49)

whose norm reduces to

10From Eq. (45), one may think that the massless BTZ black
hole, in which � ! 0, does not possess any normalizable zero
mode. Nevertheless analyzing the problem from scratch in such a
geometry one is able to show that also in this case infinitely
many normalizable zero modes exist.
11This wormhole has been extended to diverse dimensions
within certain gravity theories in [28–31].
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N ð�Þ ¼ 2�2: (50)

VI. POSSIBLE SOLUTIONS TO
GRAVITATIONALLY INDUCED GAUGE-FIXING

PROBLEMS AND FURTHER COMMENTS

In the previous sections, we have discussed the asymp-
totic behavior of static spherically symmetric curved back-
grounds which induces zero modes of the FP operator in
the Coulomb gauge and we have also constructed interest-
ing concrete examples. The aim of the previous sections
was first to show that this phenomenon is quite generic and
second to show that curved backgrounds of great theoreti-
cal interest are affected by this problem. The question of
how to solve this problem then naturally arises. A possible
point of view is that this is not a problem at all since in the
present case the metric-dependent FP determinant
detð�ririÞ does not depend on the gauge field and, there-
fore, it factorizes out from the path integral on the gauge
field:

Z ¼
Z

DA� detð�ririÞ expðSQEDÞ

¼ detð�ririÞ
Z

DA� expðSQEDÞ; (51)

where SQED is the standard QED action. Nevertheless, this

point of view is not very appealing for the following
reasons.

The first and main reason arises when one considers the
semiclassical quantization of gravity12; whatever the final
theory of quantum gravity is, a semiclassical regime in
which the weakly coupled quantum fluctuations of gravity
can be treated perturbatively with the usual method of
quantum field theory has to exist. In this regime, in which
the quantum gravitational effects are not strong (as, for
instance, in the first stages of the Hawking evaporation
process), one should treat the graviton (h��) as a quantum

fluctuation propagating on a classical gravitational back-
ground. This makes it compulsory that, when dealing with
QED on curved backgrounds, one should consider the
quantum fluctuations of the graviton as well. This point
of view is mandatory when one analyzes, for instance, the
perturbative regime of supergravity theories in which the
graviton h�� and the photon A� are in the same supermul-

tiplet or in the already mentioned black hole evaporation
process. Obviously, in this situation, the FP operator does
not factor out from the path integral (on both A� and h��)

anymore. The second reason is that, even in the context of
QED on a fixed curved background when Eq. (51) holds,
the proper definition of the FP determinant may be prob-

lematic. Indeed, some regularization procedure is needed
otherwise the path integral would be just multiplied by
zero. Furthermore, already at classical level the proper
definition of the canonical formalism through the Dirac
brackets would be ill defined since the inverse of the
spacelike Laplacian appears in the denominator of the
right-hand side of the Dirac brackets [37]. The usual
procedure to achieve this for the Coulomb gauge on flat
spacetime would be to regularize the FP determinant by
considering the functional space of functions orthogonal to
the zero mode (which on flat space is the constant func-
tion). Such a procedure is viable since it does not imply any
unphysical mutilation of the space of solutions. On the
other hand, if the FP operator admits nontrivial zero
modes, this procedure is quite subtle since by restricting
the functional space to functions orthogonal to the non-
trivial zero modes one could discard a physical part of the
functional space. Careless mutilations of the space of
solutions are known to lead to unphysical results: the
soundest point of view is to take as physical boundary
conditions the ones that lead to a well-defined variational
principle [20]. It seems that this criterion is not enough to
eliminate from the functional space the zero modes which
have been presented here since they satisfy all the required
boundary conditions. Eventually, when a classical back-
ground induces an infinite number of nontrivial zero modes
of the FP operator it appears that a suitable definition of the
path integral along these lines would not be possible at all.
The first and most obvious solution to this problem

would be to follow the same procedure as in non-Abelian
gauge theories, i.e., to restrict the path integral to a copy-
free region. In the context of the present paper, this means
to exclude spacetimes which induce zero modes of the
Coulomb gauge FP operator from the path integral.13

This point of view is strongly supported by the need to
take into account the effects of gravitational fluctuations in
many situations of interest (such as perturbative quantiza-
tion of supergravity or the analysis of the Hawking pro-
cess) as it has been explained in the discussion above. From
the point of view of quantum field theory, this does not
seem to produce any conceptual difficulty as has been
explained in Sec. II. Nevertheless from the point of view
of gravitational physics the need to declare, for instance,
the AdS3 and BTZ spacetimes unphysical is extremely
problematic. This is due to the fact that one of the most
powerful tools for making predictions both on a possible
quantum theory of gravity and on a nonperturbative regime
in Yang-Mills theory is given by the AdS/CFT correspon-
dence where the fields living in an AdS spacetime (includ-
ing Abelian fields) can be related to a conformal field
theory on the boundary. In the context of black hole

12We will not dwell here on which is the final theory of
quantum gravity; nevertheless, it is worth noting that the gravi-
tational action in three dimensions is renormalizable (see e.g.
[36]).

13As is well known, if the Coulomb gauge is pathological,
usually other covariant gauges manifest some kinds of patholo-
gies as well (see, for instance, [14,38]).
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physics, the case of a three-dimensional bulk spacetime
turns out to be especially important. The AdS3=CFT2

correspondence is one of the most-used tools to describe
the gravitational microstates responsible for the black hole
entropy. Therefore, the solution to declare, for instance, the
three-dimensional AdS spacetime and the BTZ black hole
as unphysical would have highly nontrivial consequences.
This issue is worth further investigation.

The second and more ambitious solution to gravitation-
ally induced gauge-fixing problems would be to formulate
from the very beginning QED in terms of gauge-invariant
variables (such as the Wilson loops) which are not affected
by gauge-fixing problems. Even if this would be the most
elegant possibility, it is not very practical yet since, up to
now, explicit nontrivial computations in field theory in
terms of Wilson loops have been performed only in topo-
logical field theories.
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