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Dyson-Schwinger equations for the UðnÞ �UðnÞ symmetric matrix sigma model reformulated with

two auxiliary fields in a background breaking the symmetry to UðnÞ are studied in the so-called bare

vertex approximation. A large n solution is constructed under the supplementary assumption so that the

scalar components are much heavier than the pseudoscalars. The renormalizability of the solution is

investigated by explicit construction of the counterterms.
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I. INTRODUCTION

Universal features of finite temperature and finite den-
sity variation of the QCD ground state realizing the
SUð3ÞR � SUð3ÞL approximate chiral symmetry were
understood with the help of the corresponding meson
model [1]. There were also numerous attempts to treat
quantitatively the finite temperature restoration of chiral
symmetry of the strongly interacting matter in the frame-
work of this model. A common goal of these investigations
is the description of the quark mass dependence of the
nature of the finite temperature symmetry restoration [2–
4]. Another central issue is the nature of the phase tran-
sition, when the baryonic density is varied. For its inves-
tigation one couples constituent quarks carrying baryon
number to the meson model [5–8].

Optimistically one could say, that the location of the
characteristic points of the QCD phase diagram determined
with different variants of the model and in different ap-
proximations do agree with each other and with the results
of the lattice field theoretical simulations within a factor of
2. In particular, improved agreement with lattice determi-
nations of the QCD phase diagram were reported, when the
Polyakov loop degree of freedom is coupled to the quark-
meson model [9–11]. But the effective models are all
strongly coupled, therefore one usually experiences large
variations in their predictions, when the simplest mean-
field treatments are improved by taking into account quan-
tum fluctuations of the mesons and the constituent quarks
[12]. This circumstance limits the competitivity of their
predictions.

Some time ago we initiated the application of the ex-
pansion in the number of quark flavors for the description
of the chiral symmetry restoration in the two-flavor model

[13,14]. The approach was suggested by the SUð2Þ �
SUð2Þ �Oð4Þ isomorphy and the fortunate fact that the
N ¼ 1 solution of the OðNÞ model is the textbook ex-
ample of the application of the 1=N expansion [15].
Recently, next-to-leading order (NLO) results were also
presented for the pressure of the relativistic OðNÞ model
and applied to the physical (N ¼ 4) sigma-pion gas
[16,17]. In this context also the renormalizability of the
NLO approximation was fully clarified and shown to be
valid in various formulations of the model (with and with-
out auxiliary field) [18].
An analogous development for the three-flavor meson

(and quark-meson) model is hindered, because even the
leading order solution of the large-n limit of the UðnÞ �
UðnÞ symmetric linear sigma-model is unknown. Progress
would represent interest also for the Higgs sector of techni-
color models of electroweak symmetry breaking [19,20].
To our best knowledge, no published attempts exist, which
would go beyond the partial large-n treatments of the
Oð2n2Þ-symmetric nonlinearities. The results obtained
with such an approach are questionable in light of the
rather different finite temperature renormalization group
behavior of the Oð2n2Þ and UðnÞ �UðnÞ symmetric mod-
els for n � 3 [1,21].
The goal of the present paper is to describe an approxi-

mate leading order (n ¼ 1) solution. Although it takes
into account only two-loop contributions to the 2PI (two-
particle irreducible) effective action, it definitely goes
beyond the Oð2n2Þ symmetric solution. It exploits, in
addition to the large n expansion, an assumption concern-
ing the mass spectra of the model. The region in the
coupling space, where this assumption is valid can be
estimated by determining the spectra from the approximate
solution self-consistently. In this paper we present the
construction of the renormalized version of this solution
in some detail, and provide also an illustrative investigation
of its range of validity. A deeper analysis of the mass
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spectra and the finite temperature features are left to a
forthcoming publication.

The idea to impose an extra assumption on the mass
spectra stems from the common practice of dealing with
the 4 scalars and 4 pseudoscalars defining the SUð2Þ �
SUð2Þ symmetric meson model. One simply omits half of
the fields, e.g. the 3 components of the scalar-isovector
triplet and the pseudoscalar-isoscalar singlet with refer-
ence to their higher mass. One arrives this way at the
Gell-Mann-Lévy linear sigma model. We shall assume an
analogous feature to occur in the spectra of the leading
order solution at large n. We do not attempt the anomalous
realization of the UAð1Þ symmetry, therefore in this limit-
ing case all pseudoscalars will have the same mass. Based
on this assumption, in a first approximation to the n ¼ 1
solution we retain only the quantum fluctuations of the
light pion fields. After finding the propagators of the scalar
fields, one calculates corrections to the pion propagator
arising from the heavy scalar fluctuations. In principle, one
can iterate this procedure until the solution of the large-n
bare vertex approximation (BVA) is reached. It will be
demonstrated, that the pion fields still obey Goldstone’s
theorem after the scalar corrections are included. We shall
explore the divergence structure of the equation of state,
the pion self-energy, and the saddle-point equations
(SPEs), and determine the counterterm pieces in the effec-
tive action necessary for their renormalization.

The paper is organized as follows. In Sec. II, the model
is reformulated with two auxiliary fields. We elaborate also
on the expected mixing structure of the solution. In Sec. III,
the leading large-n Dyson-Schwinger (DS) equations are
presented in BVA and the corresponding 2PI effective
potential is constructed. In section IV, we present an ap-
proximate solution, which is valid when the scalars are
much heavier than the pseudoscalar fields of the model.
Here also a simplified exploration of the range of validity
of this assumption is given. The renormalizability of the
proposed solution is investigated in Sec. V. In the diver-
gence analysis we rely on a number of cutoff sensitive
integrals collected in Appendix A. The paper ends with the
conclusions (Sec. VI).

II. FORMULATION OF THE MODELWITH
AUXILIARY FIELDS

The Lagrangian of the model in its usual form reads as

L ¼ Tr½@�M@�My �m2MMy� � g1
n2

ðTrMMyÞ2

� g2
n

TrðMMyÞ2 þ
ffiffiffiffiffiffiffiffi
2n2

p
hs0; (1)

where the algebra valued complex field M is parametrized
with help of the generators of the UðnÞ group:

M ¼ ðsa þ i�aÞTa; TrTaTb ¼ 1

2
�ab;

a ¼ 0; 1; . . . ; n2 � 1:

(2)

In terms of the matrix elements, it can be written in the
following form:

L ¼ 1

2
½ð@�saÞ2 þ ð@��aÞ2 �m2ððsaÞ2 þ ð�aÞ2Þ�

þ
ffiffiffiffiffiffiffiffi
2n2

p
hs0 � g1

4n2
ððsaÞ2 þ ð�aÞ2Þ2 � g2

2n
ðUaÞ2; (3)

where the UðnÞ vector Ua is defined as

Ua ¼ 1
2d

abcðsbsc þ �b�cÞ � fabcsb�c; (4)

with dabc and fabc being the symmetric and antisymmetric
structure constants of the UðnÞ group, respectively. Some
useful relations involving them can be found in
Appendix B., which are needed in order to obtain the
subsequent equations. Two auxiliary fields are introduced
by adding the following constraints to the Lagrangian:

�L ¼ � 1

2

�
X� i

ffiffiffiffiffiffiffiffi
g1
2n2

r
ððsaÞ2 þ ð�aÞ2Þ

�
2

� 1

2

�
Ya � i

ffiffiffiffiffi
g2
n

r
Ua

�
2
: (5)

In the sum L � Lþ�L the UðnÞ �UðnÞ ! UðnÞ sym-
metry breaking pattern corresponds to the shifts

sa ! sa þ
ffiffiffiffiffiffiffiffi
2n2

p
v�a0;

Ua ! Ua þ 2
ffiffiffi
n

p
vsa þ n

ffiffiffiffiffiffi
2n

p
�a0v2:

(6)

After the introduction of the auxiliary field variables and
the shifts, the full Lagrangian has the following form:

L ¼ 1

2
½ð@�saÞ2 þ ð@��aÞ2 �m2ð2n2v2 þ 2

ffiffiffiffiffiffiffiffi
2n2

p
vs0

þ ðsaÞ2 þ ð�aÞ2Þ� þ
ffiffiffiffiffiffiffiffi
2n2

p
hðs0 þ

ffiffiffiffiffiffiffiffi
2n2

p
vÞ � 1

2
X2

� 1

2
ðYaÞ2 þ i

ffiffiffiffiffiffiffiffi
g1
2n2

r
Xð2n2v2 þ 2

ffiffiffiffiffiffiffiffi
2n2

p
vs0 þ ðsaÞ2

þ ð�aÞ2Þ þ i

ffiffiffiffiffi
g2
n

r
YaðUa þ 2

ffiffiffi
n

p
vsa þ

ffiffiffiffiffiffiffiffi
2n3

p
�a0v2Þ:

(7)

Next, we shortly describe the assumed structure of the
solution and introduce some notations. The classical con-
straint equations show that the background v induces non-
zero X, Y0 values and introduces mixing of the pair s0, X
and also of sa, Ya for every value of the index a. We
construct correspondingly a quantum solution, where the
saddle-point values of X, Y0 are nonzero, Ya ¼ 0, a � 0,
and only the following 2-point functions do not vanish:
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½Gs0X; Gs0Y0 ; GXY0 ; Gs0s0 ; GY0Y0 ; GXX�;
½Gsusv;u¼v�0; GsuYv;u¼v�0; GYuYv;u¼v�0�; G�u�v;u¼v:

(8)

The sets in square brackets form mixing sets of fields: there
is a 3-dimensional mixing sector, and there are n2 � 1
identical copies of 2-dimensional mixing two-point func-
tions. The � sector is diagonal. The equations presented in
the next section show degeneracy of the 2-point functions
for u ¼ v � 0, therefore it is convenient to introduce the
following short-hand notations:

Gs0s0 � Gs0 ; GXX � GX; GY0Y0 � GY0 ;

G�0�0 � G�0 ; G�u�u � G�; Gsusu � Gs;

GsuYu � GsY; GYuYu � GY; u � 0:

(9)

III. DYSON-SCHWINGER EQUATIONS AND
THEIR TRUNCATION

A. The equation of state and the saddle-point equations

Standard rules [22] of constructing the derivatives of the
quantum effective action � with respect to the fields leads
to the following expressions:

��

�X
¼ �X þ i

ffiffiffiffiffiffiffiffi
g1
2n2

r �
2n2v2 þ 2

ffiffiffiffiffiffiffiffi
2n2

p
vs0 þ ðsaÞ2 þGsasa þ ð�aÞ2 þG�a�a

�
;

��

�Yu ¼ �Yu þ i

ffiffiffiffiffi
g2
n

r �
Uu þ 2

ffiffiffi
n

p
vsu þ

ffiffiffiffiffiffiffiffi
2n3

p
�u0v2 þ 1

2
dubcðGsbsc þG�b�cÞ � fubcGsb�c

�
;

��

�su
¼ �ðhþm2Þsu � ðm2

ffiffiffiffiffiffiffiffi
2n2

p
� 2i

ffiffiffiffiffi
g1

p
XÞv�u0 þ

ffiffiffiffiffiffiffiffi
2n2

p
h�u0 þ i

ffiffiffiffiffiffiffiffi
2g1

p
n

ðXsu þGXsuÞ þ i

ffiffiffiffiffi
g2
n

r
½dabuðsbYa þGsbYaÞ

þ 2
ffiffiffi
n

p
vYu � faucð�cYa þG�cYaÞ�;

��

��u ¼ �ðhþm2Þ�u þ i

ffiffiffiffiffiffiffiffi
2g1

p
n

ðX�u þGX�uÞ þ i

ffiffiffiffiffi
g2
n

r
½dabuð�bYa þG�bYaÞ � fabuðsbYa þGsbYaÞ�:

(10)

Taking further functional derivatives of these expressions,
one arrives at the equations of the 2-point functions (see
next subsection). Also, when one equates the derivatives of
� to zero, the equations determining the physical value of
the background v and the auxiliary fields X, Y0 are ob-
tained (we do not distinguish the notations of the solutions
of these equations from the variables taking arbitrary val-
ues). Using the Fourier representation of the propagators,
from (10) one gets the two SPEs and the equation of state
(EoS) (setting u ¼ 0) at the leading order of the large n
expansion as

0 ¼ �X þ in
ffiffiffiffiffiffiffiffi
2g1

p
v2 þ i

ffiffiffiffiffi
g1
2

r
n

�Z
k
GsðkÞ þ

Z
k
G�ðkÞ

�
;

0 ¼ �Y0 þ in
ffiffiffiffiffiffiffiffi
2g2

p
v2 þ i

ffiffiffiffiffi
g2
2

r
n

�Z
k
GsðkÞ þ

Z
k
G�ðkÞ

�
;

0 ¼ � ffiffiffi
2

p
nv

�
m2 � i

ffiffiffiffiffiffiffiffi
2g1

p
n

X � i

ffiffiffiffiffiffiffiffi
2g2

p
n

Y0

�

þ ffiffiffi
2

p
nhþ i

ffiffiffiffiffiffiffiffi
2g2

p
n
Z
k
GsYðkÞ; (11)

respectively. We note, that the equations for �a and su

imply for u � 0 vanishing expectation values automati-
cally, taking into account the above assumed list of the
nonvanishing 2-point functions. One should also note that
the auxiliary fields X, Y0 �OðnÞ. Comparing the solutions
of the equations for the two auxiliary fields, one finds a
relation valid both in renormalized and unrenormalized

versions:

ffiffiffiffiffi
g1

p
Y0 ¼ ffiffiffiffiffi

g2
p

X: (12)

Also, it proves useful in the further discussion to introduce
the combination

M2 ¼ m2 � i

n
ð ffiffiffiffiffiffiffiffi
2g1

p
X þ ffiffiffiffiffiffiffiffi

2g2
p

Y0Þ: (13)

B. The propagator equations

The second derivatives of the effective action yield the
various 2-point functions. It is convenient to introduce the
following tree-level inverse propagator commonly appear-
ing in several two-point functions:

iD�1
0 ðpÞ ¼ p2 �M2: (14)

In this section we substitute for all 3-point functions their
classical expressions listed below in (15) and therefore
close the coupled set of DS equations at the 2-point level
(BVA). From (7) one can read off the nonzero classical 3-
point couplings:
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�X�a�b ¼ �Xsasb ¼ i

ffiffiffiffiffiffiffiffi
2g1

p
n

�ab�ðx� yÞ�ðx� zÞ;

�Yasbsc ¼ �Ya�b�c ¼ i

ffiffiffiffiffi
g2
n

r
dabc�ðx� yÞ�ðx� zÞ;

�Yasb�c ¼ �i

ffiffiffiffiffi
g2
n

r
fabc�ðx� yÞ�ðx� zÞ:

(15)

In the pseudoscalar sector the following DS-equations
are found at leading order [the abbreviated notationR
G½:�G½:� �

R
k G½:�ðkÞG½:�ðpþ kÞ is used]:

iG�1
�0 ¼ iD�1

0 � 2ig2
Z

GYG�;

iG�1
� ¼ iD�1

0 � ig2
Z

GYðGs þG�Þ þ ig2
Z

GsYGsY:

(16)

One notes the potential violation of Goldstone’s theorem
when comparing G�ðk ¼ 0Þ or G�0ðk ¼ 0Þ with the equa-
tion of state. Nevertheless, our approximate solution obeys
this theorem due to a rather nontrivial relation between the
relevant tadpole and bubble contributions (see next sec-
tion). The previous relations also hint to a possible further
dynamical violation of the remaining UðnÞ symmetry to
SUðnÞ due to the coupling of the auxiliary variables Yu to
the scalar fields su, which is proportional to the antisym-
metric structure tensor fabc. This coupling can be seen
explicitly in the structure of the Ya � sa sector, where (if

a � 0) one finds n2 � 1 identical mixing 2� 2 DS equa-
tions:

iG�1
s ¼ iD�1

0 � ig2
Z

GsYGsY � ig2
Z

GYðGs þG�Þ;

iG�1
Y ¼ �1� ig2

Z
GsG� � i

g2
2

Z
ðGsGs þG�G�Þ;

iG�1
sY ¼ 2i

ffiffiffiffiffi
g2

p
v� ig2

Z
GsYðGs �G�Þ: (17)

In the 3� 3 mixing sector of ðX; Y0; s0Þ, the following 6
equations are obtained:

iG�1
X ¼ �1� ig1

Z
ðGsGs þG�G�Þ;

iG�1
XY0 ¼ �i

ffiffiffiffiffiffiffiffiffiffi
g1g2

p Z
ðGsGs þG�G�Þ;

iG�1
s0X

¼ 2i
ffiffiffiffiffi
g1

p
v� 2i

ffiffiffiffiffiffiffiffiffiffi
g1g2

p Z
GsGsY;

iG�1
Y0 ¼ �1� ig2

Z
ðGsGs þG�G�Þ;

iG�1
s0Y0 ¼ 2i

ffiffiffiffiffi
g2

p
v� 2ig2

Z
GsGsY;

iG�1
s0

¼ iD�1
0 � 2ig2

Z
ðGsGY þGsYGsYÞ:

(18)

One can collect the previously derived propagator equa-
tions and formulate them as matrices:

iG�1
ðs;YÞ ¼

iD�1
0 � ig2

R½GYðGs þG�Þ þGsYGsY� 2i
ffiffiffiffiffi
g2

p
v� ig2

R
GsYðGs �G�Þ

2i
ffiffiffiffiffi
g2

p
v� ig2

R
GsYðGs �G�Þ �1� i g22

�
Aþ R

2GsG�

�0
@

1
A; (19)

iG�1
ðX;Y0;s0Þ ¼

�1� ig1A �i
ffiffiffiffiffiffiffiffiffiffi
g1g2

p
A 2i

ffiffiffiffiffi
g1

p
v� 2i

ffiffiffiffiffiffiffiffiffiffi
g1g2

p R
GsGsY

�i
ffiffiffiffiffiffiffiffiffiffi
g1g2

p
A �1� ig2A 2i

ffiffiffiffiffi
g2

p
v� 2ig2

R
GsGsY

2i
ffiffiffiffiffi
g1

p
v� 2i

ffiffiffiffiffiffiffiffiffiffi
g1g2

p R
GsGsY 2i

ffiffiffiffiffi
g2

p
v� 2ig2

R
GsGsY iD�1

0 � 2ig2
RðGsGY þGsYGsYÞ

0
B@

1
CA: (20)

Here we introduced the notation A ¼ RðGsGs þG�G�Þ.

C. Construction of the two-loop 2PI effective potential

In this subsection a 2PI effective potential (V2PI) is
given, from which the previously determined equations
can be obtained directly by functional differentiation.
The functional depends on the background v, the auxiliary
(composite) fields ðX; Y0Þ and the 2-point functions. One
should observe, that in (16), (19), and (20) the corrections
to the tree-level propagators are given by 1-loop diagrams.
Such terms arise from 2-loop vacuum diagrams contribut-
ing to the 2PI effective potential by ‘‘cutting up’’ the lines
corresponding to a propagator under functional differen-
tiation (for an introduction see [23]). This means, that we
have to draw 2-loop vacuum diagrams with the participa-
tion of the original and the auxiliary fields to reproduce the
bubble contributions in the Dyson-Schwinger equations

above (for the pion propagator equation the process is
demonstrated on Fig. 1). This construction therefore cor-
responds to a specific truncation of the 2PI effective po-

FIG. 1. Vacuum diagrams contributing to the leading order
equation ofG� (cf. the ‘‘setting-sun’’ integrals of (23) containing
G� and proportional to n2). One pion line is cut corresponding to
the variation of the 2PI effective potential with respect to the
pion propagator.
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tential: from the infinite 2PI skeleton diagrams only a set of
2-loop graphs is taken into account.

The following zeroth order (tree-level) propagator ma-
trices from (7) will also appear in the 2PI effective poten-
tial:

iD�1
ðs;YÞ ¼

iD�1
0 2i

ffiffiffiffiffi
g2

p
v

2i
ffiffiffiffiffi
g2

p
v �1

 !
;

iD�1
ðX;Y0;s0Þ ¼

�1 0 2i
ffiffiffiffiffi
g1

p
v

0 �1 2i
ffiffiffiffiffi
g2

p
v

2i
ffiffiffiffiffi
g1

p
v 2i

ffiffiffiffiffi
g2

p
v iD�1

0

0
B@

1
CA:

(21)

At this point it is convenient to introduce the rescaled
variables

x ¼
ffiffiffiffiffiffiffiffi
2g1

p
n

X; y0 ¼
ffiffiffiffiffiffiffiffi
2g2

p
n

Y0; (22)

which leads to M2 ¼ m2 � iðxþ y0Þ. Using (11), (16),
(19), and (20), one writes

V2PI¼ n2ðm2v2�2hvÞþn2

4

�
1

g1
x2þ 1

g2
ðy0Þ2

�
� in2ðy0þxÞv2� i

n2

2

Z
k
ðlnG�1

� ðkÞþD�1
0 ðkÞG�ðkÞÞ

� i
n2

2

Z
k
Tr½lnG�1

ðs;YÞðkÞþD�1
ðs;YÞðkÞGðs;YÞðkÞ�� i

1

2

Z
k
ðlnG�1

�0 ðkÞþD�1
0 ðkÞG�0ðkÞÞ� i

1

2

Z
k
Tr½lnG�1

ðX;Y0;s0ÞðkÞ

þD�1
ðX;Y0;s0ÞðkÞGðX;Y0;s0ÞðkÞ�þ i

n2

4
g2
Z
k

Z
p
½ðG�ðkÞG�ðkþpÞþGsðkÞGsðkþpÞÞGYðpÞþ2GsYðkÞGsYðkþpÞGsðpÞ�

þ i
n2

2
g2
Z
k

Z
p
ðGYðkÞGsðkþpÞ�GsYðkÞGsYðkþpÞÞG�ðpÞþ i

1

2
g1
Z
k

Z
p
ðGsðkÞGsðkþpÞ

þG�ðkÞG�ðkþpÞÞGXðpÞþ i
ffiffiffiffiffiffiffiffiffiffi
g1g2

p Z
k

Z
p
ðGsðkÞGsðkþpÞþG�ðkÞG�ðkþpÞÞGXY0ðpÞ

þ i
1

2
g2
Z
k

Z
p
ðGsðkÞGsðkþpÞþG�ðkÞG�ðkþpÞÞGY0ðpÞþ2i

ffiffiffiffiffiffiffiffiffiffi
g1g2

p Z
k

Z
p
GsYðkÞGsðkþpÞGs0XðpÞ

þ2ig2
Z
k

Z
p
GsYðkÞGsðkþpÞGs0Y0ðpÞþ i

1

2
g2
Z
k

Z
p
ðGsðkÞGYðkþpÞþGsYðkÞGsYðkþpÞÞGs0ðpÞ

þ ig2
Z
k

Z
p
GYðkÞG�ðkþpÞG�0ðpÞþV2PI

ct : (23)

Since the � and the s� Y sectors are of multiplicity (n2 �
1), some Oð1Þ terms in (23) are not relevant for their
leading order equations. These contributions were there-
fore not written out explicitly in (16) and (17). There are
Oð1Þ terms of the complete effective potential, which
contribute only to the � or s� Y sector (at NLO), these
are omitted from (23). However, for the remaining propa-
gators it is necessary to take into account the proper Oð1Þ
terms, which are therefore included in (23). This means,
that (23) is not a large-n expanded 2PI effective potential
truncated at 2-loop level. Note, that the structure appearing
in the first integral of the fourth line corresponds to a
setting sun diagram with antisymmetrized vertex functions
(e.g. �fabc).

In V2PI
ct one collects all counterterms, which should

ensure the finiteness of the equations. One can introduce
counterterms to all independent pieces appearing in the
mean-field part of the effective potential and independently
of them also to the terms showing up in the inverse tree-
level propagators. Note that one might have to introduce
counterterms also to pieces which are chosen to have a

fixed numerical (zero or unity) renormalized coefficient.
No counterterms are introduced corresponding to the
setting-sun contributions, since these couplings are kept
at their classical value. In this sense the most general form
which we will need and is allowed by the structure of V2PI

is the following:

V2PI
ct ¼ n2�m2

0v
2 þ n2

4
ð�xx

2 þ �yðy0Þ2Þ þ n2

2
ffiffiffiffiffiffiffiffiffiffi
g1g2

p �xyxy
0

� in2v2ð�yvy
0 þ �xvxÞ � in2ð�y0y

0 þ �x0xÞ

� i
Z
k

�
n2

2
�YYGYðkÞ þ �XXGXðkÞ þ �Y0Y0GY0ðkÞ

þ 2�XY0GXY0ðkÞ
�

� n2

2

Z
k
½ð�Z�k

2 � �m2
� þ i�x�xþ i�y�y

0ÞG�ðkÞ
þ ð�Zsk

2 � �m2
s þ i�xsxþ i�ysy

0ÞGsðkÞ� (24)

(the self-energy corrections to G�1
sY turn out to be finite).

Countercouplings proportional to xy0, y0, and xwill be also
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needed despite the fact that one chooses the corresponding
renormalized values to vanish. Similarly, countercouplings
in the third and fourth lines belong to the contribution of
the (pure) auxiliary propagators occurring in terms of the
type TrD�1G, in which all their renormalized coefficients
are fixed to unity except the coefficient of GXY0 , which is
zero. In the last two lines, countercouplings are introduced
to the terms appearing in D�1

ss and D�1
� . In the exact

solution of the theory only unique quadratic and quartic
counterterms should occur, but in any finite order of a 2PI
approximation one has the freedom to choose the counter-
couplings in the counterterm functional independently
[24]. For the determination of (24) one should analyze
the divergence structure of the integrals appearing in the
propagator equations.

IV. A SELF-CONSISTENTASSUMPTION ON MASS
HIERARCHY

The assumption, that the scalar sector is considerably
heavier than the pionic simplifies the solution of the limit-
ing form of the coupled Dyson-Schwinger equations valid
at infinite n. In addition, we assume that the scalar masses
are considerably larger than the amplitude of the symmetry
breaking vacuum condensate. Each component of the
propagators in the mixed sectors will have a common
denominator displaying the corresponding heavy mass.
Therefore the only consequent way to neglect in a first
approximation the heavy sector is to neglect the bubble
contributions containing at least one component ofGðs;YÞ or
GðX;Y0;s0Þ. Then, in a first approximation only bubble dia-

grams exclusively built with G� are included. This means
that in (16) all bubbles are suppressed, while in (19) and
(20) only the unique pure pion bubble remains.

A. Retaining only the light pion dynamics

The first consequence is that all n2 pion propagators are
equal to their tree-level value, and therefore have the same
mass: M2

�a ¼ M2. The explicit form of the saddle-point
equations can be written with the help of splitting the pion
tadpole into finite ðTF

�Þ and divergent parts [for the defini-

tions of Tð2Þ
d , Tð0Þ

d see Appendix A] as

Z
k
G�ðkÞ ¼ TF

� þ Tð2Þ
d þ ðM2 �M2

0ÞTð0Þ
d ; (25)

and using the counterterms it becomes the following:

x

g1
¼ ið2v2 þ Tð2Þ

d þ ðM2 �M2
0ÞTð0Þ

d þ TF
�Þ

�
�
�xxþ �xy

1ffiffiffiffiffiffiffiffiffiffi
g1g2

p y0
�
þ 2i�x0;

y0

g2
¼ ið2v2 þ Tð2Þ

d þ ðM2 �M2
0ÞTð0Þ

d þ TF
�Þ

�
�
�yy

0 þ �xy

1ffiffiffiffiffiffiffiffiffiffi
g1g2

p x

�
þ 2i�y0: (26)

It turns out, that at this level the other counterterms (e.g.
�xv, �x�, �xs, �yv, �y�, �ys) are zero, therefore for the sake

of transparency we did not written them out explicitly in
(26). Taking into account the definition (13) of M2, the
following counter terms renormalize both equations:

�x ¼ �y ¼ Tð0Þ
d ;

�x0 ¼ �y0 ¼ �1
2ðTð2Þ

d þ ðm2 �M2
0ÞTð0Þ

d Þ;
�xy ¼ ffiffiffiffiffiffiffiffiffiffi

g1g2
p

Tð0Þ
d :

(27)

Because of the omission of the last (’’heavy’’) term in the
third equation of (11), the equation of state does not require
any extra counterterm. The finite equations for the 1-point
functions read as follows:

x

g1
¼ ið2v2þTF

�Þ; y0

g2
¼ ið2v2þTF

�Þ; M2v¼ h:

(28)

The 2� 2 propagator matrix of the ðs; YÞ sector simplifies
to

iG�1
ðs;YÞðkÞ ¼

iD�1
0 ðkÞ 2i

ffiffiffiffiffi
g2

p
v

2i
ffiffiffiffiffi
g2

p
v �1þ i�YY þ g2

2 I�ðk;MÞ
 !

;

(29)

where we have introduced the function I�ðk;MÞ ¼
�i

R
p D0ðpÞD0ðpþ kÞ and also written down the contri-

bution obtained from V2PI
ct . By choosing

�YY ¼ i
g2
2
Tð0Þ
d ; (30)

one ensures the finiteness of the matrix elements. The
squared scalar mass is determined by the zero of the
determinant:

M2
ðs;YÞ ¼ M2 þ 4g2v

2 1

1� g2
2 I

F
�ðk ¼ Mðs;YÞ;MÞ : (31)

The mass matrix of the ðX; Y0; s0Þ sector also becomes
more transparent:

iG�1
ðX;Y0;s0Þ ¼

�1þ 2i�XX þ g1I�ðkÞ 2i�XY0 þ ffiffiffiffiffiffiffiffiffiffi
g1g2

p
I�ðkÞ 2i

ffiffiffiffiffi
g1

p
v

2i�XY0 þ ffiffiffiffiffiffiffiffiffiffi
g1g2

p
I�ðkÞ �1þ 2i�Y0Y0 þ g2I�ðkÞ 2i

ffiffiffiffiffi
g2

p
v

2i
ffiffiffiffiffi
g1

p
v 2i

ffiffiffiffiffi
g2

p
v iD�1

0 ðkÞ

0
B@

1
CA; (32)
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which, after introducing the obvious counterterms,

�XX ¼ i

2
g1T

ð0Þ
d ; �XY0 ¼ i

2

ffiffiffiffiffiffiffiffiffiffi
g1g2

p
Tð0Þ
d ; �Y0Y0 ¼ i

2
g2T

ð0Þ
d ;

(33)

leads to a determinant equation completely analogous to
the previous one:

M2
ðX;Y0;s0Þ ¼ M2 þ 4ðg1 þ g2Þv2

� 1

1� ðg1 þ g2ÞIF�ðk ¼ MðX;Y0;s0Þ;MÞ : (34)

One can see, that the spectra resulting from the assumption
we made for the mass hierarchy might be consistent with
the outcome in the sense that the scalar sector (and the
auxiliary fields hybridized with it) can be indeed heavier
than the pionic one.

In the next subsection we investigate the region of the
parameter space, where the scalar masses become much
heavier than the pseudoscalars ensuring the self-
consistency of our approximate solution.

B. Validity of the mass assumption

First, one has to note, that in the case when no explicit
symmetry breaking term is added to the Lagrangian (h ¼
0) the mass assumption is true, since our approximation
preserves Goldstone’s theorem and therefore makes the
pions massless, which means that they are ‘‘infinitely’’
lighter than the scalars.
The interesting case is when h � 0. Let us define rs;Y :¼

Mðs;YÞ=M and rX;Y0;s0 :¼ MðX;Y0;s0Þ=M. In order to obtain a

proper region of the parameter space, we introduce a
heaviness criterium: the scalars are heavy enough if rela-
tions rs;Y > r0, rX;Y0;s0 > r0 hold simultaneously, where r0
is a given number. It is somewhat arbitrary what value to
choose for r0. In this exploratory study, we work with the
convenient choice r0 ¼ 2, because the quantity IF�ðk;MÞ
appearing in both gap equations (31) and (34) develops an
imaginary part just for k2 > 4M2 (two-pion threshold).
Above the threshold the masses are defined as real parts
of the complex solutions. Expressing v from the EoS in
(28), the two relevant equations are the following:

M2
ðs;YÞ ¼ M2 þ 4g2

h2

M4

1� g2
2 <IF�ðk ¼ Mðs;YÞ;MÞ�

1� g2
2 <IF�ðk ¼ Mðs;YÞ;MÞ

�
2 þ

�
g2
2 =IF�ðk ¼ Mðs;YÞ;MÞ

�
2
;

M2
ðX;Y0;s0Þ ¼ M2 þ 4ðg1 þ g2Þ h

2

M4

1� ðg1 þ g2Þ<IF�ðk ¼ MðX;Y0;s0Þ;MÞ
½1� ðg1 þ g2Þ<IF�ðk ¼ MðX;Y0;s0Þ;MÞ�2 þ ½ðg1 þ g2Þ=IF�ðk ¼ MðX;Y0;s0Þ;MÞ�2 :

(35)

The bubble integrals are given by (A3). It is convenient to
express all masses in proportion to the absolute value of the

renormalized mass (
ffiffiffiffiffiffiffiffiffijm2jp

), which means practically to
write the definition of the pion mass as M2 ¼ �1� ix�
iy0. With the use of (28) and (A4), one gets

M2 ¼ �1þ ðg1 þ g2Þ
�
2h2

M4
þ M2

16�2
log

eM2

M2
0

�
(36)

whereM0 is the renormalization scale. For fixedM0, in the
original units (36) determines M2=jm2j as a function of
h=jmj3, g1, g2. Plugging it into the scalar gap equations,
they can be solved for Mðs;YÞ=

ffiffiffiffiffiffiffiffiffijm2jp
and MðX;Y0;s0Þ=

ffiffiffiffiffiffiffiffiffijm2jp
.

Then, one can trace out the region, where the heaviness
criterium is fulfilled. This region is the part of the positive
g1 � g2 octant (the stability region of the n ! 1 theory)
below the surface displayed in Fig. 2. As expected, the
projection of the allowed region onto the g1 � g2 plane
shrinks for increasing value of h=jmj3. We have varied
M0=

ffiffiffiffiffiffiffiffiffijmj2p
in the interval (1, 10) and only a mild displace-

ment of the allowed region could be observed without
really changing the shape. This change can be balanced
by an appropriate renormalization group transformation of
the quartic couplings, e.g. using gi ¼ giðM0Þ.

The modification of the allowed region occurring when
the spectra is corrected by the fluctuations of the heavy
scalars will be discussed in a forthcoming publication.

C. Heavy scalar corrections

Using the propagators of the coupled ðs; YÞ-sector, one
can start to systematically take into account the effect of
the heavy degrees of freedom on the pion propagator, the
EoS and the SPEs. In particular we now invoke the tadpole
and bubble contributions to these equations evaluated with
(29). For this we write explicitly the components of the
heavy scalar propagator matrix:

 1 2 3 4 5 6 7 8 9

 0
 10

 20
 30

 40
 50

 0.2

 0.3

 0.4

h/|m|3

g1

g2

h/|m|3

FIG. 2. Region of the parameter space, where the mass as-

sumption holds (using renormalization scale M0=
ffiffiffiffiffiffiffiffiffijm2jp ¼ 2:5).

RENORMALIZED LARGE-n SOLUTION OF THE . . . PHYSICAL REVIEW D 82, 045011 (2010)

045011-7



GsðkÞ ¼ i

dðkÞ
�
1� g2

2
IF�ðkÞ

�
;

GYðkÞ ¼ � i

dðkÞ ðk
2 �M2Þ; GsYðkÞ ¼ � 1

dðkÞ 2
ffiffiffiffiffi
g2

p
v;

dðkÞ ¼
�
1� g2

2
IF�ðkÞ

�
ðk2 �M2Þ � 4g2v

2:

(37)

With the help of these expressions, one readily writes the
scalar tadpole contributions to the SPEs. The correction of
the EoS is of imminent interest, since it has an important
role in the discussion of the validity of Goldstone’s theo-
rem. Using the expression of GsY , one finds the unrenor-
malized equation of state:

M2 þ 2g2
Z
p

i

dðpÞ ¼
h

v
: (38)

Now we proceed with the unrenormalized pion propaga-
tors:

iG�1
�0 ðkÞ ¼ k2 �M2 � 2g2

Z
p

i

dðpÞ
p2 �M2

ðk� pÞ2 �M2
;

iG�1
� ðkÞ ¼ k2 �M2 � g2

Z
p

i

dðpÞ
p2 �M2

ðk� pÞ2 �M2

þ 4g22v
2
Z
p

i

dðpÞdðk� pÞ

� ig2
Z
p

ðp2 �M2Þð1� g2I
F
�ðk� pÞ=2Þ

dðpÞdðk� pÞ :

(39)

When one sets k ¼ 0, both propagator equations turn out to
be the same. Comparing to the equation of state one finds,
that the approximation fulfills the Goldstone theorem char-
acterizing theUðnÞ �UðnÞ ! UðnÞ symmetry breaking. It
will be demonstrated in the next section, that both equa-
tions receive the same counterterm contributions.

Since the tadpoles of Gs and GsY play a role in the EoS
and the SPEs, it is worthwhile to investigate their correc-
tions, although these contributions should be considered
only as NNLO ‘‘heavy’’ corrections. Substituting the lead-
ing order propagators into the second term on the right
hand side of the equation ofG�1

sY (17), one finds for the�sY

self-energy:

�sYðpÞ � ig2
Z
k
GsYðp� kÞðGsðkÞ �G�ðkÞÞ

¼ �8g22
ffiffiffiffiffi
g2

p
v3
Z
k

1

dðp� kÞdðkÞðk2 �M2Þ ; (40)

which does not induce any counterterm, since it is finite.
The heavy correction to G�1

s is very similar to that of G�1
�

in (39):

iG�1
s ðkÞ ¼ k2 �M2 � g2

Z
p

i

dðpÞ
p2 �M2

ðk� pÞ2 �M2

� 4g22v
2
Z
p

i

dðpÞdðk� pÞ

� ig2
Z
p

ðp2 �M2Þð1� g2I
F
�ðk� pÞ=2Þ

dðpÞdðk� pÞ :

(41)

The scalar corrections are taken into account also in the
SPEs. They appear partly directly via the scalar tadpole,
and also by the scalar correction of the pion tadpole. The
structure of the two SPEs in (11) is identical in view of
(12), therefore it is sufficient to investigate the equation,
which determines x. The unrenormalized form of the
saddle-point equation reads as follows:

0 ¼ x

g1
� 2iv2 � i

Z
k
ðGsðkÞ þG�ðkÞÞ: (42)

The expression of the scalar tadpole is readily written
down. The pion tadpole is expanded to linear order in the
�� self-energy contribution:

� i
Z
k
G�ðkÞ � �i

Z
k
D0ðkÞ þ

Z
k

1

ðk2 �M2Þ2 ��; (43)

where

��ðkÞ ¼ g2
Z
p

i

dðpÞ
�

p2 �M2

ðk� pÞ2 �M2
� 4g2v

2

dðk� pÞ

þ ðp2 �M2Þð1� g2I
F
�ðk� pÞ=2Þ

dðk� pÞ
�
: (44)

All these equations need (resummed) renormalization,
which is discussed in detail in the next section. Note that in
this process the counterterms (27), which were determined
on the level of pure pionic fluctuations, receive further
contributions. Also, the yet unused counterterms (except
�Zs, �Z� counterterms proportional to wave function re-
normalization) will get nonzero values.

V. DIVERGENCE ANALYSIS AND
RENORMALIZABILITY

The separation of the divergences in the EoS, the cor-
rections to the pion propagator, and the SPEs rely very
heavily on our previous analysis of the NLO renormaliza-
tion of the OðNÞ model [18]. Most of the divergent inte-
grals occurring in the present analysis can be made finite
with the subtraction of the appropriate combinations of
divergent integrals defined there. For the reader’s conve-
nience we list those, which are used here, in Appendix A.
Let us start the divergence analysis with the EoS. The

integral appearing in it can be expanded for large momenta
in powers of 4g2v

2:
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Z
p

i

dðpÞ ¼
Z
p

i

ðp2 �M2Þð1� g2I
F
�ðpÞ=2Þ

�
�
1þ 4g2v

2

ðp2 �M2Þð1� g2I
F
�ðpÞ=2Þ

þ . . .

�
:

(45)

Only the first term of this expansion is divergent and its
divergence is given in (A5) with � ¼ g2=2:Z

p

i

dðpÞ
��������div

¼ Tð2Þ
a � 3g2

2
ðM2 �M2

0ÞTðIÞ
a : (46)

From here one finds for the corresponding countercou-
plings of (24):

�m2
0 ¼ �2g2

�
Tð2Þ
a � 3g2

2
ðm2 �M2

0ÞTðIÞ
a

�
;

�xv ¼ �yv ¼ 3g22T
ðIÞ
a :

(47)

Next we proceed with the �� self-energy. The second of
the three bubble integrals appearing in the expression of
the heavy scalar corrections to G�1

� (39) is finite. The first
integral can be written in power series with respect to
4g2v

2 as

�ig2
Z
p

1

dðpÞ
p2 �M2

ðk� pÞ2 �M2

¼ �ig2
Z
p

1

ðp2 �M2Þð1� g2I
F
�ðpÞ=2Þ

�
�
1þ 4g2v

2

ðp2 �M2Þð1� g2I
F
�ðpÞ=2Þ

þ . . .

�

� p2 �M2

ðk� pÞ2 �M2
: (48)

One recognizes again, that only the integral of the first term
of the expansion is divergent. This is exactly the integral
which was shown in Eq. (A7) of [18] to not have momen-
tum dependent divergence. The same analysis leads also in
case of the third integral to the same divergent piece.
Therefore one concludes �Z� ¼ 0.

In view of this, one can put k ¼ 0 in the pion propagator
and find its divergences. Since Goldstone’s theorem is
obeyed, the same divergences occur as in the EoS. As a
consequence one has in (24)

�m2
� ¼ �m2

0; �x� ¼ �xv; �y� ¼ �yv: (49)

Using these results, one can find promptly the counterterms
proportional to the Gs tadpole in (24). Since the divergent
pieces of �s coincide with those appearing in ��, one has

�Zs ¼ 0; �m2
s ¼ �m2

0; �xs ¼ �xv; �ys ¼ �yv:

(50)

These equalities reflect the fact that the ultraviolet behavior
of the � and s multiplets are the same, irrespective of the

symmetry breaking pattern and the structure of the mass
spectrum.
At this stage we have specified the expressions of the

countercouplings of the counterterm functional (24), up to
the scalar corrections of the purely X, Y0-dependent diver-
gences. The renormalized SPE of x takes a very transparent
form, when the results of the above analysis are taken into
account:

0 ¼ x

g1
� 2i

�
v2 þ 1

2

Z
k
ðGsðkÞ þG�ðkÞÞ

�
ð1þ �xvÞ þ �xx

� 2i�x0 þ 1ffiffiffiffiffiffiffiffiffiffi
g1g2

p �xyy
0: (51)

The last three terms represent the counterterms, which
cancel those divergences of the tadpole integrals, which
depend solely on x and y0. The consistency with the
previous steps of the renormalization requires the cancel-
lation of the ‘‘dangerous’’ product �xvð2v2 þ R

GsjF þR
G�jFÞ � �xvð2v2 þ TF

s þ TF
�Þ without the need for any

new counterterm (which would react back on the EoS and
the equation of the pion’s 2-point function). The unique
common divergent coefficient in front of this sum is ex-
pected to prevail in the exact renormalized equation, since
it is the result of the Goldstone theorem and of the UðnÞ �
UðnÞ symmetry valid in the ultraviolet regime.
The contributions cancelling the above counterterm con-

tribution come from the heavy corrections to the pion
tadpole and from the scalar tadpole eventually also modi-
fied by the heavy corrections. This cancellation can not be
complete on the level of the first round of heavy correc-
tions, since then the scalar tadpole does not give any
divergent term proportional to TF

s which would be able to
cancel �xvT

F
s . However, this latter should be invoked first

in the second iteration of the heavy corrections, therefore
one simply omits it at this stage of the iteration, and no
imbalance is detected in the divergences proportional to
TF
s .
The actual form of the SPE (51) is the following after the

first round of the heavy corrections:

0 ¼ x

g1
� 2i

�
v2 þ 1

2

Z
k
ðGsðkÞ þG�ðkÞÞ

�

� 2i

�
v2 þ 1

2

Z
k
D0ðkÞ

�
�xv þ �xx� 2i�x0

þ 1ffiffiffiffiffiffiffiffiffiffi
g1g2

p �xyy
0: (52)

Here one has to consider the pion tadpole as the sum
displayed in (43). The contribution of the scalar tadpole
when expanded in powers of 4g2v

2 can be written as
follows:
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�i
Z
k
GsðkÞ ¼ �i

Z
k

i

k2 �M2

�
�
1þ 4g2v

2 1

ðk2 �M2Þð1� g2I
F
�ðkÞ=2Þ

þ . . .

�
: (53)

Only these two terms, written out explicitly, contain diver-
gences, therefore

�i
Z
k
GsðkÞjdiv ¼ �i½Tð2Þ

d þ ðM2 �M2
0ÞTð0Þ

d � � 4ig2v
2

�
Z
k

i

ðk2 �M2Þ2ð1� g2I
F
�ðkÞ=2Þ

��������div

¼ �i½Tð2Þ
d þ ðM2 �M2

0ÞTð0Þ
d � þ 2ig22v

2TðIÞ
a :

(54)

Every term, except the last one on the right-hand side can
be cancelled by appropriate extensions of the counter terms
at most quadratic in x and y0 [see (27)]. The heavy cor-
rection of the pion tadpole has the following expression:

�

�
�i

Z
k
G�ðkÞ

�
¼�ig2

Z
k

i

ðk2�M2Þ2�
�Z

p

i

dðpÞ

�
�

p2�M2

ðk�pÞ2�M2
� 4g2v

2

dðk�pÞ

þðp2�M2Þð1�g2I
F
�ðk�pÞ=2Þ

dðk�pÞ
�
finite

�
:

(55)

The part of the divergence which is independent of v2 is
separated as

�

�
� i

Z
k
G�ðkÞ

���������v¼0;div

¼ 2ig2

�Z
k

1

ðk2 �M2Þ2

�
�Z

p

1

ððk�pÞ2 �M2Þð1� g2I
F
�ðp;MÞ=2Þ

�
finite

�
div
:

(56)

Using (A12) of Appendix A., one finds

�

�
�i

Z
k
G�ðkÞ

���������v¼0;div
¼ �2ig2ðAdiv þ BdivM

2Þ

þ 3ig22T
F
�ðMÞTðIÞ

a : (57)

The last term when substituted into (52) exactly compen-
sates the dangerous term �i�xvT

F
�ðMÞ, which arises from

the�i�xv

R
D0 term. The appearing new divergences (pro-

portional to Adiv and Bdiv) can be compensated by adding
further heavy corrections to (27). The consistent cancella-
tion of the divergences proportional to TF

� could have been
anticipated, since the counterterm proportional to the sca-
lar tadpole left out from (51) at this level cannot lead to any
divergence proportional to TF

�. Therefore, in this respect
(52) does not differ from the exact relation (51).
Next, one turns to the prospectively divergent terms

proportional to v2 of the SPE contributed by the pion
tadpole:

�4ig22v
2
Z
k

i

ðk2 �M2Þ2 �
�
2
Z
p

i

ðp2 �M2Þððk� pÞ2 �M2Þð1� g2I
F
�ðpÞ=2Þ2

þ
Z
p

i

ððk� pÞ2 �M2Þð1� g2I
F
�ðk� pÞ=2Þð1� g2I

F
�ðpÞ=2Þ

�
1

ðk� pÞ2 �M2
� 1

p2 �M2

��
: (58)

One finds by inspection, that there is no subdivergence in
this expression. The first term of the square bracket pro-
duces an overall divergent piece 8ig22v

2TðIÞ
a . It can be found

following the previous line of analysis, e.g. after changing
the order of integration performing the k integration first. A
careful, but rather lengthy analysis leads to the conclusion
that the second double integral is finite.

Eventually one finds that in the sum the three divergent
contributions proportional to v2 do not annihilate. It is easy
to see, at least partially, the source of this imbalance. When
in a subsequent iteration round one uses in the scalar tad-
pole a propagator involving heavy corrections, it also
produces a divergent contribution proportional to

ig22v
2TðIÞ

a . This shows that in case of this single type of

divergence for the cancellation one has to take into account
contributions belonging to different iteration levels of the
heavy contributions. Actually, all this is not unexpected,
since the ultraviolet features of the integrals are indepen-

dent of any hierarchy in the spectra. Therefore, in practice,
one renormalizes the saddle-point equations subtracting
the remainder of the divergences proportional to v2 by
hand.

VI. CONCLUSIONS AND OUTLOOK

A leading large-n solution was presented in a ground
state, which breaks the UðnÞ �UðnÞ symmetry of the
Lagrangian to UðnÞ. In the construction of the solution, a
light pseudoscalar/heavy scalar hierarchy of the spectra
was assumed. The renormalizability of the equation of
state and propagator equations is a precondition for the
investigation of the consistency of this additional assump-
tion. This feature was demonstrated by constructing the
counterterms to the equations above. The consistency of
these counterterms required an additional subtraction for
the renormalization of the saddle-point equations. It was
shown that the proposed solution explicitly fulfills
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Goldstone’s theorem. The pions are generically light,
therefore the assumed mass hierarchy will not be erased
by heavy radiative corrections, as was demonstrated by our
exploratory investigation. It is probably present in a large
part of the ðg1; g2Þ coupling-plane.

The proposed procedure of constructing a leading
large-n solution for the UðnÞ �UðnÞ ! UðnÞ symmetry
breaking pattern can be developed further in several direc-
tions. In the range of validity of the mass hierarchy we shall
study the finite temperature features of the proposed solu-
tion. The relevance of it would be largely strengthened if a
first order symmetry restoring transition were found in
agreement with the renormalization group argument. For
the applications to strong interaction phenomena at n ¼ 3
one ought to introduce also the UAð1Þ breaking effective
(determinant) term as a sort of perturbation to this solution.
A simple realization could be to include its contribution
into the two-loop 2PI effective potential of the model and
evaluate it with approximate large-n propagators con-
structed in this paper. Finally, we note, that one can make
use of these propagators also in models, where constituent
quarks are coupled to the mesons.
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APPENDIX A: DIVERGENCES OF SOME
RELEVANT INTEGRALS

The divergences of the integrals listed below all can be
read in somewhat scattered way in [18]. Here we summa-
rize them for the reader’s convenience. The divergences are
expressed in terms of the following divergent integrals:

Tð2Þ
d �

Z
k

i

k2 �M2
0

; Tð0Þ
d �

Z
k

i

ðk2 �M2
0Þ2

;

Tð2Þ
a �

Z
k

i

ðk2 �M2
0Þð1� �IF0 ðkÞÞ

;

TðIÞ
a �

Z
k

i

ðk2 �M2
0Þ2ð1� �IF0 ðkÞÞ2

IF0 ðkÞ;

(A1)

where M0 is an arbitrary normalization scale which makes
these integrals infrared safe, � is a parameter which in case
of our model equals g2=2, and I

Fðk;MÞ is the finite part of
the bubble integral

IFðk;MÞ ¼
Z
p

i

ðp2 �M2Þððk� pÞ2 �M2Þ � Tð0Þ
d ; (A2)

or in more explicit terms with real and imaginary parts
separated:

<IFðk;MÞ ¼ 1

16�2
log

M2

M2
0

� 1

16�2

8>>>>>>>>>>><
>>>>>>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

k2

q
log

1�
ffiffiffiffiffiffiffiffiffiffi
1�4M2

k2

q
1þ

ffiffiffiffiffiffiffiffiffiffi
1�4M2

k2

q k2 � 4M2

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

k2
� 1

q
arctan

�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

k2

q �
4M2 > k2 > 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

k2

q
log

ffiffiffiffiffiffiffiffiffiffi
1�4M2

k2

q
�1ffiffiffiffiffiffiffiffiffiffi

1�4M2

k2

q
þ1

0 � k2

;

=IFðk;MÞ ¼ � 1

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

k2

s
��ðk2 � 4M2Þ: (A3)

The finite part of the tadpole integral is

TFðMÞ ¼
Z
k

i

k2 �M2
� ðM2 �M2

0ÞTð0Þ
d � Tð2Þ

d

� M2

16�2
log

M2

M2
0

�M2 �M2
0

16�2
: (A4)

The divergences of the integrals below were found by
replacing the mass parameter M sequentially (with help of
subtractions and additions) by the normalization scale M0:

I1 ¼
Z
k

i

ðk2 �M2Þð1� �IFðk;MÞÞ
��������div

¼ Tð2Þ
a � 3�ðM2 �M2

0ÞTðIÞ
a � ~TdivðM2Þ; (A5)

where IFðk;MÞ is the bubble integral defined with massM.
We need in our analysis also the slightly modified integral:

I1a ¼
Z
k

i

ðk2 � 4M2Þð1� �IFðk;MÞÞ
��������div

¼ ~TdivðM2Þ � 3�M2TðIÞ
a : (A6)

There is a logarithmically divergent integral:

I2 ¼
Z
k

i

ðk2 �M2Þ2ð1� �IFðk;MÞÞ
��������div

¼ ��TðIÞ
a : (A7)

The most challenging is the separation of the setting-sun
integral, where one subdivergence is already explicitly
found:
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I3 ¼
�
�
Z
k

i

ðk2 �M2Þ2

�
�Z

p

1

ððk� pÞ2 �M2Þð1� �IFðp;MÞÞ
�
finite

�
div
:

(A8)

Using I1 introduced above one can write

I3 ¼
�
�
Z
k

i

ðk2 �M2Þ2

�
�Z

p

1

ððk� pÞ2 �M2Þð1� �IFðp;MÞÞ
þ i ~TdivðM2Þ

��
div
: (A9)

After changing the order of the integrals, using (A19) of
[18], one is led gradually to the final form of its divergen-
ces

I3 ¼ � 1

�

Z
k

1

k2 � 4M2

��������div
þ
�
1

�
� IFð0;MÞ þ 1

8�2

�

�
Z
k

1

ðk2 � 4M2Þð1� �IFðk;MÞÞ
��������div

� i ~TdivðM2Þ
Z
k

i

ðk2 �M2Þ2

¼ i

�
½Tð2Þ

d þ ð4M2 �M2
0ÞTð0Þ

d �

� i

�
1

�
� IFð0;MÞ þ 1

8�2

�
ð ~Tdiv � 3�M2TðIÞ

a Þ

� i ~TdivðM2ÞðTð0Þ
d þ IFð0;MÞÞ: (A10)

The terms proportional to IFð0;MÞ can be rewritten with
the help of a relation between the finite part of the tadpole
integral TFðMÞ and the bubble integral at zero external
momentum:

M2IFð0;MÞ ¼ TFðMÞ þ 1

16�2
ðM2 �M2

0Þ: (A11)

In this way one finds a piece linear in M2 with somewhat
complicated looking divergent coefficients and a danger-
ous term resulting from an uncancelled subdivergence:

I3 ¼ iðAdiv þ BdivM
2 � 3�TFðMÞTðIÞ

a Þ; (A12)

where

Adiv ¼ 1

�
½Tð2Þ

d �M2
0T

ð0Þ
d � ~Tdiv�

þ 3

16�2
�TðIÞ

a M2
0 �

�
1

8�2
þ Tð0Þ

d

�
~Tdiv;

Bdiv ¼ 4

�
Tð0Þ
d þ

�
3þ 3�

16�2

�
TðIÞ
a :

(A13)

APPENDIX B: USEFUL RELATIONS INVOLVING
THE UðnÞ STRUCTURE CONSTANTS

In the following relations, the summation over index e
(where it appears) goes from 0 to n2 � 1:

f0ab ¼ 0; d0ab ¼
ffiffiffi
2

n

s
�ab;

Xn2�1

i¼1

d0ii ¼ ðn2 � 1Þ
ffiffiffi
2

n

s
;

Xn2�1

i¼1

diia ¼ �0aðn2 � 1Þ
ffiffiffi
2

n

s
;

Xn2�1

i¼1;j�0

diij ¼ 0;

Xn2�1

a¼0

daaf ¼
ffiffiffiffiffiffiffiffi
2n3

p
�f0;

Xn2�1

a¼0

daaedecd ¼ 2n�cd;
Xn2�1

i¼1

diiedecd ¼ 2

n
ðn2 � 1Þ�cd;

Xn2�1

i;j¼1

dijcdijd ¼ n

�
1þ �c0�d0 � 2

n2
ð2� �c0�d0Þ

�
�cd;

Xn2�1

i¼1;a¼0

daicdaid ¼ n

�
1� 2

n2
þ �c0�d0

�
�cd;

Xn2�1

a¼0

dacedade ¼ nð1þ �c0�d0Þ�cd;
Xn2�1

i¼1

ficefide ¼ nð1� �c0�d0Þ�cd:

(B1)
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